Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for OHCI 1394 controllers
4 *
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bitops.h>
9#include <linux/bug.h>
10#include <linux/compiler.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/firewire.h>
15#include <linux/firewire-constants.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/moduleparam.h>
24#include <linux/mutex.h>
25#include <linux/pci.h>
26#include <linux/pci_ids.h>
27#include <linux/slab.h>
28#include <linux/spinlock.h>
29#include <linux/string.h>
30#include <linux/time.h>
31#include <linux/vmalloc.h>
32#include <linux/workqueue.h>
33
34#include <asm/byteorder.h>
35#include <asm/page.h>
36
37#ifdef CONFIG_PPC_PMAC
38#include <asm/pmac_feature.h>
39#endif
40
41#include "core.h"
42#include "ohci.h"
43#include "packet-header-definitions.h"
44#include "phy-packet-definitions.h"
45
46#include <trace/events/firewire.h>
47
48static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/firewire_ohci.h>
52
53#define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
54#define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
55
56#define DESCRIPTOR_OUTPUT_MORE 0
57#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
58#define DESCRIPTOR_INPUT_MORE (2 << 12)
59#define DESCRIPTOR_INPUT_LAST (3 << 12)
60#define DESCRIPTOR_STATUS (1 << 11)
61#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
62#define DESCRIPTOR_PING (1 << 7)
63#define DESCRIPTOR_YY (1 << 6)
64#define DESCRIPTOR_NO_IRQ (0 << 4)
65#define DESCRIPTOR_IRQ_ERROR (1 << 4)
66#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
67#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
68#define DESCRIPTOR_WAIT (3 << 0)
69
70#define DESCRIPTOR_CMD (0xf << 12)
71
72struct descriptor {
73 __le16 req_count;
74 __le16 control;
75 __le32 data_address;
76 __le32 branch_address;
77 __le16 res_count;
78 __le16 transfer_status;
79} __aligned(16);
80
81#define CONTROL_SET(regs) (regs)
82#define CONTROL_CLEAR(regs) ((regs) + 4)
83#define COMMAND_PTR(regs) ((regs) + 12)
84#define CONTEXT_MATCH(regs) ((regs) + 16)
85
86#define AR_BUFFER_SIZE (32*1024)
87#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88/* we need at least two pages for proper list management */
89#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90
91#define MAX_ASYNC_PAYLOAD 4096
92#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95struct ar_context {
96 struct fw_ohci *ohci;
97 struct page *pages[AR_BUFFERS];
98 void *buffer;
99 struct descriptor *descriptors;
100 dma_addr_t descriptors_bus;
101 void *pointer;
102 unsigned int last_buffer_index;
103 u32 regs;
104 struct work_struct work;
105};
106
107struct context;
108
109typedef int (*descriptor_callback_t)(struct context *ctx,
110 struct descriptor *d,
111 struct descriptor *last);
112
113/*
114 * A buffer that contains a block of DMA-able coherent memory used for
115 * storing a portion of a DMA descriptor program.
116 */
117struct descriptor_buffer {
118 struct list_head list;
119 dma_addr_t buffer_bus;
120 size_t buffer_size;
121 size_t used;
122 struct descriptor buffer[];
123};
124
125struct context {
126 struct fw_ohci *ohci;
127 u32 regs;
128 int total_allocation;
129 u32 current_bus;
130 bool running;
131
132 /*
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
135 * free buffers.
136 */
137 struct list_head buffer_list;
138
139 /*
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
142 */
143 struct descriptor_buffer *buffer_tail;
144
145 /*
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
148 */
149 struct descriptor *last;
150
151 /*
152 * The last descriptor block in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
154 */
155 struct descriptor *prev;
156 int prev_z;
157
158 descriptor_callback_t callback;
159};
160
161struct at_context {
162 struct context context;
163 struct work_struct work;
164 bool flushing;
165};
166
167struct iso_context {
168 struct fw_iso_context base;
169 struct context context;
170 void *header;
171 size_t header_length;
172 unsigned long flushing_completions;
173 u32 mc_buffer_bus;
174 u16 mc_completed;
175 u16 last_timestamp;
176 u8 sync;
177 u8 tags;
178};
179
180#define CONFIG_ROM_SIZE (CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
181
182struct fw_ohci {
183 struct fw_card card;
184
185 __iomem char *registers;
186 int node_id;
187 int generation;
188 int request_generation; /* for timestamping incoming requests */
189 unsigned quirks;
190 unsigned int pri_req_max;
191 u32 bus_time;
192 bool bus_time_running;
193 bool is_root;
194 bool csr_state_setclear_abdicate;
195 int n_ir;
196 int n_it;
197 /*
198 * Spinlock for accessing fw_ohci data. Never call out of
199 * this driver with this lock held.
200 */
201 spinlock_t lock;
202
203 struct mutex phy_reg_mutex;
204
205 void *misc_buffer;
206 dma_addr_t misc_buffer_bus;
207
208 struct ar_context ar_request_ctx;
209 struct ar_context ar_response_ctx;
210 struct at_context at_request_ctx;
211 struct at_context at_response_ctx;
212
213 u32 it_context_support;
214 u32 it_context_mask; /* unoccupied IT contexts */
215 struct iso_context *it_context_list;
216 u64 ir_context_channels; /* unoccupied channels */
217 u32 ir_context_support;
218 u32 ir_context_mask; /* unoccupied IR contexts */
219 struct iso_context *ir_context_list;
220 u64 mc_channels; /* channels in use by the multichannel IR context */
221 bool mc_allocated;
222
223 __be32 *config_rom;
224 dma_addr_t config_rom_bus;
225 __be32 *next_config_rom;
226 dma_addr_t next_config_rom_bus;
227 __be32 next_header;
228
229 __le32 *self_id;
230 dma_addr_t self_id_bus;
231
232 u32 self_id_buffer[512];
233};
234
235static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236{
237 return container_of(card, struct fw_ohci, card);
238}
239
240#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
241#define IR_CONTEXT_BUFFER_FILL 0x80000000
242#define IR_CONTEXT_ISOCH_HEADER 0x40000000
243#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
244#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
245#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246
247#define CONTEXT_RUN 0x8000
248#define CONTEXT_WAKE 0x1000
249#define CONTEXT_DEAD 0x0800
250#define CONTEXT_ACTIVE 0x0400
251
252#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
253#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
254#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255
256#define OHCI1394_REGISTER_SIZE 0x800
257#define OHCI1394_PCI_HCI_Control 0x40
258#define SELF_ID_BUF_SIZE 0x800
259#define OHCI_VERSION_1_1 0x010010
260
261static char ohci_driver_name[] = KBUILD_MODNAME;
262
263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264#define PCI_DEVICE_ID_AGERE_FW643 0x5901
265#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270#define PCI_DEVICE_ID_VIA_VT630X 0x3044
271#define PCI_REV_ID_VIA_VT6306 0x46
272#define PCI_DEVICE_ID_VIA_VT6315 0x3403
273
274#define QUIRK_CYCLE_TIMER 0x1
275#define QUIRK_RESET_PACKET 0x2
276#define QUIRK_BE_HEADERS 0x4
277#define QUIRK_NO_1394A 0x8
278#define QUIRK_NO_MSI 0x10
279#define QUIRK_TI_SLLZ059 0x20
280#define QUIRK_IR_WAKE 0x40
281
282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286// while it is probable due to detection of any type of PCIe error.
287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
288
289#if IS_ENABLED(CONFIG_X86)
290
291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292{
293 return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294}
295
296#define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
297
298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299{
300 const struct pci_dev *pcie_to_pci_bridge;
301
302 // Detect any type of AMD Ryzen machine.
303 if (!static_cpu_has(X86_FEATURE_ZEN))
304 return false;
305
306 // Detect VIA VT6306/6307/6308.
307 if (pdev->vendor != PCI_VENDOR_ID_VIA)
308 return false;
309 if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310 return false;
311
312 // Detect Asmedia ASM1083/1085.
313 pcie_to_pci_bridge = pdev->bus->self;
314 if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315 return false;
316 if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317 return false;
318
319 return true;
320}
321
322#else
323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
325#endif
326
327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
328static const struct {
329 unsigned short vendor, device, revision, flags;
330} ohci_quirks[] = {
331 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332 QUIRK_CYCLE_TIMER},
333
334 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335 QUIRK_BE_HEADERS},
336
337 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338 QUIRK_NO_MSI},
339
340 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341 QUIRK_RESET_PACKET},
342
343 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344 QUIRK_NO_MSI},
345
346 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347 QUIRK_CYCLE_TIMER},
348
349 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350 QUIRK_NO_MSI},
351
352 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354
355 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357
358 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360
361 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365 QUIRK_RESET_PACKET},
366
367 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369
370 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372
373 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374 QUIRK_NO_MSI},
375
376 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378};
379
380/* This overrides anything that was found in ohci_quirks[]. */
381static int param_quirks;
382module_param_named(quirks, param_quirks, int, 0644);
383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
385 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
386 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
387 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
388 ", disable MSI = " __stringify(QUIRK_NO_MSI)
389 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
390 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
391 ")");
392
393static bool param_remote_dma;
394module_param_named(remote_dma, param_remote_dma, bool, 0444);
395MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
396
397static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
398{
399 writel(data, ohci->registers + offset);
400}
401
402static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
403{
404 return readl(ohci->registers + offset);
405}
406
407static inline void flush_writes(const struct fw_ohci *ohci)
408{
409 /* Do a dummy read to flush writes. */
410 reg_read(ohci, OHCI1394_Version);
411}
412
413/*
414 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
415 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
416 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
417 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
418 */
419static int read_phy_reg(struct fw_ohci *ohci, int addr)
420{
421 u32 val;
422 int i;
423
424 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
425 for (i = 0; i < 3 + 100; i++) {
426 val = reg_read(ohci, OHCI1394_PhyControl);
427 if (!~val)
428 return -ENODEV; /* Card was ejected. */
429
430 if (val & OHCI1394_PhyControl_ReadDone)
431 return OHCI1394_PhyControl_ReadData(val);
432
433 /*
434 * Try a few times without waiting. Sleeping is necessary
435 * only when the link/PHY interface is busy.
436 */
437 if (i >= 3)
438 msleep(1);
439 }
440 ohci_err(ohci, "failed to read phy reg %d\n", addr);
441 dump_stack();
442
443 return -EBUSY;
444}
445
446static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
447{
448 int i;
449
450 reg_write(ohci, OHCI1394_PhyControl,
451 OHCI1394_PhyControl_Write(addr, val));
452 for (i = 0; i < 3 + 100; i++) {
453 val = reg_read(ohci, OHCI1394_PhyControl);
454 if (!~val)
455 return -ENODEV; /* Card was ejected. */
456
457 if (!(val & OHCI1394_PhyControl_WritePending))
458 return 0;
459
460 if (i >= 3)
461 msleep(1);
462 }
463 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
464 dump_stack();
465
466 return -EBUSY;
467}
468
469static int update_phy_reg(struct fw_ohci *ohci, int addr,
470 int clear_bits, int set_bits)
471{
472 int ret = read_phy_reg(ohci, addr);
473 if (ret < 0)
474 return ret;
475
476 /*
477 * The interrupt status bits are cleared by writing a one bit.
478 * Avoid clearing them unless explicitly requested in set_bits.
479 */
480 if (addr == 5)
481 clear_bits |= PHY_INT_STATUS_BITS;
482
483 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
484}
485
486static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
487{
488 int ret;
489
490 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
491 if (ret < 0)
492 return ret;
493
494 return read_phy_reg(ohci, addr);
495}
496
497static int ohci_read_phy_reg(struct fw_card *card, int addr)
498{
499 struct fw_ohci *ohci = fw_ohci(card);
500
501 guard(mutex)(&ohci->phy_reg_mutex);
502
503 return read_phy_reg(ohci, addr);
504}
505
506static int ohci_update_phy_reg(struct fw_card *card, int addr,
507 int clear_bits, int set_bits)
508{
509 struct fw_ohci *ohci = fw_ohci(card);
510
511 guard(mutex)(&ohci->phy_reg_mutex);
512
513 return update_phy_reg(ohci, addr, clear_bits, set_bits);
514}
515
516static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
517{
518 return page_private(ctx->pages[i]);
519}
520
521static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
522{
523 struct descriptor *d;
524
525 d = &ctx->descriptors[index];
526 d->branch_address &= cpu_to_le32(~0xf);
527 d->res_count = cpu_to_le16(PAGE_SIZE);
528 d->transfer_status = 0;
529
530 wmb(); /* finish init of new descriptors before branch_address update */
531 d = &ctx->descriptors[ctx->last_buffer_index];
532 d->branch_address |= cpu_to_le32(1);
533
534 ctx->last_buffer_index = index;
535
536 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
537}
538
539static void ar_context_release(struct ar_context *ctx)
540{
541 struct device *dev = ctx->ohci->card.device;
542 unsigned int i;
543
544 if (!ctx->buffer)
545 return;
546
547 vunmap(ctx->buffer);
548
549 for (i = 0; i < AR_BUFFERS; i++) {
550 if (ctx->pages[i])
551 dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
552 ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
553 }
554}
555
556static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
557{
558 struct fw_ohci *ohci = ctx->ohci;
559
560 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
561 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
562 flush_writes(ohci);
563
564 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
565 }
566 /* FIXME: restart? */
567}
568
569static inline unsigned int ar_next_buffer_index(unsigned int index)
570{
571 return (index + 1) % AR_BUFFERS;
572}
573
574static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
575{
576 return ar_next_buffer_index(ctx->last_buffer_index);
577}
578
579/*
580 * We search for the buffer that contains the last AR packet DMA data written
581 * by the controller.
582 */
583static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
584 unsigned int *buffer_offset)
585{
586 unsigned int i, next_i, last = ctx->last_buffer_index;
587 __le16 res_count, next_res_count;
588
589 i = ar_first_buffer_index(ctx);
590 res_count = READ_ONCE(ctx->descriptors[i].res_count);
591
592 /* A buffer that is not yet completely filled must be the last one. */
593 while (i != last && res_count == 0) {
594
595 /* Peek at the next descriptor. */
596 next_i = ar_next_buffer_index(i);
597 rmb(); /* read descriptors in order */
598 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
599 /*
600 * If the next descriptor is still empty, we must stop at this
601 * descriptor.
602 */
603 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
604 /*
605 * The exception is when the DMA data for one packet is
606 * split over three buffers; in this case, the middle
607 * buffer's descriptor might be never updated by the
608 * controller and look still empty, and we have to peek
609 * at the third one.
610 */
611 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
612 next_i = ar_next_buffer_index(next_i);
613 rmb();
614 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
615 if (next_res_count != cpu_to_le16(PAGE_SIZE))
616 goto next_buffer_is_active;
617 }
618
619 break;
620 }
621
622next_buffer_is_active:
623 i = next_i;
624 res_count = next_res_count;
625 }
626
627 rmb(); /* read res_count before the DMA data */
628
629 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
630 if (*buffer_offset > PAGE_SIZE) {
631 *buffer_offset = 0;
632 ar_context_abort(ctx, "corrupted descriptor");
633 }
634
635 return i;
636}
637
638static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
639 unsigned int end_buffer_index,
640 unsigned int end_buffer_offset)
641{
642 unsigned int i;
643
644 i = ar_first_buffer_index(ctx);
645 while (i != end_buffer_index) {
646 dma_sync_single_for_cpu(ctx->ohci->card.device,
647 ar_buffer_bus(ctx, i),
648 PAGE_SIZE, DMA_FROM_DEVICE);
649 i = ar_next_buffer_index(i);
650 }
651 if (end_buffer_offset > 0)
652 dma_sync_single_for_cpu(ctx->ohci->card.device,
653 ar_buffer_bus(ctx, i),
654 end_buffer_offset, DMA_FROM_DEVICE);
655}
656
657#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
658static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
659{
660 return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
661}
662
663static bool has_be_header_quirk(const struct fw_ohci *ohci)
664{
665 return !!(ohci->quirks & QUIRK_BE_HEADERS);
666}
667#else
668static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
669{
670 return le32_to_cpu(value);
671}
672
673static bool has_be_header_quirk(const struct fw_ohci *ohci)
674{
675 return false;
676}
677#endif
678
679static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
680{
681 struct fw_ohci *ohci = ctx->ohci;
682 struct fw_packet p;
683 u32 status, length, tcode;
684 int evt;
685
686 p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
687 p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
688 p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
689
690 tcode = async_header_get_tcode(p.header);
691 switch (tcode) {
692 case TCODE_WRITE_QUADLET_REQUEST:
693 case TCODE_READ_QUADLET_RESPONSE:
694 p.header[3] = (__force __u32) buffer[3];
695 p.header_length = 16;
696 p.payload_length = 0;
697 break;
698
699 case TCODE_READ_BLOCK_REQUEST :
700 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
701 p.header_length = 16;
702 p.payload_length = 0;
703 break;
704
705 case TCODE_WRITE_BLOCK_REQUEST:
706 case TCODE_READ_BLOCK_RESPONSE:
707 case TCODE_LOCK_REQUEST:
708 case TCODE_LOCK_RESPONSE:
709 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
710 p.header_length = 16;
711 p.payload_length = async_header_get_data_length(p.header);
712 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
713 ar_context_abort(ctx, "invalid packet length");
714 return NULL;
715 }
716 break;
717
718 case TCODE_WRITE_RESPONSE:
719 case TCODE_READ_QUADLET_REQUEST:
720 case TCODE_LINK_INTERNAL:
721 p.header_length = 12;
722 p.payload_length = 0;
723 break;
724
725 default:
726 ar_context_abort(ctx, "invalid tcode");
727 return NULL;
728 }
729
730 p.payload = (void *) buffer + p.header_length;
731
732 /* FIXME: What to do about evt_* errors? */
733 length = (p.header_length + p.payload_length + 3) / 4;
734 status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
735 evt = (status >> 16) & 0x1f;
736
737 p.ack = evt - 16;
738 p.speed = (status >> 21) & 0x7;
739 p.timestamp = status & 0xffff;
740 p.generation = ohci->request_generation;
741
742 /*
743 * Several controllers, notably from NEC and VIA, forget to
744 * write ack_complete status at PHY packet reception.
745 */
746 if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
747 p.ack = ACK_COMPLETE;
748
749 /*
750 * The OHCI bus reset handler synthesizes a PHY packet with
751 * the new generation number when a bus reset happens (see
752 * section 8.4.2.3). This helps us determine when a request
753 * was received and make sure we send the response in the same
754 * generation. We only need this for requests; for responses
755 * we use the unique tlabel for finding the matching
756 * request.
757 *
758 * Alas some chips sometimes emit bus reset packets with a
759 * wrong generation. We set the correct generation for these
760 * at a slightly incorrect time (in handle_selfid_complete_event).
761 */
762 if (evt == OHCI1394_evt_bus_reset) {
763 if (!(ohci->quirks & QUIRK_RESET_PACKET))
764 ohci->request_generation = (p.header[2] >> 16) & 0xff;
765 } else if (ctx == &ohci->ar_request_ctx) {
766 fw_core_handle_request(&ohci->card, &p);
767 } else {
768 fw_core_handle_response(&ohci->card, &p);
769 }
770
771 return buffer + length + 1;
772}
773
774static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
775{
776 void *next;
777
778 while (p < end) {
779 next = handle_ar_packet(ctx, p);
780 if (!next)
781 return p;
782 p = next;
783 }
784
785 return p;
786}
787
788static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
789{
790 unsigned int i;
791
792 i = ar_first_buffer_index(ctx);
793 while (i != end_buffer) {
794 dma_sync_single_for_device(ctx->ohci->card.device,
795 ar_buffer_bus(ctx, i),
796 PAGE_SIZE, DMA_FROM_DEVICE);
797 ar_context_link_page(ctx, i);
798 i = ar_next_buffer_index(i);
799 }
800}
801
802static void ohci_ar_context_work(struct work_struct *work)
803{
804 struct ar_context *ctx = from_work(ctx, work, work);
805 unsigned int end_buffer_index, end_buffer_offset;
806 void *p, *end;
807
808 p = ctx->pointer;
809 if (!p)
810 return;
811
812 end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset);
813 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
814 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
815
816 if (end_buffer_index < ar_first_buffer_index(ctx)) {
817 // The filled part of the overall buffer wraps around; handle all packets up to the
818 // buffer end here. If the last packet wraps around, its tail will be visible after
819 // the buffer end because the buffer start pages are mapped there again.
820 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
821 p = handle_ar_packets(ctx, p, buffer_end);
822 if (p < buffer_end)
823 goto error;
824 // adjust p to point back into the actual buffer
825 p -= AR_BUFFERS * PAGE_SIZE;
826 }
827
828 p = handle_ar_packets(ctx, p, end);
829 if (p != end) {
830 if (p > end)
831 ar_context_abort(ctx, "inconsistent descriptor");
832 goto error;
833 }
834
835 ctx->pointer = p;
836 ar_recycle_buffers(ctx, end_buffer_index);
837
838 return;
839error:
840 ctx->pointer = NULL;
841}
842
843static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
844 unsigned int descriptors_offset, u32 regs)
845{
846 struct device *dev = ohci->card.device;
847 unsigned int i;
848 dma_addr_t dma_addr;
849 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
850 struct descriptor *d;
851
852 ctx->regs = regs;
853 ctx->ohci = ohci;
854 INIT_WORK(&ctx->work, ohci_ar_context_work);
855
856 for (i = 0; i < AR_BUFFERS; i++) {
857 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
858 DMA_FROM_DEVICE, GFP_KERNEL);
859 if (!ctx->pages[i])
860 goto out_of_memory;
861 set_page_private(ctx->pages[i], dma_addr);
862 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
863 DMA_FROM_DEVICE);
864 }
865
866 for (i = 0; i < AR_BUFFERS; i++)
867 pages[i] = ctx->pages[i];
868 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
869 pages[AR_BUFFERS + i] = ctx->pages[i];
870 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
871 if (!ctx->buffer)
872 goto out_of_memory;
873
874 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
875 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
876
877 for (i = 0; i < AR_BUFFERS; i++) {
878 d = &ctx->descriptors[i];
879 d->req_count = cpu_to_le16(PAGE_SIZE);
880 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
881 DESCRIPTOR_STATUS |
882 DESCRIPTOR_BRANCH_ALWAYS);
883 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
884 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
885 ar_next_buffer_index(i) * sizeof(struct descriptor));
886 }
887
888 return 0;
889
890out_of_memory:
891 ar_context_release(ctx);
892
893 return -ENOMEM;
894}
895
896static void ar_context_run(struct ar_context *ctx)
897{
898 unsigned int i;
899
900 for (i = 0; i < AR_BUFFERS; i++)
901 ar_context_link_page(ctx, i);
902
903 ctx->pointer = ctx->buffer;
904
905 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
906 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
907}
908
909static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
910{
911 __le16 branch;
912
913 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
914
915 /* figure out which descriptor the branch address goes in */
916 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
917 return d;
918 else
919 return d + z - 1;
920}
921
922static void context_retire_descriptors(struct context *ctx)
923{
924 struct descriptor *d, *last;
925 u32 address;
926 int z;
927 struct descriptor_buffer *desc;
928
929 desc = list_entry(ctx->buffer_list.next,
930 struct descriptor_buffer, list);
931 last = ctx->last;
932 while (last->branch_address != 0) {
933 struct descriptor_buffer *old_desc = desc;
934 address = le32_to_cpu(last->branch_address);
935 z = address & 0xf;
936 address &= ~0xf;
937 ctx->current_bus = address;
938
939 /* If the branch address points to a buffer outside of the
940 * current buffer, advance to the next buffer. */
941 if (address < desc->buffer_bus ||
942 address >= desc->buffer_bus + desc->used)
943 desc = list_entry(desc->list.next,
944 struct descriptor_buffer, list);
945 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
946 last = find_branch_descriptor(d, z);
947
948 if (!ctx->callback(ctx, d, last))
949 break;
950
951 if (old_desc != desc) {
952 // If we've advanced to the next buffer, move the previous buffer to the
953 // free list.
954 old_desc->used = 0;
955 guard(spinlock_irqsave)(&ctx->ohci->lock);
956 list_move_tail(&old_desc->list, &ctx->buffer_list);
957 }
958 ctx->last = last;
959 }
960}
961
962static void ohci_at_context_work(struct work_struct *work)
963{
964 struct at_context *ctx = from_work(ctx, work, work);
965
966 context_retire_descriptors(&ctx->context);
967}
968
969static void ohci_isoc_context_work(struct work_struct *work)
970{
971 struct fw_iso_context *base = from_work(base, work, work);
972 struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
973
974 context_retire_descriptors(&isoc_ctx->context);
975}
976
977/*
978 * Allocate a new buffer and add it to the list of free buffers for this
979 * context. Must be called with ohci->lock held.
980 */
981static int context_add_buffer(struct context *ctx)
982{
983 struct descriptor_buffer *desc;
984 dma_addr_t bus_addr;
985 int offset;
986
987 /*
988 * 16MB of descriptors should be far more than enough for any DMA
989 * program. This will catch run-away userspace or DoS attacks.
990 */
991 if (ctx->total_allocation >= 16*1024*1024)
992 return -ENOMEM;
993
994 desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
995 if (!desc)
996 return -ENOMEM;
997
998 offset = (void *)&desc->buffer - (void *)desc;
999 /*
1000 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1001 * for descriptors, even 0x10-byte ones. This can cause page faults when
1002 * an IOMMU is in use and the oversized read crosses a page boundary.
1003 * Work around this by always leaving at least 0x10 bytes of padding.
1004 */
1005 desc->buffer_size = PAGE_SIZE - offset - 0x10;
1006 desc->buffer_bus = bus_addr + offset;
1007 desc->used = 0;
1008
1009 list_add_tail(&desc->list, &ctx->buffer_list);
1010 ctx->total_allocation += PAGE_SIZE;
1011
1012 return 0;
1013}
1014
1015static int context_init(struct context *ctx, struct fw_ohci *ohci,
1016 u32 regs, descriptor_callback_t callback)
1017{
1018 ctx->ohci = ohci;
1019 ctx->regs = regs;
1020 ctx->total_allocation = 0;
1021
1022 INIT_LIST_HEAD(&ctx->buffer_list);
1023 if (context_add_buffer(ctx) < 0)
1024 return -ENOMEM;
1025
1026 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1027 struct descriptor_buffer, list);
1028
1029 ctx->callback = callback;
1030
1031 /*
1032 * We put a dummy descriptor in the buffer that has a NULL
1033 * branch address and looks like it's been sent. That way we
1034 * have a descriptor to append DMA programs to.
1035 */
1036 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1037 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1038 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1039 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1040 ctx->last = ctx->buffer_tail->buffer;
1041 ctx->prev = ctx->buffer_tail->buffer;
1042 ctx->prev_z = 1;
1043
1044 return 0;
1045}
1046
1047static void context_release(struct context *ctx)
1048{
1049 struct fw_card *card = &ctx->ohci->card;
1050 struct descriptor_buffer *desc, *tmp;
1051
1052 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1053 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1054 desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1055 }
1056}
1057
1058/* Must be called with ohci->lock held */
1059static struct descriptor *context_get_descriptors(struct context *ctx,
1060 int z, dma_addr_t *d_bus)
1061{
1062 struct descriptor *d = NULL;
1063 struct descriptor_buffer *desc = ctx->buffer_tail;
1064
1065 if (z * sizeof(*d) > desc->buffer_size)
1066 return NULL;
1067
1068 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1069 /* No room for the descriptor in this buffer, so advance to the
1070 * next one. */
1071
1072 if (desc->list.next == &ctx->buffer_list) {
1073 /* If there is no free buffer next in the list,
1074 * allocate one. */
1075 if (context_add_buffer(ctx) < 0)
1076 return NULL;
1077 }
1078 desc = list_entry(desc->list.next,
1079 struct descriptor_buffer, list);
1080 ctx->buffer_tail = desc;
1081 }
1082
1083 d = desc->buffer + desc->used / sizeof(*d);
1084 memset(d, 0, z * sizeof(*d));
1085 *d_bus = desc->buffer_bus + desc->used;
1086
1087 return d;
1088}
1089
1090static void context_run(struct context *ctx, u32 extra)
1091{
1092 struct fw_ohci *ohci = ctx->ohci;
1093
1094 reg_write(ohci, COMMAND_PTR(ctx->regs),
1095 le32_to_cpu(ctx->last->branch_address));
1096 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1097 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1098 ctx->running = true;
1099 flush_writes(ohci);
1100}
1101
1102static void context_append(struct context *ctx,
1103 struct descriptor *d, int z, int extra)
1104{
1105 dma_addr_t d_bus;
1106 struct descriptor_buffer *desc = ctx->buffer_tail;
1107 struct descriptor *d_branch;
1108
1109 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1110
1111 desc->used += (z + extra) * sizeof(*d);
1112
1113 wmb(); /* finish init of new descriptors before branch_address update */
1114
1115 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1116 d_branch->branch_address = cpu_to_le32(d_bus | z);
1117
1118 /*
1119 * VT6306 incorrectly checks only the single descriptor at the
1120 * CommandPtr when the wake bit is written, so if it's a
1121 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1122 * the branch address in the first descriptor.
1123 *
1124 * Not doing this for transmit contexts since not sure how it interacts
1125 * with skip addresses.
1126 */
1127 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1128 d_branch != ctx->prev &&
1129 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1130 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1131 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1132 }
1133
1134 ctx->prev = d;
1135 ctx->prev_z = z;
1136}
1137
1138static void context_stop(struct context *ctx)
1139{
1140 struct fw_ohci *ohci = ctx->ohci;
1141 u32 reg;
1142 int i;
1143
1144 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1145 ctx->running = false;
1146
1147 for (i = 0; i < 1000; i++) {
1148 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1149 if ((reg & CONTEXT_ACTIVE) == 0)
1150 return;
1151
1152 if (i)
1153 udelay(10);
1154 }
1155 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1156}
1157
1158struct driver_data {
1159 u8 inline_data[8];
1160 struct fw_packet *packet;
1161};
1162
1163/*
1164 * This function appends a packet to the DMA queue for transmission.
1165 * Must always be called with the ochi->lock held to ensure proper
1166 * generation handling and locking around packet queue manipulation.
1167 */
1168static int at_context_queue_packet(struct at_context *ctx, struct fw_packet *packet)
1169{
1170 struct context *context = &ctx->context;
1171 struct fw_ohci *ohci = context->ohci;
1172 dma_addr_t d_bus, payload_bus;
1173 struct driver_data *driver_data;
1174 struct descriptor *d, *last;
1175 __le32 *header;
1176 int z, tcode;
1177
1178 d = context_get_descriptors(context, 4, &d_bus);
1179 if (d == NULL) {
1180 packet->ack = RCODE_SEND_ERROR;
1181 return -1;
1182 }
1183
1184 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1185 d[0].res_count = cpu_to_le16(packet->timestamp);
1186
1187 tcode = async_header_get_tcode(packet->header);
1188 header = (__le32 *) &d[1];
1189 switch (tcode) {
1190 case TCODE_WRITE_QUADLET_REQUEST:
1191 case TCODE_WRITE_BLOCK_REQUEST:
1192 case TCODE_WRITE_RESPONSE:
1193 case TCODE_READ_QUADLET_REQUEST:
1194 case TCODE_READ_BLOCK_REQUEST:
1195 case TCODE_READ_QUADLET_RESPONSE:
1196 case TCODE_READ_BLOCK_RESPONSE:
1197 case TCODE_LOCK_REQUEST:
1198 case TCODE_LOCK_RESPONSE:
1199 ohci1394_at_data_set_src_bus_id(header, false);
1200 ohci1394_at_data_set_speed(header, packet->speed);
1201 ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1202 ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1203 ohci1394_at_data_set_tcode(header, tcode);
1204
1205 ohci1394_at_data_set_destination_id(header,
1206 async_header_get_destination(packet->header));
1207
1208 if (ctx == &ohci->at_response_ctx) {
1209 ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1210 } else {
1211 ohci1394_at_data_set_destination_offset(header,
1212 async_header_get_offset(packet->header));
1213 }
1214
1215 if (tcode_is_block_packet(tcode))
1216 header[3] = cpu_to_le32(packet->header[3]);
1217 else
1218 header[3] = (__force __le32) packet->header[3];
1219
1220 d[0].req_count = cpu_to_le16(packet->header_length);
1221 break;
1222 case TCODE_LINK_INTERNAL:
1223 ohci1394_at_data_set_speed(header, packet->speed);
1224 ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1225
1226 header[1] = cpu_to_le32(packet->header[1]);
1227 header[2] = cpu_to_le32(packet->header[2]);
1228 d[0].req_count = cpu_to_le16(12);
1229
1230 if (is_ping_packet(&packet->header[1]))
1231 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1232 break;
1233
1234 case TCODE_STREAM_DATA:
1235 ohci1394_it_data_set_speed(header, packet->speed);
1236 ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1237 ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1238 ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1239 ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1240
1241 ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1242
1243 d[0].req_count = cpu_to_le16(8);
1244 break;
1245
1246 default:
1247 /* BUG(); */
1248 packet->ack = RCODE_SEND_ERROR;
1249 return -1;
1250 }
1251
1252 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1253 driver_data = (struct driver_data *) &d[3];
1254 driver_data->packet = packet;
1255 packet->driver_data = driver_data;
1256
1257 if (packet->payload_length > 0) {
1258 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1259 payload_bus = dma_map_single(ohci->card.device,
1260 packet->payload,
1261 packet->payload_length,
1262 DMA_TO_DEVICE);
1263 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1264 packet->ack = RCODE_SEND_ERROR;
1265 return -1;
1266 }
1267 packet->payload_bus = payload_bus;
1268 packet->payload_mapped = true;
1269 } else {
1270 memcpy(driver_data->inline_data, packet->payload,
1271 packet->payload_length);
1272 payload_bus = d_bus + 3 * sizeof(*d);
1273 }
1274
1275 d[2].req_count = cpu_to_le16(packet->payload_length);
1276 d[2].data_address = cpu_to_le32(payload_bus);
1277 last = &d[2];
1278 z = 3;
1279 } else {
1280 last = &d[0];
1281 z = 2;
1282 }
1283
1284 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1285 DESCRIPTOR_IRQ_ALWAYS |
1286 DESCRIPTOR_BRANCH_ALWAYS);
1287
1288 /* FIXME: Document how the locking works. */
1289 if (ohci->generation != packet->generation) {
1290 if (packet->payload_mapped)
1291 dma_unmap_single(ohci->card.device, payload_bus,
1292 packet->payload_length, DMA_TO_DEVICE);
1293 packet->ack = RCODE_GENERATION;
1294 return -1;
1295 }
1296
1297 context_append(context, d, z, 4 - z);
1298
1299 if (context->running)
1300 reg_write(ohci, CONTROL_SET(context->regs), CONTEXT_WAKE);
1301 else
1302 context_run(context, 0);
1303
1304 return 0;
1305}
1306
1307static void at_context_flush(struct at_context *ctx)
1308{
1309 // Avoid dead lock due to programming mistake.
1310 if (WARN_ON_ONCE(current_work() == &ctx->work))
1311 return;
1312
1313 disable_work_sync(&ctx->work);
1314
1315 WRITE_ONCE(ctx->flushing, true);
1316 ohci_at_context_work(&ctx->work);
1317 WRITE_ONCE(ctx->flushing, false);
1318
1319 enable_work(&ctx->work);
1320}
1321
1322static int find_fw_device(struct device *dev, const void *data)
1323{
1324 struct fw_device *device = fw_device(dev);
1325 const u32 *params = data;
1326
1327 return (device->generation == params[0]) && (device->node_id == params[1]);
1328}
1329
1330static int handle_at_packet(struct context *context,
1331 struct descriptor *d,
1332 struct descriptor *last)
1333{
1334 struct at_context *ctx = container_of(context, struct at_context, context);
1335 struct fw_ohci *ohci = ctx->context.ohci;
1336 struct driver_data *driver_data;
1337 struct fw_packet *packet;
1338 int evt;
1339
1340 if (last->transfer_status == 0 && !READ_ONCE(ctx->flushing))
1341 /* This descriptor isn't done yet, stop iteration. */
1342 return 0;
1343
1344 driver_data = (struct driver_data *) &d[3];
1345 packet = driver_data->packet;
1346 if (packet == NULL)
1347 /* This packet was cancelled, just continue. */
1348 return 1;
1349
1350 if (packet->payload_mapped)
1351 dma_unmap_single(ohci->card.device, packet->payload_bus,
1352 packet->payload_length, DMA_TO_DEVICE);
1353
1354 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1355 packet->timestamp = le16_to_cpu(last->res_count);
1356
1357 switch (evt) {
1358 case OHCI1394_evt_timeout:
1359 /* Async response transmit timed out. */
1360 packet->ack = RCODE_CANCELLED;
1361 break;
1362
1363 case OHCI1394_evt_flushed:
1364 /*
1365 * The packet was flushed should give same error as
1366 * when we try to use a stale generation count.
1367 */
1368 packet->ack = RCODE_GENERATION;
1369 break;
1370
1371 case OHCI1394_evt_missing_ack:
1372 if (READ_ONCE(ctx->flushing))
1373 packet->ack = RCODE_GENERATION;
1374 else {
1375 /*
1376 * Using a valid (current) generation count, but the
1377 * node is not on the bus or not sending acks.
1378 */
1379 packet->ack = RCODE_NO_ACK;
1380 }
1381 break;
1382
1383 case ACK_COMPLETE + 0x10:
1384 case ACK_PENDING + 0x10:
1385 case ACK_BUSY_X + 0x10:
1386 case ACK_BUSY_A + 0x10:
1387 case ACK_BUSY_B + 0x10:
1388 case ACK_DATA_ERROR + 0x10:
1389 case ACK_TYPE_ERROR + 0x10:
1390 packet->ack = evt - 0x10;
1391 break;
1392
1393 case OHCI1394_evt_no_status:
1394 if (READ_ONCE(ctx->flushing)) {
1395 packet->ack = RCODE_GENERATION;
1396 break;
1397 }
1398 fallthrough;
1399
1400 default:
1401 if (unlikely(evt == 0x10)) {
1402 u32 params[2] = {
1403 packet->generation,
1404 async_header_get_destination(packet->header),
1405 };
1406 struct device *dev;
1407
1408 fw_card_get(&ohci->card);
1409 dev = device_find_child(ohci->card.device, (const void *)params, find_fw_device);
1410 fw_card_put(&ohci->card);
1411 if (dev) {
1412 struct fw_device *device = fw_device(dev);
1413 int quirks = READ_ONCE(device->quirks);
1414
1415 put_device(dev);
1416 if (quirks & FW_DEVICE_QUIRK_ACK_PACKET_WITH_INVALID_PENDING_CODE) {
1417 packet->ack = ACK_PENDING;
1418 break;
1419 }
1420 }
1421 }
1422 packet->ack = RCODE_SEND_ERROR;
1423 break;
1424 }
1425
1426 packet->callback(packet, &ohci->card, packet->ack);
1427
1428 return 1;
1429}
1430
1431static u32 get_cycle_time(struct fw_ohci *ohci);
1432
1433static void handle_local_rom(struct fw_ohci *ohci,
1434 struct fw_packet *packet, u32 csr)
1435{
1436 struct fw_packet response;
1437 int tcode, length, i;
1438
1439 tcode = async_header_get_tcode(packet->header);
1440 if (tcode_is_block_packet(tcode))
1441 length = async_header_get_data_length(packet->header);
1442 else
1443 length = 4;
1444
1445 i = csr - CSR_CONFIG_ROM;
1446 if (i + length > CONFIG_ROM_SIZE) {
1447 fw_fill_response(&response, packet->header,
1448 RCODE_ADDRESS_ERROR, NULL, 0);
1449 } else if (!tcode_is_read_request(tcode)) {
1450 fw_fill_response(&response, packet->header,
1451 RCODE_TYPE_ERROR, NULL, 0);
1452 } else {
1453 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1454 (void *) ohci->config_rom + i, length);
1455 }
1456
1457 // Timestamping on behalf of the hardware.
1458 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1459 fw_core_handle_response(&ohci->card, &response);
1460}
1461
1462static void handle_local_lock(struct fw_ohci *ohci,
1463 struct fw_packet *packet, u32 csr)
1464{
1465 struct fw_packet response;
1466 int tcode, length, ext_tcode, sel, try;
1467 __be32 *payload, lock_old;
1468 u32 lock_arg, lock_data;
1469
1470 tcode = async_header_get_tcode(packet->header);
1471 length = async_header_get_data_length(packet->header);
1472 payload = packet->payload;
1473 ext_tcode = async_header_get_extended_tcode(packet->header);
1474
1475 if (tcode == TCODE_LOCK_REQUEST &&
1476 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1477 lock_arg = be32_to_cpu(payload[0]);
1478 lock_data = be32_to_cpu(payload[1]);
1479 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1480 lock_arg = 0;
1481 lock_data = 0;
1482 } else {
1483 fw_fill_response(&response, packet->header,
1484 RCODE_TYPE_ERROR, NULL, 0);
1485 goto out;
1486 }
1487
1488 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1489 reg_write(ohci, OHCI1394_CSRData, lock_data);
1490 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1491 reg_write(ohci, OHCI1394_CSRControl, sel);
1492
1493 for (try = 0; try < 20; try++)
1494 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1495 lock_old = cpu_to_be32(reg_read(ohci,
1496 OHCI1394_CSRData));
1497 fw_fill_response(&response, packet->header,
1498 RCODE_COMPLETE,
1499 &lock_old, sizeof(lock_old));
1500 goto out;
1501 }
1502
1503 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1504 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1505
1506 out:
1507 // Timestamping on behalf of the hardware.
1508 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1509 fw_core_handle_response(&ohci->card, &response);
1510}
1511
1512static void handle_local_request(struct at_context *ctx, struct fw_packet *packet)
1513{
1514 struct fw_ohci *ohci = ctx->context.ohci;
1515 u64 offset, csr;
1516
1517 if (ctx == &ohci->at_request_ctx) {
1518 packet->ack = ACK_PENDING;
1519 packet->callback(packet, &ohci->card, packet->ack);
1520 }
1521
1522 offset = async_header_get_offset(packet->header);
1523 csr = offset - CSR_REGISTER_BASE;
1524
1525 /* Handle config rom reads. */
1526 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1527 handle_local_rom(ohci, packet, csr);
1528 else switch (csr) {
1529 case CSR_BUS_MANAGER_ID:
1530 case CSR_BANDWIDTH_AVAILABLE:
1531 case CSR_CHANNELS_AVAILABLE_HI:
1532 case CSR_CHANNELS_AVAILABLE_LO:
1533 handle_local_lock(ohci, packet, csr);
1534 break;
1535 default:
1536 if (ctx == &ohci->at_request_ctx)
1537 fw_core_handle_request(&ohci->card, packet);
1538 else
1539 fw_core_handle_response(&ohci->card, packet);
1540 break;
1541 }
1542
1543 if (ctx == &ohci->at_response_ctx) {
1544 packet->ack = ACK_COMPLETE;
1545 packet->callback(packet, &ohci->card, packet->ack);
1546 }
1547}
1548
1549static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
1550{
1551 struct fw_ohci *ohci = ctx->context.ohci;
1552 unsigned long flags;
1553 int ret;
1554
1555 spin_lock_irqsave(&ohci->lock, flags);
1556
1557 if (async_header_get_destination(packet->header) == ohci->node_id &&
1558 ohci->generation == packet->generation) {
1559 spin_unlock_irqrestore(&ohci->lock, flags);
1560
1561 // Timestamping on behalf of the hardware.
1562 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1563
1564 handle_local_request(ctx, packet);
1565 return;
1566 }
1567
1568 ret = at_context_queue_packet(ctx, packet);
1569 spin_unlock_irqrestore(&ohci->lock, flags);
1570
1571 if (ret < 0) {
1572 // Timestamping on behalf of the hardware.
1573 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1574
1575 packet->callback(packet, &ohci->card, packet->ack);
1576 }
1577}
1578
1579static void detect_dead_context(struct fw_ohci *ohci,
1580 const char *name, unsigned int regs)
1581{
1582 static const char *const evts[] = {
1583 [0x00] = "evt_no_status", [0x01] = "-reserved-",
1584 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
1585 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
1586 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
1587 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
1588 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
1589 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
1590 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
1591 [0x10] = "-reserved-", [0x11] = "ack_complete",
1592 [0x12] = "ack_pending ", [0x13] = "-reserved-",
1593 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
1594 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
1595 [0x18] = "-reserved-", [0x19] = "-reserved-",
1596 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
1597 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
1598 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
1599 [0x20] = "pending/cancelled",
1600 };
1601 u32 ctl;
1602
1603 ctl = reg_read(ohci, CONTROL_SET(regs));
1604 if (ctl & CONTEXT_DEAD)
1605 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1606 name, evts[ctl & 0x1f]);
1607}
1608
1609static void handle_dead_contexts(struct fw_ohci *ohci)
1610{
1611 unsigned int i;
1612 char name[8];
1613
1614 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1615 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1616 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1617 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1618 for (i = 0; i < 32; ++i) {
1619 if (!(ohci->it_context_support & (1 << i)))
1620 continue;
1621 sprintf(name, "IT%u", i);
1622 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1623 }
1624 for (i = 0; i < 32; ++i) {
1625 if (!(ohci->ir_context_support & (1 << i)))
1626 continue;
1627 sprintf(name, "IR%u", i);
1628 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1629 }
1630 /* TODO: maybe try to flush and restart the dead contexts */
1631}
1632
1633static u32 cycle_timer_ticks(u32 cycle_timer)
1634{
1635 u32 ticks;
1636
1637 ticks = cycle_timer & 0xfff;
1638 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1639 ticks += (3072 * 8000) * (cycle_timer >> 25);
1640
1641 return ticks;
1642}
1643
1644/*
1645 * Some controllers exhibit one or more of the following bugs when updating the
1646 * iso cycle timer register:
1647 * - When the lowest six bits are wrapping around to zero, a read that happens
1648 * at the same time will return garbage in the lowest ten bits.
1649 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1650 * not incremented for about 60 ns.
1651 * - Occasionally, the entire register reads zero.
1652 *
1653 * To catch these, we read the register three times and ensure that the
1654 * difference between each two consecutive reads is approximately the same, i.e.
1655 * less than twice the other. Furthermore, any negative difference indicates an
1656 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1657 * execute, so we have enough precision to compute the ratio of the differences.)
1658 */
1659static u32 get_cycle_time(struct fw_ohci *ohci)
1660{
1661 u32 c0, c1, c2;
1662 u32 t0, t1, t2;
1663 s32 diff01, diff12;
1664 int i;
1665
1666 if (has_reboot_by_cycle_timer_read_quirk(ohci))
1667 return 0;
1668
1669 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1670
1671 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1672 i = 0;
1673 c1 = c2;
1674 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1675 do {
1676 c0 = c1;
1677 c1 = c2;
1678 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1679 t0 = cycle_timer_ticks(c0);
1680 t1 = cycle_timer_ticks(c1);
1681 t2 = cycle_timer_ticks(c2);
1682 diff01 = t1 - t0;
1683 diff12 = t2 - t1;
1684 } while ((diff01 <= 0 || diff12 <= 0 ||
1685 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1686 && i++ < 20);
1687 }
1688
1689 return c2;
1690}
1691
1692/*
1693 * This function has to be called at least every 64 seconds. The bus_time
1694 * field stores not only the upper 25 bits of the BUS_TIME register but also
1695 * the most significant bit of the cycle timer in bit 6 so that we can detect
1696 * changes in this bit.
1697 */
1698static u32 update_bus_time(struct fw_ohci *ohci)
1699{
1700 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1701
1702 if (unlikely(!ohci->bus_time_running)) {
1703 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1704 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1705 (cycle_time_seconds & 0x40);
1706 ohci->bus_time_running = true;
1707 }
1708
1709 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1710 ohci->bus_time += 0x40;
1711
1712 return ohci->bus_time | cycle_time_seconds;
1713}
1714
1715static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1716 enum phy_packet_self_id_port_status *status)
1717{
1718 int reg;
1719
1720 scoped_guard(mutex, &ohci->phy_reg_mutex) {
1721 reg = write_phy_reg(ohci, 7, port_index);
1722 if (reg < 0)
1723 return reg;
1724
1725 reg = read_phy_reg(ohci, 8);
1726 if (reg < 0)
1727 return reg;
1728 }
1729
1730 switch (reg & 0x0f) {
1731 case 0x06:
1732 // is child node (connected to parent node)
1733 *status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1734 break;
1735 case 0x0e:
1736 // is parent node (connected to child node)
1737 *status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1738 break;
1739 default:
1740 // not connected
1741 *status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1742 break;
1743 }
1744
1745 return 0;
1746}
1747
1748static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1749 int self_id_count)
1750{
1751 unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1752 int i;
1753
1754 for (i = 0; i < self_id_count; i++) {
1755 u32 entry = ohci->self_id_buffer[i];
1756 unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1757
1758 if (left_phy_id == right_phy_id)
1759 return -1;
1760 if (left_phy_id < right_phy_id)
1761 return i;
1762 }
1763 return i;
1764}
1765
1766static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1767{
1768 int reg;
1769
1770 guard(mutex)(&ohci->phy_reg_mutex);
1771
1772 // Select page 7
1773 reg = write_phy_reg(ohci, 7, 0xe0);
1774 if (reg < 0)
1775 return reg;
1776
1777 reg = read_phy_reg(ohci, 8);
1778 if (reg < 0)
1779 return reg;
1780
1781 // set PMODE bit
1782 reg |= 0x40;
1783 reg = write_phy_reg(ohci, 8, reg);
1784 if (reg < 0)
1785 return reg;
1786
1787 // read register 12
1788 reg = read_phy_reg(ohci, 12);
1789 if (reg < 0)
1790 return reg;
1791
1792 // bit 3 indicates "initiated reset"
1793 *is_initiated_reset = !!((reg & 0x08) == 0x08);
1794
1795 return 0;
1796}
1797
1798/*
1799 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1800 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1801 * Construct the selfID from phy register contents.
1802 */
1803static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1804{
1805 int reg, i, pos, err;
1806 bool is_initiated_reset;
1807 u32 self_id = 0;
1808
1809 // link active 1, speed 3, bridge 0, contender 1, more packets 0.
1810 phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1811 phy_packet_self_id_zero_set_link_active(&self_id, true);
1812 phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1813 phy_packet_self_id_zero_set_contender(&self_id, true);
1814
1815 reg = reg_read(ohci, OHCI1394_NodeID);
1816 if (!(reg & OHCI1394_NodeID_idValid)) {
1817 ohci_notice(ohci,
1818 "node ID not valid, new bus reset in progress\n");
1819 return -EBUSY;
1820 }
1821 phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1822
1823 reg = ohci_read_phy_reg(&ohci->card, 4);
1824 if (reg < 0)
1825 return reg;
1826 phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1827
1828 reg = ohci_read_phy_reg(&ohci->card, 1);
1829 if (reg < 0)
1830 return reg;
1831 phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
1832
1833 for (i = 0; i < 3; i++) {
1834 enum phy_packet_self_id_port_status status;
1835
1836 err = get_status_for_port(ohci, i, &status);
1837 if (err < 0)
1838 return err;
1839
1840 self_id_sequence_set_port_status(&self_id, 1, i, status);
1841 }
1842
1843 err = detect_initiated_reset(ohci, &is_initiated_reset);
1844 if (err < 0)
1845 return err;
1846 phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
1847
1848 pos = get_self_id_pos(ohci, self_id, self_id_count);
1849 if (pos >= 0) {
1850 memmove(&(ohci->self_id_buffer[pos+1]),
1851 &(ohci->self_id_buffer[pos]),
1852 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1853 ohci->self_id_buffer[pos] = self_id;
1854 self_id_count++;
1855 }
1856 return self_id_count;
1857}
1858
1859static irqreturn_t handle_selfid_complete_event(int irq, void *data)
1860{
1861 struct fw_ohci *ohci = data;
1862 int self_id_count, generation, new_generation, i, j;
1863 u32 reg, quadlet;
1864 void *free_rom = NULL;
1865 dma_addr_t free_rom_bus = 0;
1866 bool is_new_root;
1867
1868 reg = reg_read(ohci, OHCI1394_NodeID);
1869 if (!(reg & OHCI1394_NodeID_idValid)) {
1870 ohci_notice(ohci,
1871 "node ID not valid, new bus reset in progress\n");
1872 goto end;
1873 }
1874 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1875 ohci_notice(ohci, "malconfigured bus\n");
1876 goto end;
1877 }
1878 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1879 OHCI1394_NodeID_nodeNumber);
1880
1881 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1882 if (!(ohci->is_root && is_new_root))
1883 reg_write(ohci, OHCI1394_LinkControlSet,
1884 OHCI1394_LinkControl_cycleMaster);
1885 ohci->is_root = is_new_root;
1886
1887 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1888 if (ohci1394_self_id_count_is_error(reg)) {
1889 ohci_notice(ohci, "self ID receive error\n");
1890 goto end;
1891 }
1892
1893 trace_self_id_complete(ohci->card.index, reg, ohci->self_id, has_be_header_quirk(ohci));
1894
1895 /*
1896 * The count in the SelfIDCount register is the number of
1897 * bytes in the self ID receive buffer. Since we also receive
1898 * the inverted quadlets and a header quadlet, we shift one
1899 * bit extra to get the actual number of self IDs.
1900 */
1901 self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
1902
1903 if (self_id_count > 252) {
1904 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1905 goto end;
1906 }
1907
1908 quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
1909 generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
1910 rmb();
1911
1912 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1913 u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
1914 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
1915
1916 if (id != ~id2) {
1917 /*
1918 * If the invalid data looks like a cycle start packet,
1919 * it's likely to be the result of the cycle master
1920 * having a wrong gap count. In this case, the self IDs
1921 * so far are valid and should be processed so that the
1922 * bus manager can then correct the gap count.
1923 */
1924 if (id == 0xffff008f) {
1925 ohci_notice(ohci, "ignoring spurious self IDs\n");
1926 self_id_count = j;
1927 break;
1928 }
1929
1930 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1931 j, self_id_count, id, id2);
1932 goto end;
1933 }
1934 ohci->self_id_buffer[j] = id;
1935 }
1936
1937 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1938 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1939 if (self_id_count < 0) {
1940 ohci_notice(ohci,
1941 "could not construct local self ID\n");
1942 goto end;
1943 }
1944 }
1945
1946 if (self_id_count == 0) {
1947 ohci_notice(ohci, "no self IDs\n");
1948 goto end;
1949 }
1950 rmb();
1951
1952 /*
1953 * Check the consistency of the self IDs we just read. The
1954 * problem we face is that a new bus reset can start while we
1955 * read out the self IDs from the DMA buffer. If this happens,
1956 * the DMA buffer will be overwritten with new self IDs and we
1957 * will read out inconsistent data. The OHCI specification
1958 * (section 11.2) recommends a technique similar to
1959 * linux/seqlock.h, where we remember the generation of the
1960 * self IDs in the buffer before reading them out and compare
1961 * it to the current generation after reading them out. If
1962 * the two generations match we know we have a consistent set
1963 * of self IDs.
1964 */
1965
1966 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1967 new_generation = ohci1394_self_id_count_get_generation(reg);
1968 if (new_generation != generation) {
1969 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1970 goto end;
1971 }
1972
1973 // FIXME: Document how the locking works.
1974 scoped_guard(spinlock_irq, &ohci->lock) {
1975 ohci->generation = -1; // prevent AT packet queueing
1976 context_stop(&ohci->at_request_ctx.context);
1977 context_stop(&ohci->at_response_ctx.context);
1978 }
1979
1980 /*
1981 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1982 * packets in the AT queues and software needs to drain them.
1983 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1984 */
1985 at_context_flush(&ohci->at_request_ctx);
1986 at_context_flush(&ohci->at_response_ctx);
1987
1988 scoped_guard(spinlock_irq, &ohci->lock) {
1989 ohci->generation = generation;
1990 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1991 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1992
1993 if (ohci->quirks & QUIRK_RESET_PACKET)
1994 ohci->request_generation = generation;
1995
1996 // This next bit is unrelated to the AT context stuff but we have to do it under the
1997 // spinlock also. If a new config rom was set up before this reset, the old one is
1998 // now no longer in use and we can free it. Update the config rom pointers to point
1999 // to the current config rom and clear the next_config_rom pointer so a new update
2000 // can take place.
2001 if (ohci->next_config_rom != NULL) {
2002 if (ohci->next_config_rom != ohci->config_rom) {
2003 free_rom = ohci->config_rom;
2004 free_rom_bus = ohci->config_rom_bus;
2005 }
2006 ohci->config_rom = ohci->next_config_rom;
2007 ohci->config_rom_bus = ohci->next_config_rom_bus;
2008 ohci->next_config_rom = NULL;
2009
2010 // Restore config_rom image and manually update config_rom registers.
2011 // Writing the header quadlet will indicate that the config rom is ready,
2012 // so we do that last.
2013 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2014 ohci->config_rom[0] = ohci->next_header;
2015 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2016 }
2017
2018 if (param_remote_dma) {
2019 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2020 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2021 }
2022 }
2023
2024 if (free_rom)
2025 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2026
2027 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2028 self_id_count, ohci->self_id_buffer,
2029 ohci->csr_state_setclear_abdicate);
2030 ohci->csr_state_setclear_abdicate = false;
2031end:
2032 return IRQ_HANDLED;
2033}
2034
2035static irqreturn_t irq_handler(int irq, void *data)
2036{
2037 struct fw_ohci *ohci = data;
2038 u32 event, iso_event;
2039 int i;
2040
2041 event = reg_read(ohci, OHCI1394_IntEventClear);
2042
2043 if (!event || !~event)
2044 return IRQ_NONE;
2045
2046 /*
2047 * busReset and postedWriteErr events must not be cleared yet
2048 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2049 */
2050 reg_write(ohci, OHCI1394_IntEventClear,
2051 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2052 trace_irqs(ohci->card.index, event);
2053
2054 // The flag is masked again at handle_selfid_complete_event() scheduled by selfID event.
2055 if (event & OHCI1394_busReset)
2056 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2057
2058 if (event & OHCI1394_RQPkt)
2059 queue_work(ohci->card.async_wq, &ohci->ar_request_ctx.work);
2060
2061 if (event & OHCI1394_RSPkt)
2062 queue_work(ohci->card.async_wq, &ohci->ar_response_ctx.work);
2063
2064 if (event & OHCI1394_reqTxComplete)
2065 queue_work(ohci->card.async_wq, &ohci->at_request_ctx.work);
2066
2067 if (event & OHCI1394_respTxComplete)
2068 queue_work(ohci->card.async_wq, &ohci->at_response_ctx.work);
2069
2070 if (event & OHCI1394_isochRx) {
2071 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2072 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2073
2074 while (iso_event) {
2075 i = ffs(iso_event) - 1;
2076 fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
2077 iso_event &= ~(1 << i);
2078 }
2079 }
2080
2081 if (event & OHCI1394_isochTx) {
2082 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2083 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2084
2085 while (iso_event) {
2086 i = ffs(iso_event) - 1;
2087 fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
2088 iso_event &= ~(1 << i);
2089 }
2090 }
2091
2092 if (unlikely(event & OHCI1394_regAccessFail))
2093 ohci_err(ohci, "register access failure\n");
2094
2095 if (unlikely(event & OHCI1394_postedWriteErr)) {
2096 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2097 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2098 reg_write(ohci, OHCI1394_IntEventClear,
2099 OHCI1394_postedWriteErr);
2100 dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2101 }
2102
2103 if (unlikely(event & OHCI1394_cycleTooLong)) {
2104 dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
2105 reg_write(ohci, OHCI1394_LinkControlSet,
2106 OHCI1394_LinkControl_cycleMaster);
2107 }
2108
2109 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2110 /*
2111 * We need to clear this event bit in order to make
2112 * cycleMatch isochronous I/O work. In theory we should
2113 * stop active cycleMatch iso contexts now and restart
2114 * them at least two cycles later. (FIXME?)
2115 */
2116 dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
2117 }
2118
2119 if (unlikely(event & OHCI1394_unrecoverableError))
2120 handle_dead_contexts(ohci);
2121
2122 if (event & OHCI1394_cycle64Seconds) {
2123 guard(spinlock)(&ohci->lock);
2124 update_bus_time(ohci);
2125 } else
2126 flush_writes(ohci);
2127
2128 if (event & OHCI1394_selfIDComplete)
2129 return IRQ_WAKE_THREAD;
2130 else
2131 return IRQ_HANDLED;
2132}
2133
2134static int software_reset(struct fw_ohci *ohci)
2135{
2136 u32 val;
2137 int i;
2138
2139 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2140 for (i = 0; i < 500; i++) {
2141 val = reg_read(ohci, OHCI1394_HCControlSet);
2142 if (!~val)
2143 return -ENODEV; /* Card was ejected. */
2144
2145 if (!(val & OHCI1394_HCControl_softReset))
2146 return 0;
2147
2148 msleep(1);
2149 }
2150
2151 return -EBUSY;
2152}
2153
2154static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2155{
2156 size_t size = length * 4;
2157
2158 memcpy(dest, src, size);
2159 if (size < CONFIG_ROM_SIZE)
2160 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2161}
2162
2163static int configure_1394a_enhancements(struct fw_ohci *ohci)
2164{
2165 bool enable_1394a;
2166 int ret, clear, set, offset;
2167
2168 /* Check if the driver should configure link and PHY. */
2169 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2170 OHCI1394_HCControl_programPhyEnable))
2171 return 0;
2172
2173 /* Paranoia: check whether the PHY supports 1394a, too. */
2174 enable_1394a = false;
2175 ret = read_phy_reg(ohci, 2);
2176 if (ret < 0)
2177 return ret;
2178 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2179 ret = read_paged_phy_reg(ohci, 1, 8);
2180 if (ret < 0)
2181 return ret;
2182 if (ret >= 1)
2183 enable_1394a = true;
2184 }
2185
2186 if (ohci->quirks & QUIRK_NO_1394A)
2187 enable_1394a = false;
2188
2189 /* Configure PHY and link consistently. */
2190 if (enable_1394a) {
2191 clear = 0;
2192 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2193 } else {
2194 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2195 set = 0;
2196 }
2197 ret = update_phy_reg(ohci, 5, clear, set);
2198 if (ret < 0)
2199 return ret;
2200
2201 if (enable_1394a)
2202 offset = OHCI1394_HCControlSet;
2203 else
2204 offset = OHCI1394_HCControlClear;
2205 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2206
2207 /* Clean up: configuration has been taken care of. */
2208 reg_write(ohci, OHCI1394_HCControlClear,
2209 OHCI1394_HCControl_programPhyEnable);
2210
2211 return 0;
2212}
2213
2214static int probe_tsb41ba3d(struct fw_ohci *ohci)
2215{
2216 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2217 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2218 int reg, i;
2219
2220 reg = read_phy_reg(ohci, 2);
2221 if (reg < 0)
2222 return reg;
2223 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2224 return 0;
2225
2226 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2227 reg = read_paged_phy_reg(ohci, 1, i + 10);
2228 if (reg < 0)
2229 return reg;
2230 if (reg != id[i])
2231 return 0;
2232 }
2233 return 1;
2234}
2235
2236static int ohci_enable(struct fw_card *card,
2237 const __be32 *config_rom, size_t length)
2238{
2239 struct fw_ohci *ohci = fw_ohci(card);
2240 u32 lps, version, irqs;
2241 int i, ret;
2242
2243 ret = software_reset(ohci);
2244 if (ret < 0) {
2245 ohci_err(ohci, "failed to reset ohci card\n");
2246 return ret;
2247 }
2248
2249 /*
2250 * Now enable LPS, which we need in order to start accessing
2251 * most of the registers. In fact, on some cards (ALI M5251),
2252 * accessing registers in the SClk domain without LPS enabled
2253 * will lock up the machine. Wait 50msec to make sure we have
2254 * full link enabled. However, with some cards (well, at least
2255 * a JMicron PCIe card), we have to try again sometimes.
2256 *
2257 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2258 * cannot actually use the phy at that time. These need tens of
2259 * millisecods pause between LPS write and first phy access too.
2260 */
2261
2262 reg_write(ohci, OHCI1394_HCControlSet,
2263 OHCI1394_HCControl_LPS |
2264 OHCI1394_HCControl_postedWriteEnable);
2265 flush_writes(ohci);
2266
2267 for (lps = 0, i = 0; !lps && i < 3; i++) {
2268 msleep(50);
2269 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2270 OHCI1394_HCControl_LPS;
2271 }
2272
2273 if (!lps) {
2274 ohci_err(ohci, "failed to set Link Power Status\n");
2275 return -EIO;
2276 }
2277
2278 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2279 ret = probe_tsb41ba3d(ohci);
2280 if (ret < 0)
2281 return ret;
2282 if (ret)
2283 ohci_notice(ohci, "local TSB41BA3D phy\n");
2284 else
2285 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2286 }
2287
2288 reg_write(ohci, OHCI1394_HCControlClear,
2289 OHCI1394_HCControl_noByteSwapData);
2290
2291 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2292 reg_write(ohci, OHCI1394_LinkControlSet,
2293 OHCI1394_LinkControl_cycleTimerEnable |
2294 OHCI1394_LinkControl_cycleMaster);
2295
2296 reg_write(ohci, OHCI1394_ATRetries,
2297 OHCI1394_MAX_AT_REQ_RETRIES |
2298 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2299 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2300 (200 << 16));
2301
2302 ohci->bus_time_running = false;
2303
2304 for (i = 0; i < 32; i++)
2305 if (ohci->ir_context_support & (1 << i))
2306 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2307 IR_CONTEXT_MULTI_CHANNEL_MODE);
2308
2309 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2310 if (version >= OHCI_VERSION_1_1) {
2311 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2312 0xfffffffe);
2313 card->broadcast_channel_auto_allocated = true;
2314 }
2315
2316 /* Get implemented bits of the priority arbitration request counter. */
2317 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2318 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2319 reg_write(ohci, OHCI1394_FairnessControl, 0);
2320 card->priority_budget_implemented = ohci->pri_req_max != 0;
2321
2322 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2323 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2324 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2325
2326 ret = configure_1394a_enhancements(ohci);
2327 if (ret < 0)
2328 return ret;
2329
2330 /* Activate link_on bit and contender bit in our self ID packets.*/
2331 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2332 if (ret < 0)
2333 return ret;
2334
2335 /*
2336 * When the link is not yet enabled, the atomic config rom
2337 * update mechanism described below in ohci_set_config_rom()
2338 * is not active. We have to update ConfigRomHeader and
2339 * BusOptions manually, and the write to ConfigROMmap takes
2340 * effect immediately. We tie this to the enabling of the
2341 * link, so we have a valid config rom before enabling - the
2342 * OHCI requires that ConfigROMhdr and BusOptions have valid
2343 * values before enabling.
2344 *
2345 * However, when the ConfigROMmap is written, some controllers
2346 * always read back quadlets 0 and 2 from the config rom to
2347 * the ConfigRomHeader and BusOptions registers on bus reset.
2348 * They shouldn't do that in this initial case where the link
2349 * isn't enabled. This means we have to use the same
2350 * workaround here, setting the bus header to 0 and then write
2351 * the right values in the bus reset work item.
2352 */
2353
2354 if (config_rom) {
2355 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2356 &ohci->next_config_rom_bus, GFP_KERNEL);
2357 if (ohci->next_config_rom == NULL)
2358 return -ENOMEM;
2359
2360 copy_config_rom(ohci->next_config_rom, config_rom, length);
2361 } else {
2362 /*
2363 * In the suspend case, config_rom is NULL, which
2364 * means that we just reuse the old config rom.
2365 */
2366 ohci->next_config_rom = ohci->config_rom;
2367 ohci->next_config_rom_bus = ohci->config_rom_bus;
2368 }
2369
2370 ohci->next_header = ohci->next_config_rom[0];
2371 ohci->next_config_rom[0] = 0;
2372 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2373 reg_write(ohci, OHCI1394_BusOptions,
2374 be32_to_cpu(ohci->next_config_rom[2]));
2375 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2376
2377 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2378
2379 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2380 OHCI1394_RQPkt | OHCI1394_RSPkt |
2381 OHCI1394_isochTx | OHCI1394_isochRx |
2382 OHCI1394_postedWriteErr |
2383 OHCI1394_selfIDComplete |
2384 OHCI1394_regAccessFail |
2385 OHCI1394_cycleInconsistent |
2386 OHCI1394_unrecoverableError |
2387 OHCI1394_cycleTooLong |
2388 OHCI1394_masterIntEnable |
2389 OHCI1394_busReset;
2390 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2391
2392 reg_write(ohci, OHCI1394_HCControlSet,
2393 OHCI1394_HCControl_linkEnable |
2394 OHCI1394_HCControl_BIBimageValid);
2395
2396 reg_write(ohci, OHCI1394_LinkControlSet,
2397 OHCI1394_LinkControl_rcvSelfID |
2398 OHCI1394_LinkControl_rcvPhyPkt);
2399
2400 ar_context_run(&ohci->ar_request_ctx);
2401 ar_context_run(&ohci->ar_response_ctx);
2402
2403 flush_writes(ohci);
2404
2405 /* We are ready to go, reset bus to finish initialization. */
2406 fw_schedule_bus_reset(&ohci->card, false, true);
2407
2408 return 0;
2409}
2410
2411static void ohci_disable(struct fw_card *card)
2412{
2413 struct pci_dev *pdev = to_pci_dev(card->device);
2414 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2415 int i, irq = pci_irq_vector(pdev, 0);
2416
2417 // If the removal is happening from the suspend state, LPS won't be enabled and host
2418 // registers (eg., IntMaskClear) won't be accessible.
2419 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS))
2420 return;
2421
2422 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2423 flush_writes(ohci);
2424
2425 if (irq >= 0)
2426 synchronize_irq(irq);
2427
2428 flush_work(&ohci->ar_request_ctx.work);
2429 flush_work(&ohci->ar_response_ctx.work);
2430 flush_work(&ohci->at_request_ctx.work);
2431 flush_work(&ohci->at_response_ctx.work);
2432
2433 for (i = 0; i < ohci->n_ir; ++i) {
2434 if (!(ohci->ir_context_mask & BIT(i)))
2435 flush_work(&ohci->ir_context_list[i].base.work);
2436 }
2437 for (i = 0; i < ohci->n_it; ++i) {
2438 if (!(ohci->it_context_mask & BIT(i)))
2439 flush_work(&ohci->it_context_list[i].base.work);
2440 }
2441
2442 at_context_flush(&ohci->at_request_ctx);
2443 at_context_flush(&ohci->at_response_ctx);
2444}
2445
2446static int ohci_set_config_rom(struct fw_card *card,
2447 const __be32 *config_rom, size_t length)
2448{
2449 struct fw_ohci *ohci;
2450 __be32 *next_config_rom;
2451 dma_addr_t next_config_rom_bus;
2452
2453 ohci = fw_ohci(card);
2454
2455 /*
2456 * When the OHCI controller is enabled, the config rom update
2457 * mechanism is a bit tricky, but easy enough to use. See
2458 * section 5.5.6 in the OHCI specification.
2459 *
2460 * The OHCI controller caches the new config rom address in a
2461 * shadow register (ConfigROMmapNext) and needs a bus reset
2462 * for the changes to take place. When the bus reset is
2463 * detected, the controller loads the new values for the
2464 * ConfigRomHeader and BusOptions registers from the specified
2465 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2466 * shadow register. All automatically and atomically.
2467 *
2468 * Now, there's a twist to this story. The automatic load of
2469 * ConfigRomHeader and BusOptions doesn't honor the
2470 * noByteSwapData bit, so with a be32 config rom, the
2471 * controller will load be32 values in to these registers
2472 * during the atomic update, even on little endian
2473 * architectures. The workaround we use is to put a 0 in the
2474 * header quadlet; 0 is endian agnostic and means that the
2475 * config rom isn't ready yet. In the bus reset work item we
2476 * then set up the real values for the two registers.
2477 *
2478 * We use ohci->lock to avoid racing with the code that sets
2479 * ohci->next_config_rom to NULL (see handle_selfid_complete_event).
2480 */
2481
2482 next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2483 &next_config_rom_bus, GFP_KERNEL);
2484 if (next_config_rom == NULL)
2485 return -ENOMEM;
2486
2487 scoped_guard(spinlock_irq, &ohci->lock) {
2488 // If there is not an already pending config_rom update, push our new allocation
2489 // into the ohci->next_config_rom and then mark the local variable as null so that
2490 // we won't deallocate the new buffer.
2491 //
2492 // OTOH, if there is a pending config_rom update, just use that buffer with the new
2493 // config_rom data, and let this routine free the unused DMA allocation.
2494 if (ohci->next_config_rom == NULL) {
2495 ohci->next_config_rom = next_config_rom;
2496 ohci->next_config_rom_bus = next_config_rom_bus;
2497 next_config_rom = NULL;
2498 }
2499
2500 copy_config_rom(ohci->next_config_rom, config_rom, length);
2501
2502 ohci->next_header = config_rom[0];
2503 ohci->next_config_rom[0] = 0;
2504
2505 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2506 }
2507
2508 /* If we didn't use the DMA allocation, delete it. */
2509 if (next_config_rom != NULL) {
2510 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2511 next_config_rom_bus);
2512 }
2513
2514 /*
2515 * Now initiate a bus reset to have the changes take
2516 * effect. We clean up the old config rom memory and DMA
2517 * mappings in the bus reset work item, since the OHCI
2518 * controller could need to access it before the bus reset
2519 * takes effect.
2520 */
2521
2522 fw_schedule_bus_reset(&ohci->card, true, true);
2523
2524 return 0;
2525}
2526
2527static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2528{
2529 struct fw_ohci *ohci = fw_ohci(card);
2530
2531 at_context_transmit(&ohci->at_request_ctx, packet);
2532}
2533
2534static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2535{
2536 struct fw_ohci *ohci = fw_ohci(card);
2537
2538 at_context_transmit(&ohci->at_response_ctx, packet);
2539}
2540
2541static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2542{
2543 struct fw_ohci *ohci = fw_ohci(card);
2544 struct at_context *ctx = &ohci->at_request_ctx;
2545 struct driver_data *driver_data = packet->driver_data;
2546 int ret = -ENOENT;
2547
2548 // Avoid dead lock due to programming mistake.
2549 if (WARN_ON_ONCE(current_work() == &ctx->work))
2550 return 0;
2551 disable_work_sync(&ctx->work);
2552
2553 if (packet->ack != 0)
2554 goto out;
2555
2556 if (packet->payload_mapped)
2557 dma_unmap_single(ohci->card.device, packet->payload_bus,
2558 packet->payload_length, DMA_TO_DEVICE);
2559
2560 driver_data->packet = NULL;
2561 packet->ack = RCODE_CANCELLED;
2562
2563 // Timestamping on behalf of the hardware.
2564 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2565
2566 packet->callback(packet, &ohci->card, packet->ack);
2567 ret = 0;
2568 out:
2569 enable_work(&ctx->work);
2570
2571 return ret;
2572}
2573
2574static int ohci_enable_phys_dma(struct fw_card *card,
2575 int node_id, int generation)
2576{
2577 struct fw_ohci *ohci = fw_ohci(card);
2578 int n, ret = 0;
2579
2580 if (param_remote_dma)
2581 return 0;
2582
2583 /*
2584 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2585 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2586 */
2587
2588 guard(spinlock_irqsave)(&ohci->lock);
2589
2590 if (ohci->generation != generation)
2591 return -ESTALE;
2592
2593 /*
2594 * Note, if the node ID contains a non-local bus ID, physical DMA is
2595 * enabled for _all_ nodes on remote buses.
2596 */
2597
2598 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2599 if (n < 32)
2600 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2601 else
2602 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2603
2604 flush_writes(ohci);
2605
2606 return ret;
2607}
2608
2609static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2610{
2611 struct fw_ohci *ohci = fw_ohci(card);
2612 u32 value;
2613
2614 switch (csr_offset) {
2615 case CSR_STATE_CLEAR:
2616 case CSR_STATE_SET:
2617 if (ohci->is_root &&
2618 (reg_read(ohci, OHCI1394_LinkControlSet) &
2619 OHCI1394_LinkControl_cycleMaster))
2620 value = CSR_STATE_BIT_CMSTR;
2621 else
2622 value = 0;
2623 if (ohci->csr_state_setclear_abdicate)
2624 value |= CSR_STATE_BIT_ABDICATE;
2625
2626 return value;
2627
2628 case CSR_NODE_IDS:
2629 return reg_read(ohci, OHCI1394_NodeID) << 16;
2630
2631 case CSR_CYCLE_TIME:
2632 return get_cycle_time(ohci);
2633
2634 case CSR_BUS_TIME:
2635 {
2636 // We might be called just after the cycle timer has wrapped around but just before
2637 // the cycle64Seconds handler, so we better check here, too, if the bus time needs
2638 // to be updated.
2639
2640 guard(spinlock_irqsave)(&ohci->lock);
2641 return update_bus_time(ohci);
2642 }
2643 case CSR_BUSY_TIMEOUT:
2644 value = reg_read(ohci, OHCI1394_ATRetries);
2645 return (value >> 4) & 0x0ffff00f;
2646
2647 case CSR_PRIORITY_BUDGET:
2648 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2649 (ohci->pri_req_max << 8);
2650
2651 default:
2652 WARN_ON(1);
2653 return 0;
2654 }
2655}
2656
2657static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2658{
2659 struct fw_ohci *ohci = fw_ohci(card);
2660
2661 switch (csr_offset) {
2662 case CSR_STATE_CLEAR:
2663 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2664 reg_write(ohci, OHCI1394_LinkControlClear,
2665 OHCI1394_LinkControl_cycleMaster);
2666 flush_writes(ohci);
2667 }
2668 if (value & CSR_STATE_BIT_ABDICATE)
2669 ohci->csr_state_setclear_abdicate = false;
2670 break;
2671
2672 case CSR_STATE_SET:
2673 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2674 reg_write(ohci, OHCI1394_LinkControlSet,
2675 OHCI1394_LinkControl_cycleMaster);
2676 flush_writes(ohci);
2677 }
2678 if (value & CSR_STATE_BIT_ABDICATE)
2679 ohci->csr_state_setclear_abdicate = true;
2680 break;
2681
2682 case CSR_NODE_IDS:
2683 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2684 flush_writes(ohci);
2685 break;
2686
2687 case CSR_CYCLE_TIME:
2688 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2689 reg_write(ohci, OHCI1394_IntEventSet,
2690 OHCI1394_cycleInconsistent);
2691 flush_writes(ohci);
2692 break;
2693
2694 case CSR_BUS_TIME:
2695 {
2696 guard(spinlock_irqsave)(&ohci->lock);
2697 ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2698 break;
2699 }
2700 case CSR_BUSY_TIMEOUT:
2701 value = (value & 0xf) | ((value & 0xf) << 4) |
2702 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2703 reg_write(ohci, OHCI1394_ATRetries, value);
2704 flush_writes(ohci);
2705 break;
2706
2707 case CSR_PRIORITY_BUDGET:
2708 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2709 flush_writes(ohci);
2710 break;
2711
2712 default:
2713 WARN_ON(1);
2714 break;
2715 }
2716}
2717
2718static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2719{
2720 trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2721 ctx->header_length);
2722 trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2723 ctx->header_length);
2724
2725 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2726 ctx->header_length, ctx->header,
2727 ctx->base.callback_data);
2728 ctx->header_length = 0;
2729}
2730
2731static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2732{
2733 u32 *ctx_hdr;
2734
2735 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2736 if (ctx->base.drop_overflow_headers)
2737 return;
2738 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2739 }
2740
2741 ctx_hdr = ctx->header + ctx->header_length;
2742 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2743
2744 /*
2745 * The two iso header quadlets are byteswapped to little
2746 * endian by the controller, but we want to present them
2747 * as big endian for consistency with the bus endianness.
2748 */
2749 if (ctx->base.header_size > 0)
2750 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2751 if (ctx->base.header_size > 4)
2752 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2753 if (ctx->base.header_size > 8)
2754 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2755 ctx->header_length += ctx->base.header_size;
2756}
2757
2758static int handle_ir_packet_per_buffer(struct context *context,
2759 struct descriptor *d,
2760 struct descriptor *last)
2761{
2762 struct iso_context *ctx =
2763 container_of(context, struct iso_context, context);
2764 struct descriptor *pd;
2765 u32 buffer_dma;
2766
2767 for (pd = d; pd <= last; pd++)
2768 if (pd->transfer_status)
2769 break;
2770 if (pd > last)
2771 /* Descriptor(s) not done yet, stop iteration */
2772 return 0;
2773
2774 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2775 d++;
2776 buffer_dma = le32_to_cpu(d->data_address);
2777 dma_sync_single_range_for_cpu(context->ohci->card.device,
2778 buffer_dma & PAGE_MASK,
2779 buffer_dma & ~PAGE_MASK,
2780 le16_to_cpu(d->req_count),
2781 DMA_FROM_DEVICE);
2782 }
2783
2784 copy_iso_headers(ctx, (u32 *) (last + 1));
2785
2786 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2787 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2788
2789 return 1;
2790}
2791
2792/* d == last because each descriptor block is only a single descriptor. */
2793static int handle_ir_buffer_fill(struct context *context,
2794 struct descriptor *d,
2795 struct descriptor *last)
2796{
2797 struct iso_context *ctx =
2798 container_of(context, struct iso_context, context);
2799 unsigned int req_count, res_count, completed;
2800 u32 buffer_dma;
2801
2802 req_count = le16_to_cpu(last->req_count);
2803 res_count = le16_to_cpu(READ_ONCE(last->res_count));
2804 completed = req_count - res_count;
2805 buffer_dma = le32_to_cpu(last->data_address);
2806
2807 if (completed > 0) {
2808 ctx->mc_buffer_bus = buffer_dma;
2809 ctx->mc_completed = completed;
2810 }
2811
2812 if (res_count != 0)
2813 /* Descriptor(s) not done yet, stop iteration */
2814 return 0;
2815
2816 dma_sync_single_range_for_cpu(context->ohci->card.device,
2817 buffer_dma & PAGE_MASK,
2818 buffer_dma & ~PAGE_MASK,
2819 completed, DMA_FROM_DEVICE);
2820
2821 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2822 trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2823 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2824
2825 ctx->base.callback.mc(&ctx->base,
2826 buffer_dma + completed,
2827 ctx->base.callback_data);
2828 ctx->mc_completed = 0;
2829 }
2830
2831 return 1;
2832}
2833
2834static void flush_ir_buffer_fill(struct iso_context *ctx)
2835{
2836 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2837 ctx->mc_buffer_bus & PAGE_MASK,
2838 ctx->mc_buffer_bus & ~PAGE_MASK,
2839 ctx->mc_completed, DMA_FROM_DEVICE);
2840
2841 trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2842 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2843
2844 ctx->base.callback.mc(&ctx->base,
2845 ctx->mc_buffer_bus + ctx->mc_completed,
2846 ctx->base.callback_data);
2847 ctx->mc_completed = 0;
2848}
2849
2850static inline void sync_it_packet_for_cpu(struct context *context,
2851 struct descriptor *pd)
2852{
2853 __le16 control;
2854 u32 buffer_dma;
2855
2856 /* only packets beginning with OUTPUT_MORE* have data buffers */
2857 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2858 return;
2859
2860 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2861 pd += 2;
2862
2863 /*
2864 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2865 * data buffer is in the context program's coherent page and must not
2866 * be synced.
2867 */
2868 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2869 (context->current_bus & PAGE_MASK)) {
2870 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2871 return;
2872 pd++;
2873 }
2874
2875 do {
2876 buffer_dma = le32_to_cpu(pd->data_address);
2877 dma_sync_single_range_for_cpu(context->ohci->card.device,
2878 buffer_dma & PAGE_MASK,
2879 buffer_dma & ~PAGE_MASK,
2880 le16_to_cpu(pd->req_count),
2881 DMA_TO_DEVICE);
2882 control = pd->control;
2883 pd++;
2884 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2885}
2886
2887static int handle_it_packet(struct context *context,
2888 struct descriptor *d,
2889 struct descriptor *last)
2890{
2891 struct iso_context *ctx =
2892 container_of(context, struct iso_context, context);
2893 struct descriptor *pd;
2894 __be32 *ctx_hdr;
2895
2896 for (pd = d; pd <= last; pd++)
2897 if (pd->transfer_status)
2898 break;
2899 if (pd > last)
2900 /* Descriptor(s) not done yet, stop iteration */
2901 return 0;
2902
2903 sync_it_packet_for_cpu(context, d);
2904
2905 if (ctx->header_length + 4 > PAGE_SIZE) {
2906 if (ctx->base.drop_overflow_headers)
2907 return 1;
2908 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2909 }
2910
2911 ctx_hdr = ctx->header + ctx->header_length;
2912 ctx->last_timestamp = le16_to_cpu(last->res_count);
2913 /* Present this value as big-endian to match the receive code */
2914 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2915 le16_to_cpu(pd->res_count));
2916 ctx->header_length += 4;
2917
2918 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2919 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2920
2921 return 1;
2922}
2923
2924static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2925{
2926 u32 hi = channels >> 32, lo = channels;
2927
2928 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2929 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2930 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2931 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2932 ohci->mc_channels = channels;
2933}
2934
2935static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2936 int type, int channel, size_t header_size)
2937{
2938 struct fw_ohci *ohci = fw_ohci(card);
2939 struct iso_context *ctx;
2940 descriptor_callback_t callback;
2941 u64 *channels;
2942 u32 *mask, regs;
2943 int index, ret = -EBUSY;
2944
2945 scoped_guard(spinlock_irq, &ohci->lock) {
2946 switch (type) {
2947 case FW_ISO_CONTEXT_TRANSMIT:
2948 mask = &ohci->it_context_mask;
2949 callback = handle_it_packet;
2950 index = ffs(*mask) - 1;
2951 if (index >= 0) {
2952 *mask &= ~(1 << index);
2953 regs = OHCI1394_IsoXmitContextBase(index);
2954 ctx = &ohci->it_context_list[index];
2955 }
2956 break;
2957
2958 case FW_ISO_CONTEXT_RECEIVE:
2959 channels = &ohci->ir_context_channels;
2960 mask = &ohci->ir_context_mask;
2961 callback = handle_ir_packet_per_buffer;
2962 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2963 if (index >= 0) {
2964 *channels &= ~(1ULL << channel);
2965 *mask &= ~(1 << index);
2966 regs = OHCI1394_IsoRcvContextBase(index);
2967 ctx = &ohci->ir_context_list[index];
2968 }
2969 break;
2970
2971 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2972 mask = &ohci->ir_context_mask;
2973 callback = handle_ir_buffer_fill;
2974 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2975 if (index >= 0) {
2976 ohci->mc_allocated = true;
2977 *mask &= ~(1 << index);
2978 regs = OHCI1394_IsoRcvContextBase(index);
2979 ctx = &ohci->ir_context_list[index];
2980 }
2981 break;
2982
2983 default:
2984 index = -1;
2985 ret = -ENOSYS;
2986 }
2987
2988 if (index < 0)
2989 return ERR_PTR(ret);
2990 }
2991
2992 memset(ctx, 0, sizeof(*ctx));
2993 ctx->header_length = 0;
2994 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2995 if (ctx->header == NULL) {
2996 ret = -ENOMEM;
2997 goto out;
2998 }
2999 ret = context_init(&ctx->context, ohci, regs, callback);
3000 if (ret < 0)
3001 goto out_with_header;
3002 fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3003
3004 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3005 set_multichannel_mask(ohci, 0);
3006 ctx->mc_completed = 0;
3007 }
3008
3009 return &ctx->base;
3010
3011 out_with_header:
3012 free_page((unsigned long)ctx->header);
3013 out:
3014 scoped_guard(spinlock_irq, &ohci->lock) {
3015 switch (type) {
3016 case FW_ISO_CONTEXT_RECEIVE:
3017 *channels |= 1ULL << channel;
3018 break;
3019
3020 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3021 ohci->mc_allocated = false;
3022 break;
3023 }
3024 *mask |= 1 << index;
3025 }
3026
3027 return ERR_PTR(ret);
3028}
3029
3030static int ohci_start_iso(struct fw_iso_context *base,
3031 s32 cycle, u32 sync, u32 tags)
3032{
3033 struct iso_context *ctx = container_of(base, struct iso_context, base);
3034 struct fw_ohci *ohci = ctx->context.ohci;
3035 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3036 int index;
3037
3038 /* the controller cannot start without any queued packets */
3039 if (ctx->context.last->branch_address == 0)
3040 return -ENODATA;
3041
3042 switch (ctx->base.type) {
3043 case FW_ISO_CONTEXT_TRANSMIT:
3044 index = ctx - ohci->it_context_list;
3045 match = 0;
3046 if (cycle >= 0)
3047 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3048 (cycle & 0x7fff) << 16;
3049
3050 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3051 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3052 context_run(&ctx->context, match);
3053 break;
3054
3055 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3056 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3057 fallthrough;
3058 case FW_ISO_CONTEXT_RECEIVE:
3059 index = ctx - ohci->ir_context_list;
3060 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3061 if (cycle >= 0) {
3062 match |= (cycle & 0x07fff) << 12;
3063 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3064 }
3065
3066 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3067 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3068 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3069 context_run(&ctx->context, control);
3070
3071 ctx->sync = sync;
3072 ctx->tags = tags;
3073
3074 break;
3075 }
3076
3077 return 0;
3078}
3079
3080static int ohci_stop_iso(struct fw_iso_context *base)
3081{
3082 struct fw_ohci *ohci = fw_ohci(base->card);
3083 struct iso_context *ctx = container_of(base, struct iso_context, base);
3084 int index;
3085
3086 switch (ctx->base.type) {
3087 case FW_ISO_CONTEXT_TRANSMIT:
3088 index = ctx - ohci->it_context_list;
3089 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3090 break;
3091
3092 case FW_ISO_CONTEXT_RECEIVE:
3093 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3094 index = ctx - ohci->ir_context_list;
3095 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3096 break;
3097 }
3098 flush_writes(ohci);
3099 context_stop(&ctx->context);
3100
3101 return 0;
3102}
3103
3104static void ohci_free_iso_context(struct fw_iso_context *base)
3105{
3106 struct fw_ohci *ohci = fw_ohci(base->card);
3107 struct iso_context *ctx = container_of(base, struct iso_context, base);
3108 int index;
3109
3110 ohci_stop_iso(base);
3111 context_release(&ctx->context);
3112 free_page((unsigned long)ctx->header);
3113
3114 guard(spinlock_irqsave)(&ohci->lock);
3115
3116 switch (base->type) {
3117 case FW_ISO_CONTEXT_TRANSMIT:
3118 index = ctx - ohci->it_context_list;
3119 ohci->it_context_mask |= 1 << index;
3120 break;
3121
3122 case FW_ISO_CONTEXT_RECEIVE:
3123 index = ctx - ohci->ir_context_list;
3124 ohci->ir_context_mask |= 1 << index;
3125 ohci->ir_context_channels |= 1ULL << base->channel;
3126 break;
3127
3128 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3129 index = ctx - ohci->ir_context_list;
3130 ohci->ir_context_mask |= 1 << index;
3131 ohci->ir_context_channels |= ohci->mc_channels;
3132 ohci->mc_channels = 0;
3133 ohci->mc_allocated = false;
3134 break;
3135 }
3136}
3137
3138static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3139{
3140 struct fw_ohci *ohci = fw_ohci(base->card);
3141
3142 switch (base->type) {
3143 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3144 {
3145 guard(spinlock_irqsave)(&ohci->lock);
3146
3147 // Don't allow multichannel to grab other contexts' channels.
3148 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3149 *channels = ohci->ir_context_channels;
3150 return -EBUSY;
3151 } else {
3152 set_multichannel_mask(ohci, *channels);
3153 return 0;
3154 }
3155 }
3156 default:
3157 return -EINVAL;
3158 }
3159}
3160
3161static void __maybe_unused ohci_resume_iso_dma(struct fw_ohci *ohci)
3162{
3163 int i;
3164 struct iso_context *ctx;
3165
3166 for (i = 0 ; i < ohci->n_ir ; i++) {
3167 ctx = &ohci->ir_context_list[i];
3168 if (ctx->context.running)
3169 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3170 }
3171
3172 for (i = 0 ; i < ohci->n_it ; i++) {
3173 ctx = &ohci->it_context_list[i];
3174 if (ctx->context.running)
3175 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3176 }
3177}
3178
3179static int queue_iso_transmit(struct iso_context *ctx,
3180 struct fw_iso_packet *packet,
3181 struct fw_iso_buffer *buffer,
3182 unsigned long payload)
3183{
3184 struct descriptor *d, *last, *pd;
3185 struct fw_iso_packet *p;
3186 __le32 *header;
3187 dma_addr_t d_bus, page_bus;
3188 u32 z, header_z, payload_z, irq;
3189 u32 payload_index, payload_end_index, next_page_index;
3190 int page, end_page, i, length, offset;
3191
3192 p = packet;
3193 payload_index = payload;
3194
3195 if (p->skip)
3196 z = 1;
3197 else
3198 z = 2;
3199 if (p->header_length > 0)
3200 z++;
3201
3202 /* Determine the first page the payload isn't contained in. */
3203 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3204 if (p->payload_length > 0)
3205 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3206 else
3207 payload_z = 0;
3208
3209 z += payload_z;
3210
3211 /* Get header size in number of descriptors. */
3212 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3213
3214 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3215 if (d == NULL)
3216 return -ENOMEM;
3217
3218 if (!p->skip) {
3219 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3220 d[0].req_count = cpu_to_le16(8);
3221 /*
3222 * Link the skip address to this descriptor itself. This causes
3223 * a context to skip a cycle whenever lost cycles or FIFO
3224 * overruns occur, without dropping the data. The application
3225 * should then decide whether this is an error condition or not.
3226 * FIXME: Make the context's cycle-lost behaviour configurable?
3227 */
3228 d[0].branch_address = cpu_to_le32(d_bus | z);
3229
3230 header = (__le32 *) &d[1];
3231
3232 ohci1394_it_data_set_speed(header, ctx->base.speed);
3233 ohci1394_it_data_set_tag(header, p->tag);
3234 ohci1394_it_data_set_channel(header, ctx->base.channel);
3235 ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3236 ohci1394_it_data_set_sync(header, p->sy);
3237
3238 ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3239 }
3240
3241 if (p->header_length > 0) {
3242 d[2].req_count = cpu_to_le16(p->header_length);
3243 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3244 memcpy(&d[z], p->header, p->header_length);
3245 }
3246
3247 pd = d + z - payload_z;
3248 payload_end_index = payload_index + p->payload_length;
3249 for (i = 0; i < payload_z; i++) {
3250 page = payload_index >> PAGE_SHIFT;
3251 offset = payload_index & ~PAGE_MASK;
3252 next_page_index = (page + 1) << PAGE_SHIFT;
3253 length =
3254 min(next_page_index, payload_end_index) - payload_index;
3255 pd[i].req_count = cpu_to_le16(length);
3256
3257 page_bus = page_private(buffer->pages[page]);
3258 pd[i].data_address = cpu_to_le32(page_bus + offset);
3259
3260 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3261 page_bus, offset, length,
3262 DMA_TO_DEVICE);
3263
3264 payload_index += length;
3265 }
3266
3267 if (p->interrupt)
3268 irq = DESCRIPTOR_IRQ_ALWAYS;
3269 else
3270 irq = DESCRIPTOR_NO_IRQ;
3271
3272 last = z == 2 ? d : d + z - 1;
3273 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3274 DESCRIPTOR_STATUS |
3275 DESCRIPTOR_BRANCH_ALWAYS |
3276 irq);
3277
3278 context_append(&ctx->context, d, z, header_z);
3279
3280 return 0;
3281}
3282
3283static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3284 struct fw_iso_packet *packet,
3285 struct fw_iso_buffer *buffer,
3286 unsigned long payload)
3287{
3288 struct device *device = ctx->context.ohci->card.device;
3289 struct descriptor *d, *pd;
3290 dma_addr_t d_bus, page_bus;
3291 u32 z, header_z, rest;
3292 int i, j, length;
3293 int page, offset, packet_count, header_size, payload_per_buffer;
3294
3295 /*
3296 * The OHCI controller puts the isochronous header and trailer in the
3297 * buffer, so we need at least 8 bytes.
3298 */
3299 packet_count = packet->header_length / ctx->base.header_size;
3300 header_size = max(ctx->base.header_size, (size_t)8);
3301
3302 /* Get header size in number of descriptors. */
3303 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3304 page = payload >> PAGE_SHIFT;
3305 offset = payload & ~PAGE_MASK;
3306 payload_per_buffer = packet->payload_length / packet_count;
3307
3308 for (i = 0; i < packet_count; i++) {
3309 /* d points to the header descriptor */
3310 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3311 d = context_get_descriptors(&ctx->context,
3312 z + header_z, &d_bus);
3313 if (d == NULL)
3314 return -ENOMEM;
3315
3316 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3317 DESCRIPTOR_INPUT_MORE);
3318 if (packet->skip && i == 0)
3319 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3320 d->req_count = cpu_to_le16(header_size);
3321 d->res_count = d->req_count;
3322 d->transfer_status = 0;
3323 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3324
3325 rest = payload_per_buffer;
3326 pd = d;
3327 for (j = 1; j < z; j++) {
3328 pd++;
3329 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3330 DESCRIPTOR_INPUT_MORE);
3331
3332 if (offset + rest < PAGE_SIZE)
3333 length = rest;
3334 else
3335 length = PAGE_SIZE - offset;
3336 pd->req_count = cpu_to_le16(length);
3337 pd->res_count = pd->req_count;
3338 pd->transfer_status = 0;
3339
3340 page_bus = page_private(buffer->pages[page]);
3341 pd->data_address = cpu_to_le32(page_bus + offset);
3342
3343 dma_sync_single_range_for_device(device, page_bus,
3344 offset, length,
3345 DMA_FROM_DEVICE);
3346
3347 offset = (offset + length) & ~PAGE_MASK;
3348 rest -= length;
3349 if (offset == 0)
3350 page++;
3351 }
3352 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3353 DESCRIPTOR_INPUT_LAST |
3354 DESCRIPTOR_BRANCH_ALWAYS);
3355 if (packet->interrupt && i == packet_count - 1)
3356 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3357
3358 context_append(&ctx->context, d, z, header_z);
3359 }
3360
3361 return 0;
3362}
3363
3364static int queue_iso_buffer_fill(struct iso_context *ctx,
3365 struct fw_iso_packet *packet,
3366 struct fw_iso_buffer *buffer,
3367 unsigned long payload)
3368{
3369 struct descriptor *d;
3370 dma_addr_t d_bus, page_bus;
3371 int page, offset, rest, z, i, length;
3372
3373 page = payload >> PAGE_SHIFT;
3374 offset = payload & ~PAGE_MASK;
3375 rest = packet->payload_length;
3376
3377 /* We need one descriptor for each page in the buffer. */
3378 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3379
3380 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3381 return -EFAULT;
3382
3383 for (i = 0; i < z; i++) {
3384 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3385 if (d == NULL)
3386 return -ENOMEM;
3387
3388 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3389 DESCRIPTOR_BRANCH_ALWAYS);
3390 if (packet->skip && i == 0)
3391 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3392 if (packet->interrupt && i == z - 1)
3393 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3394
3395 if (offset + rest < PAGE_SIZE)
3396 length = rest;
3397 else
3398 length = PAGE_SIZE - offset;
3399 d->req_count = cpu_to_le16(length);
3400 d->res_count = d->req_count;
3401 d->transfer_status = 0;
3402
3403 page_bus = page_private(buffer->pages[page]);
3404 d->data_address = cpu_to_le32(page_bus + offset);
3405
3406 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3407 page_bus, offset, length,
3408 DMA_FROM_DEVICE);
3409
3410 rest -= length;
3411 offset = 0;
3412 page++;
3413
3414 context_append(&ctx->context, d, 1, 0);
3415 }
3416
3417 return 0;
3418}
3419
3420static int ohci_queue_iso(struct fw_iso_context *base,
3421 struct fw_iso_packet *packet,
3422 struct fw_iso_buffer *buffer,
3423 unsigned long payload)
3424{
3425 struct iso_context *ctx = container_of(base, struct iso_context, base);
3426
3427 guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3428
3429 switch (base->type) {
3430 case FW_ISO_CONTEXT_TRANSMIT:
3431 return queue_iso_transmit(ctx, packet, buffer, payload);
3432 case FW_ISO_CONTEXT_RECEIVE:
3433 return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3434 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3435 return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3436 default:
3437 return -ENOSYS;
3438 }
3439}
3440
3441static void ohci_flush_queue_iso(struct fw_iso_context *base)
3442{
3443 struct context *ctx =
3444 &container_of(base, struct iso_context, base)->context;
3445
3446 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3447}
3448
3449static int ohci_flush_iso_completions(struct fw_iso_context *base)
3450{
3451 struct iso_context *ctx = container_of(base, struct iso_context, base);
3452 int ret = 0;
3453
3454 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3455 ohci_isoc_context_work(&base->work);
3456
3457 switch (base->type) {
3458 case FW_ISO_CONTEXT_TRANSMIT:
3459 case FW_ISO_CONTEXT_RECEIVE:
3460 if (ctx->header_length != 0)
3461 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3462 break;
3463 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3464 if (ctx->mc_completed != 0)
3465 flush_ir_buffer_fill(ctx);
3466 break;
3467 default:
3468 ret = -ENOSYS;
3469 }
3470
3471 clear_bit_unlock(0, &ctx->flushing_completions);
3472 smp_mb__after_atomic();
3473 }
3474
3475 return ret;
3476}
3477
3478static const struct fw_card_driver ohci_driver = {
3479 .enable = ohci_enable,
3480 .disable = ohci_disable,
3481 .read_phy_reg = ohci_read_phy_reg,
3482 .update_phy_reg = ohci_update_phy_reg,
3483 .set_config_rom = ohci_set_config_rom,
3484 .send_request = ohci_send_request,
3485 .send_response = ohci_send_response,
3486 .cancel_packet = ohci_cancel_packet,
3487 .enable_phys_dma = ohci_enable_phys_dma,
3488 .read_csr = ohci_read_csr,
3489 .write_csr = ohci_write_csr,
3490
3491 .allocate_iso_context = ohci_allocate_iso_context,
3492 .free_iso_context = ohci_free_iso_context,
3493 .set_iso_channels = ohci_set_iso_channels,
3494 .queue_iso = ohci_queue_iso,
3495 .flush_queue_iso = ohci_flush_queue_iso,
3496 .flush_iso_completions = ohci_flush_iso_completions,
3497 .start_iso = ohci_start_iso,
3498 .stop_iso = ohci_stop_iso,
3499};
3500
3501#ifdef CONFIG_PPC_PMAC
3502static void pmac_ohci_on(struct pci_dev *dev)
3503{
3504 if (machine_is(powermac)) {
3505 struct device_node *ofn = pci_device_to_OF_node(dev);
3506
3507 if (ofn) {
3508 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3509 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3510 }
3511 }
3512}
3513
3514static void pmac_ohci_off(struct pci_dev *dev)
3515{
3516 if (machine_is(powermac)) {
3517 struct device_node *ofn = pci_device_to_OF_node(dev);
3518
3519 if (ofn) {
3520 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3521 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3522 }
3523 }
3524}
3525#else
3526static inline void pmac_ohci_on(struct pci_dev *dev) {}
3527static inline void pmac_ohci_off(struct pci_dev *dev) {}
3528#endif /* CONFIG_PPC_PMAC */
3529
3530static void release_ohci(struct device *dev, void *data)
3531{
3532 struct pci_dev *pdev = to_pci_dev(dev);
3533 struct fw_ohci *ohci = pci_get_drvdata(pdev);
3534
3535 pmac_ohci_off(pdev);
3536
3537 ar_context_release(&ohci->ar_response_ctx);
3538 ar_context_release(&ohci->ar_request_ctx);
3539
3540 dev_notice(dev, "removed fw-ohci device\n");
3541}
3542
3543static int pci_probe(struct pci_dev *dev,
3544 const struct pci_device_id *ent)
3545{
3546 struct fw_ohci *ohci;
3547 u32 bus_options, max_receive, link_speed, version;
3548 u64 guid;
3549 int i, flags, irq, err;
3550
3551 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3552 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3553 return -ENOSYS;
3554 }
3555
3556 ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3557 if (ohci == NULL)
3558 return -ENOMEM;
3559 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3560 pci_set_drvdata(dev, ohci);
3561 pmac_ohci_on(dev);
3562 devres_add(&dev->dev, ohci);
3563
3564 err = pcim_enable_device(dev);
3565 if (err) {
3566 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3567 return err;
3568 }
3569
3570 pci_set_master(dev);
3571 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3572
3573 spin_lock_init(&ohci->lock);
3574 mutex_init(&ohci->phy_reg_mutex);
3575
3576 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3577 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3578 ohci_err(ohci, "invalid MMIO resource\n");
3579 return -ENXIO;
3580 }
3581
3582 ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3583 if (IS_ERR(ohci->registers)) {
3584 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3585 return -ENXIO;
3586 }
3587
3588 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3589 if ((ohci_quirks[i].vendor == dev->vendor) &&
3590 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3591 ohci_quirks[i].device == dev->device) &&
3592 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3593 ohci_quirks[i].revision >= dev->revision)) {
3594 ohci->quirks = ohci_quirks[i].flags;
3595 break;
3596 }
3597 if (param_quirks)
3598 ohci->quirks = param_quirks;
3599
3600 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3601 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3602
3603 /*
3604 * Because dma_alloc_coherent() allocates at least one page,
3605 * we save space by using a common buffer for the AR request/
3606 * response descriptors and the self IDs buffer.
3607 */
3608 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3609 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3610 ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3611 GFP_KERNEL);
3612 if (!ohci->misc_buffer)
3613 return -ENOMEM;
3614
3615 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3616 OHCI1394_AsReqRcvContextControlSet);
3617 if (err < 0)
3618 return err;
3619
3620 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3621 OHCI1394_AsRspRcvContextControlSet);
3622 if (err < 0)
3623 return err;
3624
3625 err = context_init(&ohci->at_request_ctx.context, ohci,
3626 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3627 if (err < 0)
3628 return err;
3629 INIT_WORK(&ohci->at_request_ctx.work, ohci_at_context_work);
3630
3631 err = context_init(&ohci->at_response_ctx.context, ohci,
3632 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3633 if (err < 0)
3634 return err;
3635 INIT_WORK(&ohci->at_response_ctx.work, ohci_at_context_work);
3636
3637 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3638 ohci->ir_context_channels = ~0ULL;
3639 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3640 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3641 ohci->ir_context_mask = ohci->ir_context_support;
3642 ohci->n_ir = hweight32(ohci->ir_context_mask);
3643 ohci->ir_context_list = devm_kcalloc(&dev->dev, ohci->n_ir, sizeof(struct iso_context), GFP_KERNEL);
3644 if (!ohci->ir_context_list)
3645 return -ENOMEM;
3646
3647 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3648 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3649 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3650 if (!ohci->it_context_support) {
3651 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3652 ohci->it_context_support = 0xf;
3653 }
3654 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3655 ohci->it_context_mask = ohci->it_context_support;
3656 ohci->n_it = hweight32(ohci->it_context_mask);
3657 ohci->it_context_list = devm_kcalloc(&dev->dev, ohci->n_it, sizeof(struct iso_context), GFP_KERNEL);
3658 if (!ohci->it_context_list)
3659 return -ENOMEM;
3660
3661 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3662 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3663
3664 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3665 max_receive = (bus_options >> 12) & 0xf;
3666 link_speed = bus_options & 0x7;
3667 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3668 reg_read(ohci, OHCI1394_GUIDLo);
3669
3670 flags = PCI_IRQ_INTX;
3671 if (!(ohci->quirks & QUIRK_NO_MSI))
3672 flags |= PCI_IRQ_MSI;
3673 err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3674 if (err < 0)
3675 return err;
3676 irq = pci_irq_vector(dev, 0);
3677 if (irq < 0) {
3678 err = irq;
3679 goto fail_msi;
3680 }
3681
3682 // IRQF_ONESHOT is not applied so that any events are handled in the hardIRQ handler during
3683 // invoking the threaded IRQ handler for SelfIDComplete event.
3684 err = request_threaded_irq(irq, irq_handler, handle_selfid_complete_event,
3685 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3686 ohci);
3687 if (err < 0) {
3688 ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3689 goto fail_msi;
3690 }
3691
3692 err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3693 if (err)
3694 goto fail_irq;
3695
3696 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3697 ohci_notice(ohci,
3698 "added OHCI v%x.%x device as card %d, "
3699 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3700 version >> 16, version & 0xff, ohci->card.index,
3701 ohci->n_ir, ohci->n_it, ohci->quirks,
3702 reg_read(ohci, OHCI1394_PhyUpperBound) ?
3703 ", physUB" : "");
3704
3705 return 0;
3706
3707 fail_irq:
3708 free_irq(irq, ohci);
3709 fail_msi:
3710 pci_free_irq_vectors(dev);
3711
3712 return err;
3713}
3714
3715static void pci_remove(struct pci_dev *dev)
3716{
3717 struct fw_ohci *ohci = pci_get_drvdata(dev);
3718 int irq;
3719
3720 fw_core_remove_card(&ohci->card);
3721
3722 software_reset(ohci);
3723
3724 irq = pci_irq_vector(dev, 0);
3725 if (irq >= 0)
3726 free_irq(irq, ohci);
3727 pci_free_irq_vectors(dev);
3728
3729 dev_notice(&dev->dev, "removing fw-ohci device\n");
3730}
3731
3732static int __maybe_unused pci_suspend(struct device *dev)
3733{
3734 struct pci_dev *pdev = to_pci_dev(dev);
3735 struct fw_ohci *ohci = pci_get_drvdata(pdev);
3736
3737 software_reset(ohci);
3738 pmac_ohci_off(pdev);
3739
3740 return 0;
3741}
3742
3743
3744static int __maybe_unused pci_resume(struct device *dev)
3745{
3746 struct pci_dev *pdev = to_pci_dev(dev);
3747 struct fw_ohci *ohci = pci_get_drvdata(pdev);
3748 int err;
3749
3750 pmac_ohci_on(pdev);
3751
3752 /* Some systems don't setup GUID register on resume from ram */
3753 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3754 !reg_read(ohci, OHCI1394_GUIDHi)) {
3755 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3756 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3757 }
3758
3759 err = ohci_enable(&ohci->card, NULL, 0);
3760 if (err)
3761 return err;
3762
3763 ohci_resume_iso_dma(ohci);
3764
3765 return 0;
3766}
3767
3768static const struct pci_device_id pci_table[] = {
3769 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3770 { }
3771};
3772
3773MODULE_DEVICE_TABLE(pci, pci_table);
3774
3775static SIMPLE_DEV_PM_OPS(pci_pm_ops, pci_suspend, pci_resume);
3776
3777static struct pci_driver fw_ohci_pci_driver = {
3778 .name = ohci_driver_name,
3779 .id_table = pci_table,
3780 .probe = pci_probe,
3781 .remove = pci_remove,
3782 .driver.pm = &pci_pm_ops,
3783};
3784
3785static int __init fw_ohci_init(void)
3786{
3787 return pci_register_driver(&fw_ohci_pci_driver);
3788}
3789
3790static void __exit fw_ohci_cleanup(void)
3791{
3792 pci_unregister_driver(&fw_ohci_pci_driver);
3793}
3794
3795module_init(fw_ohci_init);
3796module_exit(fw_ohci_cleanup);
3797
3798MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3799MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3800MODULE_LICENSE("GPL");
3801
3802/* Provide a module alias so root-on-sbp2 initrds don't break. */
3803MODULE_ALIAS("ohci1394");