Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * A devfreq driver for NVIDIA Tegra SoCs
4 *
5 * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
6 * Copyright (C) 2014 Google, Inc
7 */
8
9#include <linux/clk.h>
10#include <linux/cpufreq.h>
11#include <linux/devfreq.h>
12#include <linux/devfreq-governor.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/irq.h>
16#include <linux/minmax.h>
17#include <linux/module.h>
18#include <linux/of.h>
19#include <linux/platform_device.h>
20#include <linux/pm_opp.h>
21#include <linux/reset.h>
22#include <linux/workqueue.h>
23
24#include <soc/tegra/fuse.h>
25
26#define ACTMON_GLB_STATUS 0x0
27#define ACTMON_GLB_PERIOD_CTRL 0x4
28
29#define ACTMON_DEV_CTRL 0x0
30#define ACTMON_DEV_CTRL_K_VAL_SHIFT 10
31#define ACTMON_DEV_CTRL_ENB_PERIODIC BIT(18)
32#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN BIT(20)
33#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN BIT(21)
34#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT 23
35#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT 26
36#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN BIT(29)
37#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN BIT(30)
38#define ACTMON_DEV_CTRL_ENB BIT(31)
39
40#define ACTMON_DEV_CTRL_STOP 0x00000000
41
42#define ACTMON_DEV_UPPER_WMARK 0x4
43#define ACTMON_DEV_LOWER_WMARK 0x8
44#define ACTMON_DEV_INIT_AVG 0xc
45#define ACTMON_DEV_AVG_UPPER_WMARK 0x10
46#define ACTMON_DEV_AVG_LOWER_WMARK 0x14
47#define ACTMON_DEV_COUNT_WEIGHT 0x18
48#define ACTMON_DEV_AVG_COUNT 0x20
49#define ACTMON_DEV_INTR_STATUS 0x24
50
51#define ACTMON_INTR_STATUS_CLEAR 0xffffffff
52
53#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER BIT(31)
54#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER BIT(30)
55
56#define ACTMON_ABOVE_WMARK_WINDOW 1
57#define ACTMON_BELOW_WMARK_WINDOW 3
58#define ACTMON_BOOST_FREQ_STEP 16000
59
60/*
61 * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
62 * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
63 */
64#define ACTMON_AVERAGE_WINDOW_LOG2 6
65#define ACTMON_SAMPLING_PERIOD 12 /* ms */
66#define ACTMON_DEFAULT_AVG_BAND 6 /* 1/10 of % */
67
68#define KHZ 1000
69
70#define KHZ_MAX (ULONG_MAX / KHZ)
71
72/* Assume that the bus is saturated if the utilization is 25% */
73#define BUS_SATURATION_RATIO 25
74
75/**
76 * struct tegra_devfreq_device_config - configuration specific to an ACTMON
77 * device
78 *
79 * Coefficients and thresholds are percentages unless otherwise noted
80 */
81struct tegra_devfreq_device_config {
82 u32 offset;
83 u32 irq_mask;
84
85 /* Factors applied to boost_freq every consecutive watermark breach */
86 unsigned int boost_up_coeff;
87 unsigned int boost_down_coeff;
88
89 /* Define the watermark bounds when applied to the current avg */
90 unsigned int boost_up_threshold;
91 unsigned int boost_down_threshold;
92
93 /*
94 * Threshold of activity (cycles translated to kHz) below which the
95 * CPU frequency isn't to be taken into account. This is to avoid
96 * increasing the EMC frequency when the CPU is very busy but not
97 * accessing the bus often.
98 */
99 u32 avg_dependency_threshold;
100};
101
102enum tegra_actmon_device {
103 MCALL = 0,
104 MCCPU,
105};
106
107static const struct tegra_devfreq_device_config tegra124_device_configs[] = {
108 {
109 /* MCALL: All memory accesses (including from the CPUs) */
110 .offset = 0x1c0,
111 .irq_mask = 1 << 26,
112 .boost_up_coeff = 200,
113 .boost_down_coeff = 50,
114 .boost_up_threshold = 60,
115 .boost_down_threshold = 40,
116 },
117 {
118 /* MCCPU: memory accesses from the CPUs */
119 .offset = 0x200,
120 .irq_mask = 1 << 25,
121 .boost_up_coeff = 800,
122 .boost_down_coeff = 40,
123 .boost_up_threshold = 27,
124 .boost_down_threshold = 10,
125 .avg_dependency_threshold = 16000, /* 16MHz in kHz units */
126 },
127};
128
129static const struct tegra_devfreq_device_config tegra30_device_configs[] = {
130 {
131 /* MCALL: All memory accesses (including from the CPUs) */
132 .offset = 0x1c0,
133 .irq_mask = 1 << 26,
134 .boost_up_coeff = 200,
135 .boost_down_coeff = 50,
136 .boost_up_threshold = 20,
137 .boost_down_threshold = 10,
138 },
139 {
140 /* MCCPU: memory accesses from the CPUs */
141 .offset = 0x200,
142 .irq_mask = 1 << 25,
143 .boost_up_coeff = 800,
144 .boost_down_coeff = 40,
145 .boost_up_threshold = 27,
146 .boost_down_threshold = 10,
147 .avg_dependency_threshold = 16000, /* 16MHz in kHz units */
148 },
149};
150
151/**
152 * struct tegra_devfreq_device - state specific to an ACTMON device
153 *
154 * Frequencies are in kHz.
155 */
156struct tegra_devfreq_device {
157 const struct tegra_devfreq_device_config *config;
158 void __iomem *regs;
159
160 /* Average event count sampled in the last interrupt */
161 u32 avg_count;
162
163 /*
164 * Extra frequency to increase the target by due to consecutive
165 * watermark breaches.
166 */
167 unsigned long boost_freq;
168
169 /* Optimal frequency calculated from the stats for this device */
170 unsigned long target_freq;
171};
172
173struct tegra_devfreq_soc_data {
174 const struct tegra_devfreq_device_config *configs;
175 /* Weight value for count measurements */
176 unsigned int count_weight;
177};
178
179struct tegra_devfreq {
180 struct devfreq *devfreq;
181
182 struct reset_control *reset;
183 struct clk *clock;
184 void __iomem *regs;
185
186 struct clk *emc_clock;
187 unsigned long max_freq;
188 unsigned long cur_freq;
189 struct notifier_block clk_rate_change_nb;
190
191 struct delayed_work cpufreq_update_work;
192 struct notifier_block cpu_rate_change_nb;
193
194 struct tegra_devfreq_device devices[2];
195
196 unsigned int irq;
197
198 bool started;
199
200 const struct tegra_devfreq_soc_data *soc;
201};
202
203struct tegra_actmon_emc_ratio {
204 unsigned long cpu_freq;
205 unsigned long emc_freq;
206};
207
208static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
209 { 1400000, KHZ_MAX },
210 { 1200000, 750000 },
211 { 1100000, 600000 },
212 { 1000000, 500000 },
213 { 800000, 375000 },
214 { 500000, 200000 },
215 { 250000, 100000 },
216};
217
218static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
219{
220 return readl_relaxed(tegra->regs + offset);
221}
222
223static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
224{
225 writel_relaxed(val, tegra->regs + offset);
226}
227
228static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
229{
230 return readl_relaxed(dev->regs + offset);
231}
232
233static void device_writel(struct tegra_devfreq_device *dev, u32 val,
234 u32 offset)
235{
236 writel_relaxed(val, dev->regs + offset);
237}
238
239static unsigned long do_percent(unsigned long long val, unsigned int pct)
240{
241 val = val * pct;
242 do_div(val, 100);
243
244 /*
245 * High freq + high boosting percent + large polling interval are
246 * resulting in integer overflow when watermarks are calculated.
247 */
248 return min_t(u64, val, U32_MAX);
249}
250
251static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
252 struct tegra_devfreq_device *dev)
253{
254 u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
255 u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms;
256 u32 avg;
257
258 avg = min(dev->avg_count, U32_MAX - band);
259 device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
260
261 avg = max(dev->avg_count, band);
262 device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
263}
264
265static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
266 struct tegra_devfreq_device *dev)
267{
268 u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
269
270 device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
271 ACTMON_DEV_UPPER_WMARK);
272
273 device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
274 ACTMON_DEV_LOWER_WMARK);
275}
276
277static void actmon_isr_device(struct tegra_devfreq *tegra,
278 struct tegra_devfreq_device *dev)
279{
280 u32 intr_status, dev_ctrl;
281
282 dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
283 tegra_devfreq_update_avg_wmark(tegra, dev);
284
285 intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
286 dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
287
288 if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
289 /*
290 * new_boost = min(old_boost * up_coef + step, max_freq)
291 */
292 dev->boost_freq = do_percent(dev->boost_freq,
293 dev->config->boost_up_coeff);
294 dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
295
296 dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
297
298 if (dev->boost_freq >= tegra->max_freq) {
299 dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
300 dev->boost_freq = tegra->max_freq;
301 }
302 } else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
303 /*
304 * new_boost = old_boost * down_coef
305 * or 0 if (old_boost * down_coef < step / 2)
306 */
307 dev->boost_freq = do_percent(dev->boost_freq,
308 dev->config->boost_down_coeff);
309
310 dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
311
312 if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) {
313 dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
314 dev->boost_freq = 0;
315 }
316 }
317
318 device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
319
320 device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
321}
322
323static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
324 unsigned long cpu_freq)
325{
326 unsigned int i;
327 const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
328
329 for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++)
330 if (cpu_freq >= ratio->cpu_freq)
331 return min(ratio->emc_freq, tegra->max_freq);
332
333 return 0;
334}
335
336static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra,
337 struct tegra_devfreq_device *dev)
338{
339 unsigned int avg_sustain_coef;
340 unsigned long target_freq;
341
342 target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms;
343 avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
344 target_freq = do_percent(target_freq, avg_sustain_coef);
345
346 return target_freq;
347}
348
349static void actmon_update_target(struct tegra_devfreq *tegra,
350 struct tegra_devfreq_device *dev)
351{
352 unsigned long cpu_freq = 0;
353 unsigned long static_cpu_emc_freq = 0;
354
355 dev->target_freq = actmon_device_target_freq(tegra, dev);
356
357 if (dev->config->avg_dependency_threshold &&
358 dev->config->avg_dependency_threshold <= dev->target_freq) {
359 cpu_freq = cpufreq_quick_get(0);
360 static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
361
362 dev->target_freq += dev->boost_freq;
363 dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
364 } else {
365 dev->target_freq += dev->boost_freq;
366 }
367}
368
369static irqreturn_t actmon_thread_isr(int irq, void *data)
370{
371 struct tegra_devfreq *tegra = data;
372 bool handled = false;
373 unsigned int i;
374 u32 val;
375
376 mutex_lock(&tegra->devfreq->lock);
377
378 val = actmon_readl(tegra, ACTMON_GLB_STATUS);
379 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
380 if (val & tegra->devices[i].config->irq_mask) {
381 actmon_isr_device(tegra, tegra->devices + i);
382 handled = true;
383 }
384 }
385
386 if (handled)
387 update_devfreq(tegra->devfreq);
388
389 mutex_unlock(&tegra->devfreq->lock);
390
391 return handled ? IRQ_HANDLED : IRQ_NONE;
392}
393
394static int tegra_actmon_clk_notify_cb(struct notifier_block *nb,
395 unsigned long action, void *ptr)
396{
397 struct clk_notifier_data *data = ptr;
398 struct tegra_devfreq *tegra;
399 struct tegra_devfreq_device *dev;
400 unsigned int i;
401
402 if (action != POST_RATE_CHANGE)
403 return NOTIFY_OK;
404
405 tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb);
406
407 tegra->cur_freq = data->new_rate / KHZ;
408
409 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
410 dev = &tegra->devices[i];
411
412 tegra_devfreq_update_wmark(tegra, dev);
413 }
414
415 return NOTIFY_OK;
416}
417
418static void tegra_actmon_delayed_update(struct work_struct *work)
419{
420 struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq,
421 cpufreq_update_work.work);
422
423 mutex_lock(&tegra->devfreq->lock);
424 update_devfreq(tegra->devfreq);
425 mutex_unlock(&tegra->devfreq->lock);
426}
427
428static unsigned long
429tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra,
430 unsigned int cpu_freq)
431{
432 struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU];
433 unsigned long static_cpu_emc_freq, dev_freq;
434
435 dev_freq = actmon_device_target_freq(tegra, actmon_dev);
436
437 /* check whether CPU's freq is taken into account at all */
438 if (dev_freq < actmon_dev->config->avg_dependency_threshold)
439 return 0;
440
441 static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
442
443 if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq)
444 return 0;
445
446 return static_cpu_emc_freq;
447}
448
449static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb,
450 unsigned long action, void *ptr)
451{
452 struct cpufreq_freqs *freqs = ptr;
453 struct tegra_devfreq *tegra;
454 unsigned long old, new, delay;
455
456 if (action != CPUFREQ_POSTCHANGE)
457 return NOTIFY_OK;
458
459 tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb);
460
461 /*
462 * Quickly check whether CPU frequency should be taken into account
463 * at all, without blocking CPUFreq's core.
464 */
465 if (mutex_trylock(&tegra->devfreq->lock)) {
466 old = tegra_actmon_cpufreq_contribution(tegra, freqs->old);
467 new = tegra_actmon_cpufreq_contribution(tegra, freqs->new);
468 mutex_unlock(&tegra->devfreq->lock);
469
470 /*
471 * If CPU's frequency shouldn't be taken into account at
472 * the moment, then there is no need to update the devfreq's
473 * state because ISR will re-check CPU's frequency on the
474 * next interrupt.
475 */
476 if (old == new)
477 return NOTIFY_OK;
478 }
479
480 /*
481 * CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order
482 * to allow asynchronous notifications. This means we can't block
483 * here for too long, otherwise CPUFreq's core will complain with a
484 * warning splat.
485 */
486 delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD);
487 schedule_delayed_work(&tegra->cpufreq_update_work, delay);
488
489 return NOTIFY_OK;
490}
491
492static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
493 struct tegra_devfreq_device *dev)
494{
495 u32 val = 0;
496
497 /* reset boosting on governor's restart */
498 dev->boost_freq = 0;
499
500 dev->target_freq = tegra->cur_freq;
501
502 dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
503 device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
504
505 tegra_devfreq_update_avg_wmark(tegra, dev);
506 tegra_devfreq_update_wmark(tegra, dev);
507
508 device_writel(dev, tegra->soc->count_weight, ACTMON_DEV_COUNT_WEIGHT);
509 device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
510
511 val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
512 val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
513 << ACTMON_DEV_CTRL_K_VAL_SHIFT;
514 val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
515 << ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
516 val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
517 << ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
518 val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
519 val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
520 val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
521 val |= ACTMON_DEV_CTRL_ENB;
522
523 device_writel(dev, val, ACTMON_DEV_CTRL);
524}
525
526static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra)
527{
528 struct tegra_devfreq_device *dev = tegra->devices;
529 unsigned int i;
530
531 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) {
532 device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL);
533 device_writel(dev, ACTMON_INTR_STATUS_CLEAR,
534 ACTMON_DEV_INTR_STATUS);
535 }
536}
537
538static int tegra_actmon_resume(struct tegra_devfreq *tegra)
539{
540 unsigned int i;
541 int err;
542
543 if (!tegra->devfreq->profile->polling_ms || !tegra->started)
544 return 0;
545
546 actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1,
547 ACTMON_GLB_PERIOD_CTRL);
548
549 /*
550 * CLK notifications are needed in order to reconfigure the upper
551 * consecutive watermark in accordance to the actual clock rate
552 * to avoid unnecessary upper interrupts.
553 */
554 err = clk_notifier_register(tegra->emc_clock,
555 &tegra->clk_rate_change_nb);
556 if (err) {
557 dev_err(tegra->devfreq->dev.parent,
558 "Failed to register rate change notifier\n");
559 return err;
560 }
561
562 tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
563
564 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
565 tegra_actmon_configure_device(tegra, &tegra->devices[i]);
566
567 /*
568 * We are estimating CPU's memory bandwidth requirement based on
569 * amount of memory accesses and system's load, judging by CPU's
570 * frequency. We also don't want to receive events about CPU's
571 * frequency transaction when governor is stopped, hence notifier
572 * is registered dynamically.
573 */
574 err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb,
575 CPUFREQ_TRANSITION_NOTIFIER);
576 if (err) {
577 dev_err(tegra->devfreq->dev.parent,
578 "Failed to register rate change notifier: %d\n", err);
579 goto err_stop;
580 }
581
582 enable_irq(tegra->irq);
583
584 return 0;
585
586err_stop:
587 tegra_actmon_stop_devices(tegra);
588
589 clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
590
591 return err;
592}
593
594static int tegra_actmon_start(struct tegra_devfreq *tegra)
595{
596 int ret = 0;
597
598 if (!tegra->started) {
599 tegra->started = true;
600
601 ret = tegra_actmon_resume(tegra);
602 if (ret)
603 tegra->started = false;
604 }
605
606 return ret;
607}
608
609static void tegra_actmon_pause(struct tegra_devfreq *tegra)
610{
611 if (!tegra->devfreq->profile->polling_ms || !tegra->started)
612 return;
613
614 disable_irq(tegra->irq);
615
616 cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb,
617 CPUFREQ_TRANSITION_NOTIFIER);
618
619 cancel_delayed_work_sync(&tegra->cpufreq_update_work);
620
621 tegra_actmon_stop_devices(tegra);
622
623 clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
624}
625
626static void tegra_actmon_stop(struct tegra_devfreq *tegra)
627{
628 tegra_actmon_pause(tegra);
629 tegra->started = false;
630}
631
632static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
633 u32 flags)
634{
635 struct dev_pm_opp *opp;
636 int ret;
637
638 opp = devfreq_recommended_opp(dev, freq, flags);
639 if (IS_ERR(opp)) {
640 dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
641 return PTR_ERR(opp);
642 }
643
644 ret = dev_pm_opp_set_opp(dev, opp);
645 dev_pm_opp_put(opp);
646
647 return ret;
648}
649
650static int tegra_devfreq_get_dev_status(struct device *dev,
651 struct devfreq_dev_status *stat)
652{
653 struct tegra_devfreq *tegra = dev_get_drvdata(dev);
654 struct tegra_devfreq_device *actmon_dev;
655 unsigned long cur_freq;
656
657 cur_freq = READ_ONCE(tegra->cur_freq);
658
659 /* To be used by the tegra governor */
660 stat->private_data = tegra;
661
662 /* The below are to be used by the other governors */
663 stat->current_frequency = cur_freq * KHZ;
664
665 actmon_dev = &tegra->devices[MCALL];
666
667 /* Number of cycles spent on memory access */
668 stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
669
670 /* The bus can be considered to be saturated way before 100% */
671 stat->busy_time *= 100 / BUS_SATURATION_RATIO;
672
673 /* Number of cycles in a sampling period */
674 stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq;
675
676 stat->busy_time = min(stat->busy_time, stat->total_time);
677
678 return 0;
679}
680
681static struct devfreq_dev_profile tegra_devfreq_profile = {
682 .polling_ms = ACTMON_SAMPLING_PERIOD,
683 .target = tegra_devfreq_target,
684 .get_dev_status = tegra_devfreq_get_dev_status,
685 .is_cooling_device = true,
686};
687
688static int tegra_governor_get_target(struct devfreq *devfreq,
689 unsigned long *freq)
690{
691 struct devfreq_dev_status *stat;
692 struct tegra_devfreq *tegra;
693 struct tegra_devfreq_device *dev;
694 unsigned long target_freq = 0;
695 unsigned int i;
696 int err;
697
698 err = devfreq_update_stats(devfreq);
699 if (err)
700 return err;
701
702 stat = &devfreq->last_status;
703
704 tegra = stat->private_data;
705
706 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
707 dev = &tegra->devices[i];
708
709 actmon_update_target(tegra, dev);
710
711 target_freq = max(target_freq, dev->target_freq);
712 }
713
714 /*
715 * tegra-devfreq driver operates with KHz units, while OPP table
716 * entries use Hz units. Hence we need to convert the units for the
717 * devfreq core.
718 */
719 *freq = target_freq * KHZ;
720
721 return 0;
722}
723
724static int tegra_governor_event_handler(struct devfreq *devfreq,
725 unsigned int event, void *data)
726{
727 struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
728 unsigned int *new_delay = data;
729 int ret = 0;
730
731 /*
732 * Couple devfreq-device with the governor early because it is
733 * needed at the moment of governor's start (used by ISR).
734 */
735 tegra->devfreq = devfreq;
736
737 switch (event) {
738 case DEVFREQ_GOV_START:
739 devfreq_monitor_start(devfreq);
740 ret = tegra_actmon_start(tegra);
741 break;
742
743 case DEVFREQ_GOV_STOP:
744 tegra_actmon_stop(tegra);
745 devfreq_monitor_stop(devfreq);
746 break;
747
748 case DEVFREQ_GOV_UPDATE_INTERVAL:
749 /*
750 * ACTMON hardware supports up to 256 milliseconds for the
751 * sampling period.
752 */
753 if (*new_delay > 256) {
754 ret = -EINVAL;
755 break;
756 }
757
758 tegra_actmon_pause(tegra);
759 devfreq_update_interval(devfreq, new_delay);
760 ret = tegra_actmon_resume(tegra);
761 break;
762
763 case DEVFREQ_GOV_SUSPEND:
764 tegra_actmon_stop(tegra);
765 devfreq_monitor_suspend(devfreq);
766 break;
767
768 case DEVFREQ_GOV_RESUME:
769 devfreq_monitor_resume(devfreq);
770 ret = tegra_actmon_start(tegra);
771 break;
772 }
773
774 return ret;
775}
776
777static struct devfreq_governor tegra_devfreq_governor = {
778 .name = "tegra_actmon",
779 .attrs = DEVFREQ_GOV_ATTR_POLLING_INTERVAL,
780 .flags = DEVFREQ_GOV_FLAG_IMMUTABLE
781 | DEVFREQ_GOV_FLAG_IRQ_DRIVEN,
782 .get_target_freq = tegra_governor_get_target,
783 .event_handler = tegra_governor_event_handler,
784};
785
786static void devm_tegra_devfreq_deinit_hw(void *data)
787{
788 struct tegra_devfreq *tegra = data;
789
790 reset_control_reset(tegra->reset);
791 clk_disable_unprepare(tegra->clock);
792}
793
794static int devm_tegra_devfreq_init_hw(struct device *dev,
795 struct tegra_devfreq *tegra)
796{
797 int err;
798
799 err = clk_prepare_enable(tegra->clock);
800 if (err) {
801 dev_err(dev, "Failed to prepare and enable ACTMON clock\n");
802 return err;
803 }
804
805 err = devm_add_action_or_reset(dev, devm_tegra_devfreq_deinit_hw,
806 tegra);
807 if (err)
808 return err;
809
810 err = reset_control_reset(tegra->reset);
811 if (err) {
812 dev_err(dev, "Failed to reset hardware: %d\n", err);
813 return err;
814 }
815
816 return err;
817}
818
819static int tegra_devfreq_config_clks_nop(struct device *dev,
820 struct opp_table *opp_table,
821 struct dev_pm_opp *opp, void *data,
822 bool scaling_down)
823{
824 /* We want to skip clk configuration via dev_pm_opp_set_opp() */
825 return 0;
826}
827
828static int tegra_devfreq_probe(struct platform_device *pdev)
829{
830 u32 hw_version = BIT(tegra_sku_info.soc_speedo_id);
831 struct tegra_devfreq_device *dev;
832 struct tegra_devfreq *tegra;
833 struct devfreq *devfreq;
834 unsigned int i;
835 long rate;
836 int err;
837 const char *clk_names[] = { "actmon", NULL };
838 struct dev_pm_opp_config config = {
839 .supported_hw = &hw_version,
840 .supported_hw_count = 1,
841 .clk_names = clk_names,
842 .config_clks = tegra_devfreq_config_clks_nop,
843 };
844
845 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
846 if (!tegra)
847 return -ENOMEM;
848
849 tegra->soc = of_device_get_match_data(&pdev->dev);
850
851 tegra->regs = devm_platform_ioremap_resource(pdev, 0);
852 if (IS_ERR(tegra->regs))
853 return PTR_ERR(tegra->regs);
854
855 tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
856 if (IS_ERR(tegra->reset)) {
857 dev_err(&pdev->dev, "Failed to get reset\n");
858 return PTR_ERR(tegra->reset);
859 }
860
861 tegra->clock = devm_clk_get(&pdev->dev, "actmon");
862 if (IS_ERR(tegra->clock)) {
863 dev_err(&pdev->dev, "Failed to get actmon clock\n");
864 return PTR_ERR(tegra->clock);
865 }
866
867 tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
868 if (IS_ERR(tegra->emc_clock))
869 return dev_err_probe(&pdev->dev, PTR_ERR(tegra->emc_clock),
870 "Failed to get emc clock\n");
871
872 err = platform_get_irq(pdev, 0);
873 if (err < 0)
874 return err;
875
876 tegra->irq = err;
877
878 irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN);
879
880 err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
881 actmon_thread_isr, IRQF_ONESHOT,
882 "tegra-devfreq", tegra);
883 if (err) {
884 dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
885 return err;
886 }
887
888 err = devm_pm_opp_set_config(&pdev->dev, &config);
889 if (err) {
890 dev_err(&pdev->dev, "Failed to set OPP config: %d\n", err);
891 return err;
892 }
893
894 err = devm_pm_opp_of_add_table_indexed(&pdev->dev, 0);
895 if (err) {
896 dev_err(&pdev->dev, "Failed to add OPP table: %d\n", err);
897 return err;
898 }
899
900 err = devm_tegra_devfreq_init_hw(&pdev->dev, tegra);
901 if (err)
902 return err;
903
904 rate = clk_round_rate(tegra->emc_clock, ULONG_MAX);
905 if (rate <= 0) {
906 dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate);
907 return rate ?: -EINVAL;
908 }
909
910 tegra->max_freq = rate / KHZ;
911
912 for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
913 dev = tegra->devices + i;
914 dev->config = tegra->soc->configs + i;
915 dev->regs = tegra->regs + dev->config->offset;
916 }
917
918 platform_set_drvdata(pdev, tegra);
919
920 tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb;
921 tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb;
922
923 INIT_DELAYED_WORK(&tegra->cpufreq_update_work,
924 tegra_actmon_delayed_update);
925
926 err = devm_devfreq_add_governor(&pdev->dev, &tegra_devfreq_governor);
927 if (err) {
928 dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
929 return err;
930 }
931
932 tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
933
934 devfreq = devm_devfreq_add_device(&pdev->dev, &tegra_devfreq_profile,
935 "tegra_actmon", NULL);
936 if (IS_ERR(devfreq)) {
937 dev_err(&pdev->dev, "Failed to add device: %pe\n", devfreq);
938 return PTR_ERR(devfreq);
939 }
940
941 return 0;
942}
943
944static const struct tegra_devfreq_soc_data tegra124_soc = {
945 .configs = tegra124_device_configs,
946
947 /*
948 * Activity counter is incremented every 256 memory transactions,
949 * and each transaction takes 4 EMC clocks.
950 */
951 .count_weight = 4 * 256,
952};
953
954static const struct tegra_devfreq_soc_data tegra30_soc = {
955 .configs = tegra30_device_configs,
956 .count_weight = 2 * 256,
957};
958
959static const struct of_device_id tegra_devfreq_of_match[] = {
960 { .compatible = "nvidia,tegra30-actmon", .data = &tegra30_soc, },
961 { .compatible = "nvidia,tegra124-actmon", .data = &tegra124_soc, },
962 { },
963};
964
965MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
966
967static struct platform_driver tegra_devfreq_driver = {
968 .probe = tegra_devfreq_probe,
969 .driver = {
970 .name = "tegra-devfreq",
971 .of_match_table = tegra_devfreq_of_match,
972 },
973};
974module_platform_driver(tegra_devfreq_driver);
975
976MODULE_LICENSE("GPL v2");
977MODULE_DESCRIPTION("Tegra devfreq driver");
978MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");