Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13#include <linux/arch_topology.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/delay.h>
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/irq_work.h>
20#include <linux/kthread.h>
21#include <linux/time.h>
22#include <linux/vmalloc.h>
23#include <uapi/linux/sched/types.h>
24
25#include <linux/unaligned.h>
26
27#include <acpi/cppc_acpi.h>
28
29static struct cpufreq_driver cppc_cpufreq_driver;
30
31#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
32static enum {
33 FIE_UNSET = -1,
34 FIE_ENABLED,
35 FIE_DISABLED
36} fie_disabled = FIE_UNSET;
37
38module_param(fie_disabled, int, 0444);
39MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
40
41/* Frequency invariance support */
42struct cppc_freq_invariance {
43 int cpu;
44 struct irq_work irq_work;
45 struct kthread_work work;
46 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
47 struct cppc_cpudata *cpu_data;
48};
49
50static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
51static struct kthread_worker *kworker_fie;
52
53static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
54 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
55
56/**
57 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
58 * @work: The work item.
59 *
60 * The CPPC driver register itself with the topology core to provide its own
61 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
62 * gets called by the scheduler on every tick.
63 *
64 * Note that the arch specific counters have higher priority than CPPC counters,
65 * if available, though the CPPC driver doesn't need to have any special
66 * handling for that.
67 *
68 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
69 * reach here from hard-irq context), which then schedules a normal work item
70 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
71 * based on the counter updates since the last tick.
72 */
73static void cppc_scale_freq_workfn(struct kthread_work *work)
74{
75 struct cppc_freq_invariance *cppc_fi;
76 struct cppc_perf_fb_ctrs fb_ctrs = {0};
77 struct cppc_cpudata *cpu_data;
78 unsigned long local_freq_scale;
79 u64 perf;
80
81 cppc_fi = container_of(work, struct cppc_freq_invariance, work);
82 cpu_data = cppc_fi->cpu_data;
83
84 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
85 pr_warn("%s: failed to read perf counters\n", __func__);
86 return;
87 }
88
89 perf = cppc_perf_from_fbctrs(&cppc_fi->prev_perf_fb_ctrs, &fb_ctrs);
90 if (!perf)
91 return;
92
93 cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
94
95 perf <<= SCHED_CAPACITY_SHIFT;
96 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
97
98 /* This can happen due to counter's overflow */
99 if (unlikely(local_freq_scale > 1024))
100 local_freq_scale = 1024;
101
102 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
103}
104
105static void cppc_irq_work(struct irq_work *irq_work)
106{
107 struct cppc_freq_invariance *cppc_fi;
108
109 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
110 kthread_queue_work(kworker_fie, &cppc_fi->work);
111}
112
113static void cppc_scale_freq_tick(void)
114{
115 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
116
117 /*
118 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
119 * context.
120 */
121 irq_work_queue(&cppc_fi->irq_work);
122}
123
124static struct scale_freq_data cppc_sftd = {
125 .source = SCALE_FREQ_SOURCE_CPPC,
126 .set_freq_scale = cppc_scale_freq_tick,
127};
128
129static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
130{
131 struct cppc_freq_invariance *cppc_fi;
132 int cpu, ret;
133
134 if (fie_disabled)
135 return;
136
137 for_each_cpu(cpu, policy->cpus) {
138 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
139 cppc_fi->cpu = cpu;
140 cppc_fi->cpu_data = policy->driver_data;
141 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
142 init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
143
144 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
145
146 /*
147 * Don't abort as the CPU was offline while the driver was
148 * getting registered.
149 */
150 if (ret && cpu_online(cpu)) {
151 pr_debug("%s: failed to read perf counters for cpu:%d: %d\n",
152 __func__, cpu, ret);
153 return;
154 }
155 }
156
157 /* Register for freq-invariance */
158 topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
159}
160
161/*
162 * We free all the resources on policy's removal and not on CPU removal as the
163 * irq-work are per-cpu and the hotplug core takes care of flushing the pending
164 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
165 * fires on another CPU after the concerned CPU is removed, it won't harm.
166 *
167 * We just need to make sure to remove them all on policy->exit().
168 */
169static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
170{
171 struct cppc_freq_invariance *cppc_fi;
172 int cpu;
173
174 if (fie_disabled)
175 return;
176
177 /* policy->cpus will be empty here, use related_cpus instead */
178 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
179
180 for_each_cpu(cpu, policy->related_cpus) {
181 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
182 irq_work_sync(&cppc_fi->irq_work);
183 kthread_cancel_work_sync(&cppc_fi->work);
184 }
185}
186
187static void __init cppc_freq_invariance_init(void)
188{
189 struct sched_attr attr = {
190 .size = sizeof(struct sched_attr),
191 .sched_policy = SCHED_DEADLINE,
192 .sched_nice = 0,
193 .sched_priority = 0,
194 /*
195 * Fake (unused) bandwidth; workaround to "fix"
196 * priority inheritance.
197 */
198 .sched_runtime = NSEC_PER_MSEC,
199 .sched_deadline = 10 * NSEC_PER_MSEC,
200 .sched_period = 10 * NSEC_PER_MSEC,
201 };
202 int ret;
203
204 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
205 fie_disabled = FIE_ENABLED;
206 if (cppc_perf_ctrs_in_pcc()) {
207 pr_info("FIE not enabled on systems with registers in PCC\n");
208 fie_disabled = FIE_DISABLED;
209 }
210 }
211
212 if (fie_disabled)
213 return;
214
215 kworker_fie = kthread_run_worker(0, "cppc_fie");
216 if (IS_ERR(kworker_fie)) {
217 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
218 PTR_ERR(kworker_fie));
219 fie_disabled = FIE_DISABLED;
220 return;
221 }
222
223 ret = sched_setattr_nocheck(kworker_fie->task, &attr);
224 if (ret) {
225 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
226 ret);
227 kthread_destroy_worker(kworker_fie);
228 fie_disabled = FIE_DISABLED;
229 }
230}
231
232static void cppc_freq_invariance_exit(void)
233{
234 if (fie_disabled)
235 return;
236
237 kthread_destroy_worker(kworker_fie);
238}
239
240#else
241static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
242{
243}
244
245static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
246{
247}
248
249static inline void cppc_freq_invariance_init(void)
250{
251}
252
253static inline void cppc_freq_invariance_exit(void)
254{
255}
256#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
257
258static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
259 unsigned int target_freq,
260 unsigned int relation)
261{
262 struct cppc_cpudata *cpu_data = policy->driver_data;
263 unsigned int cpu = policy->cpu;
264 struct cpufreq_freqs freqs;
265 int ret = 0;
266
267 cpu_data->perf_ctrls.desired_perf =
268 cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
269 freqs.old = policy->cur;
270 freqs.new = target_freq;
271
272 cpufreq_freq_transition_begin(policy, &freqs);
273 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
274 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
275
276 if (ret)
277 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
278 cpu, ret);
279
280 return ret;
281}
282
283static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
284 unsigned int target_freq)
285{
286 struct cppc_cpudata *cpu_data = policy->driver_data;
287 unsigned int cpu = policy->cpu;
288 u32 desired_perf;
289 int ret;
290
291 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
292 cpu_data->perf_ctrls.desired_perf = desired_perf;
293 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
294
295 if (ret) {
296 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
297 cpu, ret);
298 return 0;
299 }
300
301 return target_freq;
302}
303
304static int cppc_verify_policy(struct cpufreq_policy_data *policy)
305{
306 cpufreq_verify_within_cpu_limits(policy);
307 return 0;
308}
309
310static unsigned int __cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
311{
312 int transition_latency_ns = cppc_get_transition_latency(cpu);
313
314 if (transition_latency_ns < 0)
315 return CPUFREQ_DEFAULT_TRANSITION_LATENCY_NS / NSEC_PER_USEC;
316
317 return transition_latency_ns / NSEC_PER_USEC;
318}
319
320/*
321 * The PCC subspace describes the rate at which platform can accept commands
322 * on the shared PCC channel (including READs which do not count towards freq
323 * transition requests), so ideally we need to use the PCC values as a fallback
324 * if we don't have a platform specific transition_delay_us
325 */
326#ifdef CONFIG_ARM64
327#include <asm/cputype.h>
328
329static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
330{
331 unsigned long implementor = read_cpuid_implementor();
332 unsigned long part_num = read_cpuid_part_number();
333
334 switch (implementor) {
335 case ARM_CPU_IMP_QCOM:
336 switch (part_num) {
337 case QCOM_CPU_PART_FALKOR_V1:
338 case QCOM_CPU_PART_FALKOR:
339 return 10000;
340 }
341 }
342 return __cppc_cpufreq_get_transition_delay_us(cpu);
343}
344#else
345static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
346{
347 return __cppc_cpufreq_get_transition_delay_us(cpu);
348}
349#endif
350
351#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
352
353static DEFINE_PER_CPU(unsigned int, efficiency_class);
354
355/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
356#define CPPC_EM_CAP_STEP (20)
357/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
358#define CPPC_EM_COST_STEP (1)
359/* Add a cost gap correspnding to the energy of 4 CPUs. */
360#define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
361 / CPPC_EM_CAP_STEP)
362
363static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
364{
365 struct cppc_perf_caps *perf_caps;
366 unsigned int min_cap, max_cap;
367 struct cppc_cpudata *cpu_data;
368 int cpu = policy->cpu;
369
370 cpu_data = policy->driver_data;
371 perf_caps = &cpu_data->perf_caps;
372 max_cap = arch_scale_cpu_capacity(cpu);
373 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
374 perf_caps->highest_perf);
375 if ((min_cap == 0) || (max_cap < min_cap))
376 return 0;
377 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
378}
379
380/*
381 * The cost is defined as:
382 * cost = power * max_frequency / frequency
383 */
384static inline unsigned long compute_cost(int cpu, int step)
385{
386 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
387 step * CPPC_EM_COST_STEP;
388}
389
390static int cppc_get_cpu_power(struct device *cpu_dev,
391 unsigned long *power, unsigned long *KHz)
392{
393 unsigned long perf_step, perf_prev, perf, perf_check;
394 unsigned int min_step, max_step, step, step_check;
395 unsigned long prev_freq = *KHz;
396 unsigned int min_cap, max_cap;
397 struct cpufreq_policy *policy;
398
399 struct cppc_perf_caps *perf_caps;
400 struct cppc_cpudata *cpu_data;
401
402 policy = cpufreq_cpu_get_raw(cpu_dev->id);
403 if (!policy)
404 return -EINVAL;
405
406 cpu_data = policy->driver_data;
407 perf_caps = &cpu_data->perf_caps;
408 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
409 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
410 perf_caps->highest_perf);
411 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
412 max_cap);
413 min_step = min_cap / CPPC_EM_CAP_STEP;
414 max_step = max_cap / CPPC_EM_CAP_STEP;
415
416 perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
417 step = perf_prev / perf_step;
418
419 if (step > max_step)
420 return -EINVAL;
421
422 if (min_step == max_step) {
423 step = max_step;
424 perf = perf_caps->highest_perf;
425 } else if (step < min_step) {
426 step = min_step;
427 perf = perf_caps->lowest_perf;
428 } else {
429 step++;
430 if (step == max_step)
431 perf = perf_caps->highest_perf;
432 else
433 perf = step * perf_step;
434 }
435
436 *KHz = cppc_perf_to_khz(perf_caps, perf);
437 perf_check = cppc_khz_to_perf(perf_caps, *KHz);
438 step_check = perf_check / perf_step;
439
440 /*
441 * To avoid bad integer approximation, check that new frequency value
442 * increased and that the new frequency will be converted to the
443 * desired step value.
444 */
445 while ((*KHz == prev_freq) || (step_check != step)) {
446 perf++;
447 *KHz = cppc_perf_to_khz(perf_caps, perf);
448 perf_check = cppc_khz_to_perf(perf_caps, *KHz);
449 step_check = perf_check / perf_step;
450 }
451
452 /*
453 * With an artificial EM, only the cost value is used. Still the power
454 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
455 * more sense to the artificial performance states.
456 */
457 *power = compute_cost(cpu_dev->id, step);
458
459 return 0;
460}
461
462static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
463 unsigned long *cost)
464{
465 unsigned long perf_step, perf_prev;
466 struct cppc_perf_caps *perf_caps;
467 struct cpufreq_policy *policy;
468 struct cppc_cpudata *cpu_data;
469 unsigned int max_cap;
470 int step;
471
472 policy = cpufreq_cpu_get_raw(cpu_dev->id);
473 if (!policy)
474 return -EINVAL;
475
476 cpu_data = policy->driver_data;
477 perf_caps = &cpu_data->perf_caps;
478 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
479
480 perf_prev = cppc_khz_to_perf(perf_caps, KHz);
481 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
482 step = perf_prev / perf_step;
483
484 *cost = compute_cost(cpu_dev->id, step);
485
486 return 0;
487}
488
489static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
490{
491 struct cppc_cpudata *cpu_data;
492 struct em_data_callback em_cb =
493 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
494
495 cpu_data = policy->driver_data;
496 em_dev_register_perf_domain(get_cpu_device(policy->cpu),
497 get_perf_level_count(policy), &em_cb,
498 cpu_data->shared_cpu_map, 0);
499}
500
501static void populate_efficiency_class(void)
502{
503 struct acpi_madt_generic_interrupt *gicc;
504 DECLARE_BITMAP(used_classes, 256) = {};
505 int class, cpu, index;
506
507 for_each_possible_cpu(cpu) {
508 gicc = acpi_cpu_get_madt_gicc(cpu);
509 class = gicc->efficiency_class;
510 bitmap_set(used_classes, class, 1);
511 }
512
513 if (bitmap_weight(used_classes, 256) <= 1) {
514 pr_debug("Efficiency classes are all equal (=%d). "
515 "No EM registered", class);
516 return;
517 }
518
519 /*
520 * Squeeze efficiency class values on [0:#efficiency_class-1].
521 * Values are per spec in [0:255].
522 */
523 index = 0;
524 for_each_set_bit(class, used_classes, 256) {
525 for_each_possible_cpu(cpu) {
526 gicc = acpi_cpu_get_madt_gicc(cpu);
527 if (gicc->efficiency_class == class)
528 per_cpu(efficiency_class, cpu) = index;
529 }
530 index++;
531 }
532 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
533}
534
535#else
536static void populate_efficiency_class(void)
537{
538}
539#endif
540
541static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
542{
543 struct cppc_cpudata *cpu_data;
544 int ret;
545
546 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
547 if (!cpu_data)
548 goto out;
549
550 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
551 goto free_cpu;
552
553 ret = acpi_get_psd_map(cpu, cpu_data);
554 if (ret) {
555 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
556 goto free_mask;
557 }
558
559 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
560 if (ret) {
561 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
562 goto free_mask;
563 }
564
565 return cpu_data;
566
567free_mask:
568 free_cpumask_var(cpu_data->shared_cpu_map);
569free_cpu:
570 kfree(cpu_data);
571out:
572 return NULL;
573}
574
575static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
576{
577 struct cppc_cpudata *cpu_data = policy->driver_data;
578
579 free_cpumask_var(cpu_data->shared_cpu_map);
580 kfree(cpu_data);
581 policy->driver_data = NULL;
582}
583
584static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
585{
586 unsigned int cpu = policy->cpu;
587 struct cppc_cpudata *cpu_data;
588 struct cppc_perf_caps *caps;
589 int ret;
590
591 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
592 if (!cpu_data) {
593 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
594 return -ENODEV;
595 }
596 caps = &cpu_data->perf_caps;
597 policy->driver_data = cpu_data;
598
599 /*
600 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
601 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
602 */
603 policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
604 policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ?
605 caps->highest_perf : caps->nominal_perf);
606
607 /*
608 * Set cpuinfo.min_freq to Lowest to make the full range of performance
609 * available if userspace wants to use any perf between lowest & lowest
610 * nonlinear perf
611 */
612 policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
613 policy->cpuinfo.max_freq = policy->max;
614
615 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
616 policy->shared_type = cpu_data->shared_type;
617
618 switch (policy->shared_type) {
619 case CPUFREQ_SHARED_TYPE_HW:
620 case CPUFREQ_SHARED_TYPE_NONE:
621 /* Nothing to be done - we'll have a policy for each CPU */
622 break;
623 case CPUFREQ_SHARED_TYPE_ANY:
624 /*
625 * All CPUs in the domain will share a policy and all cpufreq
626 * operations will use a single cppc_cpudata structure stored
627 * in policy->driver_data.
628 */
629 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
630 break;
631 default:
632 pr_debug("Unsupported CPU co-ord type: %d\n",
633 policy->shared_type);
634 ret = -EFAULT;
635 goto out;
636 }
637
638 policy->fast_switch_possible = cppc_allow_fast_switch();
639 policy->dvfs_possible_from_any_cpu = true;
640
641 /*
642 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
643 * is supported.
644 */
645 if (caps->highest_perf > caps->nominal_perf)
646 policy->boost_supported = true;
647
648 /* Set policy->cur to max now. The governors will adjust later. */
649 policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
650 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
651
652 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
653 if (ret) {
654 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
655 caps->highest_perf, cpu, ret);
656 goto out;
657 }
658
659 cppc_cpufreq_cpu_fie_init(policy);
660 return 0;
661
662out:
663 cppc_cpufreq_put_cpu_data(policy);
664 return ret;
665}
666
667static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
668{
669 struct cppc_cpudata *cpu_data = policy->driver_data;
670 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
671 unsigned int cpu = policy->cpu;
672 int ret;
673
674 cppc_cpufreq_cpu_fie_exit(policy);
675
676 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
677
678 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
679 if (ret)
680 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
681 caps->lowest_perf, cpu, ret);
682
683 cppc_cpufreq_put_cpu_data(policy);
684}
685
686static inline u64 get_delta(u64 t1, u64 t0)
687{
688 if (t1 > t0 || t0 > ~(u32)0)
689 return t1 - t0;
690
691 return (u32)t1 - (u32)t0;
692}
693
694static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
695 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
696{
697 u64 delta_reference, delta_delivered;
698 u64 reference_perf;
699
700 reference_perf = fb_ctrs_t0->reference_perf;
701
702 delta_reference = get_delta(fb_ctrs_t1->reference,
703 fb_ctrs_t0->reference);
704 delta_delivered = get_delta(fb_ctrs_t1->delivered,
705 fb_ctrs_t0->delivered);
706
707 /*
708 * Avoid divide-by zero and unchanged feedback counters.
709 * Leave it for callers to handle.
710 */
711 if (!delta_reference || !delta_delivered)
712 return 0;
713
714 return (reference_perf * delta_delivered) / delta_reference;
715}
716
717static int cppc_get_perf_ctrs_sample(int cpu,
718 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
719 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
720{
721 int ret;
722
723 ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
724 if (ret)
725 return ret;
726
727 udelay(2); /* 2usec delay between sampling */
728
729 return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
730}
731
732static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
733{
734 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
735 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
736 struct cppc_cpudata *cpu_data;
737 u64 delivered_perf;
738 int ret;
739
740 if (!policy)
741 return 0;
742
743 cpu_data = policy->driver_data;
744
745 ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
746 if (ret) {
747 if (ret == -EFAULT)
748 /* Any of the associated CPPC regs is 0. */
749 goto out_invalid_counters;
750 else
751 return 0;
752 }
753
754 delivered_perf = cppc_perf_from_fbctrs(&fb_ctrs_t0, &fb_ctrs_t1);
755 if (!delivered_perf)
756 goto out_invalid_counters;
757
758 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
759
760out_invalid_counters:
761 /*
762 * Feedback counters could be unchanged or 0 when a cpu enters a
763 * low-power idle state, e.g. clock-gated or power-gated.
764 * Use desired perf for reflecting frequency. Get the latest register
765 * value first as some platforms may update the actual delivered perf
766 * there; if failed, resort to the cached desired perf.
767 */
768 if (cppc_get_desired_perf(cpu, &delivered_perf))
769 delivered_perf = cpu_data->perf_ctrls.desired_perf;
770
771 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
772}
773
774static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
775{
776 struct cppc_cpudata *cpu_data = policy->driver_data;
777 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
778 int ret;
779
780 if (state)
781 policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
782 else
783 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
784 policy->cpuinfo.max_freq = policy->max;
785
786 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
787 if (ret < 0)
788 return ret;
789
790 return 0;
791}
792
793static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
794{
795 struct cppc_cpudata *cpu_data = policy->driver_data;
796
797 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
798}
799
800static ssize_t show_auto_select(struct cpufreq_policy *policy, char *buf)
801{
802 bool val;
803 int ret;
804
805 ret = cppc_get_auto_sel(policy->cpu, &val);
806
807 /* show "<unsupported>" when this register is not supported by cpc */
808 if (ret == -EOPNOTSUPP)
809 return sysfs_emit(buf, "<unsupported>\n");
810
811 if (ret)
812 return ret;
813
814 return sysfs_emit(buf, "%d\n", val);
815}
816
817static ssize_t store_auto_select(struct cpufreq_policy *policy,
818 const char *buf, size_t count)
819{
820 bool val;
821 int ret;
822
823 ret = kstrtobool(buf, &val);
824 if (ret)
825 return ret;
826
827 ret = cppc_set_auto_sel(policy->cpu, val);
828 if (ret)
829 return ret;
830
831 return count;
832}
833
834static ssize_t show_auto_act_window(struct cpufreq_policy *policy, char *buf)
835{
836 u64 val;
837 int ret;
838
839 ret = cppc_get_auto_act_window(policy->cpu, &val);
840
841 /* show "<unsupported>" when this register is not supported by cpc */
842 if (ret == -EOPNOTSUPP)
843 return sysfs_emit(buf, "<unsupported>\n");
844
845 if (ret)
846 return ret;
847
848 return sysfs_emit(buf, "%llu\n", val);
849}
850
851static ssize_t store_auto_act_window(struct cpufreq_policy *policy,
852 const char *buf, size_t count)
853{
854 u64 usec;
855 int ret;
856
857 ret = kstrtou64(buf, 0, &usec);
858 if (ret)
859 return ret;
860
861 ret = cppc_set_auto_act_window(policy->cpu, usec);
862 if (ret)
863 return ret;
864
865 return count;
866}
867
868static ssize_t show_energy_performance_preference_val(struct cpufreq_policy *policy, char *buf)
869{
870 u64 val;
871 int ret;
872
873 ret = cppc_get_epp_perf(policy->cpu, &val);
874
875 /* show "<unsupported>" when this register is not supported by cpc */
876 if (ret == -EOPNOTSUPP)
877 return sysfs_emit(buf, "<unsupported>\n");
878
879 if (ret)
880 return ret;
881
882 return sysfs_emit(buf, "%llu\n", val);
883}
884
885static ssize_t store_energy_performance_preference_val(struct cpufreq_policy *policy,
886 const char *buf, size_t count)
887{
888 u64 val;
889 int ret;
890
891 ret = kstrtou64(buf, 0, &val);
892 if (ret)
893 return ret;
894
895 ret = cppc_set_epp(policy->cpu, val);
896 if (ret)
897 return ret;
898
899 return count;
900}
901
902cpufreq_freq_attr_ro(freqdomain_cpus);
903cpufreq_freq_attr_rw(auto_select);
904cpufreq_freq_attr_rw(auto_act_window);
905cpufreq_freq_attr_rw(energy_performance_preference_val);
906
907static struct freq_attr *cppc_cpufreq_attr[] = {
908 &freqdomain_cpus,
909 &auto_select,
910 &auto_act_window,
911 &energy_performance_preference_val,
912 NULL,
913};
914
915static struct cpufreq_driver cppc_cpufreq_driver = {
916 .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
917 .verify = cppc_verify_policy,
918 .target = cppc_cpufreq_set_target,
919 .get = cppc_cpufreq_get_rate,
920 .fast_switch = cppc_cpufreq_fast_switch,
921 .init = cppc_cpufreq_cpu_init,
922 .exit = cppc_cpufreq_cpu_exit,
923 .set_boost = cppc_cpufreq_set_boost,
924 .attr = cppc_cpufreq_attr,
925 .name = "cppc_cpufreq",
926};
927
928static int __init cppc_cpufreq_init(void)
929{
930 int ret;
931
932 if (!acpi_cpc_valid())
933 return -ENODEV;
934
935 cppc_freq_invariance_init();
936 populate_efficiency_class();
937
938 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
939 if (ret)
940 cppc_freq_invariance_exit();
941
942 return ret;
943}
944
945static void __exit cppc_cpufreq_exit(void)
946{
947 cpufreq_unregister_driver(&cppc_cpufreq_driver);
948 cppc_freq_invariance_exit();
949}
950
951module_exit(cppc_cpufreq_exit);
952MODULE_AUTHOR("Ashwin Chaugule");
953MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
954MODULE_LICENSE("GPL");
955
956late_initcall(cppc_cpufreq_init);
957
958static const struct acpi_device_id cppc_acpi_ids[] __used = {
959 {ACPI_PROCESSOR_DEVICE_HID, },
960 {}
961};
962
963MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);