Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 */
6
7#include <linux/clk.h>
8#include <linux/debugfs.h>
9#include <linux/delay.h>
10#include <linux/dma-mapping.h>
11#include <linux/iommu.h>
12#include <linux/interconnect.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/platform_device.h>
16#include <linux/pm_domain.h>
17#include <linux/pm_opp.h>
18#include <linux/pm_runtime.h>
19#include <linux/reset.h>
20
21#include <soc/tegra/common.h>
22#include <soc/tegra/pmc.h>
23
24#include <drm/drm_atomic.h>
25#include <drm/drm_atomic_helper.h>
26#include <drm/drm_blend.h>
27#include <drm/drm_debugfs.h>
28#include <drm/drm_fourcc.h>
29#include <drm/drm_framebuffer.h>
30#include <drm/drm_print.h>
31#include <drm/drm_vblank.h>
32
33#include "dc.h"
34#include "drm.h"
35#include "gem.h"
36#include "hub.h"
37#include "plane.h"
38
39static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
40 struct drm_crtc_state *state);
41
42static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
43{
44 stats->frames = 0;
45 stats->vblank = 0;
46 stats->underflow = 0;
47 stats->overflow = 0;
48}
49
50/* Reads the active copy of a register. */
51static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
52{
53 u32 value;
54
55 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
56 value = tegra_dc_readl(dc, offset);
57 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
58
59 return value;
60}
61
62static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
63 unsigned int offset)
64{
65 if (offset >= 0x500 && offset <= 0x638) {
66 offset = 0x000 + (offset - 0x500);
67 return plane->offset + offset;
68 }
69
70 if (offset >= 0x700 && offset <= 0x719) {
71 offset = 0x180 + (offset - 0x700);
72 return plane->offset + offset;
73 }
74
75 if (offset >= 0x800 && offset <= 0x839) {
76 offset = 0x1c0 + (offset - 0x800);
77 return plane->offset + offset;
78 }
79
80 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
81
82 return plane->offset + offset;
83}
84
85static inline u32 tegra_plane_readl(struct tegra_plane *plane,
86 unsigned int offset)
87{
88 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
89}
90
91static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
92 unsigned int offset)
93{
94 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
95}
96
97bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
98{
99 struct device_node *np = dc->dev->of_node;
100 struct of_phandle_iterator it;
101 int err;
102
103 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
104 if (it.node == dev->of_node)
105 return true;
106
107 return false;
108}
109
110/*
111 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
112 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
113 * Latching happens mmediately if the display controller is in STOP mode or
114 * on the next frame boundary otherwise.
115 *
116 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
117 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
118 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
119 * into the ACTIVE copy, either immediately if the display controller is in
120 * STOP mode, or at the next frame boundary otherwise.
121 */
122void tegra_dc_commit(struct tegra_dc *dc)
123{
124 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
125 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
126}
127
128static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
129 unsigned int bpp)
130{
131 fixed20_12 outf = dfixed_init(out);
132 fixed20_12 inf = dfixed_init(in);
133 u32 dda_inc;
134 int max;
135
136 if (v)
137 max = 15;
138 else {
139 switch (bpp) {
140 case 2:
141 max = 8;
142 break;
143
144 default:
145 WARN_ON_ONCE(1);
146 fallthrough;
147 case 4:
148 max = 4;
149 break;
150 }
151 }
152
153 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
154 inf.full -= dfixed_const(1);
155
156 dda_inc = dfixed_div(inf, outf);
157 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
158
159 return dda_inc;
160}
161
162static inline u32 compute_initial_dda(unsigned int in)
163{
164 fixed20_12 inf = dfixed_init(in);
165 return dfixed_frac(inf);
166}
167
168static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
169{
170 u32 background[3] = {
171 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
172 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
173 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
174 };
175 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
176 BLEND_COLOR_KEY_NONE;
177 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
178 struct tegra_plane_state *state;
179 u32 blending[2];
180 unsigned int i;
181
182 /* disable blending for non-overlapping case */
183 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
184 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
185
186 state = to_tegra_plane_state(plane->base.state);
187
188 if (state->opaque) {
189 /*
190 * Since custom fix-weight blending isn't utilized and weight
191 * of top window is set to max, we can enforce dependent
192 * blending which in this case results in transparent bottom
193 * window if top window is opaque and if top window enables
194 * alpha blending, then bottom window is getting alpha value
195 * of 1 minus the sum of alpha components of the overlapping
196 * plane.
197 */
198 background[0] |= BLEND_CONTROL_DEPENDENT;
199 background[1] |= BLEND_CONTROL_DEPENDENT;
200
201 /*
202 * The region where three windows overlap is the intersection
203 * of the two regions where two windows overlap. It contributes
204 * to the area if all of the windows on top of it have an alpha
205 * component.
206 */
207 switch (state->base.normalized_zpos) {
208 case 0:
209 if (state->blending[0].alpha &&
210 state->blending[1].alpha)
211 background[2] |= BLEND_CONTROL_DEPENDENT;
212 break;
213
214 case 1:
215 background[2] |= BLEND_CONTROL_DEPENDENT;
216 break;
217 }
218 } else {
219 /*
220 * Enable alpha blending if pixel format has an alpha
221 * component.
222 */
223 foreground |= BLEND_CONTROL_ALPHA;
224
225 /*
226 * If any of the windows on top of this window is opaque, it
227 * will completely conceal this window within that area. If
228 * top window has an alpha component, it is blended over the
229 * bottom window.
230 */
231 for (i = 0; i < 2; i++) {
232 if (state->blending[i].alpha &&
233 state->blending[i].top)
234 background[i] |= BLEND_CONTROL_DEPENDENT;
235 }
236
237 switch (state->base.normalized_zpos) {
238 case 0:
239 if (state->blending[0].alpha &&
240 state->blending[1].alpha)
241 background[2] |= BLEND_CONTROL_DEPENDENT;
242 break;
243
244 case 1:
245 /*
246 * When both middle and topmost windows have an alpha,
247 * these windows a mixed together and then the result
248 * is blended over the bottom window.
249 */
250 if (state->blending[0].alpha &&
251 state->blending[0].top)
252 background[2] |= BLEND_CONTROL_ALPHA;
253
254 if (state->blending[1].alpha &&
255 state->blending[1].top)
256 background[2] |= BLEND_CONTROL_ALPHA;
257 break;
258 }
259 }
260
261 switch (state->base.normalized_zpos) {
262 case 0:
263 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
264 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
265 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
266 break;
267
268 case 1:
269 /*
270 * If window B / C is topmost, then X / Y registers are
271 * matching the order of blending[...] state indices,
272 * otherwise a swap is required.
273 */
274 if (!state->blending[0].top && state->blending[1].top) {
275 blending[0] = foreground;
276 blending[1] = background[1];
277 } else {
278 blending[0] = background[0];
279 blending[1] = foreground;
280 }
281
282 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
283 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
284 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
285 break;
286
287 case 2:
288 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
289 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
290 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
291 break;
292 }
293}
294
295static void tegra_plane_setup_blending(struct tegra_plane *plane,
296 const struct tegra_dc_window *window)
297{
298 u32 value;
299
300 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
301 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
302 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
303 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
304
305 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
306 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
307 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
308 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
309
310 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
311 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
312}
313
314static bool
315tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
316 const struct tegra_dc_window *window)
317{
318 struct tegra_dc *dc = plane->dc;
319
320 if (window->src.w == window->dst.w)
321 return false;
322
323 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
324 return false;
325
326 return true;
327}
328
329static bool
330tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
331 const struct tegra_dc_window *window)
332{
333 struct tegra_dc *dc = plane->dc;
334
335 if (window->src.h == window->dst.h)
336 return false;
337
338 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
339 return false;
340
341 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
342 return false;
343
344 return true;
345}
346
347static void tegra_dc_setup_window(struct tegra_plane *plane,
348 const struct tegra_dc_window *window)
349{
350 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
351 struct tegra_dc *dc = plane->dc;
352 unsigned int planes;
353 u32 value;
354 bool yuv;
355
356 /*
357 * For YUV planar modes, the number of bytes per pixel takes into
358 * account only the luma component and therefore is 1.
359 */
360 yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
361 if (!yuv)
362 bpp = window->bits_per_pixel / 8;
363 else
364 bpp = (planes > 1) ? 1 : 2;
365
366 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
367 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
368
369 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
370 tegra_plane_writel(plane, value, DC_WIN_POSITION);
371
372 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
373 tegra_plane_writel(plane, value, DC_WIN_SIZE);
374
375 h_offset = window->src.x * bpp;
376 v_offset = window->src.y;
377 h_size = window->src.w * bpp;
378 v_size = window->src.h;
379
380 if (window->reflect_x)
381 h_offset += (window->src.w - 1) * bpp;
382
383 if (window->reflect_y)
384 v_offset += window->src.h - 1;
385
386 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
387 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
388
389 /*
390 * For DDA computations the number of bytes per pixel for YUV planar
391 * modes needs to take into account all Y, U and V components.
392 */
393 if (yuv && planes > 1)
394 bpp = 2;
395
396 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
397 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
398
399 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
400 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
401
402 h_dda = compute_initial_dda(window->src.x);
403 v_dda = compute_initial_dda(window->src.y);
404
405 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
406 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
407
408 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
409 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
410
411 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
412
413 if (yuv && planes > 1) {
414 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
415
416 if (planes > 2)
417 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
418
419 value = window->stride[1] << 16 | window->stride[0];
420 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
421 } else {
422 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
423 }
424
425 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
426 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
427
428 if (dc->soc->supports_block_linear) {
429 unsigned long height = window->tiling.value;
430
431 switch (window->tiling.mode) {
432 case TEGRA_BO_TILING_MODE_PITCH:
433 value = DC_WINBUF_SURFACE_KIND_PITCH;
434 break;
435
436 case TEGRA_BO_TILING_MODE_TILED:
437 value = DC_WINBUF_SURFACE_KIND_TILED;
438 break;
439
440 case TEGRA_BO_TILING_MODE_BLOCK:
441 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
442 DC_WINBUF_SURFACE_KIND_BLOCK;
443 break;
444 }
445
446 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
447 } else {
448 switch (window->tiling.mode) {
449 case TEGRA_BO_TILING_MODE_PITCH:
450 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
451 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
452 break;
453
454 case TEGRA_BO_TILING_MODE_TILED:
455 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
456 DC_WIN_BUFFER_ADDR_MODE_TILE;
457 break;
458
459 case TEGRA_BO_TILING_MODE_BLOCK:
460 /*
461 * No need to handle this here because ->atomic_check
462 * will already have filtered it out.
463 */
464 break;
465 }
466
467 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
468 }
469
470 value = WIN_ENABLE;
471
472 if (yuv) {
473 /* setup default colorspace conversion coefficients */
474 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
475 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
476 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
477 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
478 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
479 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
480 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
481 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
482
483 value |= CSC_ENABLE;
484 } else if (window->bits_per_pixel < 24) {
485 value |= COLOR_EXPAND;
486 }
487
488 if (window->reflect_x)
489 value |= H_DIRECTION;
490
491 if (window->reflect_y)
492 value |= V_DIRECTION;
493
494 if (tegra_plane_use_horizontal_filtering(plane, window)) {
495 /*
496 * Enable horizontal 6-tap filter and set filtering
497 * coefficients to the default values defined in TRM.
498 */
499 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
500 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
501 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
502 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
503 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
504 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
505 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
506 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
507 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
508 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
509 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
510 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
511 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
512 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
513 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
514 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
515
516 value |= H_FILTER;
517 }
518
519 if (tegra_plane_use_vertical_filtering(plane, window)) {
520 unsigned int i, k;
521
522 /*
523 * Enable vertical 2-tap filter and set filtering
524 * coefficients to the default values defined in TRM.
525 */
526 for (i = 0, k = 128; i < 16; i++, k -= 8)
527 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
528
529 value |= V_FILTER;
530 }
531
532 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
533
534 if (dc->soc->has_legacy_blending)
535 tegra_plane_setup_blending_legacy(plane);
536 else
537 tegra_plane_setup_blending(plane, window);
538}
539
540static const u32 tegra20_primary_formats[] = {
541 DRM_FORMAT_ARGB4444,
542 DRM_FORMAT_ARGB1555,
543 DRM_FORMAT_RGB565,
544 DRM_FORMAT_RGBA5551,
545 DRM_FORMAT_ABGR8888,
546 DRM_FORMAT_ARGB8888,
547 /* non-native formats */
548 DRM_FORMAT_XRGB1555,
549 DRM_FORMAT_RGBX5551,
550 DRM_FORMAT_XBGR8888,
551 DRM_FORMAT_XRGB8888,
552};
553
554static const u64 tegra20_modifiers[] = {
555 DRM_FORMAT_MOD_LINEAR,
556 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
557 DRM_FORMAT_MOD_INVALID
558};
559
560static const u32 tegra114_primary_formats[] = {
561 DRM_FORMAT_ARGB4444,
562 DRM_FORMAT_ARGB1555,
563 DRM_FORMAT_RGB565,
564 DRM_FORMAT_RGBA5551,
565 DRM_FORMAT_ABGR8888,
566 DRM_FORMAT_ARGB8888,
567 /* new on Tegra114 */
568 DRM_FORMAT_ABGR4444,
569 DRM_FORMAT_ABGR1555,
570 DRM_FORMAT_BGRA5551,
571 DRM_FORMAT_XRGB1555,
572 DRM_FORMAT_RGBX5551,
573 DRM_FORMAT_XBGR1555,
574 DRM_FORMAT_BGRX5551,
575 DRM_FORMAT_BGR565,
576 DRM_FORMAT_BGRA8888,
577 DRM_FORMAT_RGBA8888,
578 DRM_FORMAT_XRGB8888,
579 DRM_FORMAT_XBGR8888,
580};
581
582static const u32 tegra124_primary_formats[] = {
583 DRM_FORMAT_ARGB4444,
584 DRM_FORMAT_ARGB1555,
585 DRM_FORMAT_RGB565,
586 DRM_FORMAT_RGBA5551,
587 DRM_FORMAT_ABGR8888,
588 DRM_FORMAT_ARGB8888,
589 /* new on Tegra114 */
590 DRM_FORMAT_ABGR4444,
591 DRM_FORMAT_ABGR1555,
592 DRM_FORMAT_BGRA5551,
593 DRM_FORMAT_XRGB1555,
594 DRM_FORMAT_RGBX5551,
595 DRM_FORMAT_XBGR1555,
596 DRM_FORMAT_BGRX5551,
597 DRM_FORMAT_BGR565,
598 DRM_FORMAT_BGRA8888,
599 DRM_FORMAT_RGBA8888,
600 DRM_FORMAT_XRGB8888,
601 DRM_FORMAT_XBGR8888,
602 /* new on Tegra124 */
603 DRM_FORMAT_RGBX8888,
604 DRM_FORMAT_BGRX8888,
605};
606
607static const u64 tegra124_modifiers[] = {
608 DRM_FORMAT_MOD_LINEAR,
609 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
610 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
611 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
612 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
613 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
614 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
615 DRM_FORMAT_MOD_INVALID
616};
617
618static int tegra_plane_atomic_check(struct drm_plane *plane,
619 struct drm_atomic_state *state)
620{
621 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
622 plane);
623 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
624 unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
625 DRM_MODE_REFLECT_X |
626 DRM_MODE_REFLECT_Y;
627 unsigned int rotation = new_plane_state->rotation;
628 struct tegra_bo_tiling *tiling = &plane_state->tiling;
629 struct tegra_plane *tegra = to_tegra_plane(plane);
630 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
631 int err;
632
633 plane_state->peak_memory_bandwidth = 0;
634 plane_state->avg_memory_bandwidth = 0;
635
636 /* no need for further checks if the plane is being disabled */
637 if (!new_plane_state->crtc) {
638 plane_state->total_peak_memory_bandwidth = 0;
639 return 0;
640 }
641
642 err = tegra_plane_format(new_plane_state->fb->format->format,
643 &plane_state->format,
644 &plane_state->swap);
645 if (err < 0)
646 return err;
647
648 /*
649 * Tegra20 and Tegra30 are special cases here because they support
650 * only variants of specific formats with an alpha component, but not
651 * the corresponding opaque formats. However, the opaque formats can
652 * be emulated by disabling alpha blending for the plane.
653 */
654 if (dc->soc->has_legacy_blending) {
655 err = tegra_plane_setup_legacy_state(tegra, plane_state);
656 if (err < 0)
657 return err;
658 }
659
660 err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
661 if (err < 0)
662 return err;
663
664 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
665 !dc->soc->supports_block_linear) {
666 DRM_ERROR("hardware doesn't support block linear mode\n");
667 return -EINVAL;
668 }
669
670 /*
671 * Older userspace used custom BO flag in order to specify the Y
672 * reflection, while modern userspace uses the generic DRM rotation
673 * property in order to achieve the same result. The legacy BO flag
674 * duplicates the DRM rotation property when both are set.
675 */
676 if (tegra_fb_is_bottom_up(new_plane_state->fb))
677 rotation |= DRM_MODE_REFLECT_Y;
678
679 rotation = drm_rotation_simplify(rotation, supported_rotation);
680
681 if (rotation & DRM_MODE_REFLECT_X)
682 plane_state->reflect_x = true;
683 else
684 plane_state->reflect_x = false;
685
686 if (rotation & DRM_MODE_REFLECT_Y)
687 plane_state->reflect_y = true;
688 else
689 plane_state->reflect_y = false;
690
691 /*
692 * Tegra doesn't support different strides for U and V planes so we
693 * error out if the user tries to display a framebuffer with such a
694 * configuration.
695 */
696 if (new_plane_state->fb->format->num_planes > 2) {
697 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
698 DRM_ERROR("unsupported UV-plane configuration\n");
699 return -EINVAL;
700 }
701 }
702
703 err = tegra_plane_state_add(tegra, new_plane_state);
704 if (err < 0)
705 return err;
706
707 return 0;
708}
709
710static void tegra_plane_atomic_disable(struct drm_plane *plane,
711 struct drm_atomic_state *state)
712{
713 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
714 plane);
715 struct tegra_plane *p = to_tegra_plane(plane);
716 u32 value;
717
718 /* rien ne va plus */
719 if (!old_state || !old_state->crtc)
720 return;
721
722 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
723 value &= ~WIN_ENABLE;
724 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
725}
726
727static void tegra_plane_atomic_update(struct drm_plane *plane,
728 struct drm_atomic_state *state)
729{
730 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
731 plane);
732 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
733 struct drm_framebuffer *fb = new_state->fb;
734 struct tegra_plane *p = to_tegra_plane(plane);
735 struct tegra_dc_window window;
736 unsigned int i;
737
738 /* rien ne va plus */
739 if (!new_state->crtc || !new_state->fb)
740 return;
741
742 if (!new_state->visible)
743 return tegra_plane_atomic_disable(plane, state);
744
745 memset(&window, 0, sizeof(window));
746 window.src.x = new_state->src.x1 >> 16;
747 window.src.y = new_state->src.y1 >> 16;
748 window.src.w = drm_rect_width(&new_state->src) >> 16;
749 window.src.h = drm_rect_height(&new_state->src) >> 16;
750 window.dst.x = new_state->dst.x1;
751 window.dst.y = new_state->dst.y1;
752 window.dst.w = drm_rect_width(&new_state->dst);
753 window.dst.h = drm_rect_height(&new_state->dst);
754 window.bits_per_pixel = fb->format->cpp[0] * 8;
755 window.reflect_x = tegra_plane_state->reflect_x;
756 window.reflect_y = tegra_plane_state->reflect_y;
757
758 /* copy from state */
759 window.zpos = new_state->normalized_zpos;
760 window.tiling = tegra_plane_state->tiling;
761 window.format = tegra_plane_state->format;
762 window.swap = tegra_plane_state->swap;
763
764 for (i = 0; i < fb->format->num_planes; i++) {
765 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
766
767 /*
768 * Tegra uses a shared stride for UV planes. Framebuffers are
769 * already checked for this in the tegra_plane_atomic_check()
770 * function, so it's safe to ignore the V-plane pitch here.
771 */
772 if (i < 2)
773 window.stride[i] = fb->pitches[i];
774 }
775
776 tegra_dc_setup_window(p, &window);
777}
778
779static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
780 .prepare_fb = tegra_plane_prepare_fb,
781 .cleanup_fb = tegra_plane_cleanup_fb,
782 .atomic_check = tegra_plane_atomic_check,
783 .atomic_disable = tegra_plane_atomic_disable,
784 .atomic_update = tegra_plane_atomic_update,
785};
786
787static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
788{
789 /*
790 * Ideally this would use drm_crtc_mask(), but that would require the
791 * CRTC to already be in the mode_config's list of CRTCs. However, it
792 * will only be added to that list in the drm_crtc_init_with_planes()
793 * (in tegra_dc_init()), which in turn requires registration of these
794 * planes. So we have ourselves a nice little chicken and egg problem
795 * here.
796 *
797 * We work around this by manually creating the mask from the number
798 * of CRTCs that have been registered, and should therefore always be
799 * the same as drm_crtc_index() after registration.
800 */
801 return 1 << drm->mode_config.num_crtc;
802}
803
804static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
805 struct tegra_dc *dc)
806{
807 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
808 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
809 struct tegra_plane *plane;
810 unsigned int num_formats;
811 const u64 *modifiers;
812 const u32 *formats;
813 int err;
814
815 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
816 if (!plane)
817 return ERR_PTR(-ENOMEM);
818
819 /* Always use window A as primary window */
820 plane->offset = 0xa00;
821 plane->index = 0;
822 plane->dc = dc;
823
824 num_formats = dc->soc->num_primary_formats;
825 formats = dc->soc->primary_formats;
826 modifiers = dc->soc->modifiers;
827
828 err = tegra_plane_interconnect_init(plane);
829 if (err) {
830 kfree(plane);
831 return ERR_PTR(err);
832 }
833
834 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
835 &tegra_plane_funcs, formats,
836 num_formats, modifiers, type, NULL);
837 if (err < 0) {
838 kfree(plane);
839 return ERR_PTR(err);
840 }
841
842 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
843 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
844
845 err = drm_plane_create_rotation_property(&plane->base,
846 DRM_MODE_ROTATE_0,
847 DRM_MODE_ROTATE_0 |
848 DRM_MODE_ROTATE_180 |
849 DRM_MODE_REFLECT_X |
850 DRM_MODE_REFLECT_Y);
851 if (err < 0)
852 dev_err(dc->dev, "failed to create rotation property: %d\n",
853 err);
854
855 return &plane->base;
856}
857
858static const u32 tegra_legacy_cursor_plane_formats[] = {
859 DRM_FORMAT_RGBA8888,
860};
861
862static const u32 tegra_cursor_plane_formats[] = {
863 DRM_FORMAT_ARGB8888,
864};
865
866static int tegra_cursor_atomic_check(struct drm_plane *plane,
867 struct drm_atomic_state *state)
868{
869 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
870 plane);
871 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
872 struct tegra_plane *tegra = to_tegra_plane(plane);
873 int err;
874
875 plane_state->peak_memory_bandwidth = 0;
876 plane_state->avg_memory_bandwidth = 0;
877
878 /* no need for further checks if the plane is being disabled */
879 if (!new_plane_state->crtc) {
880 plane_state->total_peak_memory_bandwidth = 0;
881 return 0;
882 }
883
884 /* scaling not supported for cursor */
885 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
886 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
887 return -EINVAL;
888
889 /* only square cursors supported */
890 if (new_plane_state->src_w != new_plane_state->src_h)
891 return -EINVAL;
892
893 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
894 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
895 return -EINVAL;
896
897 err = tegra_plane_state_add(tegra, new_plane_state);
898 if (err < 0)
899 return err;
900
901 return 0;
902}
903
904static void __tegra_cursor_atomic_update(struct drm_plane *plane,
905 struct drm_plane_state *new_state)
906{
907 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
908 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
909 struct tegra_drm *tegra = plane->dev->dev_private;
910#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
911 u64 dma_mask = *dc->dev->dma_mask;
912#endif
913 unsigned int x, y;
914 u32 value = 0;
915
916 /* rien ne va plus */
917 if (!new_state->crtc || !new_state->fb)
918 return;
919
920 /*
921 * Legacy display supports hardware clipping of the cursor, but
922 * nvdisplay relies on software to clip the cursor to the screen.
923 */
924 if (!dc->soc->has_nvdisplay)
925 value |= CURSOR_CLIP_DISPLAY;
926
927 switch (new_state->crtc_w) {
928 case 32:
929 value |= CURSOR_SIZE_32x32;
930 break;
931
932 case 64:
933 value |= CURSOR_SIZE_64x64;
934 break;
935
936 case 128:
937 value |= CURSOR_SIZE_128x128;
938 break;
939
940 case 256:
941 value |= CURSOR_SIZE_256x256;
942 break;
943
944 default:
945 WARN(1, "cursor size %ux%u not supported\n",
946 new_state->crtc_w, new_state->crtc_h);
947 return;
948 }
949
950 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
951 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
952
953#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
954 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
955 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
956#endif
957
958 /* enable cursor and set blend mode */
959 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
960 value |= CURSOR_ENABLE;
961 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
962
963 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
964 value &= ~CURSOR_DST_BLEND_MASK;
965 value &= ~CURSOR_SRC_BLEND_MASK;
966
967 if (dc->soc->has_nvdisplay)
968 value &= ~CURSOR_COMPOSITION_MODE_XOR;
969 else
970 value |= CURSOR_MODE_NORMAL;
971
972 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
973 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
974 value |= CURSOR_ALPHA;
975 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
976
977 /* nvdisplay relies on software for clipping */
978 if (dc->soc->has_nvdisplay) {
979 struct drm_rect src;
980
981 x = new_state->dst.x1;
982 y = new_state->dst.y1;
983
984 drm_rect_fp_to_int(&src, &new_state->src);
985
986 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
987 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
988
989 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
990 (drm_rect_width(&src) & tegra->hmask);
991 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
992 } else {
993 x = new_state->crtc_x;
994 y = new_state->crtc_y;
995 }
996
997 /* position the cursor */
998 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
999 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
1000}
1001
1002static void tegra_cursor_atomic_update(struct drm_plane *plane,
1003 struct drm_atomic_state *state)
1004{
1005 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1006
1007 __tegra_cursor_atomic_update(plane, new_state);
1008}
1009
1010static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1011 struct drm_atomic_state *state)
1012{
1013 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1014 plane);
1015 struct tegra_dc *dc;
1016 u32 value;
1017
1018 /* rien ne va plus */
1019 if (!old_state || !old_state->crtc)
1020 return;
1021
1022 dc = to_tegra_dc(old_state->crtc);
1023
1024 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1025 value &= ~CURSOR_ENABLE;
1026 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1027}
1028
1029static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state,
1030 bool flip)
1031{
1032 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1033 struct drm_crtc_state *crtc_state;
1034 int min_scale, max_scale;
1035 int err;
1036
1037 crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc);
1038 if (WARN_ON(!crtc_state))
1039 return -EINVAL;
1040
1041 if (!crtc_state->active)
1042 return -EINVAL;
1043
1044 if (plane->state->crtc != new_state->crtc ||
1045 plane->state->src_w != new_state->src_w ||
1046 plane->state->src_h != new_state->src_h ||
1047 plane->state->crtc_w != new_state->crtc_w ||
1048 plane->state->crtc_h != new_state->crtc_h ||
1049 plane->state->fb != new_state->fb ||
1050 plane->state->fb == NULL)
1051 return -EINVAL;
1052
1053 min_scale = (1 << 16) / 8;
1054 max_scale = (8 << 16) / 1;
1055
1056 err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1057 true, true);
1058 if (err < 0)
1059 return err;
1060
1061 if (new_state->visible != plane->state->visible)
1062 return -EINVAL;
1063
1064 return 0;
1065}
1066
1067static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1068 struct drm_atomic_state *state)
1069{
1070 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1071 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1072
1073 plane->state->src_x = new_state->src_x;
1074 plane->state->src_y = new_state->src_y;
1075 plane->state->crtc_x = new_state->crtc_x;
1076 plane->state->crtc_y = new_state->crtc_y;
1077
1078 if (new_state->visible) {
1079 struct tegra_plane *p = to_tegra_plane(plane);
1080 u32 value;
1081
1082 __tegra_cursor_atomic_update(plane, new_state);
1083
1084 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1085 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1086 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1087
1088 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1089 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1090 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1091 }
1092}
1093
1094static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1095 .prepare_fb = tegra_plane_prepare_fb,
1096 .cleanup_fb = tegra_plane_cleanup_fb,
1097 .atomic_check = tegra_cursor_atomic_check,
1098 .atomic_update = tegra_cursor_atomic_update,
1099 .atomic_disable = tegra_cursor_atomic_disable,
1100 .atomic_async_check = tegra_cursor_atomic_async_check,
1101 .atomic_async_update = tegra_cursor_atomic_async_update,
1102};
1103
1104static const uint64_t linear_modifiers[] = {
1105 DRM_FORMAT_MOD_LINEAR,
1106 DRM_FORMAT_MOD_INVALID
1107};
1108
1109static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1110 struct tegra_dc *dc)
1111{
1112 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1113 struct tegra_plane *plane;
1114 unsigned int num_formats;
1115 const u32 *formats;
1116 int err;
1117
1118 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1119 if (!plane)
1120 return ERR_PTR(-ENOMEM);
1121
1122 /*
1123 * This index is kind of fake. The cursor isn't a regular plane, but
1124 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1125 * use the same programming. Setting this fake index here allows the
1126 * code in tegra_add_plane_state() to do the right thing without the
1127 * need to special-casing the cursor plane.
1128 */
1129 plane->index = 6;
1130 plane->dc = dc;
1131
1132 if (!dc->soc->has_nvdisplay) {
1133 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1134 formats = tegra_legacy_cursor_plane_formats;
1135
1136 err = tegra_plane_interconnect_init(plane);
1137 if (err) {
1138 kfree(plane);
1139 return ERR_PTR(err);
1140 }
1141 } else {
1142 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1143 formats = tegra_cursor_plane_formats;
1144 }
1145
1146 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1147 &tegra_plane_funcs, formats,
1148 num_formats, linear_modifiers,
1149 DRM_PLANE_TYPE_CURSOR, NULL);
1150 if (err < 0) {
1151 kfree(plane);
1152 return ERR_PTR(err);
1153 }
1154
1155 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1156 drm_plane_create_zpos_immutable_property(&plane->base, 255);
1157
1158 return &plane->base;
1159}
1160
1161static const u32 tegra20_overlay_formats[] = {
1162 DRM_FORMAT_ARGB4444,
1163 DRM_FORMAT_ARGB1555,
1164 DRM_FORMAT_RGB565,
1165 DRM_FORMAT_RGBA5551,
1166 DRM_FORMAT_ABGR8888,
1167 DRM_FORMAT_ARGB8888,
1168 /* non-native formats */
1169 DRM_FORMAT_XRGB1555,
1170 DRM_FORMAT_RGBX5551,
1171 DRM_FORMAT_XBGR8888,
1172 DRM_FORMAT_XRGB8888,
1173 /* planar formats */
1174 DRM_FORMAT_UYVY,
1175 DRM_FORMAT_YUYV,
1176 DRM_FORMAT_YUV420,
1177 DRM_FORMAT_YUV422,
1178};
1179
1180static const u32 tegra114_overlay_formats[] = {
1181 DRM_FORMAT_ARGB4444,
1182 DRM_FORMAT_ARGB1555,
1183 DRM_FORMAT_RGB565,
1184 DRM_FORMAT_RGBA5551,
1185 DRM_FORMAT_ABGR8888,
1186 DRM_FORMAT_ARGB8888,
1187 /* new on Tegra114 */
1188 DRM_FORMAT_ABGR4444,
1189 DRM_FORMAT_ABGR1555,
1190 DRM_FORMAT_BGRA5551,
1191 DRM_FORMAT_XRGB1555,
1192 DRM_FORMAT_RGBX5551,
1193 DRM_FORMAT_XBGR1555,
1194 DRM_FORMAT_BGRX5551,
1195 DRM_FORMAT_BGR565,
1196 DRM_FORMAT_BGRA8888,
1197 DRM_FORMAT_RGBA8888,
1198 DRM_FORMAT_XRGB8888,
1199 DRM_FORMAT_XBGR8888,
1200 /* planar formats */
1201 DRM_FORMAT_UYVY,
1202 DRM_FORMAT_YUYV,
1203 DRM_FORMAT_YUV420,
1204 DRM_FORMAT_YUV422,
1205 /* semi-planar formats */
1206 DRM_FORMAT_NV12,
1207 DRM_FORMAT_NV21,
1208 DRM_FORMAT_NV16,
1209 DRM_FORMAT_NV61,
1210 DRM_FORMAT_NV24,
1211 DRM_FORMAT_NV42,
1212};
1213
1214static const u32 tegra124_overlay_formats[] = {
1215 DRM_FORMAT_ARGB4444,
1216 DRM_FORMAT_ARGB1555,
1217 DRM_FORMAT_RGB565,
1218 DRM_FORMAT_RGBA5551,
1219 DRM_FORMAT_ABGR8888,
1220 DRM_FORMAT_ARGB8888,
1221 /* new on Tegra114 */
1222 DRM_FORMAT_ABGR4444,
1223 DRM_FORMAT_ABGR1555,
1224 DRM_FORMAT_BGRA5551,
1225 DRM_FORMAT_XRGB1555,
1226 DRM_FORMAT_RGBX5551,
1227 DRM_FORMAT_XBGR1555,
1228 DRM_FORMAT_BGRX5551,
1229 DRM_FORMAT_BGR565,
1230 DRM_FORMAT_BGRA8888,
1231 DRM_FORMAT_RGBA8888,
1232 DRM_FORMAT_XRGB8888,
1233 DRM_FORMAT_XBGR8888,
1234 /* new on Tegra124 */
1235 DRM_FORMAT_RGBX8888,
1236 DRM_FORMAT_BGRX8888,
1237 /* planar formats */
1238 DRM_FORMAT_UYVY,
1239 DRM_FORMAT_YUYV,
1240 DRM_FORMAT_YVYU,
1241 DRM_FORMAT_VYUY,
1242 DRM_FORMAT_YUV420, /* YU12 */
1243 DRM_FORMAT_YUV422, /* YU16 */
1244 DRM_FORMAT_YUV444, /* YU24 */
1245 /* semi-planar formats */
1246 DRM_FORMAT_NV12,
1247 DRM_FORMAT_NV21,
1248 DRM_FORMAT_NV16,
1249 DRM_FORMAT_NV61,
1250 DRM_FORMAT_NV24,
1251 DRM_FORMAT_NV42,
1252};
1253
1254static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1255 struct tegra_dc *dc,
1256 unsigned int index,
1257 bool cursor)
1258{
1259 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1260 struct tegra_plane *plane;
1261 unsigned int num_formats;
1262 enum drm_plane_type type;
1263 const u32 *formats;
1264 int err;
1265
1266 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1267 if (!plane)
1268 return ERR_PTR(-ENOMEM);
1269
1270 plane->offset = 0xa00 + 0x200 * index;
1271 plane->index = index;
1272 plane->dc = dc;
1273
1274 num_formats = dc->soc->num_overlay_formats;
1275 formats = dc->soc->overlay_formats;
1276
1277 err = tegra_plane_interconnect_init(plane);
1278 if (err) {
1279 kfree(plane);
1280 return ERR_PTR(err);
1281 }
1282
1283 if (!cursor)
1284 type = DRM_PLANE_TYPE_OVERLAY;
1285 else
1286 type = DRM_PLANE_TYPE_CURSOR;
1287
1288 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1289 &tegra_plane_funcs, formats,
1290 num_formats, linear_modifiers,
1291 type, NULL);
1292 if (err < 0) {
1293 kfree(plane);
1294 return ERR_PTR(err);
1295 }
1296
1297 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1298 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1299
1300 err = drm_plane_create_rotation_property(&plane->base,
1301 DRM_MODE_ROTATE_0,
1302 DRM_MODE_ROTATE_0 |
1303 DRM_MODE_ROTATE_180 |
1304 DRM_MODE_REFLECT_X |
1305 DRM_MODE_REFLECT_Y);
1306 if (err < 0)
1307 dev_err(dc->dev, "failed to create rotation property: %d\n",
1308 err);
1309
1310 return &plane->base;
1311}
1312
1313static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1314 struct tegra_dc *dc)
1315{
1316 struct drm_plane *plane, *primary = NULL;
1317 unsigned int i, j;
1318
1319 for (i = 0; i < dc->soc->num_wgrps; i++) {
1320 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1321
1322 if (wgrp->dc == dc->pipe) {
1323 for (j = 0; j < wgrp->num_windows; j++) {
1324 unsigned int index = wgrp->windows[j];
1325 enum drm_plane_type type;
1326
1327 if (primary)
1328 type = DRM_PLANE_TYPE_OVERLAY;
1329 else
1330 type = DRM_PLANE_TYPE_PRIMARY;
1331
1332 plane = tegra_shared_plane_create(drm, dc,
1333 wgrp->index,
1334 index, type);
1335 if (IS_ERR(plane))
1336 return plane;
1337
1338 /*
1339 * Choose the first shared plane owned by this
1340 * head as the primary plane.
1341 */
1342 if (!primary)
1343 primary = plane;
1344 }
1345 }
1346 }
1347
1348 return primary;
1349}
1350
1351static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1352 struct tegra_dc *dc)
1353{
1354 struct drm_plane *planes[2], *primary;
1355 unsigned int planes_num;
1356 unsigned int i;
1357 int err;
1358
1359 primary = tegra_primary_plane_create(drm, dc);
1360 if (IS_ERR(primary))
1361 return primary;
1362
1363 if (dc->soc->supports_cursor)
1364 planes_num = 2;
1365 else
1366 planes_num = 1;
1367
1368 for (i = 0; i < planes_num; i++) {
1369 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1370 false);
1371 if (IS_ERR(planes[i])) {
1372 err = PTR_ERR(planes[i]);
1373
1374 while (i--)
1375 planes[i]->funcs->destroy(planes[i]);
1376
1377 primary->funcs->destroy(primary);
1378 return ERR_PTR(err);
1379 }
1380 }
1381
1382 return primary;
1383}
1384
1385static void tegra_dc_destroy(struct drm_crtc *crtc)
1386{
1387 drm_crtc_cleanup(crtc);
1388}
1389
1390static void tegra_crtc_reset(struct drm_crtc *crtc)
1391{
1392 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1393
1394 if (crtc->state)
1395 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1396
1397 if (state)
1398 __drm_atomic_helper_crtc_reset(crtc, &state->base);
1399 else
1400 __drm_atomic_helper_crtc_reset(crtc, NULL);
1401}
1402
1403static struct drm_crtc_state *
1404tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1405{
1406 struct tegra_dc_state *state = to_dc_state(crtc->state);
1407 struct tegra_dc_state *copy;
1408
1409 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1410 if (!copy)
1411 return NULL;
1412
1413 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1414 copy->clk = state->clk;
1415 copy->pclk = state->pclk;
1416 copy->div = state->div;
1417 copy->planes = state->planes;
1418
1419 return ©->base;
1420}
1421
1422static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1423 struct drm_crtc_state *state)
1424{
1425 __drm_atomic_helper_crtc_destroy_state(state);
1426 kfree(state);
1427}
1428
1429#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1430
1431static const struct debugfs_reg32 tegra_dc_regs[] = {
1432 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1433 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1434 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1435 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1436 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1437 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1438 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1439 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1440 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1441 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1442 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1443 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1444 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1445 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1446 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1447 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1448 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1449 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1450 DEBUGFS_REG32(DC_CMD_INT_MASK),
1451 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1452 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1453 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1454 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1455 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1456 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1457 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1458 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1459 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1460 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1461 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1462 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1463 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1464 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1465 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1466 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1467 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1468 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1469 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1470 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1471 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1472 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1473 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1474 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1475 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1476 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1477 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1478 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1479 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1480 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1481 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1482 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1483 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1484 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1485 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1486 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1487 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1488 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1489 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1490 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1491 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1492 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1493 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1494 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1495 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1496 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1497 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1498 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1499 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1500 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1501 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1502 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1503 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1504 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1505 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1506 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1507 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1508 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1509 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1510 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1511 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1512 DEBUGFS_REG32(DC_DISP_ACTIVE),
1513 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1514 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1515 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1516 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1517 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1518 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1519 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1520 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1521 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1522 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1523 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1524 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1525 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1526 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1527 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1528 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1529 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1530 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1531 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1532 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1533 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1534 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1535 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1536 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1537 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1538 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1539 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1540 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1541 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1542 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1543 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1544 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1545 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1546 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1547 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1548 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1549 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1550 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1551 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1552 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1553 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1554 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1555 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1556 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1557 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1558 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1559 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1560 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1561 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1562 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1563 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1564 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1565 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1566 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1567 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1568 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1569 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1570 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1571 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1572 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1573 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1574 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1575 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1576 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1577 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1578 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1579 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1580 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1581 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1582 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1583 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1584 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1585 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1586 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1587 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1588 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1589 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1590 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1591 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1592 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1593 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1594 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1595 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1596 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1597 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1598 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1599 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1600 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1601 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1602 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1603 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1604 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1605 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1606 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1607 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1608 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1609 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1610 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1611 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1612 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1613 DEBUGFS_REG32(DC_WIN_POSITION),
1614 DEBUGFS_REG32(DC_WIN_SIZE),
1615 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1616 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1617 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1618 DEBUGFS_REG32(DC_WIN_DDA_INC),
1619 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1620 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1621 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1622 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1623 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1624 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1625 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1626 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1627 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1628 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1629 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1630 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1631 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1632 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1633 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1634 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1635 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1636 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1637 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1638 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1639 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1640 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1641 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1642 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1643 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1644};
1645
1646static int tegra_dc_show_regs(struct seq_file *s, void *data)
1647{
1648 struct drm_info_node *node = s->private;
1649 struct tegra_dc *dc = node->info_ent->data;
1650 unsigned int i;
1651 int err = 0;
1652
1653 drm_modeset_lock(&dc->base.mutex, NULL);
1654
1655 if (!dc->base.state->active) {
1656 err = -EBUSY;
1657 goto unlock;
1658 }
1659
1660 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1661 unsigned int offset = tegra_dc_regs[i].offset;
1662
1663 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1664 offset, tegra_dc_readl(dc, offset));
1665 }
1666
1667unlock:
1668 drm_modeset_unlock(&dc->base.mutex);
1669 return err;
1670}
1671
1672static int tegra_dc_show_crc(struct seq_file *s, void *data)
1673{
1674 struct drm_info_node *node = s->private;
1675 struct tegra_dc *dc = node->info_ent->data;
1676 int err = 0;
1677 u32 value;
1678
1679 drm_modeset_lock(&dc->base.mutex, NULL);
1680
1681 if (!dc->base.state->active) {
1682 err = -EBUSY;
1683 goto unlock;
1684 }
1685
1686 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1687 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1688 tegra_dc_commit(dc);
1689
1690 drm_crtc_wait_one_vblank(&dc->base);
1691 drm_crtc_wait_one_vblank(&dc->base);
1692
1693 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1694 seq_printf(s, "%08x\n", value);
1695
1696 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1697
1698unlock:
1699 drm_modeset_unlock(&dc->base.mutex);
1700 return err;
1701}
1702
1703static int tegra_dc_show_stats(struct seq_file *s, void *data)
1704{
1705 struct drm_info_node *node = s->private;
1706 struct tegra_dc *dc = node->info_ent->data;
1707
1708 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1709 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1710 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1711 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1712
1713 seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1714 seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1715 seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1716 seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1717
1718 return 0;
1719}
1720
1721static struct drm_info_list debugfs_files[] = {
1722 { "regs", tegra_dc_show_regs, 0, NULL },
1723 { "crc", tegra_dc_show_crc, 0, NULL },
1724 { "stats", tegra_dc_show_stats, 0, NULL },
1725};
1726
1727static int tegra_dc_late_register(struct drm_crtc *crtc)
1728{
1729 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1730 struct drm_minor *minor = crtc->dev->primary;
1731 struct dentry *root;
1732 struct tegra_dc *dc = to_tegra_dc(crtc);
1733
1734#ifdef CONFIG_DEBUG_FS
1735 root = crtc->debugfs_entry;
1736#else
1737 root = NULL;
1738#endif
1739
1740 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1741 GFP_KERNEL);
1742 if (!dc->debugfs_files)
1743 return -ENOMEM;
1744
1745 for (i = 0; i < count; i++)
1746 dc->debugfs_files[i].data = dc;
1747
1748 drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1749
1750 return 0;
1751}
1752
1753static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1754{
1755 unsigned int count = ARRAY_SIZE(debugfs_files);
1756 struct drm_minor *minor = crtc->dev->primary;
1757 struct tegra_dc *dc = to_tegra_dc(crtc);
1758 struct dentry *root;
1759
1760#ifdef CONFIG_DEBUG_FS
1761 root = crtc->debugfs_entry;
1762#else
1763 root = NULL;
1764#endif
1765
1766 drm_debugfs_remove_files(dc->debugfs_files, count, root, minor);
1767 kfree(dc->debugfs_files);
1768 dc->debugfs_files = NULL;
1769}
1770
1771static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1772{
1773 struct tegra_dc *dc = to_tegra_dc(crtc);
1774
1775 /* XXX vblank syncpoints don't work with nvdisplay yet */
1776 if (dc->syncpt && !dc->soc->has_nvdisplay)
1777 return host1x_syncpt_read(dc->syncpt);
1778
1779 /* fallback to software emulated VBLANK counter */
1780 return (u32)drm_crtc_vblank_count(&dc->base);
1781}
1782
1783static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1784{
1785 struct tegra_dc *dc = to_tegra_dc(crtc);
1786 u32 value;
1787
1788 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1789 value |= VBLANK_INT;
1790 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1791
1792 return 0;
1793}
1794
1795static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1796{
1797 struct tegra_dc *dc = to_tegra_dc(crtc);
1798 u32 value;
1799
1800 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1801 value &= ~VBLANK_INT;
1802 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1803}
1804
1805static const struct drm_crtc_funcs tegra_crtc_funcs = {
1806 .page_flip = drm_atomic_helper_page_flip,
1807 .set_config = drm_atomic_helper_set_config,
1808 .destroy = tegra_dc_destroy,
1809 .reset = tegra_crtc_reset,
1810 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1811 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1812 .late_register = tegra_dc_late_register,
1813 .early_unregister = tegra_dc_early_unregister,
1814 .get_vblank_counter = tegra_dc_get_vblank_counter,
1815 .enable_vblank = tegra_dc_enable_vblank,
1816 .disable_vblank = tegra_dc_disable_vblank,
1817};
1818
1819static int tegra_dc_set_timings(struct tegra_dc *dc,
1820 struct drm_display_mode *mode)
1821{
1822 unsigned int h_ref_to_sync = 1;
1823 unsigned int v_ref_to_sync = 1;
1824 unsigned long value;
1825
1826 if (!dc->soc->has_nvdisplay) {
1827 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1828
1829 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1830 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1831 }
1832
1833 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1834 ((mode->hsync_end - mode->hsync_start) << 0);
1835 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1836
1837 value = ((mode->vtotal - mode->vsync_end) << 16) |
1838 ((mode->htotal - mode->hsync_end) << 0);
1839 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1840
1841 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1842 ((mode->hsync_start - mode->hdisplay) << 0);
1843 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1844
1845 value = (mode->vdisplay << 16) | mode->hdisplay;
1846 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1847
1848 return 0;
1849}
1850
1851/**
1852 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1853 * state
1854 * @dc: display controller
1855 * @crtc_state: CRTC atomic state
1856 * @clk: parent clock for display controller
1857 * @pclk: pixel clock
1858 * @div: shift clock divider
1859 *
1860 * Returns:
1861 * 0 on success or a negative error-code on failure.
1862 */
1863int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1864 struct drm_crtc_state *crtc_state,
1865 struct clk *clk, unsigned long pclk,
1866 unsigned int div)
1867{
1868 struct tegra_dc_state *state = to_dc_state(crtc_state);
1869
1870 if (!clk_has_parent(dc->clk, clk))
1871 return -EINVAL;
1872
1873 state->clk = clk;
1874 state->pclk = pclk;
1875 state->div = div;
1876
1877 return 0;
1878}
1879
1880static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1881 struct tegra_dc_state *state)
1882{
1883 unsigned long rate, pstate;
1884 struct dev_pm_opp *opp;
1885 int err;
1886
1887 if (!dc->has_opp_table)
1888 return;
1889
1890 /* calculate actual pixel clock rate which depends on internal divider */
1891 rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1892
1893 /* find suitable OPP for the rate */
1894 opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1895
1896 /*
1897 * Very high resolution modes may results in a clock rate that is
1898 * above the characterized maximum. In this case it's okay to fall
1899 * back to the characterized maximum.
1900 */
1901 if (opp == ERR_PTR(-ERANGE))
1902 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1903
1904 if (IS_ERR(opp)) {
1905 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1906 rate, opp);
1907 return;
1908 }
1909
1910 pstate = dev_pm_opp_get_required_pstate(opp, 0);
1911 dev_pm_opp_put(opp);
1912
1913 /*
1914 * The minimum core voltage depends on the pixel clock rate (which
1915 * depends on internal clock divider of the CRTC) and not on the
1916 * rate of the display controller clock. This is why we're not using
1917 * dev_pm_opp_set_rate() API and instead controlling the power domain
1918 * directly.
1919 */
1920 err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1921 if (err)
1922 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1923 pstate, err);
1924}
1925
1926static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1927 struct tegra_dc_state *state)
1928{
1929 int err;
1930
1931 err = clk_set_parent(dc->clk, state->clk);
1932 if (err < 0)
1933 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1934
1935 /*
1936 * Outputs may not want to change the parent clock rate. This is only
1937 * relevant to Tegra20 where only a single display PLL is available.
1938 * Since that PLL would typically be used for HDMI, an internal LVDS
1939 * panel would need to be driven by some other clock such as PLL_P
1940 * which is shared with other peripherals. Changing the clock rate
1941 * should therefore be avoided.
1942 */
1943 if (state->pclk > 0) {
1944 err = clk_set_rate(state->clk, state->pclk);
1945 if (err < 0)
1946 dev_err(dc->dev,
1947 "failed to set clock rate to %lu Hz\n",
1948 state->pclk);
1949
1950 err = clk_set_rate(dc->clk, state->pclk);
1951 if (err < 0)
1952 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1953 dc->clk, state->pclk, err);
1954 }
1955
1956 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1957 state->div);
1958 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1959
1960 tegra_dc_update_voltage_state(dc, state);
1961}
1962
1963static void tegra_dc_stop(struct tegra_dc *dc)
1964{
1965 u32 value;
1966
1967 /* stop the display controller */
1968 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1969 value &= ~DISP_CTRL_MODE_MASK;
1970 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1971
1972 tegra_dc_commit(dc);
1973}
1974
1975static bool tegra_dc_idle(struct tegra_dc *dc)
1976{
1977 u32 value;
1978
1979 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1980
1981 return (value & DISP_CTRL_MODE_MASK) == 0;
1982}
1983
1984static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1985{
1986 timeout = jiffies + msecs_to_jiffies(timeout);
1987
1988 while (time_before(jiffies, timeout)) {
1989 if (tegra_dc_idle(dc))
1990 return 0;
1991
1992 usleep_range(1000, 2000);
1993 }
1994
1995 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1996 return -ETIMEDOUT;
1997}
1998
1999static void
2000tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
2001 struct drm_atomic_state *state,
2002 bool prepare_bandwidth_transition)
2003{
2004 const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
2005 u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
2006 const struct drm_plane_state *old_plane_state;
2007 const struct drm_crtc_state *old_crtc_state;
2008 struct tegra_dc_window window, old_window;
2009 struct tegra_dc *dc = to_tegra_dc(crtc);
2010 struct tegra_plane *tegra;
2011 struct drm_plane *plane;
2012
2013 if (dc->soc->has_nvdisplay)
2014 return;
2015
2016 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2017
2018 if (!crtc->state->active) {
2019 if (!old_crtc_state->active)
2020 return;
2021
2022 /*
2023 * When CRTC is disabled on DPMS, the state of attached planes
2024 * is kept unchanged. Hence we need to enforce removal of the
2025 * bandwidths from the ICC paths.
2026 */
2027 drm_atomic_crtc_for_each_plane(plane, crtc) {
2028 tegra = to_tegra_plane(plane);
2029
2030 icc_set_bw(tegra->icc_mem, 0, 0);
2031 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2032 }
2033
2034 return;
2035 }
2036
2037 for_each_old_plane_in_state(old_crtc_state->state, plane,
2038 old_plane_state, i) {
2039 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2040 new_tegra_state = to_const_tegra_plane_state(plane->state);
2041 tegra = to_tegra_plane(plane);
2042
2043 /*
2044 * We're iterating over the global atomic state and it contains
2045 * planes from another CRTC, hence we need to filter out the
2046 * planes unrelated to this CRTC.
2047 */
2048 if (tegra->dc != dc)
2049 continue;
2050
2051 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2052 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2053
2054 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2055 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2056
2057 /*
2058 * See the comment related to !crtc->state->active above,
2059 * which explains why bandwidths need to be updated when
2060 * CRTC is turning ON.
2061 */
2062 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2063 old_crtc_state->active)
2064 continue;
2065
2066 window.src.h = drm_rect_height(&plane->state->src) >> 16;
2067 window.dst.h = drm_rect_height(&plane->state->dst);
2068
2069 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2070 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2071
2072 /*
2073 * During the preparation phase (atomic_begin), the memory
2074 * freq should go high before the DC changes are committed
2075 * if bandwidth requirement goes up, otherwise memory freq
2076 * should to stay high if BW requirement goes down. The
2077 * opposite applies to the completion phase (post_commit).
2078 */
2079 if (prepare_bandwidth_transition) {
2080 new_avg_bw = max(old_avg_bw, new_avg_bw);
2081 new_peak_bw = max(old_peak_bw, new_peak_bw);
2082
2083 if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2084 window = old_window;
2085 }
2086
2087 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2088
2089 if (tegra_plane_use_vertical_filtering(tegra, &window))
2090 icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2091 else
2092 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2093 }
2094}
2095
2096static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2097 struct drm_atomic_state *state)
2098{
2099 struct tegra_dc *dc = to_tegra_dc(crtc);
2100 u32 value;
2101 int err;
2102
2103 if (!tegra_dc_idle(dc)) {
2104 tegra_dc_stop(dc);
2105
2106 /*
2107 * Ignore the return value, there isn't anything useful to do
2108 * in case this fails.
2109 */
2110 tegra_dc_wait_idle(dc, 100);
2111 }
2112
2113 /*
2114 * This should really be part of the RGB encoder driver, but clearing
2115 * these bits has the side-effect of stopping the display controller.
2116 * When that happens no VBLANK interrupts will be raised. At the same
2117 * time the encoder is disabled before the display controller, so the
2118 * above code is always going to timeout waiting for the controller
2119 * to go idle.
2120 *
2121 * Given the close coupling between the RGB encoder and the display
2122 * controller doing it here is still kind of okay. None of the other
2123 * encoder drivers require these bits to be cleared.
2124 *
2125 * XXX: Perhaps given that the display controller is switched off at
2126 * this point anyway maybe clearing these bits isn't even useful for
2127 * the RGB encoder?
2128 */
2129 if (dc->rgb) {
2130 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2131 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2132 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2133 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2134 }
2135
2136 tegra_dc_stats_reset(&dc->stats);
2137 drm_crtc_vblank_off(crtc);
2138
2139 spin_lock_irq(&crtc->dev->event_lock);
2140
2141 if (crtc->state->event) {
2142 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2143 crtc->state->event = NULL;
2144 }
2145
2146 spin_unlock_irq(&crtc->dev->event_lock);
2147
2148 err = host1x_client_suspend(&dc->client);
2149 if (err < 0)
2150 dev_err(dc->dev, "failed to suspend: %d\n", err);
2151
2152 if (dc->has_opp_table) {
2153 err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2154 if (err)
2155 dev_err(dc->dev,
2156 "failed to clear power domain state: %d\n", err);
2157 }
2158}
2159
2160static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2161 struct drm_atomic_state *state)
2162{
2163 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2164 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2165 struct tegra_dc *dc = to_tegra_dc(crtc);
2166 u32 value;
2167 int err;
2168
2169 /* apply PLL changes */
2170 tegra_dc_set_clock_rate(dc, crtc_state);
2171
2172 err = host1x_client_resume(&dc->client);
2173 if (err < 0) {
2174 dev_err(dc->dev, "failed to resume: %d\n", err);
2175 return;
2176 }
2177
2178 /* initialize display controller */
2179 if (dc->syncpt) {
2180 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2181
2182 if (dc->soc->has_nvdisplay)
2183 enable = 1 << 31;
2184 else
2185 enable = 1 << 8;
2186
2187 value = SYNCPT_CNTRL_NO_STALL;
2188 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2189
2190 value = enable | syncpt;
2191 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2192 }
2193
2194 if (dc->soc->has_nvdisplay) {
2195 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2196 DSC_OBUF_UF_INT;
2197 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2198
2199 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2200 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2201 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2202 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2203 VBLANK_INT | FRAME_END_INT;
2204 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2205
2206 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2207 FRAME_END_INT;
2208 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2209
2210 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2211 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2212
2213 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2214 } else {
2215 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2216 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2217 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2218
2219 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2220 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2221 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2222
2223 /* initialize timer */
2224 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2225 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2226 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2227
2228 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2229 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2230 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2231
2232 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2233 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2234 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2235
2236 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2237 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2238 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2239 }
2240
2241 if (dc->soc->supports_background_color)
2242 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2243 else
2244 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2245
2246 /* apply pixel clock changes */
2247 if (!dc->soc->has_nvdisplay) {
2248 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2249 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2250 }
2251
2252 /* program display mode */
2253 tegra_dc_set_timings(dc, mode);
2254
2255 /* interlacing isn't supported yet, so disable it */
2256 if (dc->soc->supports_interlacing) {
2257 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2258 value &= ~INTERLACE_ENABLE;
2259 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2260 }
2261
2262 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2263 value &= ~DISP_CTRL_MODE_MASK;
2264 value |= DISP_CTRL_MODE_C_DISPLAY;
2265 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2266
2267 if (!dc->soc->has_nvdisplay) {
2268 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2269 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2270 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2271 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2272 }
2273
2274 /* enable underflow reporting and display red for missing pixels */
2275 if (dc->soc->has_nvdisplay) {
2276 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2277 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2278 }
2279
2280 if (dc->rgb) {
2281 /* XXX: parameterize? */
2282 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2283 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2284 }
2285
2286 tegra_dc_commit(dc);
2287
2288 drm_crtc_vblank_on(crtc);
2289}
2290
2291static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2292 struct drm_atomic_state *state)
2293{
2294 unsigned long flags;
2295
2296 tegra_crtc_update_memory_bandwidth(crtc, state, true);
2297
2298 if (crtc->state->event) {
2299 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2300
2301 if (drm_crtc_vblank_get(crtc) != 0)
2302 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2303 else
2304 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2305
2306 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2307
2308 crtc->state->event = NULL;
2309 }
2310}
2311
2312static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2313 struct drm_atomic_state *state)
2314{
2315 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2316 crtc);
2317 struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2318 struct tegra_dc *dc = to_tegra_dc(crtc);
2319 u32 value;
2320
2321 value = dc_state->planes << 8 | GENERAL_UPDATE;
2322 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2323 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2324
2325 value = dc_state->planes | GENERAL_ACT_REQ;
2326 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2327 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2328}
2329
2330static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2331{
2332 const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2333 const struct drm_format_info *fmt = state->fb->format;
2334 unsigned int src_w = drm_rect_width(&state->src) >> 16;
2335 unsigned int dst_w = drm_rect_width(&state->dst);
2336
2337 if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2338 return false;
2339
2340 if (soc->supports_cursor)
2341 return true;
2342
2343 if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2344 return false;
2345
2346 return true;
2347}
2348
2349static unsigned long
2350tegra_plane_overlap_mask(struct drm_crtc_state *state,
2351 const struct drm_plane_state *plane_state)
2352{
2353 const struct drm_plane_state *other_state;
2354 const struct tegra_plane *tegra;
2355 unsigned long overlap_mask = 0;
2356 struct drm_plane *plane;
2357 struct drm_rect rect;
2358
2359 if (!plane_state->visible || !plane_state->fb)
2360 return 0;
2361
2362 /*
2363 * Data-prefetch FIFO will easily help to overcome temporal memory
2364 * pressure if other plane overlaps with the cursor plane.
2365 */
2366 if (tegra_plane_is_cursor(plane_state))
2367 return 0;
2368
2369 drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2370 rect = plane_state->dst;
2371
2372 tegra = to_tegra_plane(other_state->plane);
2373
2374 if (!other_state->visible || !other_state->fb)
2375 continue;
2376
2377 /*
2378 * Ignore cursor plane overlaps because it's not practical to
2379 * assume that it contributes to the bandwidth in overlapping
2380 * area if window width is small.
2381 */
2382 if (tegra_plane_is_cursor(other_state))
2383 continue;
2384
2385 if (drm_rect_intersect(&rect, &other_state->dst))
2386 overlap_mask |= BIT(tegra->index);
2387 }
2388
2389 return overlap_mask;
2390}
2391
2392static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2393 struct drm_atomic_state *state)
2394{
2395 ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2396 u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2397 bool all_planes_overlap_simultaneously = true;
2398 const struct tegra_plane_state *tegra_state;
2399 const struct drm_plane_state *plane_state;
2400 struct tegra_dc *dc = to_tegra_dc(crtc);
2401 struct drm_crtc_state *new_state;
2402 struct tegra_plane *tegra;
2403 struct drm_plane *plane;
2404
2405 /*
2406 * The nv-display uses shared planes. The algorithm below assumes
2407 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2408 * the nv-display. Note that T124 support has additional windows,
2409 * but currently they aren't supported by the driver.
2410 */
2411 if (dc->soc->has_nvdisplay)
2412 return 0;
2413
2414 new_state = drm_atomic_get_new_crtc_state(state, crtc);
2415
2416 /*
2417 * For overlapping planes pixel's data is fetched for each plane at
2418 * the same time, hence bandwidths are accumulated in this case.
2419 * This needs to be taken into account for calculating total bandwidth
2420 * consumed by all planes.
2421 *
2422 * Here we get the overlapping state of each plane, which is a
2423 * bitmask of plane indices telling with what planes there is an
2424 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2425 * to make further code nicer and simpler.
2426 */
2427 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2428 tegra_state = to_const_tegra_plane_state(plane_state);
2429 tegra = to_tegra_plane(plane);
2430
2431 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2432 return -EINVAL;
2433
2434 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2435 mask = tegra_plane_overlap_mask(new_state, plane_state);
2436 overlap_mask[tegra->index] = mask;
2437
2438 if (hweight_long(mask) != 3)
2439 all_planes_overlap_simultaneously = false;
2440 }
2441
2442 /*
2443 * Then we calculate maximum bandwidth of each plane state.
2444 * The bandwidth includes the plane BW + BW of the "simultaneously"
2445 * overlapping planes, where "simultaneously" means areas where DC
2446 * fetches from the planes simultaneously during of scan-out process.
2447 *
2448 * For example, if plane A overlaps with planes B and C, but B and C
2449 * don't overlap, then the peak bandwidth will be either in area where
2450 * A-and-B or A-and-C planes overlap.
2451 *
2452 * The plane_peak_bw[] contains peak memory bandwidth values of
2453 * each plane, this information is needed by interconnect provider
2454 * in order to set up latency allowance based on the peak BW, see
2455 * tegra_crtc_update_memory_bandwidth().
2456 */
2457 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2458 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2459
2460 /*
2461 * Note that plane's atomic check doesn't touch the
2462 * total_peak_memory_bandwidth of enabled plane, hence the
2463 * current state contains the old bandwidth state from the
2464 * previous CRTC commit.
2465 */
2466 tegra_state = to_const_tegra_plane_state(plane_state);
2467 tegra = to_tegra_plane(plane);
2468
2469 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2470 if (i == tegra->index)
2471 continue;
2472
2473 if (all_planes_overlap_simultaneously)
2474 overlap_bw += plane_peak_bw[i];
2475 else
2476 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2477 }
2478
2479 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2480 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2481
2482 /*
2483 * If plane's peak bandwidth changed (for example plane isn't
2484 * overlapped anymore) and plane isn't in the atomic state,
2485 * then add plane to the state in order to have the bandwidth
2486 * updated.
2487 */
2488 if (old_peak_bw != new_peak_bw) {
2489 struct tegra_plane_state *new_tegra_state;
2490 struct drm_plane_state *new_plane_state;
2491
2492 new_plane_state = drm_atomic_get_plane_state(state, plane);
2493 if (IS_ERR(new_plane_state))
2494 return PTR_ERR(new_plane_state);
2495
2496 new_tegra_state = to_tegra_plane_state(new_plane_state);
2497 new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2498 }
2499 }
2500
2501 return 0;
2502}
2503
2504static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2505 struct drm_atomic_state *state)
2506{
2507 int err;
2508
2509 err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2510 if (err)
2511 return err;
2512
2513 return 0;
2514}
2515
2516void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2517 struct drm_atomic_state *state)
2518{
2519 /*
2520 * Display bandwidth is allowed to go down only once hardware state
2521 * is known to be armed, i.e. state was committed and VBLANK event
2522 * received.
2523 */
2524 tegra_crtc_update_memory_bandwidth(crtc, state, false);
2525}
2526
2527static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2528 .atomic_check = tegra_crtc_atomic_check,
2529 .atomic_begin = tegra_crtc_atomic_begin,
2530 .atomic_flush = tegra_crtc_atomic_flush,
2531 .atomic_enable = tegra_crtc_atomic_enable,
2532 .atomic_disable = tegra_crtc_atomic_disable,
2533};
2534
2535static irqreturn_t tegra_dc_irq(int irq, void *data)
2536{
2537 struct tegra_dc *dc = data;
2538 unsigned long status;
2539
2540 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2541 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2542
2543 if (status & FRAME_END_INT) {
2544 /*
2545 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2546 */
2547 dc->stats.frames_total++;
2548 dc->stats.frames++;
2549 }
2550
2551 if (status & VBLANK_INT) {
2552 /*
2553 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2554 */
2555 drm_crtc_handle_vblank(&dc->base);
2556 dc->stats.vblank_total++;
2557 dc->stats.vblank++;
2558 }
2559
2560 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2561 /*
2562 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2563 */
2564 dc->stats.underflow_total++;
2565 dc->stats.underflow++;
2566 }
2567
2568 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2569 /*
2570 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2571 */
2572 dc->stats.overflow_total++;
2573 dc->stats.overflow++;
2574 }
2575
2576 if (status & HEAD_UF_INT) {
2577 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2578 dc->stats.underflow_total++;
2579 dc->stats.underflow++;
2580 }
2581
2582 return IRQ_HANDLED;
2583}
2584
2585static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2586{
2587 unsigned int i;
2588
2589 if (!dc->soc->wgrps)
2590 return true;
2591
2592 for (i = 0; i < dc->soc->num_wgrps; i++) {
2593 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2594
2595 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2596 return true;
2597 }
2598
2599 return false;
2600}
2601
2602static int tegra_dc_early_init(struct host1x_client *client)
2603{
2604 struct drm_device *drm = dev_get_drvdata(client->host);
2605 struct tegra_drm *tegra = drm->dev_private;
2606
2607 tegra->num_crtcs++;
2608
2609 return 0;
2610}
2611
2612static int tegra_dc_init(struct host1x_client *client)
2613{
2614 struct drm_device *drm = dev_get_drvdata(client->host);
2615 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2616 struct tegra_dc *dc = host1x_client_to_dc(client);
2617 struct tegra_drm *tegra = drm->dev_private;
2618 struct drm_plane *primary = NULL;
2619 struct drm_plane *cursor = NULL;
2620 int err;
2621
2622 /*
2623 * DC has been reset by now, so VBLANK syncpoint can be released
2624 * for general use.
2625 */
2626 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2627
2628 /*
2629 * XXX do not register DCs with no window groups because we cannot
2630 * assign a primary plane to them, which in turn will cause KMS to
2631 * crash.
2632 */
2633 if (!tegra_dc_has_window_groups(dc))
2634 return 0;
2635
2636 /*
2637 * Set the display hub as the host1x client parent for the display
2638 * controller. This is needed for the runtime reference counting that
2639 * ensures the display hub is always powered when any of the display
2640 * controllers are.
2641 */
2642 if (dc->soc->has_nvdisplay)
2643 client->parent = &tegra->hub->client;
2644
2645 dc->syncpt = host1x_syncpt_request(client, flags);
2646 if (!dc->syncpt)
2647 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2648
2649 err = host1x_client_iommu_attach(client);
2650 if (err < 0 && err != -ENODEV) {
2651 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2652 return err;
2653 }
2654
2655 if (dc->soc->wgrps)
2656 primary = tegra_dc_add_shared_planes(drm, dc);
2657 else
2658 primary = tegra_dc_add_planes(drm, dc);
2659
2660 if (IS_ERR(primary)) {
2661 err = PTR_ERR(primary);
2662 goto cleanup;
2663 }
2664
2665 if (dc->soc->supports_cursor) {
2666 cursor = tegra_dc_cursor_plane_create(drm, dc);
2667 if (IS_ERR(cursor)) {
2668 err = PTR_ERR(cursor);
2669 goto cleanup;
2670 }
2671 } else {
2672 /* dedicate one overlay to mouse cursor */
2673 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2674 if (IS_ERR(cursor)) {
2675 err = PTR_ERR(cursor);
2676 goto cleanup;
2677 }
2678 }
2679
2680 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2681 &tegra_crtc_funcs, NULL);
2682 if (err < 0)
2683 goto cleanup;
2684
2685 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2686
2687 /*
2688 * Keep track of the minimum pitch alignment across all display
2689 * controllers.
2690 */
2691 if (dc->soc->pitch_align > tegra->pitch_align)
2692 tegra->pitch_align = dc->soc->pitch_align;
2693
2694 /* track maximum resolution */
2695 if (dc->soc->has_nvdisplay)
2696 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2697 else
2698 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2699
2700 err = tegra_dc_rgb_init(drm, dc);
2701 if (err < 0 && err != -ENODEV) {
2702 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2703 goto cleanup;
2704 }
2705
2706 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2707 dev_name(dc->dev), dc);
2708 if (err < 0) {
2709 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2710 err);
2711 goto cleanup;
2712 }
2713
2714 /*
2715 * Inherit the DMA parameters (such as maximum segment size) from the
2716 * parent host1x device.
2717 */
2718 client->dev->dma_parms = client->host->dma_parms;
2719
2720 return 0;
2721
2722cleanup:
2723 if (!IS_ERR_OR_NULL(cursor))
2724 drm_plane_cleanup(cursor);
2725
2726 if (!IS_ERR(primary))
2727 drm_plane_cleanup(primary);
2728
2729 host1x_client_iommu_detach(client);
2730 host1x_syncpt_put(dc->syncpt);
2731
2732 return err;
2733}
2734
2735static int tegra_dc_exit(struct host1x_client *client)
2736{
2737 struct tegra_dc *dc = host1x_client_to_dc(client);
2738 int err;
2739
2740 if (!tegra_dc_has_window_groups(dc))
2741 return 0;
2742
2743 /* avoid a dangling pointer just in case this disappears */
2744 client->dev->dma_parms = NULL;
2745
2746 devm_free_irq(dc->dev, dc->irq, dc);
2747
2748 err = tegra_dc_rgb_exit(dc);
2749 if (err) {
2750 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2751 return err;
2752 }
2753
2754 host1x_client_iommu_detach(client);
2755 host1x_syncpt_put(dc->syncpt);
2756
2757 return 0;
2758}
2759
2760static int tegra_dc_late_exit(struct host1x_client *client)
2761{
2762 struct drm_device *drm = dev_get_drvdata(client->host);
2763 struct tegra_drm *tegra = drm->dev_private;
2764
2765 tegra->num_crtcs--;
2766
2767 return 0;
2768}
2769
2770static int tegra_dc_runtime_suspend(struct host1x_client *client)
2771{
2772 struct tegra_dc *dc = host1x_client_to_dc(client);
2773 struct device *dev = client->dev;
2774 int err;
2775
2776 err = reset_control_assert(dc->rst);
2777 if (err < 0) {
2778 dev_err(dev, "failed to assert reset: %d\n", err);
2779 return err;
2780 }
2781
2782 if (dc->soc->has_powergate)
2783 tegra_powergate_power_off(dc->powergate);
2784
2785 clk_disable_unprepare(dc->clk);
2786 pm_runtime_put_sync(dev);
2787
2788 return 0;
2789}
2790
2791static int tegra_dc_runtime_resume(struct host1x_client *client)
2792{
2793 struct tegra_dc *dc = host1x_client_to_dc(client);
2794 struct device *dev = client->dev;
2795 int err;
2796
2797 err = pm_runtime_resume_and_get(dev);
2798 if (err < 0) {
2799 dev_err(dev, "failed to get runtime PM: %d\n", err);
2800 return err;
2801 }
2802
2803 if (dc->soc->has_powergate) {
2804 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2805 dc->rst);
2806 if (err < 0) {
2807 dev_err(dev, "failed to power partition: %d\n", err);
2808 goto put_rpm;
2809 }
2810 } else {
2811 err = clk_prepare_enable(dc->clk);
2812 if (err < 0) {
2813 dev_err(dev, "failed to enable clock: %d\n", err);
2814 goto put_rpm;
2815 }
2816
2817 err = reset_control_deassert(dc->rst);
2818 if (err < 0) {
2819 dev_err(dev, "failed to deassert reset: %d\n", err);
2820 goto disable_clk;
2821 }
2822 }
2823
2824 return 0;
2825
2826disable_clk:
2827 clk_disable_unprepare(dc->clk);
2828put_rpm:
2829 pm_runtime_put_sync(dev);
2830 return err;
2831}
2832
2833static const struct host1x_client_ops dc_client_ops = {
2834 .early_init = tegra_dc_early_init,
2835 .init = tegra_dc_init,
2836 .exit = tegra_dc_exit,
2837 .late_exit = tegra_dc_late_exit,
2838 .suspend = tegra_dc_runtime_suspend,
2839 .resume = tegra_dc_runtime_resume,
2840};
2841
2842static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2843 .supports_background_color = false,
2844 .supports_interlacing = false,
2845 .supports_cursor = false,
2846 .supports_block_linear = false,
2847 .supports_sector_layout = false,
2848 .has_legacy_blending = true,
2849 .pitch_align = 8,
2850 .has_powergate = false,
2851 .coupled_pm = true,
2852 .has_nvdisplay = false,
2853 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2854 .primary_formats = tegra20_primary_formats,
2855 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2856 .overlay_formats = tegra20_overlay_formats,
2857 .modifiers = tegra20_modifiers,
2858 .has_win_a_without_filters = true,
2859 .has_win_b_vfilter_mem_client = true,
2860 .has_win_c_without_vert_filter = true,
2861 .plane_tiled_memory_bandwidth_x2 = false,
2862 .has_pll_d2_out0 = false,
2863};
2864
2865static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2866 .supports_background_color = false,
2867 .supports_interlacing = false,
2868 .supports_cursor = false,
2869 .supports_block_linear = false,
2870 .supports_sector_layout = false,
2871 .has_legacy_blending = true,
2872 .pitch_align = 8,
2873 .has_powergate = false,
2874 .coupled_pm = false,
2875 .has_nvdisplay = false,
2876 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2877 .primary_formats = tegra20_primary_formats,
2878 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2879 .overlay_formats = tegra20_overlay_formats,
2880 .modifiers = tegra20_modifiers,
2881 .has_win_a_without_filters = false,
2882 .has_win_b_vfilter_mem_client = true,
2883 .has_win_c_without_vert_filter = false,
2884 .plane_tiled_memory_bandwidth_x2 = true,
2885 .has_pll_d2_out0 = true,
2886};
2887
2888static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2889 .supports_background_color = false,
2890 .supports_interlacing = false,
2891 .supports_cursor = false,
2892 .supports_block_linear = false,
2893 .supports_sector_layout = false,
2894 .has_legacy_blending = true,
2895 .pitch_align = 64,
2896 .has_powergate = true,
2897 .coupled_pm = false,
2898 .has_nvdisplay = false,
2899 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2900 .primary_formats = tegra114_primary_formats,
2901 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2902 .overlay_formats = tegra114_overlay_formats,
2903 .modifiers = tegra20_modifiers,
2904 .has_win_a_without_filters = false,
2905 .has_win_b_vfilter_mem_client = false,
2906 .has_win_c_without_vert_filter = false,
2907 .plane_tiled_memory_bandwidth_x2 = true,
2908 .has_pll_d2_out0 = true,
2909};
2910
2911static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2912 .supports_background_color = true,
2913 .supports_interlacing = true,
2914 .supports_cursor = true,
2915 .supports_block_linear = true,
2916 .supports_sector_layout = false,
2917 .has_legacy_blending = false,
2918 .pitch_align = 64,
2919 .has_powergate = true,
2920 .coupled_pm = false,
2921 .has_nvdisplay = false,
2922 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2923 .primary_formats = tegra124_primary_formats,
2924 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2925 .overlay_formats = tegra124_overlay_formats,
2926 .modifiers = tegra124_modifiers,
2927 .has_win_a_without_filters = false,
2928 .has_win_b_vfilter_mem_client = false,
2929 .has_win_c_without_vert_filter = false,
2930 .plane_tiled_memory_bandwidth_x2 = false,
2931 .has_pll_d2_out0 = true,
2932};
2933
2934static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2935 .supports_background_color = true,
2936 .supports_interlacing = true,
2937 .supports_cursor = true,
2938 .supports_block_linear = true,
2939 .supports_sector_layout = false,
2940 .has_legacy_blending = false,
2941 .pitch_align = 64,
2942 .has_powergate = true,
2943 .coupled_pm = false,
2944 .has_nvdisplay = false,
2945 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2946 .primary_formats = tegra114_primary_formats,
2947 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2948 .overlay_formats = tegra114_overlay_formats,
2949 .modifiers = tegra124_modifiers,
2950 .has_win_a_without_filters = false,
2951 .has_win_b_vfilter_mem_client = false,
2952 .has_win_c_without_vert_filter = false,
2953 .plane_tiled_memory_bandwidth_x2 = false,
2954 .has_pll_d2_out0 = true,
2955};
2956
2957static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2958 {
2959 .index = 0,
2960 .dc = 0,
2961 .windows = (const unsigned int[]) { 0 },
2962 .num_windows = 1,
2963 }, {
2964 .index = 1,
2965 .dc = 1,
2966 .windows = (const unsigned int[]) { 1 },
2967 .num_windows = 1,
2968 }, {
2969 .index = 2,
2970 .dc = 1,
2971 .windows = (const unsigned int[]) { 2 },
2972 .num_windows = 1,
2973 }, {
2974 .index = 3,
2975 .dc = 2,
2976 .windows = (const unsigned int[]) { 3 },
2977 .num_windows = 1,
2978 }, {
2979 .index = 4,
2980 .dc = 2,
2981 .windows = (const unsigned int[]) { 4 },
2982 .num_windows = 1,
2983 }, {
2984 .index = 5,
2985 .dc = 2,
2986 .windows = (const unsigned int[]) { 5 },
2987 .num_windows = 1,
2988 },
2989};
2990
2991static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2992 .supports_background_color = true,
2993 .supports_interlacing = true,
2994 .supports_cursor = true,
2995 .supports_block_linear = true,
2996 .supports_sector_layout = false,
2997 .has_legacy_blending = false,
2998 .pitch_align = 64,
2999 .has_powergate = false,
3000 .coupled_pm = false,
3001 .has_nvdisplay = true,
3002 .wgrps = tegra186_dc_wgrps,
3003 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
3004 .plane_tiled_memory_bandwidth_x2 = false,
3005 .has_pll_d2_out0 = false,
3006};
3007
3008static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
3009 {
3010 .index = 0,
3011 .dc = 0,
3012 .windows = (const unsigned int[]) { 0 },
3013 .num_windows = 1,
3014 }, {
3015 .index = 1,
3016 .dc = 1,
3017 .windows = (const unsigned int[]) { 1 },
3018 .num_windows = 1,
3019 }, {
3020 .index = 2,
3021 .dc = 1,
3022 .windows = (const unsigned int[]) { 2 },
3023 .num_windows = 1,
3024 }, {
3025 .index = 3,
3026 .dc = 2,
3027 .windows = (const unsigned int[]) { 3 },
3028 .num_windows = 1,
3029 }, {
3030 .index = 4,
3031 .dc = 2,
3032 .windows = (const unsigned int[]) { 4 },
3033 .num_windows = 1,
3034 }, {
3035 .index = 5,
3036 .dc = 2,
3037 .windows = (const unsigned int[]) { 5 },
3038 .num_windows = 1,
3039 },
3040};
3041
3042static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3043 .supports_background_color = true,
3044 .supports_interlacing = true,
3045 .supports_cursor = true,
3046 .supports_block_linear = true,
3047 .supports_sector_layout = true,
3048 .has_legacy_blending = false,
3049 .pitch_align = 64,
3050 .has_powergate = false,
3051 .coupled_pm = false,
3052 .has_nvdisplay = true,
3053 .wgrps = tegra194_dc_wgrps,
3054 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3055 .plane_tiled_memory_bandwidth_x2 = false,
3056 .has_pll_d2_out0 = false,
3057};
3058
3059static const struct of_device_id tegra_dc_of_match[] = {
3060 {
3061 .compatible = "nvidia,tegra194-dc",
3062 .data = &tegra194_dc_soc_info,
3063 }, {
3064 .compatible = "nvidia,tegra186-dc",
3065 .data = &tegra186_dc_soc_info,
3066 }, {
3067 .compatible = "nvidia,tegra210-dc",
3068 .data = &tegra210_dc_soc_info,
3069 }, {
3070 .compatible = "nvidia,tegra124-dc",
3071 .data = &tegra124_dc_soc_info,
3072 }, {
3073 .compatible = "nvidia,tegra114-dc",
3074 .data = &tegra114_dc_soc_info,
3075 }, {
3076 .compatible = "nvidia,tegra30-dc",
3077 .data = &tegra30_dc_soc_info,
3078 }, {
3079 .compatible = "nvidia,tegra20-dc",
3080 .data = &tegra20_dc_soc_info,
3081 }, {
3082 /* sentinel */
3083 }
3084};
3085MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3086
3087static int tegra_dc_parse_dt(struct tegra_dc *dc)
3088{
3089 struct device_node *np;
3090 u32 value = 0;
3091 int err;
3092
3093 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3094 if (err < 0) {
3095 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3096
3097 /*
3098 * If the nvidia,head property isn't present, try to find the
3099 * correct head number by looking up the position of this
3100 * display controller's node within the device tree. Assuming
3101 * that the nodes are ordered properly in the DTS file and
3102 * that the translation into a flattened device tree blob
3103 * preserves that ordering this will actually yield the right
3104 * head number.
3105 *
3106 * If those assumptions don't hold, this will still work for
3107 * cases where only a single display controller is used.
3108 */
3109 for_each_matching_node(np, tegra_dc_of_match) {
3110 if (np == dc->dev->of_node) {
3111 of_node_put(np);
3112 break;
3113 }
3114
3115 value++;
3116 }
3117 }
3118
3119 dc->pipe = value;
3120
3121 return 0;
3122}
3123
3124static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3125{
3126 struct tegra_dc *dc = dev_get_drvdata(dev);
3127 unsigned int pipe = (unsigned long)(void *)data;
3128
3129 return dc->pipe == pipe;
3130}
3131
3132static int tegra_dc_couple(struct tegra_dc *dc)
3133{
3134 /*
3135 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3136 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3137 * POWER_CONTROL registers during CRTC enabling.
3138 */
3139 if (dc->soc->coupled_pm && dc->pipe == 1) {
3140 struct device *companion;
3141 struct tegra_dc *parent;
3142
3143 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3144 tegra_dc_match_by_pipe);
3145 if (!companion)
3146 return -EPROBE_DEFER;
3147
3148 parent = dev_get_drvdata(companion);
3149 dc->client.parent = &parent->client;
3150
3151 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3152 put_device(companion);
3153 }
3154
3155 return 0;
3156}
3157
3158static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3159{
3160 struct tegra_core_opp_params opp_params = {};
3161 int err;
3162
3163 err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3164 if (err && err != -ENODEV)
3165 return err;
3166
3167 if (err)
3168 dc->has_opp_table = false;
3169 else
3170 dc->has_opp_table = true;
3171
3172 return 0;
3173}
3174
3175static int tegra_dc_probe(struct platform_device *pdev)
3176{
3177 u64 dma_mask = dma_get_mask(pdev->dev.parent);
3178 struct tegra_dc *dc;
3179 int err;
3180
3181 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3182 if (err < 0) {
3183 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3184 return err;
3185 }
3186
3187 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3188 if (!dc)
3189 return -ENOMEM;
3190
3191 dc->soc = of_device_get_match_data(&pdev->dev);
3192
3193 INIT_LIST_HEAD(&dc->list);
3194 dc->dev = &pdev->dev;
3195
3196 err = tegra_dc_parse_dt(dc);
3197 if (err < 0)
3198 return err;
3199
3200 err = tegra_dc_couple(dc);
3201 if (err < 0)
3202 return err;
3203
3204 dc->clk = devm_clk_get(&pdev->dev, NULL);
3205 if (IS_ERR(dc->clk)) {
3206 dev_err(&pdev->dev, "failed to get clock\n");
3207 return PTR_ERR(dc->clk);
3208 }
3209
3210 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3211 if (IS_ERR(dc->rst)) {
3212 dev_err(&pdev->dev, "failed to get reset\n");
3213 return PTR_ERR(dc->rst);
3214 }
3215
3216 /* assert reset and disable clock */
3217 err = clk_prepare_enable(dc->clk);
3218 if (err < 0)
3219 return err;
3220
3221 usleep_range(2000, 4000);
3222
3223 err = reset_control_assert(dc->rst);
3224 if (err < 0) {
3225 clk_disable_unprepare(dc->clk);
3226 return err;
3227 }
3228
3229 usleep_range(2000, 4000);
3230
3231 clk_disable_unprepare(dc->clk);
3232
3233 if (dc->soc->has_powergate) {
3234 if (dc->pipe == 0)
3235 dc->powergate = TEGRA_POWERGATE_DIS;
3236 else
3237 dc->powergate = TEGRA_POWERGATE_DISB;
3238
3239 tegra_powergate_power_off(dc->powergate);
3240 }
3241
3242 err = tegra_dc_init_opp_table(dc);
3243 if (err < 0)
3244 return err;
3245
3246 dc->regs = devm_platform_ioremap_resource(pdev, 0);
3247 if (IS_ERR(dc->regs))
3248 return PTR_ERR(dc->regs);
3249
3250 dc->irq = platform_get_irq(pdev, 0);
3251 if (dc->irq < 0)
3252 return -ENXIO;
3253
3254 err = tegra_dc_rgb_probe(dc);
3255 if (err < 0 && err != -ENODEV)
3256 return dev_err_probe(&pdev->dev, err,
3257 "failed to probe RGB output\n");
3258
3259 platform_set_drvdata(pdev, dc);
3260 pm_runtime_enable(&pdev->dev);
3261
3262 INIT_LIST_HEAD(&dc->client.list);
3263 dc->client.ops = &dc_client_ops;
3264 dc->client.dev = &pdev->dev;
3265
3266 err = host1x_client_register(&dc->client);
3267 if (err < 0) {
3268 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3269 err);
3270 goto disable_pm;
3271 }
3272
3273 return 0;
3274
3275disable_pm:
3276 pm_runtime_disable(&pdev->dev);
3277 tegra_dc_rgb_remove(dc);
3278
3279 return err;
3280}
3281
3282static void tegra_dc_remove(struct platform_device *pdev)
3283{
3284 struct tegra_dc *dc = platform_get_drvdata(pdev);
3285
3286 host1x_client_unregister(&dc->client);
3287
3288 tegra_dc_rgb_remove(dc);
3289
3290 pm_runtime_disable(&pdev->dev);
3291}
3292
3293struct platform_driver tegra_dc_driver = {
3294 .driver = {
3295 .name = "tegra-dc",
3296 .of_match_table = tegra_dc_of_match,
3297 },
3298 .probe = tegra_dc_probe,
3299 .remove = tegra_dc_remove,
3300};