Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/spinlock.h>
35#include <linux/blkdev.h>
36#include <linux/delay.h>
37#include <linux/timer.h>
38#include <linux/time.h>
39#include <linux/interrupt.h>
40#include <linux/completion.h>
41#include <linux/suspend.h>
42#include <linux/workqueue.h>
43#include <linux/scatterlist.h>
44#include <linux/io.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <linux/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59#include <asm/setup.h>
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/libata.h>
63
64#include "libata.h"
65#include "libata-transport.h"
66
67const struct ata_port_operations ata_base_port_ops = {
68 .reset.prereset = ata_std_prereset,
69 .reset.postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73};
74
75static unsigned int ata_dev_init_params(struct ata_device *dev,
76 u16 heads, u16 sectors);
77static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78static void ata_dev_xfermask(struct ata_device *dev);
79static unsigned int ata_dev_quirks(const struct ata_device *dev);
80
81static DEFINE_IDA(ata_ida);
82
83#ifdef CONFIG_ATA_FORCE
84struct ata_force_param {
85 const char *name;
86 u8 cbl;
87 u8 spd_limit;
88 unsigned int xfer_mask;
89 unsigned int quirk_on;
90 unsigned int quirk_off;
91 unsigned int pflags_on;
92 u16 lflags_on;
93 u16 lflags_off;
94};
95
96struct ata_force_ent {
97 int port;
98 int device;
99 struct ata_force_param param;
100};
101
102static struct ata_force_ent *ata_force_tbl;
103static int ata_force_tbl_size;
104
105static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
106/* param_buf is thrown away after initialization, disallow read */
107module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
108MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
109#endif
110
111static int atapi_enabled = 1;
112module_param(atapi_enabled, int, 0444);
113MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
114
115static int atapi_dmadir = 0;
116module_param(atapi_dmadir, int, 0444);
117MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
118
119int atapi_passthru16 = 1;
120module_param(atapi_passthru16, int, 0444);
121MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
122
123int libata_fua = 0;
124module_param_named(fua, libata_fua, int, 0444);
125MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
126
127static int ata_ignore_hpa;
128module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
129MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
130
131static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
132module_param_named(dma, libata_dma_mask, int, 0444);
133MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
134
135static int ata_probe_timeout;
136module_param(ata_probe_timeout, int, 0444);
137MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
138
139int libata_noacpi = 0;
140module_param_named(noacpi, libata_noacpi, int, 0444);
141MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
142
143int libata_allow_tpm = 0;
144module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
145MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
146
147static int atapi_an;
148module_param(atapi_an, int, 0444);
149MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
150
151MODULE_AUTHOR("Jeff Garzik");
152MODULE_DESCRIPTION("Library module for ATA devices");
153MODULE_LICENSE("GPL");
154MODULE_VERSION(DRV_VERSION);
155
156static inline bool ata_dev_print_info(const struct ata_device *dev)
157{
158 struct ata_eh_context *ehc = &dev->link->eh_context;
159
160 return ehc->i.flags & ATA_EHI_PRINTINFO;
161}
162
163/**
164 * ata_link_next - link iteration helper
165 * @link: the previous link, NULL to start
166 * @ap: ATA port containing links to iterate
167 * @mode: iteration mode, one of ATA_LITER_*
168 *
169 * LOCKING:
170 * Host lock or EH context.
171 *
172 * RETURNS:
173 * Pointer to the next link.
174 */
175struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
176 enum ata_link_iter_mode mode)
177{
178 BUG_ON(mode != ATA_LITER_EDGE &&
179 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
180
181 /* NULL link indicates start of iteration */
182 if (!link)
183 switch (mode) {
184 case ATA_LITER_EDGE:
185 case ATA_LITER_PMP_FIRST:
186 if (sata_pmp_attached(ap))
187 return ap->pmp_link;
188 fallthrough;
189 case ATA_LITER_HOST_FIRST:
190 return &ap->link;
191 }
192
193 /* we just iterated over the host link, what's next? */
194 if (link == &ap->link)
195 switch (mode) {
196 case ATA_LITER_HOST_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 fallthrough;
200 case ATA_LITER_PMP_FIRST:
201 if (unlikely(ap->slave_link))
202 return ap->slave_link;
203 fallthrough;
204 case ATA_LITER_EDGE:
205 return NULL;
206 }
207
208 /* slave_link excludes PMP */
209 if (unlikely(link == ap->slave_link))
210 return NULL;
211
212 /* we were over a PMP link */
213 if (++link < ap->pmp_link + ap->nr_pmp_links)
214 return link;
215
216 if (mode == ATA_LITER_PMP_FIRST)
217 return &ap->link;
218
219 return NULL;
220}
221EXPORT_SYMBOL_GPL(ata_link_next);
222
223/**
224 * ata_dev_next - device iteration helper
225 * @dev: the previous device, NULL to start
226 * @link: ATA link containing devices to iterate
227 * @mode: iteration mode, one of ATA_DITER_*
228 *
229 * LOCKING:
230 * Host lock or EH context.
231 *
232 * RETURNS:
233 * Pointer to the next device.
234 */
235struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
236 enum ata_dev_iter_mode mode)
237{
238 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
239 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
240
241 /* NULL dev indicates start of iteration */
242 if (!dev)
243 switch (mode) {
244 case ATA_DITER_ENABLED:
245 case ATA_DITER_ALL:
246 dev = link->device;
247 goto check;
248 case ATA_DITER_ENABLED_REVERSE:
249 case ATA_DITER_ALL_REVERSE:
250 dev = link->device + ata_link_max_devices(link) - 1;
251 goto check;
252 }
253
254 next:
255 /* move to the next one */
256 switch (mode) {
257 case ATA_DITER_ENABLED:
258 case ATA_DITER_ALL:
259 if (++dev < link->device + ata_link_max_devices(link))
260 goto check;
261 return NULL;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 if (--dev >= link->device)
265 goto check;
266 return NULL;
267 }
268
269 check:
270 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
271 !ata_dev_enabled(dev))
272 goto next;
273 return dev;
274}
275EXPORT_SYMBOL_GPL(ata_dev_next);
276
277/**
278 * ata_dev_phys_link - find physical link for a device
279 * @dev: ATA device to look up physical link for
280 *
281 * Look up physical link which @dev is attached to. Note that
282 * this is different from @dev->link only when @dev is on slave
283 * link. For all other cases, it's the same as @dev->link.
284 *
285 * LOCKING:
286 * Don't care.
287 *
288 * RETURNS:
289 * Pointer to the found physical link.
290 */
291struct ata_link *ata_dev_phys_link(struct ata_device *dev)
292{
293 struct ata_port *ap = dev->link->ap;
294
295 if (!ap->slave_link)
296 return dev->link;
297 if (!dev->devno)
298 return &ap->link;
299 return ap->slave_link;
300}
301
302#ifdef CONFIG_ATA_FORCE
303/**
304 * ata_force_cbl - force cable type according to libata.force
305 * @ap: ATA port of interest
306 *
307 * Force cable type according to libata.force and whine about it.
308 * The last entry which has matching port number is used, so it
309 * can be specified as part of device force parameters. For
310 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311 * same effect.
312 *
313 * LOCKING:
314 * EH context.
315 */
316void ata_force_cbl(struct ata_port *ap)
317{
318 int i;
319
320 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321 const struct ata_force_ent *fe = &ata_force_tbl[i];
322
323 if (fe->port != -1 && fe->port != ap->print_id)
324 continue;
325
326 if (fe->param.cbl == ATA_CBL_NONE)
327 continue;
328
329 ap->cbl = fe->param.cbl;
330 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
331 return;
332 }
333}
334
335/**
336 * ata_force_pflags - force port flags according to libata.force
337 * @ap: ATA port of interest
338 *
339 * Force port flags according to libata.force and whine about it.
340 *
341 * LOCKING:
342 * EH context.
343 */
344static void ata_force_pflags(struct ata_port *ap)
345{
346 int i;
347
348 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
349 const struct ata_force_ent *fe = &ata_force_tbl[i];
350
351 if (fe->port != -1 && fe->port != ap->print_id)
352 continue;
353
354 /* let pflags stack */
355 if (fe->param.pflags_on) {
356 ap->pflags |= fe->param.pflags_on;
357 ata_port_notice(ap,
358 "FORCE: port flag 0x%x forced -> 0x%x\n",
359 fe->param.pflags_on, ap->pflags);
360 }
361 }
362}
363
364/**
365 * ata_force_link_limits - force link limits according to libata.force
366 * @link: ATA link of interest
367 *
368 * Force link flags and SATA spd limit according to libata.force
369 * and whine about it. When only the port part is specified
370 * (e.g. 1:), the limit applies to all links connected to both
371 * the host link and all fan-out ports connected via PMP. If the
372 * device part is specified as 0 (e.g. 1.00:), it specifies the
373 * first fan-out link not the host link. Device number 15 always
374 * points to the host link whether PMP is attached or not. If the
375 * controller has slave link, device number 16 points to it.
376 *
377 * LOCKING:
378 * EH context.
379 */
380static void ata_force_link_limits(struct ata_link *link)
381{
382 bool did_spd = false;
383 int linkno = link->pmp;
384 int i;
385
386 if (ata_is_host_link(link))
387 linkno += 15;
388
389 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
390 const struct ata_force_ent *fe = &ata_force_tbl[i];
391
392 if (fe->port != -1 && fe->port != link->ap->print_id)
393 continue;
394
395 if (fe->device != -1 && fe->device != linkno)
396 continue;
397
398 /* only honor the first spd limit */
399 if (!did_spd && fe->param.spd_limit) {
400 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
401 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
402 fe->param.name);
403 did_spd = true;
404 }
405
406 /* let lflags stack */
407 if (fe->param.lflags_on) {
408 link->flags |= fe->param.lflags_on;
409 ata_link_notice(link,
410 "FORCE: link flag 0x%x forced -> 0x%x\n",
411 fe->param.lflags_on, link->flags);
412 }
413 if (fe->param.lflags_off) {
414 link->flags &= ~fe->param.lflags_off;
415 ata_link_notice(link,
416 "FORCE: link flag 0x%x cleared -> 0x%x\n",
417 fe->param.lflags_off, link->flags);
418 }
419 }
420}
421
422/**
423 * ata_force_xfermask - force xfermask according to libata.force
424 * @dev: ATA device of interest
425 *
426 * Force xfer_mask according to libata.force and whine about it.
427 * For consistency with link selection, device number 15 selects
428 * the first device connected to the host link.
429 *
430 * LOCKING:
431 * EH context.
432 */
433static void ata_force_xfermask(struct ata_device *dev)
434{
435 int devno = dev->link->pmp + dev->devno;
436 int alt_devno = devno;
437 int i;
438
439 /* allow n.15/16 for devices attached to host port */
440 if (ata_is_host_link(dev->link))
441 alt_devno += 15;
442
443 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
444 const struct ata_force_ent *fe = &ata_force_tbl[i];
445 unsigned int pio_mask, mwdma_mask, udma_mask;
446
447 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
448 continue;
449
450 if (fe->device != -1 && fe->device != devno &&
451 fe->device != alt_devno)
452 continue;
453
454 if (!fe->param.xfer_mask)
455 continue;
456
457 ata_unpack_xfermask(fe->param.xfer_mask,
458 &pio_mask, &mwdma_mask, &udma_mask);
459 if (udma_mask)
460 dev->udma_mask = udma_mask;
461 else if (mwdma_mask) {
462 dev->udma_mask = 0;
463 dev->mwdma_mask = mwdma_mask;
464 } else {
465 dev->udma_mask = 0;
466 dev->mwdma_mask = 0;
467 dev->pio_mask = pio_mask;
468 }
469
470 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
471 fe->param.name);
472 return;
473 }
474}
475
476/**
477 * ata_force_quirks - force quirks according to libata.force
478 * @dev: ATA device of interest
479 *
480 * Force quirks according to libata.force and whine about it.
481 * For consistency with link selection, device number 15 selects
482 * the first device connected to the host link.
483 *
484 * LOCKING:
485 * EH context.
486 */
487static void ata_force_quirks(struct ata_device *dev)
488{
489 int devno = dev->link->pmp + dev->devno;
490 int alt_devno = devno;
491 int i;
492
493 /* allow n.15/16 for devices attached to host port */
494 if (ata_is_host_link(dev->link))
495 alt_devno += 15;
496
497 for (i = 0; i < ata_force_tbl_size; i++) {
498 const struct ata_force_ent *fe = &ata_force_tbl[i];
499
500 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
501 continue;
502
503 if (fe->device != -1 && fe->device != devno &&
504 fe->device != alt_devno)
505 continue;
506
507 if (!(~dev->quirks & fe->param.quirk_on) &&
508 !(dev->quirks & fe->param.quirk_off))
509 continue;
510
511 dev->quirks |= fe->param.quirk_on;
512 dev->quirks &= ~fe->param.quirk_off;
513
514 ata_dev_notice(dev, "FORCE: modified (%s)\n",
515 fe->param.name);
516 }
517}
518#else
519static inline void ata_force_pflags(struct ata_port *ap) { }
520static inline void ata_force_link_limits(struct ata_link *link) { }
521static inline void ata_force_xfermask(struct ata_device *dev) { }
522static inline void ata_force_quirks(struct ata_device *dev) { }
523#endif
524
525/**
526 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
527 * @opcode: SCSI opcode
528 *
529 * Determine ATAPI command type from @opcode.
530 *
531 * LOCKING:
532 * None.
533 *
534 * RETURNS:
535 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
536 */
537int atapi_cmd_type(u8 opcode)
538{
539 switch (opcode) {
540 case GPCMD_READ_10:
541 case GPCMD_READ_12:
542 return ATAPI_READ;
543
544 case GPCMD_WRITE_10:
545 case GPCMD_WRITE_12:
546 case GPCMD_WRITE_AND_VERIFY_10:
547 return ATAPI_WRITE;
548
549 case GPCMD_READ_CD:
550 case GPCMD_READ_CD_MSF:
551 return ATAPI_READ_CD;
552
553 case ATA_16:
554 case ATA_12:
555 if (atapi_passthru16)
556 return ATAPI_PASS_THRU;
557 fallthrough;
558 default:
559 return ATAPI_MISC;
560 }
561}
562EXPORT_SYMBOL_GPL(atapi_cmd_type);
563
564static const u8 ata_rw_cmds[] = {
565 /* pio multi */
566 ATA_CMD_READ_MULTI,
567 ATA_CMD_WRITE_MULTI,
568 ATA_CMD_READ_MULTI_EXT,
569 ATA_CMD_WRITE_MULTI_EXT,
570 0,
571 0,
572 0,
573 0,
574 /* pio */
575 ATA_CMD_PIO_READ,
576 ATA_CMD_PIO_WRITE,
577 ATA_CMD_PIO_READ_EXT,
578 ATA_CMD_PIO_WRITE_EXT,
579 0,
580 0,
581 0,
582 0,
583 /* dma */
584 ATA_CMD_READ,
585 ATA_CMD_WRITE,
586 ATA_CMD_READ_EXT,
587 ATA_CMD_WRITE_EXT,
588 0,
589 0,
590 0,
591 ATA_CMD_WRITE_FUA_EXT
592};
593
594/**
595 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
596 * @dev: target device for the taskfile
597 * @tf: taskfile to examine and configure
598 *
599 * Examine the device configuration and tf->flags to determine
600 * the proper read/write command and protocol to use for @tf.
601 *
602 * LOCKING:
603 * caller.
604 */
605static bool ata_set_rwcmd_protocol(struct ata_device *dev,
606 struct ata_taskfile *tf)
607{
608 u8 cmd;
609
610 int index, fua, lba48, write;
611
612 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
613 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
614 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615
616 if (dev->flags & ATA_DFLAG_PIO) {
617 tf->protocol = ATA_PROT_PIO;
618 index = dev->multi_count ? 0 : 8;
619 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
620 /* Unable to use DMA due to host limitation */
621 tf->protocol = ATA_PROT_PIO;
622 index = dev->multi_count ? 0 : 8;
623 } else {
624 tf->protocol = ATA_PROT_DMA;
625 index = 16;
626 }
627
628 cmd = ata_rw_cmds[index + fua + lba48 + write];
629 if (!cmd)
630 return false;
631
632 tf->command = cmd;
633
634 return true;
635}
636
637/**
638 * ata_tf_read_block - Read block address from ATA taskfile
639 * @tf: ATA taskfile of interest
640 * @dev: ATA device @tf belongs to
641 *
642 * LOCKING:
643 * None.
644 *
645 * Read block address from @tf. This function can handle all
646 * three address formats - LBA, LBA48 and CHS. tf->protocol and
647 * flags select the address format to use.
648 *
649 * RETURNS:
650 * Block address read from @tf.
651 */
652u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
653{
654 u64 block = 0;
655
656 if (tf->flags & ATA_TFLAG_LBA) {
657 if (tf->flags & ATA_TFLAG_LBA48) {
658 block |= (u64)tf->hob_lbah << 40;
659 block |= (u64)tf->hob_lbam << 32;
660 block |= (u64)tf->hob_lbal << 24;
661 } else
662 block |= (tf->device & 0xf) << 24;
663
664 block |= tf->lbah << 16;
665 block |= tf->lbam << 8;
666 block |= tf->lbal;
667 } else {
668 u32 cyl, head, sect;
669
670 cyl = tf->lbam | (tf->lbah << 8);
671 head = tf->device & 0xf;
672 sect = tf->lbal;
673
674 if (!sect) {
675 ata_dev_warn(dev,
676 "device reported invalid CHS sector 0\n");
677 return U64_MAX;
678 }
679
680 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
681 }
682
683 return block;
684}
685
686/*
687 * Set a taskfile command duration limit index.
688 */
689static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
690{
691 struct ata_taskfile *tf = &qc->tf;
692
693 if (tf->protocol == ATA_PROT_NCQ)
694 tf->auxiliary |= cdl;
695 else
696 tf->feature |= cdl;
697
698 /*
699 * Mark this command as having a CDL and request the result
700 * task file so that we can inspect the sense data available
701 * bit on completion.
702 */
703 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
704}
705
706/**
707 * ata_build_rw_tf - Build ATA taskfile for given read/write request
708 * @qc: Metadata associated with the taskfile to build
709 * @block: Block address
710 * @n_block: Number of blocks
711 * @tf_flags: RW/FUA etc...
712 * @cdl: Command duration limit index
713 * @class: IO priority class
714 *
715 * LOCKING:
716 * None.
717 *
718 * Build ATA taskfile for the command @qc for read/write request described
719 * by @block, @n_block, @tf_flags and @class.
720 *
721 * RETURNS:
722 *
723 * 0 on success, -ERANGE if the request is too large for @dev,
724 * -EINVAL if the request is invalid.
725 */
726int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
727 unsigned int tf_flags, int cdl, int class)
728{
729 struct ata_taskfile *tf = &qc->tf;
730 struct ata_device *dev = qc->dev;
731
732 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
733 tf->flags |= tf_flags;
734
735 if (ata_ncq_enabled(dev)) {
736 /* yay, NCQ */
737 if (!lba_48_ok(block, n_block))
738 return -ERANGE;
739
740 tf->protocol = ATA_PROT_NCQ;
741 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
742
743 if (tf->flags & ATA_TFLAG_WRITE)
744 tf->command = ATA_CMD_FPDMA_WRITE;
745 else
746 tf->command = ATA_CMD_FPDMA_READ;
747
748 tf->nsect = qc->hw_tag << 3;
749 tf->hob_feature = (n_block >> 8) & 0xff;
750 tf->feature = n_block & 0xff;
751
752 tf->hob_lbah = (block >> 40) & 0xff;
753 tf->hob_lbam = (block >> 32) & 0xff;
754 tf->hob_lbal = (block >> 24) & 0xff;
755 tf->lbah = (block >> 16) & 0xff;
756 tf->lbam = (block >> 8) & 0xff;
757 tf->lbal = block & 0xff;
758
759 tf->device = ATA_LBA;
760 if (tf->flags & ATA_TFLAG_FUA)
761 tf->device |= 1 << 7;
762
763 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
764 class == IOPRIO_CLASS_RT)
765 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
766
767 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
768 ata_set_tf_cdl(qc, cdl);
769
770 } else if (dev->flags & ATA_DFLAG_LBA) {
771 tf->flags |= ATA_TFLAG_LBA;
772
773 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
774 ata_set_tf_cdl(qc, cdl);
775
776 /* Both FUA writes and a CDL index require 48-bit commands */
777 if (!(tf->flags & ATA_TFLAG_FUA) &&
778 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
779 lba_28_ok(block, n_block)) {
780 /* use LBA28 */
781 tf->device |= (block >> 24) & 0xf;
782 } else if (lba_48_ok(block, n_block)) {
783 if (!(dev->flags & ATA_DFLAG_LBA48))
784 return -ERANGE;
785
786 /* use LBA48 */
787 tf->flags |= ATA_TFLAG_LBA48;
788
789 tf->hob_nsect = (n_block >> 8) & 0xff;
790
791 tf->hob_lbah = (block >> 40) & 0xff;
792 tf->hob_lbam = (block >> 32) & 0xff;
793 tf->hob_lbal = (block >> 24) & 0xff;
794 } else {
795 /* request too large even for LBA48 */
796 return -ERANGE;
797 }
798
799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 return -EINVAL;
801
802 tf->nsect = n_block & 0xff;
803
804 tf->lbah = (block >> 16) & 0xff;
805 tf->lbam = (block >> 8) & 0xff;
806 tf->lbal = block & 0xff;
807
808 tf->device |= ATA_LBA;
809 } else {
810 /* CHS */
811 u32 sect, head, cyl, track;
812
813 /* The request -may- be too large for CHS addressing. */
814 if (!lba_28_ok(block, n_block))
815 return -ERANGE;
816
817 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
818 return -EINVAL;
819
820 /* Convert LBA to CHS */
821 track = (u32)block / dev->sectors;
822 cyl = track / dev->heads;
823 head = track % dev->heads;
824 sect = (u32)block % dev->sectors + 1;
825
826 /* Check whether the converted CHS can fit.
827 Cylinder: 0-65535
828 Head: 0-15
829 Sector: 1-255*/
830 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
831 return -ERANGE;
832
833 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
834 tf->lbal = sect;
835 tf->lbam = cyl;
836 tf->lbah = cyl >> 8;
837 tf->device |= head;
838 }
839
840 return 0;
841}
842
843/**
844 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
845 * @pio_mask: pio_mask
846 * @mwdma_mask: mwdma_mask
847 * @udma_mask: udma_mask
848 *
849 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
850 * unsigned int xfer_mask.
851 *
852 * LOCKING:
853 * None.
854 *
855 * RETURNS:
856 * Packed xfer_mask.
857 */
858unsigned int ata_pack_xfermask(unsigned int pio_mask,
859 unsigned int mwdma_mask,
860 unsigned int udma_mask)
861{
862 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
863 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
864 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865}
866EXPORT_SYMBOL_GPL(ata_pack_xfermask);
867
868/**
869 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
870 * @xfer_mask: xfer_mask to unpack
871 * @pio_mask: resulting pio_mask
872 * @mwdma_mask: resulting mwdma_mask
873 * @udma_mask: resulting udma_mask
874 *
875 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
876 * Any NULL destination masks will be ignored.
877 */
878void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
879 unsigned int *mwdma_mask, unsigned int *udma_mask)
880{
881 if (pio_mask)
882 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
883 if (mwdma_mask)
884 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
885 if (udma_mask)
886 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
887}
888
889static const struct ata_xfer_ent {
890 int shift, bits;
891 u8 base;
892} ata_xfer_tbl[] = {
893 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
894 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
895 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896 { -1, },
897};
898
899/**
900 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
901 * @xfer_mask: xfer_mask of interest
902 *
903 * Return matching XFER_* value for @xfer_mask. Only the highest
904 * bit of @xfer_mask is considered.
905 *
906 * LOCKING:
907 * None.
908 *
909 * RETURNS:
910 * Matching XFER_* value, 0xff if no match found.
911 */
912u8 ata_xfer_mask2mode(unsigned int xfer_mask)
913{
914 int highbit = fls(xfer_mask) - 1;
915 const struct ata_xfer_ent *ent;
916
917 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
918 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
919 return ent->base + highbit - ent->shift;
920 return 0xff;
921}
922EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
923
924/**
925 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
926 * @xfer_mode: XFER_* of interest
927 *
928 * Return matching xfer_mask for @xfer_mode.
929 *
930 * LOCKING:
931 * None.
932 *
933 * RETURNS:
934 * Matching xfer_mask, 0 if no match found.
935 */
936unsigned int ata_xfer_mode2mask(u8 xfer_mode)
937{
938 const struct ata_xfer_ent *ent;
939
940 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
941 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
942 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
943 & ~((1 << ent->shift) - 1);
944 return 0;
945}
946EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
947
948/**
949 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950 * @xfer_mode: XFER_* of interest
951 *
952 * Return matching xfer_shift for @xfer_mode.
953 *
954 * LOCKING:
955 * None.
956 *
957 * RETURNS:
958 * Matching xfer_shift, -1 if no match found.
959 */
960int ata_xfer_mode2shift(u8 xfer_mode)
961{
962 const struct ata_xfer_ent *ent;
963
964 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 return ent->shift;
967 return -1;
968}
969EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
970
971/**
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
974 *
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
977 *
978 * LOCKING:
979 * None.
980 *
981 * RETURNS:
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
984 */
985const char *ata_mode_string(unsigned int xfer_mask)
986{
987 static const char * const xfer_mode_str[] = {
988 "PIO0",
989 "PIO1",
990 "PIO2",
991 "PIO3",
992 "PIO4",
993 "PIO5",
994 "PIO6",
995 "MWDMA0",
996 "MWDMA1",
997 "MWDMA2",
998 "MWDMA3",
999 "MWDMA4",
1000 "UDMA/16",
1001 "UDMA/25",
1002 "UDMA/33",
1003 "UDMA/44",
1004 "UDMA/66",
1005 "UDMA/100",
1006 "UDMA/133",
1007 "UDMA7",
1008 };
1009 int highbit;
1010
1011 highbit = fls(xfer_mask) - 1;
1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 return xfer_mode_str[highbit];
1014 return "<n/a>";
1015}
1016EXPORT_SYMBOL_GPL(ata_mode_string);
1017
1018const char *sata_spd_string(unsigned int spd)
1019{
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029}
1030
1031/**
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1034 *
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 * LOCKING:
1040 * None.
1041 *
1042 * RETURNS:
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
1046unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047{
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1051 *
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1062 *
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1068 */
1069 if (tf->lbam == 0 && tf->lbah == 0)
1070 return ATA_DEV_ATA;
1071
1072 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1073 return ATA_DEV_ATAPI;
1074
1075 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1076 return ATA_DEV_PMP;
1077
1078 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1079 return ATA_DEV_SEMB;
1080
1081 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1082 return ATA_DEV_ZAC;
1083
1084 return ATA_DEV_UNKNOWN;
1085}
1086EXPORT_SYMBOL_GPL(ata_dev_classify);
1087
1088/**
1089 * ata_id_string - Convert IDENTIFY DEVICE page into string
1090 * @id: IDENTIFY DEVICE results we will examine
1091 * @s: string into which data is output
1092 * @ofs: offset into identify device page
1093 * @len: length of string to return. must be an even number.
1094 *
1095 * The strings in the IDENTIFY DEVICE page are broken up into
1096 * 16-bit chunks. Run through the string, and output each
1097 * 8-bit chunk linearly, regardless of platform.
1098 *
1099 * LOCKING:
1100 * caller.
1101 */
1102
1103void ata_id_string(const u16 *id, unsigned char *s,
1104 unsigned int ofs, unsigned int len)
1105{
1106 unsigned int c;
1107
1108 BUG_ON(len & 1);
1109
1110 while (len > 0) {
1111 c = id[ofs] >> 8;
1112 *s = c;
1113 s++;
1114
1115 c = id[ofs] & 0xff;
1116 *s = c;
1117 s++;
1118
1119 ofs++;
1120 len -= 2;
1121 }
1122}
1123EXPORT_SYMBOL_GPL(ata_id_string);
1124
1125/**
1126 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1127 * @id: IDENTIFY DEVICE results we will examine
1128 * @s: string into which data is output
1129 * @ofs: offset into identify device page
1130 * @len: length of string to return. must be an odd number.
1131 *
1132 * This function is identical to ata_id_string except that it
1133 * trims trailing spaces and terminates the resulting string with
1134 * null. @len must be actual maximum length (even number) + 1.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139void ata_id_c_string(const u16 *id, unsigned char *s,
1140 unsigned int ofs, unsigned int len)
1141{
1142 unsigned char *p;
1143
1144 ata_id_string(id, s, ofs, len - 1);
1145
1146 p = s + strnlen(s, len - 1);
1147 while (p > s && p[-1] == ' ')
1148 p--;
1149 *p = '\0';
1150}
1151EXPORT_SYMBOL_GPL(ata_id_c_string);
1152
1153static u64 ata_id_n_sectors(const u16 *id)
1154{
1155 if (ata_id_has_lba(id)) {
1156 if (ata_id_has_lba48(id))
1157 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1158
1159 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1160 }
1161
1162 if (ata_id_current_chs_valid(id))
1163 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1164 (u32)id[ATA_ID_CUR_SECTORS];
1165
1166 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1167 (u32)id[ATA_ID_SECTORS];
1168}
1169
1170u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1171{
1172 u64 sectors = 0;
1173
1174 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1175 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1176 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1177 sectors |= (tf->lbah & 0xff) << 16;
1178 sectors |= (tf->lbam & 0xff) << 8;
1179 sectors |= (tf->lbal & 0xff);
1180
1181 return sectors;
1182}
1183
1184u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1185{
1186 u64 sectors = 0;
1187
1188 sectors |= (tf->device & 0x0f) << 24;
1189 sectors |= (tf->lbah & 0xff) << 16;
1190 sectors |= (tf->lbam & 0xff) << 8;
1191 sectors |= (tf->lbal & 0xff);
1192
1193 return sectors;
1194}
1195
1196/**
1197 * ata_read_native_max_address - Read native max address
1198 * @dev: target device
1199 * @max_sectors: out parameter for the result native max address
1200 *
1201 * Perform an LBA48 or LBA28 native size query upon the device in
1202 * question.
1203 *
1204 * RETURNS:
1205 * 0 on success, -EACCES if command is aborted by the drive.
1206 * -EIO on other errors.
1207 */
1208static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1209{
1210 unsigned int err_mask;
1211 struct ata_taskfile tf;
1212 int lba48 = ata_id_has_lba48(dev->id);
1213
1214 ata_tf_init(dev, &tf);
1215
1216 /* always clear all address registers */
1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218
1219 if (lba48) {
1220 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1221 tf.flags |= ATA_TFLAG_LBA48;
1222 } else
1223 tf.command = ATA_CMD_READ_NATIVE_MAX;
1224
1225 tf.protocol = ATA_PROT_NODATA;
1226 tf.device |= ATA_LBA;
1227
1228 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1229 if (err_mask) {
1230 ata_dev_warn(dev,
1231 "failed to read native max address (err_mask=0x%x)\n",
1232 err_mask);
1233 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1234 return -EACCES;
1235 return -EIO;
1236 }
1237
1238 if (lba48)
1239 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1240 else
1241 *max_sectors = ata_tf_to_lba(&tf) + 1;
1242 if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1243 (*max_sectors)--;
1244 return 0;
1245}
1246
1247/**
1248 * ata_set_max_sectors - Set max sectors
1249 * @dev: target device
1250 * @new_sectors: new max sectors value to set for the device
1251 *
1252 * Set max sectors of @dev to @new_sectors.
1253 *
1254 * RETURNS:
1255 * 0 on success, -EACCES if command is aborted or denied (due to
1256 * previous non-volatile SET_MAX) by the drive. -EIO on other
1257 * errors.
1258 */
1259static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1260{
1261 unsigned int err_mask;
1262 struct ata_taskfile tf;
1263 int lba48 = ata_id_has_lba48(dev->id);
1264
1265 new_sectors--;
1266
1267 ata_tf_init(dev, &tf);
1268
1269 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1270
1271 if (lba48) {
1272 tf.command = ATA_CMD_SET_MAX_EXT;
1273 tf.flags |= ATA_TFLAG_LBA48;
1274
1275 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1276 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1277 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1278 } else {
1279 tf.command = ATA_CMD_SET_MAX;
1280
1281 tf.device |= (new_sectors >> 24) & 0xf;
1282 }
1283
1284 tf.protocol = ATA_PROT_NODATA;
1285 tf.device |= ATA_LBA;
1286
1287 tf.lbal = (new_sectors >> 0) & 0xff;
1288 tf.lbam = (new_sectors >> 8) & 0xff;
1289 tf.lbah = (new_sectors >> 16) & 0xff;
1290
1291 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1292 if (err_mask) {
1293 ata_dev_warn(dev,
1294 "failed to set max address (err_mask=0x%x)\n",
1295 err_mask);
1296 if (err_mask == AC_ERR_DEV &&
1297 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1298 return -EACCES;
1299 return -EIO;
1300 }
1301
1302 return 0;
1303}
1304
1305/**
1306 * ata_hpa_resize - Resize a device with an HPA set
1307 * @dev: Device to resize
1308 *
1309 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1310 * it if required to the full size of the media. The caller must check
1311 * the drive has the HPA feature set enabled.
1312 *
1313 * RETURNS:
1314 * 0 on success, -errno on failure.
1315 */
1316static int ata_hpa_resize(struct ata_device *dev)
1317{
1318 bool print_info = ata_dev_print_info(dev);
1319 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1320 u64 sectors = ata_id_n_sectors(dev->id);
1321 u64 native_sectors;
1322 int rc;
1323
1324 /* do we need to do it? */
1325 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1326 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1327 (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1328 return 0;
1329
1330 /* read native max address */
1331 rc = ata_read_native_max_address(dev, &native_sectors);
1332 if (rc) {
1333 /* If device aborted the command or HPA isn't going to
1334 * be unlocked, skip HPA resizing.
1335 */
1336 if (rc == -EACCES || !unlock_hpa) {
1337 ata_dev_warn(dev,
1338 "HPA support seems broken, skipping HPA handling\n");
1339 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1340
1341 /* we can continue if device aborted the command */
1342 if (rc == -EACCES)
1343 rc = 0;
1344 }
1345
1346 return rc;
1347 }
1348 dev->n_native_sectors = native_sectors;
1349
1350 /* nothing to do? */
1351 if (native_sectors <= sectors || !unlock_hpa) {
1352 if (!print_info || native_sectors == sectors)
1353 return 0;
1354
1355 if (native_sectors > sectors)
1356 ata_dev_info(dev,
1357 "HPA detected: current %llu, native %llu\n",
1358 (unsigned long long)sectors,
1359 (unsigned long long)native_sectors);
1360 else if (native_sectors < sectors)
1361 ata_dev_warn(dev,
1362 "native sectors (%llu) is smaller than sectors (%llu)\n",
1363 (unsigned long long)native_sectors,
1364 (unsigned long long)sectors);
1365 return 0;
1366 }
1367
1368 /* let's unlock HPA */
1369 rc = ata_set_max_sectors(dev, native_sectors);
1370 if (rc == -EACCES) {
1371 /* if device aborted the command, skip HPA resizing */
1372 ata_dev_warn(dev,
1373 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1374 (unsigned long long)sectors,
1375 (unsigned long long)native_sectors);
1376 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1377 return 0;
1378 } else if (rc)
1379 return rc;
1380
1381 /* re-read IDENTIFY data */
1382 rc = ata_dev_reread_id(dev, 0);
1383 if (rc) {
1384 ata_dev_err(dev,
1385 "failed to re-read IDENTIFY data after HPA resizing\n");
1386 return rc;
1387 }
1388
1389 if (print_info) {
1390 u64 new_sectors = ata_id_n_sectors(dev->id);
1391 ata_dev_info(dev,
1392 "HPA unlocked: %llu -> %llu, native %llu\n",
1393 (unsigned long long)sectors,
1394 (unsigned long long)new_sectors,
1395 (unsigned long long)native_sectors);
1396 }
1397
1398 return 0;
1399}
1400
1401/**
1402 * ata_dump_id - IDENTIFY DEVICE info debugging output
1403 * @dev: device from which the information is fetched
1404 * @id: IDENTIFY DEVICE page to dump
1405 *
1406 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1407 * page.
1408 *
1409 * LOCKING:
1410 * caller.
1411 */
1412
1413static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1414{
1415 ata_dev_dbg(dev,
1416 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1417 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1418 "88==0x%04x 93==0x%04x\n",
1419 id[49], id[53], id[63], id[64], id[75], id[80],
1420 id[81], id[82], id[83], id[84], id[88], id[93]);
1421}
1422
1423/**
1424 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1425 * @id: IDENTIFY data to compute xfer mask from
1426 *
1427 * Compute the xfermask for this device. This is not as trivial
1428 * as it seems if we must consider early devices correctly.
1429 *
1430 * FIXME: pre IDE drive timing (do we care ?).
1431 *
1432 * LOCKING:
1433 * None.
1434 *
1435 * RETURNS:
1436 * Computed xfermask
1437 */
1438unsigned int ata_id_xfermask(const u16 *id)
1439{
1440 unsigned int pio_mask, mwdma_mask, udma_mask;
1441
1442 /* Usual case. Word 53 indicates word 64 is valid */
1443 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1444 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1445 pio_mask <<= 3;
1446 pio_mask |= 0x7;
1447 } else {
1448 /* If word 64 isn't valid then Word 51 high byte holds
1449 * the PIO timing number for the maximum. Turn it into
1450 * a mask.
1451 */
1452 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1453 if (mode < 5) /* Valid PIO range */
1454 pio_mask = (2 << mode) - 1;
1455 else
1456 pio_mask = 1;
1457
1458 /* But wait.. there's more. Design your standards by
1459 * committee and you too can get a free iordy field to
1460 * process. However it is the speeds not the modes that
1461 * are supported... Note drivers using the timing API
1462 * will get this right anyway
1463 */
1464 }
1465
1466 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1467
1468 if (ata_id_is_cfa(id)) {
1469 /*
1470 * Process compact flash extended modes
1471 */
1472 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1473 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1474
1475 if (pio)
1476 pio_mask |= (1 << 5);
1477 if (pio > 1)
1478 pio_mask |= (1 << 6);
1479 if (dma)
1480 mwdma_mask |= (1 << 3);
1481 if (dma > 1)
1482 mwdma_mask |= (1 << 4);
1483 }
1484
1485 udma_mask = 0;
1486 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1487 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1488
1489 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1490}
1491EXPORT_SYMBOL_GPL(ata_id_xfermask);
1492
1493static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1494{
1495 struct completion *waiting = qc->private_data;
1496
1497 complete(waiting);
1498}
1499
1500/**
1501 * ata_exec_internal - execute libata internal command
1502 * @dev: Device to which the command is sent
1503 * @tf: Taskfile registers for the command and the result
1504 * @cdb: CDB for packet command
1505 * @dma_dir: Data transfer direction of the command
1506 * @buf: Data buffer of the command
1507 * @buflen: Length of data buffer
1508 * @timeout: Timeout in msecs (0 for default)
1509 *
1510 * Executes libata internal command with timeout. @tf contains
1511 * the command on entry and the result on return. Timeout and error
1512 * conditions are reported via the return value. No recovery action
1513 * is taken after a command times out. It is the caller's duty to
1514 * clean up after timeout.
1515 *
1516 * LOCKING:
1517 * None. Should be called with kernel context, might sleep.
1518 *
1519 * RETURNS:
1520 * Zero on success, AC_ERR_* mask on failure
1521 */
1522unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1523 const u8 *cdb, enum dma_data_direction dma_dir,
1524 void *buf, unsigned int buflen,
1525 unsigned int timeout)
1526{
1527 struct ata_link *link = dev->link;
1528 struct ata_port *ap = link->ap;
1529 u8 command = tf->command;
1530 struct ata_queued_cmd *qc;
1531 struct scatterlist sgl;
1532 unsigned int preempted_tag;
1533 u32 preempted_sactive;
1534 u64 preempted_qc_active;
1535 int preempted_nr_active_links;
1536 bool auto_timeout = false;
1537 DECLARE_COMPLETION_ONSTACK(wait);
1538 unsigned long flags;
1539 unsigned int err_mask;
1540 int rc;
1541
1542 if (WARN_ON(dma_dir != DMA_NONE && !buf))
1543 return AC_ERR_INVALID;
1544
1545 spin_lock_irqsave(ap->lock, flags);
1546
1547 /* No internal command while frozen */
1548 if (ata_port_is_frozen(ap)) {
1549 spin_unlock_irqrestore(ap->lock, flags);
1550 return AC_ERR_SYSTEM;
1551 }
1552
1553 /* Initialize internal qc */
1554 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1555
1556 qc->tag = ATA_TAG_INTERNAL;
1557 qc->hw_tag = 0;
1558 qc->scsicmd = NULL;
1559 qc->ap = ap;
1560 qc->dev = dev;
1561 ata_qc_reinit(qc);
1562
1563 preempted_tag = link->active_tag;
1564 preempted_sactive = link->sactive;
1565 preempted_qc_active = ap->qc_active;
1566 preempted_nr_active_links = ap->nr_active_links;
1567 link->active_tag = ATA_TAG_POISON;
1568 link->sactive = 0;
1569 ap->qc_active = 0;
1570 ap->nr_active_links = 0;
1571
1572 /* Prepare and issue qc */
1573 qc->tf = *tf;
1574 if (cdb)
1575 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1576
1577 /* Some SATA bridges need us to indicate data xfer direction */
1578 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1579 dma_dir == DMA_FROM_DEVICE)
1580 qc->tf.feature |= ATAPI_DMADIR;
1581
1582 qc->flags |= ATA_QCFLAG_RESULT_TF;
1583 qc->dma_dir = dma_dir;
1584 if (dma_dir != DMA_NONE) {
1585 sg_init_one(&sgl, buf, buflen);
1586 ata_sg_init(qc, &sgl, 1);
1587 qc->nbytes = buflen;
1588 }
1589
1590 qc->private_data = &wait;
1591 qc->complete_fn = ata_qc_complete_internal;
1592
1593 ata_qc_issue(qc);
1594
1595 spin_unlock_irqrestore(ap->lock, flags);
1596
1597 if (!timeout) {
1598 if (ata_probe_timeout) {
1599 timeout = ata_probe_timeout * 1000;
1600 } else {
1601 timeout = ata_internal_cmd_timeout(dev, command);
1602 auto_timeout = true;
1603 }
1604 }
1605
1606 ata_eh_release(ap);
1607
1608 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1609
1610 ata_eh_acquire(ap);
1611
1612 ata_sff_flush_pio_task(ap);
1613
1614 if (!rc) {
1615 /*
1616 * We are racing with irq here. If we lose, the following test
1617 * prevents us from completing the qc twice. If we win, the port
1618 * is frozen and will be cleaned up by ->post_internal_cmd().
1619 */
1620 spin_lock_irqsave(ap->lock, flags);
1621 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1622 qc->err_mask |= AC_ERR_TIMEOUT;
1623 ata_port_freeze(ap);
1624 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1625 timeout, command);
1626 }
1627 spin_unlock_irqrestore(ap->lock, flags);
1628 }
1629
1630 if (ap->ops->post_internal_cmd)
1631 ap->ops->post_internal_cmd(qc);
1632
1633 /* Perform minimal error analysis */
1634 if (qc->flags & ATA_QCFLAG_EH) {
1635 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1636 qc->err_mask |= AC_ERR_DEV;
1637
1638 if (!qc->err_mask)
1639 qc->err_mask |= AC_ERR_OTHER;
1640
1641 if (qc->err_mask & ~AC_ERR_OTHER)
1642 qc->err_mask &= ~AC_ERR_OTHER;
1643 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1644 qc->result_tf.status |= ATA_SENSE;
1645 }
1646
1647 /* Finish up */
1648 spin_lock_irqsave(ap->lock, flags);
1649
1650 *tf = qc->result_tf;
1651 err_mask = qc->err_mask;
1652
1653 ata_qc_free(qc);
1654 link->active_tag = preempted_tag;
1655 link->sactive = preempted_sactive;
1656 ap->qc_active = preempted_qc_active;
1657 ap->nr_active_links = preempted_nr_active_links;
1658
1659 spin_unlock_irqrestore(ap->lock, flags);
1660
1661 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1662 ata_internal_cmd_timed_out(dev, command);
1663
1664 return err_mask;
1665}
1666
1667/**
1668 * ata_pio_need_iordy - check if iordy needed
1669 * @adev: ATA device
1670 *
1671 * Check if the current speed of the device requires IORDY. Used
1672 * by various controllers for chip configuration.
1673 */
1674unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1675{
1676 /* Don't set IORDY if we're preparing for reset. IORDY may
1677 * lead to controller lock up on certain controllers if the
1678 * port is not occupied. See bko#11703 for details.
1679 */
1680 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1681 return 0;
1682 /* Controller doesn't support IORDY. Probably a pointless
1683 * check as the caller should know this.
1684 */
1685 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1686 return 0;
1687 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1688 if (ata_id_is_cfa(adev->id)
1689 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1690 return 0;
1691 /* PIO3 and higher it is mandatory */
1692 if (adev->pio_mode > XFER_PIO_2)
1693 return 1;
1694 /* We turn it on when possible */
1695 if (ata_id_has_iordy(adev->id))
1696 return 1;
1697 return 0;
1698}
1699EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1700
1701/**
1702 * ata_pio_mask_no_iordy - Return the non IORDY mask
1703 * @adev: ATA device
1704 *
1705 * Compute the highest mode possible if we are not using iordy. Return
1706 * -1 if no iordy mode is available.
1707 */
1708static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1709{
1710 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1711 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1712 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1713 /* Is the speed faster than the drive allows non IORDY ? */
1714 if (pio) {
1715 /* This is cycle times not frequency - watch the logic! */
1716 if (pio > 240) /* PIO2 is 240nS per cycle */
1717 return 3 << ATA_SHIFT_PIO;
1718 return 7 << ATA_SHIFT_PIO;
1719 }
1720 }
1721 return 3 << ATA_SHIFT_PIO;
1722}
1723
1724/**
1725 * ata_do_dev_read_id - default ID read method
1726 * @dev: device
1727 * @tf: proposed taskfile
1728 * @id: data buffer
1729 *
1730 * Issue the identify taskfile and hand back the buffer containing
1731 * identify data. For some RAID controllers and for pre ATA devices
1732 * this function is wrapped or replaced by the driver
1733 */
1734unsigned int ata_do_dev_read_id(struct ata_device *dev,
1735 struct ata_taskfile *tf, __le16 *id)
1736{
1737 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1738 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1739}
1740EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1741
1742/**
1743 * ata_dev_read_id - Read ID data from the specified device
1744 * @dev: target device
1745 * @p_class: pointer to class of the target device (may be changed)
1746 * @flags: ATA_READID_* flags
1747 * @id: buffer to read IDENTIFY data into
1748 *
1749 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1750 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1751 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1752 * for pre-ATA4 drives.
1753 *
1754 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1755 * now we abort if we hit that case.
1756 *
1757 * LOCKING:
1758 * Kernel thread context (may sleep)
1759 *
1760 * RETURNS:
1761 * 0 on success, -errno otherwise.
1762 */
1763int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1764 unsigned int flags, u16 *id)
1765{
1766 struct ata_port *ap = dev->link->ap;
1767 unsigned int class = *p_class;
1768 struct ata_taskfile tf;
1769 unsigned int err_mask = 0;
1770 const char *reason;
1771 bool is_semb = class == ATA_DEV_SEMB;
1772 int may_fallback = 1, tried_spinup = 0;
1773 int rc;
1774
1775retry:
1776 ata_tf_init(dev, &tf);
1777
1778 switch (class) {
1779 case ATA_DEV_SEMB:
1780 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1781 fallthrough;
1782 case ATA_DEV_ATA:
1783 case ATA_DEV_ZAC:
1784 tf.command = ATA_CMD_ID_ATA;
1785 break;
1786 case ATA_DEV_ATAPI:
1787 tf.command = ATA_CMD_ID_ATAPI;
1788 break;
1789 default:
1790 rc = -ENODEV;
1791 reason = "unsupported class";
1792 goto err_out;
1793 }
1794
1795 tf.protocol = ATA_PROT_PIO;
1796
1797 /* Some devices choke if TF registers contain garbage. Make
1798 * sure those are properly initialized.
1799 */
1800 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1801
1802 /* Device presence detection is unreliable on some
1803 * controllers. Always poll IDENTIFY if available.
1804 */
1805 tf.flags |= ATA_TFLAG_POLLING;
1806
1807 if (ap->ops->read_id)
1808 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1809 else
1810 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1811
1812 if (err_mask) {
1813 if (err_mask & AC_ERR_NODEV_HINT) {
1814 ata_dev_dbg(dev, "NODEV after polling detection\n");
1815 return -ENOENT;
1816 }
1817
1818 if (is_semb) {
1819 ata_dev_info(dev,
1820 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1821 /* SEMB is not supported yet */
1822 *p_class = ATA_DEV_SEMB_UNSUP;
1823 return 0;
1824 }
1825
1826 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1827 /* Device or controller might have reported
1828 * the wrong device class. Give a shot at the
1829 * other IDENTIFY if the current one is
1830 * aborted by the device.
1831 */
1832 if (may_fallback) {
1833 may_fallback = 0;
1834
1835 if (class == ATA_DEV_ATA)
1836 class = ATA_DEV_ATAPI;
1837 else
1838 class = ATA_DEV_ATA;
1839 goto retry;
1840 }
1841
1842 /* Control reaches here iff the device aborted
1843 * both flavors of IDENTIFYs which happens
1844 * sometimes with phantom devices.
1845 */
1846 ata_dev_dbg(dev,
1847 "both IDENTIFYs aborted, assuming NODEV\n");
1848 return -ENOENT;
1849 }
1850
1851 rc = -EIO;
1852 reason = "I/O error";
1853 goto err_out;
1854 }
1855
1856 if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1857 ata_dev_info(dev, "dumping IDENTIFY data, "
1858 "class=%d may_fallback=%d tried_spinup=%d\n",
1859 class, may_fallback, tried_spinup);
1860 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1861 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1862 }
1863
1864 /* Falling back doesn't make sense if ID data was read
1865 * successfully at least once.
1866 */
1867 may_fallback = 0;
1868
1869 swap_buf_le16(id, ATA_ID_WORDS);
1870
1871 /* sanity check */
1872 rc = -EINVAL;
1873 reason = "device reports invalid type";
1874
1875 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1876 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1877 goto err_out;
1878 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1879 ata_id_is_ata(id)) {
1880 ata_dev_dbg(dev,
1881 "host indicates ignore ATA devices, ignored\n");
1882 return -ENOENT;
1883 }
1884 } else {
1885 if (ata_id_is_ata(id))
1886 goto err_out;
1887 }
1888
1889 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1890 tried_spinup = 1;
1891 /*
1892 * Drive powered-up in standby mode, and requires a specific
1893 * SET_FEATURES spin-up subcommand before it will accept
1894 * anything other than the original IDENTIFY command.
1895 */
1896 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1897 if (err_mask && id[2] != 0x738c) {
1898 rc = -EIO;
1899 reason = "SPINUP failed";
1900 goto err_out;
1901 }
1902 /*
1903 * If the drive initially returned incomplete IDENTIFY info,
1904 * we now must reissue the IDENTIFY command.
1905 */
1906 if (id[2] == 0x37c8)
1907 goto retry;
1908 }
1909
1910 if ((flags & ATA_READID_POSTRESET) &&
1911 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1912 /*
1913 * The exact sequence expected by certain pre-ATA4 drives is:
1914 * SRST RESET
1915 * IDENTIFY (optional in early ATA)
1916 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1917 * anything else..
1918 * Some drives were very specific about that exact sequence.
1919 *
1920 * Note that ATA4 says lba is mandatory so the second check
1921 * should never trigger.
1922 */
1923 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1924 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1925 if (err_mask) {
1926 rc = -EIO;
1927 reason = "INIT_DEV_PARAMS failed";
1928 goto err_out;
1929 }
1930
1931 /* current CHS translation info (id[53-58]) might be
1932 * changed. reread the identify device info.
1933 */
1934 flags &= ~ATA_READID_POSTRESET;
1935 goto retry;
1936 }
1937 }
1938
1939 *p_class = class;
1940
1941 return 0;
1942
1943 err_out:
1944 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1945 reason, err_mask);
1946 return rc;
1947}
1948
1949bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1950 bool set_active)
1951{
1952 /* Only applies to ATA and ZAC devices */
1953 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1954 return false;
1955
1956 ata_tf_init(dev, tf);
1957 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1958 tf->protocol = ATA_PROT_NODATA;
1959
1960 if (set_active) {
1961 /* VERIFY for 1 sector at lba=0 */
1962 tf->command = ATA_CMD_VERIFY;
1963 tf->nsect = 1;
1964 if (dev->flags & ATA_DFLAG_LBA) {
1965 tf->flags |= ATA_TFLAG_LBA;
1966 tf->device |= ATA_LBA;
1967 } else {
1968 /* CHS */
1969 tf->lbal = 0x1; /* sect */
1970 }
1971 } else {
1972 tf->command = ATA_CMD_STANDBYNOW1;
1973 }
1974
1975 return true;
1976}
1977
1978static bool ata_dev_power_is_active(struct ata_device *dev)
1979{
1980 struct ata_taskfile tf;
1981 unsigned int err_mask;
1982
1983 ata_tf_init(dev, &tf);
1984 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1985 tf.protocol = ATA_PROT_NODATA;
1986 tf.command = ATA_CMD_CHK_POWER;
1987
1988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989 if (err_mask) {
1990 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1991 err_mask);
1992 /*
1993 * Assume we are in standby mode so that we always force a
1994 * spinup in ata_dev_power_set_active().
1995 */
1996 return false;
1997 }
1998
1999 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2000
2001 /* Active or idle */
2002 return tf.nsect == 0xff;
2003}
2004
2005/**
2006 * ata_dev_power_set_standby - Set a device power mode to standby
2007 * @dev: target device
2008 *
2009 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2010 * For an HDD device, this spins down the disks.
2011 *
2012 * LOCKING:
2013 * Kernel thread context (may sleep).
2014 */
2015void ata_dev_power_set_standby(struct ata_device *dev)
2016{
2017 unsigned long ap_flags = dev->link->ap->flags;
2018 struct ata_taskfile tf;
2019 unsigned int err_mask;
2020
2021 /* If the device is already sleeping or in standby, do nothing. */
2022 if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2023 !ata_dev_power_is_active(dev))
2024 return;
2025
2026 /*
2027 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2028 * causing some drives to spin up and down again. For these, do nothing
2029 * if we are being called on shutdown.
2030 */
2031 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2032 system_state == SYSTEM_POWER_OFF)
2033 return;
2034
2035 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2036 system_entering_hibernation())
2037 return;
2038
2039 /* Issue STANDBY IMMEDIATE command only if supported by the device */
2040 if (!ata_dev_power_init_tf(dev, &tf, false))
2041 return;
2042
2043 ata_dev_notice(dev, "Entering standby power mode\n");
2044
2045 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2046 if (err_mask)
2047 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2048 err_mask);
2049}
2050
2051/**
2052 * ata_dev_power_set_active - Set a device power mode to active
2053 * @dev: target device
2054 *
2055 * Issue a VERIFY command to enter to ensure that the device is in the
2056 * active power mode. For a spun-down HDD (standby or idle power mode),
2057 * the VERIFY command will complete after the disk spins up.
2058 *
2059 * LOCKING:
2060 * Kernel thread context (may sleep).
2061 */
2062void ata_dev_power_set_active(struct ata_device *dev)
2063{
2064 struct ata_taskfile tf;
2065 unsigned int err_mask;
2066
2067 /*
2068 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2069 * if supported by the device.
2070 */
2071 if (!ata_dev_power_init_tf(dev, &tf, true))
2072 return;
2073
2074 /*
2075 * Check the device power state & condition and force a spinup with
2076 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2077 */
2078 if (ata_dev_power_is_active(dev))
2079 return;
2080
2081 ata_dev_notice(dev, "Entering active power mode\n");
2082
2083 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2084 if (err_mask)
2085 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2086 err_mask);
2087}
2088
2089/**
2090 * ata_read_log_page - read a specific log page
2091 * @dev: target device
2092 * @log: log to read
2093 * @page: page to read
2094 * @buf: buffer to store read page
2095 * @sectors: number of sectors to read
2096 *
2097 * Read log page using READ_LOG_EXT command.
2098 *
2099 * LOCKING:
2100 * Kernel thread context (may sleep).
2101 *
2102 * RETURNS:
2103 * 0 on success, AC_ERR_* mask otherwise.
2104 */
2105unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2106 u8 page, void *buf, unsigned int sectors)
2107{
2108 unsigned long ap_flags = dev->link->ap->flags;
2109 struct ata_taskfile tf;
2110 unsigned int err_mask;
2111 bool dma = false;
2112
2113 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2114
2115 /*
2116 * Return error without actually issuing the command on controllers
2117 * which e.g. lockup on a read log page.
2118 */
2119 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2120 return AC_ERR_DEV;
2121
2122retry:
2123 ata_tf_init(dev, &tf);
2124 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2125 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2126 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2127 tf.protocol = ATA_PROT_DMA;
2128 dma = true;
2129 } else {
2130 tf.command = ATA_CMD_READ_LOG_EXT;
2131 tf.protocol = ATA_PROT_PIO;
2132 dma = false;
2133 }
2134 tf.lbal = log;
2135 tf.lbam = page;
2136 tf.nsect = sectors;
2137 tf.hob_nsect = sectors >> 8;
2138 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2139
2140 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2141 buf, sectors * ATA_SECT_SIZE, 0);
2142
2143 if (err_mask) {
2144 if (dma) {
2145 dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2146 if (!ata_port_is_frozen(dev->link->ap))
2147 goto retry;
2148 }
2149 ata_dev_err(dev,
2150 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2151 (unsigned int)log, (unsigned int)page, err_mask);
2152 }
2153
2154 return err_mask;
2155}
2156
2157static inline void ata_clear_log_directory(struct ata_device *dev)
2158{
2159 memset(dev->gp_log_dir, 0, ATA_SECT_SIZE);
2160}
2161
2162static int ata_read_log_directory(struct ata_device *dev)
2163{
2164 u16 version;
2165
2166 /* If the log page is already cached, do nothing. */
2167 version = get_unaligned_le16(&dev->gp_log_dir[0]);
2168 if (version == 0x0001)
2169 return 0;
2170
2171 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) {
2172 ata_clear_log_directory(dev);
2173 return -EIO;
2174 }
2175
2176 version = get_unaligned_le16(&dev->gp_log_dir[0]);
2177 if (version != 0x0001)
2178 ata_dev_warn_once(dev,
2179 "Invalid log directory version 0x%04x\n",
2180 version);
2181
2182 return 0;
2183}
2184
2185static int ata_log_supported(struct ata_device *dev, u8 log)
2186{
2187 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2188 return 0;
2189
2190 if (ata_read_log_directory(dev))
2191 return 0;
2192
2193 return get_unaligned_le16(&dev->gp_log_dir[log * 2]);
2194}
2195
2196static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2197{
2198 unsigned int err, i;
2199
2200 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2201 return false;
2202
2203 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2204 /*
2205 * IDENTIFY DEVICE data log is defined as mandatory starting
2206 * with ACS-3 (ATA version 10). Warn about the missing log
2207 * for drives which implement this ATA level or above.
2208 */
2209 if (ata_id_major_version(dev->id) >= 10)
2210 ata_dev_warn(dev,
2211 "ATA Identify Device Log not supported\n");
2212 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2213 return false;
2214 }
2215
2216 /*
2217 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2218 * supported.
2219 */
2220 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2221 dev->sector_buf, 1);
2222 if (err)
2223 return false;
2224
2225 for (i = 0; i < dev->sector_buf[8]; i++) {
2226 if (dev->sector_buf[9 + i] == page)
2227 return true;
2228 }
2229
2230 return false;
2231}
2232
2233static int ata_do_link_spd_quirk(struct ata_device *dev)
2234{
2235 struct ata_link *plink = ata_dev_phys_link(dev);
2236 u32 target, target_limit;
2237
2238 if (!sata_scr_valid(plink))
2239 return 0;
2240
2241 if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2242 target = 1;
2243 else
2244 return 0;
2245
2246 target_limit = (1 << target) - 1;
2247
2248 /* if already on stricter limit, no need to push further */
2249 if (plink->sata_spd_limit <= target_limit)
2250 return 0;
2251
2252 plink->sata_spd_limit = target_limit;
2253
2254 /* Request another EH round by returning -EAGAIN if link is
2255 * going faster than the target speed. Forward progress is
2256 * guaranteed by setting sata_spd_limit to target_limit above.
2257 */
2258 if (plink->sata_spd > target) {
2259 ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2260 sata_spd_string(target));
2261 return -EAGAIN;
2262 }
2263 return 0;
2264}
2265
2266static inline bool ata_dev_knobble(struct ata_device *dev)
2267{
2268 struct ata_port *ap = dev->link->ap;
2269
2270 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2271 return false;
2272
2273 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2274}
2275
2276static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2277{
2278 unsigned int err_mask;
2279
2280 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2281 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2282 return;
2283 }
2284 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2285 0, dev->sector_buf, 1);
2286 if (!err_mask) {
2287 u8 *cmds = dev->ncq_send_recv_cmds;
2288
2289 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2290 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2291
2292 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2293 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2294 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2295 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2296 }
2297 }
2298}
2299
2300static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2301{
2302 unsigned int err_mask;
2303
2304 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2305 ata_dev_warn(dev,
2306 "NCQ Non-Data Log not supported\n");
2307 return;
2308 }
2309 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2310 0, dev->sector_buf, 1);
2311 if (!err_mask)
2312 memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2313 ATA_LOG_NCQ_NON_DATA_SIZE);
2314}
2315
2316static void ata_dev_config_ncq_prio(struct ata_device *dev)
2317{
2318 unsigned int err_mask;
2319
2320 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2321 return;
2322
2323 err_mask = ata_read_log_page(dev,
2324 ATA_LOG_IDENTIFY_DEVICE,
2325 ATA_LOG_SATA_SETTINGS,
2326 dev->sector_buf, 1);
2327 if (err_mask)
2328 goto not_supported;
2329
2330 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2331 goto not_supported;
2332
2333 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2334
2335 return;
2336
2337not_supported:
2338 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2339 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2340}
2341
2342static bool ata_dev_check_adapter(struct ata_device *dev,
2343 unsigned short vendor_id)
2344{
2345 struct pci_dev *pcidev = NULL;
2346 struct device *parent_dev = NULL;
2347
2348 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2349 parent_dev = parent_dev->parent) {
2350 if (dev_is_pci(parent_dev)) {
2351 pcidev = to_pci_dev(parent_dev);
2352 if (pcidev->vendor == vendor_id)
2353 return true;
2354 break;
2355 }
2356 }
2357
2358 return false;
2359}
2360
2361static int ata_dev_config_ncq(struct ata_device *dev,
2362 char *desc, size_t desc_sz)
2363{
2364 struct ata_port *ap = dev->link->ap;
2365 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2366 unsigned int err_mask;
2367 char *aa_desc = "";
2368
2369 if (!ata_id_has_ncq(dev->id)) {
2370 desc[0] = '\0';
2371 return 0;
2372 }
2373 if (!IS_ENABLED(CONFIG_SATA_HOST))
2374 return 0;
2375 if (dev->quirks & ATA_QUIRK_NONCQ) {
2376 snprintf(desc, desc_sz, "NCQ (not used)");
2377 return 0;
2378 }
2379
2380 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2381 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2382 snprintf(desc, desc_sz, "NCQ (not used)");
2383 return 0;
2384 }
2385
2386 if (ap->flags & ATA_FLAG_NCQ) {
2387 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2388 dev->flags |= ATA_DFLAG_NCQ;
2389 }
2390
2391 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2392 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2393 ata_id_has_fpdma_aa(dev->id)) {
2394 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2395 SATA_FPDMA_AA);
2396 if (err_mask) {
2397 ata_dev_err(dev,
2398 "failed to enable AA (error_mask=0x%x)\n",
2399 err_mask);
2400 if (err_mask != AC_ERR_DEV) {
2401 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2402 return -EIO;
2403 }
2404 } else
2405 aa_desc = ", AA";
2406 }
2407
2408 if (hdepth >= ddepth)
2409 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2410 else
2411 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2412 ddepth, aa_desc);
2413
2414 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2415 if (ata_id_has_ncq_send_and_recv(dev->id))
2416 ata_dev_config_ncq_send_recv(dev);
2417 if (ata_id_has_ncq_non_data(dev->id))
2418 ata_dev_config_ncq_non_data(dev);
2419 if (ata_id_has_ncq_prio(dev->id))
2420 ata_dev_config_ncq_prio(dev);
2421 }
2422
2423 return 0;
2424}
2425
2426static void ata_dev_config_sense_reporting(struct ata_device *dev)
2427{
2428 unsigned int err_mask;
2429
2430 if (!ata_id_has_sense_reporting(dev->id))
2431 return;
2432
2433 if (ata_id_sense_reporting_enabled(dev->id))
2434 return;
2435
2436 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2437 if (err_mask) {
2438 ata_dev_dbg(dev,
2439 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2440 err_mask);
2441 }
2442}
2443
2444static void ata_dev_config_zac(struct ata_device *dev)
2445{
2446 unsigned int err_mask;
2447 u8 *identify_buf = dev->sector_buf;
2448
2449 dev->zac_zones_optimal_open = U32_MAX;
2450 dev->zac_zones_optimal_nonseq = U32_MAX;
2451 dev->zac_zones_max_open = U32_MAX;
2452
2453 if (!ata_dev_is_zac(dev))
2454 return;
2455
2456 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2457 ata_dev_warn(dev,
2458 "ATA Zoned Information Log not supported\n");
2459 return;
2460 }
2461
2462 /*
2463 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2464 */
2465 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2466 ATA_LOG_ZONED_INFORMATION,
2467 identify_buf, 1);
2468 if (!err_mask) {
2469 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2470
2471 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2472 if ((zoned_cap >> 63))
2473 dev->zac_zoned_cap = (zoned_cap & 1);
2474 opt_open = get_unaligned_le64(&identify_buf[24]);
2475 if ((opt_open >> 63))
2476 dev->zac_zones_optimal_open = (u32)opt_open;
2477 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2478 if ((opt_nonseq >> 63))
2479 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2480 max_open = get_unaligned_le64(&identify_buf[40]);
2481 if ((max_open >> 63))
2482 dev->zac_zones_max_open = (u32)max_open;
2483 }
2484}
2485
2486static void ata_dev_config_trusted(struct ata_device *dev)
2487{
2488 u64 trusted_cap;
2489 unsigned int err;
2490
2491 if (!ata_id_has_trusted(dev->id))
2492 return;
2493
2494 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2495 ata_dev_warn(dev,
2496 "Security Log not supported\n");
2497 return;
2498 }
2499
2500 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2501 dev->sector_buf, 1);
2502 if (err)
2503 return;
2504
2505 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2506 if (!(trusted_cap & (1ULL << 63))) {
2507 ata_dev_dbg(dev,
2508 "Trusted Computing capability qword not valid!\n");
2509 return;
2510 }
2511
2512 if (trusted_cap & (1 << 0))
2513 dev->flags |= ATA_DFLAG_TRUSTED;
2514}
2515
2516static void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2517{
2518 kfree(dev->cdl);
2519 dev->cdl = NULL;
2520}
2521
2522static int ata_dev_init_cdl_resources(struct ata_device *dev)
2523{
2524 struct ata_cdl *cdl = dev->cdl;
2525 unsigned int err_mask;
2526
2527 if (!cdl) {
2528 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2529 if (!cdl)
2530 return -ENOMEM;
2531 dev->cdl = cdl;
2532 }
2533
2534 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2535 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2536 if (err_mask) {
2537 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2538 ata_dev_cleanup_cdl_resources(dev);
2539 return -EIO;
2540 }
2541
2542 return 0;
2543}
2544
2545static void ata_dev_config_cdl(struct ata_device *dev)
2546{
2547 unsigned int err_mask;
2548 bool cdl_enabled;
2549 u64 val;
2550 int ret;
2551
2552 if (ata_id_major_version(dev->id) < 11)
2553 goto not_supported;
2554
2555 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2556 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2557 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2558 goto not_supported;
2559
2560 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2561 ATA_LOG_SUPPORTED_CAPABILITIES,
2562 dev->sector_buf, 1);
2563 if (err_mask)
2564 goto not_supported;
2565
2566 /* Check Command Duration Limit Supported bits */
2567 val = get_unaligned_le64(&dev->sector_buf[168]);
2568 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2569 goto not_supported;
2570
2571 /* Warn the user if command duration guideline is not supported */
2572 if (!(val & BIT_ULL(1)))
2573 ata_dev_warn(dev,
2574 "Command duration guideline is not supported\n");
2575
2576 /*
2577 * We must have support for the sense data for successful NCQ commands
2578 * log indicated by the successful NCQ command sense data supported bit.
2579 */
2580 val = get_unaligned_le64(&dev->sector_buf[8]);
2581 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2582 ata_dev_warn(dev,
2583 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2584 goto not_supported;
2585 }
2586
2587 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2588 if (!ata_id_has_ncq_autosense(dev->id)) {
2589 ata_dev_warn(dev,
2590 "CDL supported but NCQ autosense is not supported\n");
2591 goto not_supported;
2592 }
2593
2594 /*
2595 * If CDL is marked as enabled, make sure the feature is enabled too.
2596 * Conversely, if CDL is disabled, make sure the feature is turned off.
2597 */
2598 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2599 ATA_LOG_CURRENT_SETTINGS,
2600 dev->sector_buf, 1);
2601 if (err_mask)
2602 goto not_supported;
2603
2604 val = get_unaligned_le64(&dev->sector_buf[8]);
2605 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2606 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2607 if (!cdl_enabled) {
2608 /* Enable CDL on the device */
2609 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2610 if (err_mask) {
2611 ata_dev_err(dev,
2612 "Enable CDL feature failed\n");
2613 goto not_supported;
2614 }
2615 }
2616 } else {
2617 if (cdl_enabled) {
2618 /* Disable CDL on the device */
2619 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2620 if (err_mask) {
2621 ata_dev_err(dev,
2622 "Disable CDL feature failed\n");
2623 goto not_supported;
2624 }
2625 }
2626 }
2627
2628 /*
2629 * While CDL itself has to be enabled using sysfs, CDL requires that
2630 * sense data for successful NCQ commands is enabled to work properly.
2631 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2632 * if supported.
2633 */
2634 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2635 err_mask = ata_dev_set_feature(dev,
2636 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2637 if (err_mask) {
2638 ata_dev_warn(dev,
2639 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2640 err_mask);
2641 goto not_supported;
2642 }
2643 }
2644
2645 /* CDL is supported: allocate and initialize needed resources. */
2646 ret = ata_dev_init_cdl_resources(dev);
2647 if (ret) {
2648 ata_dev_warn(dev, "Initialize CDL resources failed\n");
2649 goto not_supported;
2650 }
2651
2652 dev->flags |= ATA_DFLAG_CDL;
2653
2654 return;
2655
2656not_supported:
2657 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2658 ata_dev_cleanup_cdl_resources(dev);
2659}
2660
2661static int ata_dev_config_lba(struct ata_device *dev)
2662{
2663 const u16 *id = dev->id;
2664 const char *lba_desc;
2665 char ncq_desc[32];
2666 int ret;
2667
2668 dev->flags |= ATA_DFLAG_LBA;
2669
2670 if (ata_id_has_lba48(id)) {
2671 lba_desc = "LBA48";
2672 dev->flags |= ATA_DFLAG_LBA48;
2673 if (dev->n_sectors >= (1UL << 28) &&
2674 ata_id_has_flush_ext(id))
2675 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2676 } else {
2677 lba_desc = "LBA";
2678 }
2679
2680 /* config NCQ */
2681 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2682
2683 /* print device info to dmesg */
2684 if (ata_dev_print_info(dev))
2685 ata_dev_info(dev,
2686 "%llu sectors, multi %u: %s %s\n",
2687 (unsigned long long)dev->n_sectors,
2688 dev->multi_count, lba_desc, ncq_desc);
2689
2690 return ret;
2691}
2692
2693static void ata_dev_config_chs(struct ata_device *dev)
2694{
2695 const u16 *id = dev->id;
2696
2697 if (ata_id_current_chs_valid(id)) {
2698 /* Current CHS translation is valid. */
2699 dev->cylinders = id[54];
2700 dev->heads = id[55];
2701 dev->sectors = id[56];
2702 } else {
2703 /* Default translation */
2704 dev->cylinders = id[1];
2705 dev->heads = id[3];
2706 dev->sectors = id[6];
2707 }
2708
2709 /* print device info to dmesg */
2710 if (ata_dev_print_info(dev))
2711 ata_dev_info(dev,
2712 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2713 (unsigned long long)dev->n_sectors,
2714 dev->multi_count, dev->cylinders,
2715 dev->heads, dev->sectors);
2716}
2717
2718static void ata_dev_config_fua(struct ata_device *dev)
2719{
2720 /* Ignore FUA support if its use is disabled globally */
2721 if (!libata_fua)
2722 goto nofua;
2723
2724 /* Ignore devices without support for WRITE DMA FUA EXT */
2725 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2726 goto nofua;
2727
2728 /* Ignore known bad devices and devices that lack NCQ support */
2729 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2730 goto nofua;
2731
2732 dev->flags |= ATA_DFLAG_FUA;
2733
2734 return;
2735
2736nofua:
2737 dev->flags &= ~ATA_DFLAG_FUA;
2738}
2739
2740static void ata_dev_config_devslp(struct ata_device *dev)
2741{
2742 u8 *sata_setting = dev->sector_buf;
2743 unsigned int err_mask;
2744 int i, j;
2745
2746 /*
2747 * Check device sleep capability. Get DevSlp timing variables
2748 * from SATA Settings page of Identify Device Data Log.
2749 */
2750 if (!ata_id_has_devslp(dev->id) ||
2751 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2752 return;
2753
2754 err_mask = ata_read_log_page(dev,
2755 ATA_LOG_IDENTIFY_DEVICE,
2756 ATA_LOG_SATA_SETTINGS,
2757 sata_setting, 1);
2758 if (err_mask)
2759 return;
2760
2761 dev->flags |= ATA_DFLAG_DEVSLP;
2762 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2763 j = ATA_LOG_DEVSLP_OFFSET + i;
2764 dev->devslp_timing[i] = sata_setting[j];
2765 }
2766}
2767
2768static void ata_dev_config_cpr(struct ata_device *dev)
2769{
2770 unsigned int err_mask;
2771 size_t buf_len;
2772 int i, nr_cpr = 0;
2773 struct ata_cpr_log *cpr_log = NULL;
2774 u8 *desc, *buf = NULL;
2775
2776 if (ata_id_major_version(dev->id) < 11)
2777 goto out;
2778
2779 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2780 if (buf_len == 0)
2781 goto out;
2782
2783 /*
2784 * Read the concurrent positioning ranges log (0x47). We can have at
2785 * most 255 32B range descriptors plus a 64B header. This log varies in
2786 * size, so use the size reported in the GPL directory. Reading beyond
2787 * the supported length will result in an error.
2788 */
2789 buf_len <<= 9;
2790 buf = kzalloc(buf_len, GFP_KERNEL);
2791 if (!buf)
2792 goto out;
2793
2794 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2795 0, buf, buf_len >> 9);
2796 if (err_mask)
2797 goto out;
2798
2799 nr_cpr = buf[0];
2800 if (!nr_cpr)
2801 goto out;
2802
2803 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2804 if (!cpr_log)
2805 goto out;
2806
2807 cpr_log->nr_cpr = nr_cpr;
2808 desc = &buf[64];
2809 for (i = 0; i < nr_cpr; i++, desc += 32) {
2810 cpr_log->cpr[i].num = desc[0];
2811 cpr_log->cpr[i].num_storage_elements = desc[1];
2812 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2813 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2814 }
2815
2816out:
2817 swap(dev->cpr_log, cpr_log);
2818 kfree(cpr_log);
2819 kfree(buf);
2820}
2821
2822/*
2823 * Configure features related to link power management.
2824 */
2825static void ata_dev_config_lpm(struct ata_device *dev)
2826{
2827 struct ata_port *ap = dev->link->ap;
2828 unsigned int err_mask;
2829
2830 if (ap->flags & ATA_FLAG_NO_LPM) {
2831 /*
2832 * When the port does not support LPM, we cannot support it on
2833 * the device either.
2834 */
2835 dev->quirks |= ATA_QUIRK_NOLPM;
2836 } else {
2837 /*
2838 * Some WD SATA-1 drives have issues with LPM, turn on NOLPM for
2839 * them.
2840 */
2841 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2842 (dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2843 dev->quirks |= ATA_QUIRK_NOLPM;
2844
2845 /* ATI specific quirk */
2846 if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) &&
2847 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2848 dev->quirks |= ATA_QUIRK_NOLPM;
2849 }
2850
2851 if (dev->quirks & ATA_QUIRK_NOLPM &&
2852 ap->target_lpm_policy != ATA_LPM_MAX_POWER) {
2853 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2854 ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2855 }
2856
2857 /*
2858 * Device Initiated Power Management (DIPM) is normally disabled by
2859 * default on a device. However, DIPM may have been enabled and that
2860 * setting kept even after COMRESET because of the Software Settings
2861 * Preservation feature. So if the port does not support DIPM and the
2862 * device does, disable DIPM on the device.
2863 */
2864 if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) {
2865 err_mask = ata_dev_set_feature(dev,
2866 SETFEATURES_SATA_DISABLE, SATA_DIPM);
2867 if (err_mask && err_mask != AC_ERR_DEV)
2868 ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n",
2869 err_mask);
2870 }
2871}
2872
2873static void ata_dev_print_features(struct ata_device *dev)
2874{
2875 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2876 return;
2877
2878 ata_dev_info(dev,
2879 "Features:%s%s%s%s%s%s%s%s%s%s\n",
2880 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2881 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2882 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2883 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2884 ata_id_has_hipm(dev->id) ? " HIPM" : "",
2885 ata_id_has_dipm(dev->id) ? " DIPM" : "",
2886 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2887 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2888 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2889 dev->cpr_log ? " CPR" : "");
2890}
2891
2892/**
2893 * ata_dev_configure - Configure the specified ATA/ATAPI device
2894 * @dev: Target device to configure
2895 *
2896 * Configure @dev according to @dev->id. Generic and low-level
2897 * driver specific fixups are also applied.
2898 *
2899 * LOCKING:
2900 * Kernel thread context (may sleep)
2901 *
2902 * RETURNS:
2903 * 0 on success, -errno otherwise
2904 */
2905int ata_dev_configure(struct ata_device *dev)
2906{
2907 struct ata_port *ap = dev->link->ap;
2908 bool print_info = ata_dev_print_info(dev);
2909 const u16 *id = dev->id;
2910 unsigned int xfer_mask;
2911 unsigned int err_mask;
2912 char revbuf[7]; /* XYZ-99\0 */
2913 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2914 char modelbuf[ATA_ID_PROD_LEN+1];
2915 int rc;
2916
2917 if (!ata_dev_enabled(dev)) {
2918 ata_dev_dbg(dev, "no device\n");
2919 return 0;
2920 }
2921
2922 /* Clear the general purpose log directory cache. */
2923 ata_clear_log_directory(dev);
2924
2925 /* Set quirks */
2926 dev->quirks |= ata_dev_quirks(dev);
2927 ata_force_quirks(dev);
2928
2929 if (dev->quirks & ATA_QUIRK_DISABLE) {
2930 ata_dev_info(dev, "unsupported device, disabling\n");
2931 ata_dev_disable(dev);
2932 return 0;
2933 }
2934
2935 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2936 dev->class == ATA_DEV_ATAPI) {
2937 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2938 atapi_enabled ? "not supported with this driver"
2939 : "disabled");
2940 ata_dev_disable(dev);
2941 return 0;
2942 }
2943
2944 rc = ata_do_link_spd_quirk(dev);
2945 if (rc)
2946 return rc;
2947
2948 /* let ACPI work its magic */
2949 rc = ata_acpi_on_devcfg(dev);
2950 if (rc)
2951 return rc;
2952
2953 /* massage HPA, do it early as it might change IDENTIFY data */
2954 rc = ata_hpa_resize(dev);
2955 if (rc)
2956 return rc;
2957
2958 /* print device capabilities */
2959 ata_dev_dbg(dev,
2960 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2961 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2962 __func__,
2963 id[49], id[82], id[83], id[84],
2964 id[85], id[86], id[87], id[88]);
2965
2966 /* initialize to-be-configured parameters */
2967 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2968 dev->max_sectors = 0;
2969 dev->cdb_len = 0;
2970 dev->n_sectors = 0;
2971 dev->cylinders = 0;
2972 dev->heads = 0;
2973 dev->sectors = 0;
2974 dev->multi_count = 0;
2975
2976 /*
2977 * common ATA, ATAPI feature tests
2978 */
2979
2980 /* find max transfer mode; for printk only */
2981 xfer_mask = ata_id_xfermask(id);
2982
2983 ata_dump_id(dev, id);
2984
2985 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2986 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2987 sizeof(fwrevbuf));
2988
2989 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2990 sizeof(modelbuf));
2991
2992 /* ATA-specific feature tests */
2993 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2994 if (ata_id_is_cfa(id)) {
2995 /* CPRM may make this media unusable */
2996 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2997 ata_dev_warn(dev,
2998 "supports DRM functions and may not be fully accessible\n");
2999 snprintf(revbuf, 7, "CFA");
3000 } else {
3001 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
3002 /* Warn the user if the device has TPM extensions */
3003 if (ata_id_has_tpm(id))
3004 ata_dev_warn(dev,
3005 "supports DRM functions and may not be fully accessible\n");
3006 }
3007
3008 dev->n_sectors = ata_id_n_sectors(id);
3009 if (ata_id_is_locked(id)) {
3010 /*
3011 * If Security locked, set capacity to zero to prevent
3012 * any I/O, e.g. partition scanning, as any I/O to a
3013 * locked drive will result in user visible errors.
3014 */
3015 ata_dev_info(dev,
3016 "Security locked, setting capacity to zero\n");
3017 dev->n_sectors = 0;
3018 }
3019
3020 /* get current R/W Multiple count setting */
3021 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
3022 unsigned int max = dev->id[47] & 0xff;
3023 unsigned int cnt = dev->id[59] & 0xff;
3024 /* only recognize/allow powers of two here */
3025 if (is_power_of_2(max) && is_power_of_2(cnt))
3026 if (cnt <= max)
3027 dev->multi_count = cnt;
3028 }
3029
3030 /* print device info to dmesg */
3031 if (print_info)
3032 ata_dev_info(dev, "%s: %s, %s, max %s\n",
3033 revbuf, modelbuf, fwrevbuf,
3034 ata_mode_string(xfer_mask));
3035
3036 if (ata_id_has_lba(id)) {
3037 rc = ata_dev_config_lba(dev);
3038 if (rc)
3039 return rc;
3040 } else {
3041 ata_dev_config_chs(dev);
3042 }
3043
3044 ata_dev_config_lpm(dev);
3045 ata_dev_config_fua(dev);
3046 ata_dev_config_devslp(dev);
3047 ata_dev_config_sense_reporting(dev);
3048 ata_dev_config_zac(dev);
3049 ata_dev_config_trusted(dev);
3050 ata_dev_config_cpr(dev);
3051 ata_dev_config_cdl(dev);
3052 dev->cdb_len = 32;
3053
3054 if (print_info)
3055 ata_dev_print_features(dev);
3056 }
3057
3058 /* ATAPI-specific feature tests */
3059 else if (dev->class == ATA_DEV_ATAPI) {
3060 const char *cdb_intr_string = "";
3061 const char *atapi_an_string = "";
3062 const char *dma_dir_string = "";
3063 u32 sntf;
3064
3065 rc = atapi_cdb_len(id);
3066 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3067 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3068 rc = -EINVAL;
3069 goto err_out_nosup;
3070 }
3071 dev->cdb_len = (unsigned int) rc;
3072
3073 /* Enable ATAPI AN if both the host and device have
3074 * the support. If PMP is attached, SNTF is required
3075 * to enable ATAPI AN to discern between PHY status
3076 * changed notifications and ATAPI ANs.
3077 */
3078 if (atapi_an &&
3079 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3080 (!sata_pmp_attached(ap) ||
3081 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3082 /* issue SET feature command to turn this on */
3083 err_mask = ata_dev_set_feature(dev,
3084 SETFEATURES_SATA_ENABLE, SATA_AN);
3085 if (err_mask)
3086 ata_dev_err(dev,
3087 "failed to enable ATAPI AN (err_mask=0x%x)\n",
3088 err_mask);
3089 else {
3090 dev->flags |= ATA_DFLAG_AN;
3091 atapi_an_string = ", ATAPI AN";
3092 }
3093 }
3094
3095 if (ata_id_cdb_intr(dev->id)) {
3096 dev->flags |= ATA_DFLAG_CDB_INTR;
3097 cdb_intr_string = ", CDB intr";
3098 }
3099
3100 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3101 atapi_id_dmadir(dev->id)) {
3102 dev->flags |= ATA_DFLAG_DMADIR;
3103 dma_dir_string = ", DMADIR";
3104 }
3105
3106 if (ata_id_has_da(dev->id)) {
3107 dev->flags |= ATA_DFLAG_DA;
3108 zpodd_init(dev);
3109 }
3110
3111 /* print device info to dmesg */
3112 if (print_info)
3113 ata_dev_info(dev,
3114 "ATAPI: %s, %s, max %s%s%s%s\n",
3115 modelbuf, fwrevbuf,
3116 ata_mode_string(xfer_mask),
3117 cdb_intr_string, atapi_an_string,
3118 dma_dir_string);
3119 }
3120
3121 /* determine max_sectors */
3122 dev->max_sectors = ATA_MAX_SECTORS;
3123 if (dev->flags & ATA_DFLAG_LBA48)
3124 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3125
3126 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3127 200 sectors */
3128 if (ata_dev_knobble(dev)) {
3129 if (print_info)
3130 ata_dev_info(dev, "applying bridge limits\n");
3131 dev->udma_mask &= ATA_UDMA5;
3132 dev->max_sectors = ATA_MAX_SECTORS;
3133 }
3134
3135 if ((dev->class == ATA_DEV_ATAPI) &&
3136 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3137 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3138 dev->quirks |= ATA_QUIRK_STUCK_ERR;
3139 }
3140
3141 if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3142 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3143 dev->max_sectors);
3144
3145 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3146 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3147 dev->max_sectors);
3148
3149 if (dev->quirks & ATA_QUIRK_MAX_SEC_8191)
3150 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_8191,
3151 dev->max_sectors);
3152
3153 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3154 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3155
3156 if (ap->ops->dev_config)
3157 ap->ops->dev_config(dev);
3158
3159 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3160 /* Let the user know. We don't want to disallow opens for
3161 rescue purposes, or in case the vendor is just a blithering
3162 idiot. Do this after the dev_config call as some controllers
3163 with buggy firmware may want to avoid reporting false device
3164 bugs */
3165
3166 if (print_info) {
3167 ata_dev_warn(dev,
3168"Drive reports diagnostics failure. This may indicate a drive\n");
3169 ata_dev_warn(dev,
3170"fault or invalid emulation. Contact drive vendor for information.\n");
3171 }
3172 }
3173
3174 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3175 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3176 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3177 }
3178
3179 return 0;
3180
3181err_out_nosup:
3182 return rc;
3183}
3184
3185/**
3186 * ata_cable_40wire - return 40 wire cable type
3187 * @ap: port
3188 *
3189 * Helper method for drivers which want to hardwire 40 wire cable
3190 * detection.
3191 */
3192
3193int ata_cable_40wire(struct ata_port *ap)
3194{
3195 return ATA_CBL_PATA40;
3196}
3197EXPORT_SYMBOL_GPL(ata_cable_40wire);
3198
3199/**
3200 * ata_cable_80wire - return 80 wire cable type
3201 * @ap: port
3202 *
3203 * Helper method for drivers which want to hardwire 80 wire cable
3204 * detection.
3205 */
3206
3207int ata_cable_80wire(struct ata_port *ap)
3208{
3209 return ATA_CBL_PATA80;
3210}
3211EXPORT_SYMBOL_GPL(ata_cable_80wire);
3212
3213/**
3214 * ata_cable_unknown - return unknown PATA cable.
3215 * @ap: port
3216 *
3217 * Helper method for drivers which have no PATA cable detection.
3218 */
3219
3220int ata_cable_unknown(struct ata_port *ap)
3221{
3222 return ATA_CBL_PATA_UNK;
3223}
3224EXPORT_SYMBOL_GPL(ata_cable_unknown);
3225
3226/**
3227 * ata_cable_ignore - return ignored PATA cable.
3228 * @ap: port
3229 *
3230 * Helper method for drivers which don't use cable type to limit
3231 * transfer mode.
3232 */
3233int ata_cable_ignore(struct ata_port *ap)
3234{
3235 return ATA_CBL_PATA_IGN;
3236}
3237EXPORT_SYMBOL_GPL(ata_cable_ignore);
3238
3239/**
3240 * ata_cable_sata - return SATA cable type
3241 * @ap: port
3242 *
3243 * Helper method for drivers which have SATA cables
3244 */
3245
3246int ata_cable_sata(struct ata_port *ap)
3247{
3248 return ATA_CBL_SATA;
3249}
3250EXPORT_SYMBOL_GPL(ata_cable_sata);
3251
3252/**
3253 * sata_print_link_status - Print SATA link status
3254 * @link: SATA link to printk link status about
3255 *
3256 * This function prints link speed and status of a SATA link.
3257 *
3258 * LOCKING:
3259 * None.
3260 */
3261static void sata_print_link_status(struct ata_link *link)
3262{
3263 u32 sstatus, scontrol, tmp;
3264
3265 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3266 return;
3267 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3268 return;
3269
3270 if (ata_phys_link_online(link)) {
3271 tmp = (sstatus >> 4) & 0xf;
3272 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3273 sata_spd_string(tmp), sstatus, scontrol);
3274 } else {
3275 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3276 sstatus, scontrol);
3277 }
3278}
3279
3280/**
3281 * ata_dev_pair - return other device on cable
3282 * @adev: device
3283 *
3284 * Obtain the other device on the same cable, or if none is
3285 * present NULL is returned
3286 */
3287
3288struct ata_device *ata_dev_pair(struct ata_device *adev)
3289{
3290 struct ata_link *link = adev->link;
3291 struct ata_device *pair = &link->device[1 - adev->devno];
3292 if (!ata_dev_enabled(pair))
3293 return NULL;
3294 return pair;
3295}
3296EXPORT_SYMBOL_GPL(ata_dev_pair);
3297
3298#ifdef CONFIG_ATA_ACPI
3299/**
3300 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3301 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3302 * @cycle: cycle duration in ns
3303 *
3304 * Return matching xfer mode for @cycle. The returned mode is of
3305 * the transfer type specified by @xfer_shift. If @cycle is too
3306 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3307 * than the fastest known mode, the fasted mode is returned.
3308 *
3309 * LOCKING:
3310 * None.
3311 *
3312 * RETURNS:
3313 * Matching xfer_mode, 0xff if no match found.
3314 */
3315u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3316{
3317 u8 base_mode = 0xff, last_mode = 0xff;
3318 const struct ata_xfer_ent *ent;
3319 const struct ata_timing *t;
3320
3321 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3322 if (ent->shift == xfer_shift)
3323 base_mode = ent->base;
3324
3325 for (t = ata_timing_find_mode(base_mode);
3326 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3327 unsigned short this_cycle;
3328
3329 switch (xfer_shift) {
3330 case ATA_SHIFT_PIO:
3331 case ATA_SHIFT_MWDMA:
3332 this_cycle = t->cycle;
3333 break;
3334 case ATA_SHIFT_UDMA:
3335 this_cycle = t->udma;
3336 break;
3337 default:
3338 return 0xff;
3339 }
3340
3341 if (cycle > this_cycle)
3342 break;
3343
3344 last_mode = t->mode;
3345 }
3346
3347 return last_mode;
3348}
3349#endif
3350
3351/**
3352 * ata_down_xfermask_limit - adjust dev xfer masks downward
3353 * @dev: Device to adjust xfer masks
3354 * @sel: ATA_DNXFER_* selector
3355 *
3356 * Adjust xfer masks of @dev downward. Note that this function
3357 * does not apply the change. Invoking ata_set_mode() afterwards
3358 * will apply the limit.
3359 *
3360 * LOCKING:
3361 * Inherited from caller.
3362 *
3363 * RETURNS:
3364 * 0 on success, negative errno on failure
3365 */
3366int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3367{
3368 char buf[32];
3369 unsigned int orig_mask, xfer_mask;
3370 unsigned int pio_mask, mwdma_mask, udma_mask;
3371 int quiet, highbit;
3372
3373 quiet = !!(sel & ATA_DNXFER_QUIET);
3374 sel &= ~ATA_DNXFER_QUIET;
3375
3376 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3377 dev->mwdma_mask,
3378 dev->udma_mask);
3379 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3380
3381 switch (sel) {
3382 case ATA_DNXFER_PIO:
3383 highbit = fls(pio_mask) - 1;
3384 pio_mask &= ~(1 << highbit);
3385 break;
3386
3387 case ATA_DNXFER_DMA:
3388 if (udma_mask) {
3389 highbit = fls(udma_mask) - 1;
3390 udma_mask &= ~(1 << highbit);
3391 if (!udma_mask)
3392 return -ENOENT;
3393 } else if (mwdma_mask) {
3394 highbit = fls(mwdma_mask) - 1;
3395 mwdma_mask &= ~(1 << highbit);
3396 if (!mwdma_mask)
3397 return -ENOENT;
3398 }
3399 break;
3400
3401 case ATA_DNXFER_40C:
3402 udma_mask &= ATA_UDMA_MASK_40C;
3403 break;
3404
3405 case ATA_DNXFER_FORCE_PIO0:
3406 pio_mask &= 1;
3407 fallthrough;
3408 case ATA_DNXFER_FORCE_PIO:
3409 mwdma_mask = 0;
3410 udma_mask = 0;
3411 break;
3412
3413 default:
3414 BUG();
3415 }
3416
3417 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3418
3419 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3420 return -ENOENT;
3421
3422 if (!quiet) {
3423 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3424 snprintf(buf, sizeof(buf), "%s:%s",
3425 ata_mode_string(xfer_mask),
3426 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3427 else
3428 snprintf(buf, sizeof(buf), "%s",
3429 ata_mode_string(xfer_mask));
3430
3431 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3432 }
3433
3434 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3435 &dev->udma_mask);
3436
3437 return 0;
3438}
3439
3440static int ata_dev_set_mode(struct ata_device *dev)
3441{
3442 struct ata_port *ap = dev->link->ap;
3443 struct ata_eh_context *ehc = &dev->link->eh_context;
3444 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3445 const char *dev_err_whine = "";
3446 int ign_dev_err = 0;
3447 unsigned int err_mask = 0;
3448 int rc;
3449
3450 dev->flags &= ~ATA_DFLAG_PIO;
3451 if (dev->xfer_shift == ATA_SHIFT_PIO)
3452 dev->flags |= ATA_DFLAG_PIO;
3453
3454 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3455 dev_err_whine = " (SET_XFERMODE skipped)";
3456 else {
3457 if (nosetxfer)
3458 ata_dev_warn(dev,
3459 "NOSETXFER but PATA detected - can't "
3460 "skip SETXFER, might malfunction\n");
3461 err_mask = ata_dev_set_xfermode(dev);
3462 }
3463
3464 if (err_mask & ~AC_ERR_DEV)
3465 goto fail;
3466
3467 /* revalidate */
3468 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3469 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3470 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3471 if (rc)
3472 return rc;
3473
3474 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3475 /* Old CFA may refuse this command, which is just fine */
3476 if (ata_id_is_cfa(dev->id))
3477 ign_dev_err = 1;
3478 /* Catch several broken garbage emulations plus some pre
3479 ATA devices */
3480 if (ata_id_major_version(dev->id) == 0 &&
3481 dev->pio_mode <= XFER_PIO_2)
3482 ign_dev_err = 1;
3483 /* Some very old devices and some bad newer ones fail
3484 any kind of SET_XFERMODE request but support PIO0-2
3485 timings and no IORDY */
3486 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3487 ign_dev_err = 1;
3488 }
3489 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3490 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3491 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3492 dev->dma_mode == XFER_MW_DMA_0 &&
3493 (dev->id[63] >> 8) & 1)
3494 ign_dev_err = 1;
3495
3496 /* if the device is actually configured correctly, ignore dev err */
3497 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3498 ign_dev_err = 1;
3499
3500 if (err_mask & AC_ERR_DEV) {
3501 if (!ign_dev_err)
3502 goto fail;
3503 else
3504 dev_err_whine = " (device error ignored)";
3505 }
3506
3507 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3508 dev->xfer_shift, (int)dev->xfer_mode);
3509
3510 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3511 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3512 ata_dev_info(dev, "configured for %s%s\n",
3513 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3514 dev_err_whine);
3515
3516 return 0;
3517
3518 fail:
3519 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3520 return -EIO;
3521}
3522
3523/**
3524 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3525 * @link: link on which timings will be programmed
3526 * @r_failed_dev: out parameter for failed device
3527 *
3528 * Standard implementation of the function used to tune and set
3529 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3530 * ata_dev_set_mode() fails, pointer to the failing device is
3531 * returned in @r_failed_dev.
3532 *
3533 * LOCKING:
3534 * PCI/etc. bus probe sem.
3535 *
3536 * RETURNS:
3537 * 0 on success, negative errno otherwise
3538 */
3539
3540int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3541{
3542 struct ata_port *ap = link->ap;
3543 struct ata_device *dev;
3544 int rc = 0, used_dma = 0, found = 0;
3545
3546 /* step 1: calculate xfer_mask */
3547 ata_for_each_dev(dev, link, ENABLED) {
3548 unsigned int pio_mask, dma_mask;
3549 unsigned int mode_mask;
3550
3551 mode_mask = ATA_DMA_MASK_ATA;
3552 if (dev->class == ATA_DEV_ATAPI)
3553 mode_mask = ATA_DMA_MASK_ATAPI;
3554 else if (ata_id_is_cfa(dev->id))
3555 mode_mask = ATA_DMA_MASK_CFA;
3556
3557 ata_dev_xfermask(dev);
3558 ata_force_xfermask(dev);
3559
3560 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3561
3562 if (libata_dma_mask & mode_mask)
3563 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3564 dev->udma_mask);
3565 else
3566 dma_mask = 0;
3567
3568 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3569 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3570
3571 found = 1;
3572 if (ata_dma_enabled(dev))
3573 used_dma = 1;
3574 }
3575 if (!found)
3576 goto out;
3577
3578 /* step 2: always set host PIO timings */
3579 ata_for_each_dev(dev, link, ENABLED) {
3580 if (dev->pio_mode == 0xff) {
3581 ata_dev_warn(dev, "no PIO support\n");
3582 rc = -EINVAL;
3583 goto out;
3584 }
3585
3586 dev->xfer_mode = dev->pio_mode;
3587 dev->xfer_shift = ATA_SHIFT_PIO;
3588 if (ap->ops->set_piomode)
3589 ap->ops->set_piomode(ap, dev);
3590 }
3591
3592 /* step 3: set host DMA timings */
3593 ata_for_each_dev(dev, link, ENABLED) {
3594 if (!ata_dma_enabled(dev))
3595 continue;
3596
3597 dev->xfer_mode = dev->dma_mode;
3598 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3599 if (ap->ops->set_dmamode)
3600 ap->ops->set_dmamode(ap, dev);
3601 }
3602
3603 /* step 4: update devices' xfer mode */
3604 ata_for_each_dev(dev, link, ENABLED) {
3605 rc = ata_dev_set_mode(dev);
3606 if (rc)
3607 goto out;
3608 }
3609
3610 /* Record simplex status. If we selected DMA then the other
3611 * host channels are not permitted to do so.
3612 */
3613 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3614 ap->host->simplex_claimed = ap;
3615
3616 out:
3617 if (rc)
3618 *r_failed_dev = dev;
3619 return rc;
3620}
3621EXPORT_SYMBOL_GPL(ata_set_mode);
3622
3623/**
3624 * ata_wait_ready - wait for link to become ready
3625 * @link: link to be waited on
3626 * @deadline: deadline jiffies for the operation
3627 * @check_ready: callback to check link readiness
3628 *
3629 * Wait for @link to become ready. @check_ready should return
3630 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3631 * link doesn't seem to be occupied, other errno for other error
3632 * conditions.
3633 *
3634 * Transient -ENODEV conditions are allowed for
3635 * ATA_TMOUT_FF_WAIT.
3636 *
3637 * LOCKING:
3638 * EH context.
3639 *
3640 * RETURNS:
3641 * 0 if @link is ready before @deadline; otherwise, -errno.
3642 */
3643int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3644 int (*check_ready)(struct ata_link *link))
3645{
3646 unsigned long start = jiffies;
3647 unsigned long nodev_deadline;
3648 int warned = 0;
3649
3650 /* choose which 0xff timeout to use, read comment in libata.h */
3651 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3652 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3653 else
3654 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3655
3656 /* Slave readiness can't be tested separately from master. On
3657 * M/S emulation configuration, this function should be called
3658 * only on the master and it will handle both master and slave.
3659 */
3660 WARN_ON(link == link->ap->slave_link);
3661
3662 if (time_after(nodev_deadline, deadline))
3663 nodev_deadline = deadline;
3664
3665 while (1) {
3666 unsigned long now = jiffies;
3667 int ready, tmp;
3668
3669 ready = tmp = check_ready(link);
3670 if (ready > 0)
3671 return 0;
3672
3673 /*
3674 * -ENODEV could be transient. Ignore -ENODEV if link
3675 * is online. Also, some SATA devices take a long
3676 * time to clear 0xff after reset. Wait for
3677 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3678 * offline.
3679 *
3680 * Note that some PATA controllers (pata_ali) explode
3681 * if status register is read more than once when
3682 * there's no device attached.
3683 */
3684 if (ready == -ENODEV) {
3685 if (ata_link_online(link))
3686 ready = 0;
3687 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3688 !ata_link_offline(link) &&
3689 time_before(now, nodev_deadline))
3690 ready = 0;
3691 }
3692
3693 if (ready)
3694 return ready;
3695 if (time_after(now, deadline))
3696 return -EBUSY;
3697
3698 if (!warned && time_after(now, start + 5 * HZ) &&
3699 (deadline - now > 3 * HZ)) {
3700 ata_link_warn(link,
3701 "link is slow to respond, please be patient "
3702 "(ready=%d)\n", tmp);
3703 warned = 1;
3704 }
3705
3706 ata_msleep(link->ap, 50);
3707 }
3708}
3709
3710/**
3711 * ata_wait_after_reset - wait for link to become ready after reset
3712 * @link: link to be waited on
3713 * @deadline: deadline jiffies for the operation
3714 * @check_ready: callback to check link readiness
3715 *
3716 * Wait for @link to become ready after reset.
3717 *
3718 * LOCKING:
3719 * EH context.
3720 *
3721 * RETURNS:
3722 * 0 if @link is ready before @deadline; otherwise, -errno.
3723 */
3724int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3725 int (*check_ready)(struct ata_link *link))
3726{
3727 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3728
3729 return ata_wait_ready(link, deadline, check_ready);
3730}
3731EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3732
3733/**
3734 * ata_std_prereset - prepare for reset
3735 * @link: ATA link to be reset
3736 * @deadline: deadline jiffies for the operation
3737 *
3738 * @link is about to be reset. Initialize it. Failure from
3739 * prereset makes libata abort whole reset sequence and give up
3740 * that port, so prereset should be best-effort. It does its
3741 * best to prepare for reset sequence but if things go wrong, it
3742 * should just whine, not fail.
3743 *
3744 * LOCKING:
3745 * Kernel thread context (may sleep)
3746 *
3747 * RETURNS:
3748 * Always 0.
3749 */
3750int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3751{
3752 struct ata_port *ap = link->ap;
3753 struct ata_eh_context *ehc = &link->eh_context;
3754 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3755 int rc;
3756
3757 /* if we're about to do hardreset, nothing more to do */
3758 if (ehc->i.action & ATA_EH_HARDRESET)
3759 return 0;
3760
3761 /* if SATA, resume link */
3762 if (ap->flags & ATA_FLAG_SATA) {
3763 rc = sata_link_resume(link, timing, deadline);
3764 /* whine about phy resume failure but proceed */
3765 if (rc && rc != -EOPNOTSUPP)
3766 ata_link_warn(link,
3767 "failed to resume link for reset (errno=%d)\n",
3768 rc);
3769 }
3770
3771 /* no point in trying softreset on offline link */
3772 if (ata_phys_link_offline(link))
3773 ehc->i.action &= ~ATA_EH_SOFTRESET;
3774
3775 return 0;
3776}
3777EXPORT_SYMBOL_GPL(ata_std_prereset);
3778
3779/**
3780 * ata_std_postreset - standard postreset callback
3781 * @link: the target ata_link
3782 * @classes: classes of attached devices
3783 *
3784 * This function is invoked after a successful reset. Note that
3785 * the device might have been reset more than once using
3786 * different reset methods before postreset is invoked.
3787 *
3788 * LOCKING:
3789 * Kernel thread context (may sleep)
3790 */
3791void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3792{
3793 u32 serror;
3794
3795 /* reset complete, clear SError */
3796 if (!sata_scr_read(link, SCR_ERROR, &serror))
3797 sata_scr_write(link, SCR_ERROR, serror);
3798
3799 /* print link status */
3800 sata_print_link_status(link);
3801}
3802EXPORT_SYMBOL_GPL(ata_std_postreset);
3803
3804/**
3805 * ata_dev_same_device - Determine whether new ID matches configured device
3806 * @dev: device to compare against
3807 * @new_class: class of the new device
3808 * @new_id: IDENTIFY page of the new device
3809 *
3810 * Compare @new_class and @new_id against @dev and determine
3811 * whether @dev is the device indicated by @new_class and
3812 * @new_id.
3813 *
3814 * LOCKING:
3815 * None.
3816 *
3817 * RETURNS:
3818 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3819 */
3820static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3821 const u16 *new_id)
3822{
3823 const u16 *old_id = dev->id;
3824 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3825 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3826
3827 if (dev->class != new_class) {
3828 ata_dev_info(dev, "class mismatch %d != %d\n",
3829 dev->class, new_class);
3830 return 0;
3831 }
3832
3833 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3834 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3835 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3836 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3837
3838 if (strcmp(model[0], model[1])) {
3839 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3840 model[0], model[1]);
3841 return 0;
3842 }
3843
3844 if (strcmp(serial[0], serial[1])) {
3845 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3846 serial[0], serial[1]);
3847 return 0;
3848 }
3849
3850 return 1;
3851}
3852
3853/**
3854 * ata_dev_reread_id - Re-read IDENTIFY data
3855 * @dev: target ATA device
3856 * @readid_flags: read ID flags
3857 *
3858 * Re-read IDENTIFY page and make sure @dev is still attached to
3859 * the port.
3860 *
3861 * LOCKING:
3862 * Kernel thread context (may sleep)
3863 *
3864 * RETURNS:
3865 * 0 on success, negative errno otherwise
3866 */
3867int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3868{
3869 unsigned int class = dev->class;
3870 u16 *id = (void *)dev->sector_buf;
3871 int rc;
3872
3873 /* read ID data */
3874 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3875 if (rc)
3876 return rc;
3877
3878 /* is the device still there? */
3879 if (!ata_dev_same_device(dev, class, id))
3880 return -ENODEV;
3881
3882 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3883 return 0;
3884}
3885
3886/**
3887 * ata_dev_revalidate - Revalidate ATA device
3888 * @dev: device to revalidate
3889 * @new_class: new class code
3890 * @readid_flags: read ID flags
3891 *
3892 * Re-read IDENTIFY page, make sure @dev is still attached to the
3893 * port and reconfigure it according to the new IDENTIFY page.
3894 *
3895 * LOCKING:
3896 * Kernel thread context (may sleep)
3897 *
3898 * RETURNS:
3899 * 0 on success, negative errno otherwise
3900 */
3901int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3902 unsigned int readid_flags)
3903{
3904 u64 n_sectors = dev->n_sectors;
3905 u64 n_native_sectors = dev->n_native_sectors;
3906 int rc;
3907
3908 if (!ata_dev_enabled(dev))
3909 return -ENODEV;
3910
3911 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3912 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3913 ata_dev_info(dev, "class mismatch %u != %u\n",
3914 dev->class, new_class);
3915 rc = -ENODEV;
3916 goto fail;
3917 }
3918
3919 /* re-read ID */
3920 rc = ata_dev_reread_id(dev, readid_flags);
3921 if (rc)
3922 goto fail;
3923
3924 /* configure device according to the new ID */
3925 rc = ata_dev_configure(dev);
3926 if (rc)
3927 goto fail;
3928
3929 /* verify n_sectors hasn't changed */
3930 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3931 dev->n_sectors == n_sectors)
3932 return 0;
3933
3934 /* n_sectors has changed */
3935 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3936 (unsigned long long)n_sectors,
3937 (unsigned long long)dev->n_sectors);
3938
3939 /*
3940 * Something could have caused HPA to be unlocked
3941 * involuntarily. If n_native_sectors hasn't changed and the
3942 * new size matches it, keep the device.
3943 */
3944 if (dev->n_native_sectors == n_native_sectors &&
3945 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3946 ata_dev_warn(dev,
3947 "new n_sectors matches native, probably "
3948 "late HPA unlock, n_sectors updated\n");
3949 /* use the larger n_sectors */
3950 return 0;
3951 }
3952
3953 /*
3954 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3955 * unlocking HPA in those cases.
3956 *
3957 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3958 */
3959 if (dev->n_native_sectors == n_native_sectors &&
3960 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3961 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3962 ata_dev_warn(dev,
3963 "old n_sectors matches native, probably "
3964 "late HPA lock, will try to unlock HPA\n");
3965 /* try unlocking HPA */
3966 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3967 rc = -EIO;
3968 } else
3969 rc = -ENODEV;
3970
3971 /* restore original n_[native_]sectors and fail */
3972 dev->n_native_sectors = n_native_sectors;
3973 dev->n_sectors = n_sectors;
3974 fail:
3975 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3976 return rc;
3977}
3978
3979static const char * const ata_quirk_names[] = {
3980 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic",
3981 [__ATA_QUIRK_NODMA] = "nodma",
3982 [__ATA_QUIRK_NONCQ] = "noncq",
3983 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128",
3984 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa",
3985 [__ATA_QUIRK_DISABLE] = "disable",
3986 [__ATA_QUIRK_HPA_SIZE] = "hpasize",
3987 [__ATA_QUIRK_IVB] = "ivb",
3988 [__ATA_QUIRK_STUCK_ERR] = "stuckerr",
3989 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok",
3990 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma",
3991 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn",
3992 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps",
3993 [__ATA_QUIRK_NOSETXFER] = "nosetxfer",
3994 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa",
3995 [__ATA_QUIRK_DUMP_ID] = "dumpid",
3996 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48",
3997 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir",
3998 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim",
3999 [__ATA_QUIRK_NOLPM] = "nolpm",
4000 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm",
4001 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim",
4002 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog",
4003 [__ATA_QUIRK_NOTRIM] = "notrim",
4004 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024",
4005 [__ATA_QUIRK_MAX_SEC_8191] = "maxsec8191",
4006 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m",
4007 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati",
4008 [__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati",
4009 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog",
4010 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir",
4011 [__ATA_QUIRK_NO_FUA] = "nofua",
4012};
4013
4014static void ata_dev_print_quirks(const struct ata_device *dev,
4015 const char *model, const char *rev,
4016 unsigned int quirks)
4017{
4018 struct ata_eh_context *ehc = &dev->link->eh_context;
4019 int n = 0, i;
4020 size_t sz;
4021 char *str;
4022
4023 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
4024 return;
4025
4026 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
4027
4028 if (!quirks)
4029 return;
4030
4031 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
4032 str = kmalloc(sz, GFP_KERNEL);
4033 if (!str)
4034 return;
4035
4036 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
4037 model, rev);
4038
4039 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
4040 if (quirks & (1U << i))
4041 n += snprintf(str + n, sz - n,
4042 " %s", ata_quirk_names[i]);
4043 }
4044
4045 ata_dev_warn(dev, "%s\n", str);
4046
4047 kfree(str);
4048}
4049
4050struct ata_dev_quirks_entry {
4051 const char *model_num;
4052 const char *model_rev;
4053 unsigned int quirks;
4054};
4055
4056static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
4057 /* Devices with DMA related problems under Linux */
4058 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA },
4059 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA },
4060 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA },
4061 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA },
4062 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA },
4063 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA },
4064 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA },
4065 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA },
4066 { "CRD-8400B", NULL, ATA_QUIRK_NODMA },
4067 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA },
4068 { "CRD-84", NULL, ATA_QUIRK_NODMA },
4069 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA },
4070 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA },
4071 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA },
4072 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA },
4073 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA },
4074 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA },
4075 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA },
4076 { "CD-532E-A", NULL, ATA_QUIRK_NODMA },
4077 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA },
4078 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA },
4079 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA },
4080 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA },
4081 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA },
4082 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4083 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA },
4084 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA },
4085 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA },
4086 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA },
4087 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA },
4088 /* Odd clown on sil3726/4726 PMPs */
4089 { "Config Disk", NULL, ATA_QUIRK_DISABLE },
4090 /* Similar story with ASMedia 1092 */
4091 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE },
4092
4093 /* Weird ATAPI devices */
4094 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 },
4095 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA },
4096 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4097 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4098
4099 /*
4100 * Causes silent data corruption with higher max sects.
4101 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4102 */
4103 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 },
4104
4105 /*
4106 * These devices time out with higher max sects.
4107 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4108 */
4109 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 },
4110 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 },
4111
4112 /*
4113 * These devices time out with higher max sects.
4114 * https://bugzilla.kernel.org/show_bug.cgi?id=220693
4115 */
4116 { "DELLBOSS VD", "MV.R00-0", ATA_QUIRK_MAX_SEC_8191 },
4117
4118 /* Devices we expect to fail diagnostics */
4119
4120 /* Devices where NCQ should be avoided */
4121 /* NCQ is slow */
4122 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ },
4123 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ },
4124 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4125 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ },
4126 /* NCQ is broken */
4127 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ },
4128 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ },
4129 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ },
4130 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ },
4131 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ },
4132
4133 /* Seagate NCQ + FLUSH CACHE firmware bug */
4134 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4135 ATA_QUIRK_FIRMWARE_WARN },
4136
4137 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4138 ATA_QUIRK_FIRMWARE_WARN },
4139
4140 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4141 ATA_QUIRK_FIRMWARE_WARN },
4142
4143 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4144 ATA_QUIRK_FIRMWARE_WARN },
4145
4146 /* Seagate disks with LPM issues */
4147 { "ST2000DM008-2FR102", NULL, ATA_QUIRK_NOLPM },
4148
4149 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4150 the ST disks also have LPM issues */
4151 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA |
4152 ATA_QUIRK_NOLPM },
4153 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA },
4154
4155 /* Blacklist entries taken from Silicon Image 3124/3132
4156 Windows driver .inf file - also several Linux problem reports */
4157 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ },
4158 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ },
4159 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ },
4160
4161 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4162 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ },
4163
4164 /* Sandisk SD7/8/9s lock up hard on large trims */
4165 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M },
4166
4167 /* devices which puke on READ_NATIVE_MAX */
4168 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA },
4169 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4170 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4171 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA },
4172
4173 /* this one allows HPA unlocking but fails IOs on the area */
4174 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA },
4175
4176 /* Devices which report 1 sector over size HPA */
4177 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE },
4178 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE },
4179 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE },
4180
4181 /* Devices which get the IVB wrong */
4182 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4183 /* Maybe we should just add all TSSTcorp devices... */
4184 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB },
4185
4186 /* Devices that do not need bridging limits applied */
4187 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK },
4188 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK },
4189
4190 /* Devices which aren't very happy with higher link speeds */
4191 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS },
4192 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS },
4193
4194 /*
4195 * Devices which choke on SETXFER. Applies only if both the
4196 * device and controller are SATA.
4197 */
4198 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER },
4199 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER },
4200 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER },
4201 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER },
4202 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER },
4203
4204 /* These specific Pioneer models have LPM issues */
4205 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM },
4206 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM },
4207
4208 /* Crucial devices with broken LPM support */
4209 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM },
4210
4211 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4212 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4213 ATA_QUIRK_ZERO_AFTER_TRIM |
4214 ATA_QUIRK_NOLPM },
4215 /* 512GB MX100 with newer firmware has only LPM issues */
4216 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM |
4217 ATA_QUIRK_NOLPM },
4218
4219 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4220 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4221 ATA_QUIRK_ZERO_AFTER_TRIM |
4222 ATA_QUIRK_NOLPM },
4223 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4224 ATA_QUIRK_ZERO_AFTER_TRIM |
4225 ATA_QUIRK_NOLPM },
4226
4227 /* AMD Radeon devices with broken LPM support */
4228 { "R3SL240G", NULL, ATA_QUIRK_NOLPM },
4229
4230 /* Apacer models with LPM issues */
4231 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM },
4232
4233 /* Silicon Motion models with LPM issues */
4234 { "MD619HXCLDE3TC", "TCVAID", ATA_QUIRK_NOLPM },
4235 { "MD619GXCLDE3TC", "TCV35D", ATA_QUIRK_NOLPM },
4236
4237 /* These specific Samsung models/firmware-revs do not handle LPM well */
4238 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4239 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM },
4240 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM },
4241 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4242
4243 /* devices that don't properly handle queued TRIM commands */
4244 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4245 ATA_QUIRK_ZERO_AFTER_TRIM },
4246 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4247 ATA_QUIRK_ZERO_AFTER_TRIM },
4248 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4249 ATA_QUIRK_ZERO_AFTER_TRIM },
4250 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4251 ATA_QUIRK_ZERO_AFTER_TRIM, },
4252 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4253 ATA_QUIRK_ZERO_AFTER_TRIM },
4254 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4255 ATA_QUIRK_ZERO_AFTER_TRIM },
4256 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4257 ATA_QUIRK_ZERO_AFTER_TRIM },
4258 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4259 ATA_QUIRK_NO_DMA_LOG |
4260 ATA_QUIRK_ZERO_AFTER_TRIM },
4261 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4262 ATA_QUIRK_ZERO_AFTER_TRIM },
4263 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4264 ATA_QUIRK_ZERO_AFTER_TRIM },
4265 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4266 ATA_QUIRK_ZERO_AFTER_TRIM |
4267 ATA_QUIRK_NO_NCQ_ON_ATI |
4268 ATA_QUIRK_NO_LPM_ON_ATI },
4269 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4270 ATA_QUIRK_ZERO_AFTER_TRIM |
4271 ATA_QUIRK_NO_NCQ_ON_ATI |
4272 ATA_QUIRK_NO_LPM_ON_ATI },
4273 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4274 ATA_QUIRK_ZERO_AFTER_TRIM |
4275 ATA_QUIRK_NO_NCQ_ON_ATI |
4276 ATA_QUIRK_NO_LPM_ON_ATI },
4277 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4278 ATA_QUIRK_ZERO_AFTER_TRIM },
4279
4280 /* devices that don't properly handle TRIM commands */
4281 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM },
4282 { "M88V29*", NULL, ATA_QUIRK_NOTRIM },
4283
4284 /*
4285 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4286 * (Return Zero After Trim) flags in the ATA Command Set are
4287 * unreliable in the sense that they only define what happens if
4288 * the device successfully executed the DSM TRIM command. TRIM
4289 * is only advisory, however, and the device is free to silently
4290 * ignore all or parts of the request.
4291 *
4292 * Whitelist drives that are known to reliably return zeroes
4293 * after TRIM.
4294 */
4295
4296 /*
4297 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4298 * that model before whitelisting all other intel SSDs.
4299 */
4300 { "INTEL*SSDSC2MH*", NULL, 0 },
4301
4302 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4303 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4304 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4305 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4306 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4307 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4308 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4309 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4310
4311 /*
4312 * Some WD SATA-I drives spin up and down erratically when the link
4313 * is put into the slumber mode. We don't have full list of the
4314 * affected devices. Disable LPM if the device matches one of the
4315 * known prefixes and is SATA-1. As a side effect LPM partial is
4316 * lost too.
4317 *
4318 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4319 */
4320 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4321 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4322 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4323 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4324 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4325 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4326 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4327
4328 /*
4329 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4330 * log page is accessed. Ensure we never ask for this log page with
4331 * these devices.
4332 */
4333 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR },
4334
4335 /* Buggy FUA */
4336 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA },
4337 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA },
4338 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA },
4339 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA },
4340
4341 /* End Marker */
4342 { }
4343};
4344
4345static unsigned int ata_dev_quirks(const struct ata_device *dev)
4346{
4347 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4348 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4349 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4350
4351 /* dev->quirks is an unsigned int. */
4352 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4353
4354 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4355 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4356
4357 while (ad->model_num) {
4358 if (glob_match(ad->model_num, model_num) &&
4359 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4360 ata_dev_print_quirks(dev, model_num, model_rev,
4361 ad->quirks);
4362 return ad->quirks;
4363 }
4364 ad++;
4365 }
4366 return 0;
4367}
4368
4369static bool ata_dev_nodma(const struct ata_device *dev)
4370{
4371 /*
4372 * We do not support polling DMA. Deny DMA for those ATAPI devices
4373 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4374 * the HSM_ST_LAST state.
4375 */
4376 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4377 (dev->flags & ATA_DFLAG_CDB_INTR))
4378 return true;
4379 return dev->quirks & ATA_QUIRK_NODMA;
4380}
4381
4382/**
4383 * ata_is_40wire - check drive side detection
4384 * @dev: device
4385 *
4386 * Perform drive side detection decoding, allowing for device vendors
4387 * who can't follow the documentation.
4388 */
4389
4390static int ata_is_40wire(struct ata_device *dev)
4391{
4392 if (dev->quirks & ATA_QUIRK_IVB)
4393 return ata_drive_40wire_relaxed(dev->id);
4394 return ata_drive_40wire(dev->id);
4395}
4396
4397/**
4398 * cable_is_40wire - 40/80/SATA decider
4399 * @ap: port to consider
4400 *
4401 * This function encapsulates the policy for speed management
4402 * in one place. At the moment we don't cache the result but
4403 * there is a good case for setting ap->cbl to the result when
4404 * we are called with unknown cables (and figuring out if it
4405 * impacts hotplug at all).
4406 *
4407 * Return 1 if the cable appears to be 40 wire.
4408 */
4409
4410static int cable_is_40wire(struct ata_port *ap)
4411{
4412 struct ata_link *link;
4413 struct ata_device *dev;
4414
4415 /* If the controller thinks we are 40 wire, we are. */
4416 if (ap->cbl == ATA_CBL_PATA40)
4417 return 1;
4418
4419 /* If the controller thinks we are 80 wire, we are. */
4420 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4421 return 0;
4422
4423 /* If the system is known to be 40 wire short cable (eg
4424 * laptop), then we allow 80 wire modes even if the drive
4425 * isn't sure.
4426 */
4427 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4428 return 0;
4429
4430 /* If the controller doesn't know, we scan.
4431 *
4432 * Note: We look for all 40 wire detects at this point. Any
4433 * 80 wire detect is taken to be 80 wire cable because
4434 * - in many setups only the one drive (slave if present) will
4435 * give a valid detect
4436 * - if you have a non detect capable drive you don't want it
4437 * to colour the choice
4438 */
4439 ata_for_each_link(link, ap, EDGE) {
4440 ata_for_each_dev(dev, link, ENABLED) {
4441 if (!ata_is_40wire(dev))
4442 return 0;
4443 }
4444 }
4445 return 1;
4446}
4447
4448/**
4449 * ata_dev_xfermask - Compute supported xfermask of the given device
4450 * @dev: Device to compute xfermask for
4451 *
4452 * Compute supported xfermask of @dev and store it in
4453 * dev->*_mask. This function is responsible for applying all
4454 * known limits including host controller limits, device quirks, etc...
4455 *
4456 * LOCKING:
4457 * None.
4458 */
4459static void ata_dev_xfermask(struct ata_device *dev)
4460{
4461 struct ata_link *link = dev->link;
4462 struct ata_port *ap = link->ap;
4463 struct ata_host *host = ap->host;
4464 unsigned int xfer_mask;
4465
4466 /* controller modes available */
4467 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4468 ap->mwdma_mask, ap->udma_mask);
4469
4470 /* drive modes available */
4471 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4472 dev->mwdma_mask, dev->udma_mask);
4473 xfer_mask &= ata_id_xfermask(dev->id);
4474
4475 /*
4476 * CFA Advanced TrueIDE timings are not allowed on a shared
4477 * cable
4478 */
4479 if (ata_dev_pair(dev)) {
4480 /* No PIO5 or PIO6 */
4481 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4482 /* No MWDMA3 or MWDMA 4 */
4483 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4484 }
4485
4486 if (ata_dev_nodma(dev)) {
4487 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4488 ata_dev_warn(dev,
4489 "device does not support DMA, disabling DMA\n");
4490 }
4491
4492 if ((host->flags & ATA_HOST_SIMPLEX) &&
4493 host->simplex_claimed && host->simplex_claimed != ap) {
4494 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4495 ata_dev_warn(dev,
4496 "simplex DMA is claimed by other device, disabling DMA\n");
4497 }
4498
4499 if (ap->flags & ATA_FLAG_NO_IORDY)
4500 xfer_mask &= ata_pio_mask_no_iordy(dev);
4501
4502 if (ap->ops->mode_filter)
4503 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4504
4505 /* Apply cable rule here. Don't apply it early because when
4506 * we handle hot plug the cable type can itself change.
4507 * Check this last so that we know if the transfer rate was
4508 * solely limited by the cable.
4509 * Unknown or 80 wire cables reported host side are checked
4510 * drive side as well. Cases where we know a 40wire cable
4511 * is used safely for 80 are not checked here.
4512 */
4513 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4514 /* UDMA/44 or higher would be available */
4515 if (cable_is_40wire(ap)) {
4516 ata_dev_warn(dev,
4517 "limited to UDMA/33 due to 40-wire cable\n");
4518 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4519 }
4520
4521 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4522 &dev->mwdma_mask, &dev->udma_mask);
4523}
4524
4525/**
4526 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4527 * @dev: Device to which command will be sent
4528 *
4529 * Issue SET FEATURES - XFER MODE command to device @dev
4530 * on port @ap.
4531 *
4532 * LOCKING:
4533 * PCI/etc. bus probe sem.
4534 *
4535 * RETURNS:
4536 * 0 on success, AC_ERR_* mask otherwise.
4537 */
4538
4539static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4540{
4541 struct ata_taskfile tf;
4542
4543 /* set up set-features taskfile */
4544 ata_dev_dbg(dev, "set features - xfer mode\n");
4545
4546 /* Some controllers and ATAPI devices show flaky interrupt
4547 * behavior after setting xfer mode. Use polling instead.
4548 */
4549 ata_tf_init(dev, &tf);
4550 tf.command = ATA_CMD_SET_FEATURES;
4551 tf.feature = SETFEATURES_XFER;
4552 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4553 tf.protocol = ATA_PROT_NODATA;
4554 /* If we are using IORDY we must send the mode setting command */
4555 if (ata_pio_need_iordy(dev))
4556 tf.nsect = dev->xfer_mode;
4557 /* If the device has IORDY and the controller does not - turn it off */
4558 else if (ata_id_has_iordy(dev->id))
4559 tf.nsect = 0x01;
4560 else /* In the ancient relic department - skip all of this */
4561 return 0;
4562
4563 /*
4564 * On some disks, this command causes spin-up, so we need longer
4565 * timeout.
4566 */
4567 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4568}
4569
4570/**
4571 * ata_dev_set_feature - Issue SET FEATURES
4572 * @dev: Device to which command will be sent
4573 * @subcmd: The SET FEATURES subcommand to be sent
4574 * @action: The sector count represents a subcommand specific action
4575 *
4576 * Issue SET FEATURES command to device @dev on port @ap with sector count
4577 *
4578 * LOCKING:
4579 * PCI/etc. bus probe sem.
4580 *
4581 * RETURNS:
4582 * 0 on success, AC_ERR_* mask otherwise.
4583 */
4584unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4585{
4586 struct ata_taskfile tf;
4587 unsigned int timeout = 0;
4588
4589 /* set up set-features taskfile */
4590 ata_dev_dbg(dev, "set features\n");
4591
4592 ata_tf_init(dev, &tf);
4593 tf.command = ATA_CMD_SET_FEATURES;
4594 tf.feature = subcmd;
4595 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4596 tf.protocol = ATA_PROT_NODATA;
4597 tf.nsect = action;
4598
4599 if (subcmd == SETFEATURES_SPINUP)
4600 timeout = ata_probe_timeout ?
4601 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4602
4603 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4604}
4605EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4606
4607/**
4608 * ata_dev_init_params - Issue INIT DEV PARAMS command
4609 * @dev: Device to which command will be sent
4610 * @heads: Number of heads (taskfile parameter)
4611 * @sectors: Number of sectors (taskfile parameter)
4612 *
4613 * LOCKING:
4614 * Kernel thread context (may sleep)
4615 *
4616 * RETURNS:
4617 * 0 on success, AC_ERR_* mask otherwise.
4618 */
4619static unsigned int ata_dev_init_params(struct ata_device *dev,
4620 u16 heads, u16 sectors)
4621{
4622 struct ata_taskfile tf;
4623 unsigned int err_mask;
4624
4625 /* Number of sectors per track 1-255. Number of heads 1-16 */
4626 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4627 return AC_ERR_INVALID;
4628
4629 /* set up init dev params taskfile */
4630 ata_dev_dbg(dev, "init dev params\n");
4631
4632 ata_tf_init(dev, &tf);
4633 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4634 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4635 tf.protocol = ATA_PROT_NODATA;
4636 tf.nsect = sectors;
4637 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4638
4639 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4640 /* A clean abort indicates an original or just out of spec drive
4641 and we should continue as we issue the setup based on the
4642 drive reported working geometry */
4643 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4644 err_mask = 0;
4645
4646 return err_mask;
4647}
4648
4649/**
4650 * atapi_check_dma - Check whether ATAPI DMA can be supported
4651 * @qc: Metadata associated with taskfile to check
4652 *
4653 * Allow low-level driver to filter ATA PACKET commands, returning
4654 * a status indicating whether or not it is OK to use DMA for the
4655 * supplied PACKET command.
4656 *
4657 * LOCKING:
4658 * spin_lock_irqsave(host lock)
4659 *
4660 * RETURNS: 0 when ATAPI DMA can be used
4661 * nonzero otherwise
4662 */
4663int atapi_check_dma(struct ata_queued_cmd *qc)
4664{
4665 struct ata_port *ap = qc->ap;
4666
4667 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4668 * few ATAPI devices choke on such DMA requests.
4669 */
4670 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4671 unlikely(qc->nbytes & 15))
4672 return -EOPNOTSUPP;
4673
4674 if (ap->ops->check_atapi_dma)
4675 return ap->ops->check_atapi_dma(qc);
4676
4677 return 0;
4678}
4679
4680/**
4681 * ata_std_qc_defer - Check whether a qc needs to be deferred
4682 * @qc: ATA command in question
4683 *
4684 * Non-NCQ commands cannot run with any other command, NCQ or
4685 * not. As upper layer only knows the queue depth, we are
4686 * responsible for maintaining exclusion. This function checks
4687 * whether a new command @qc can be issued.
4688 *
4689 * LOCKING:
4690 * spin_lock_irqsave(host lock)
4691 *
4692 * RETURNS:
4693 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4694 */
4695int ata_std_qc_defer(struct ata_queued_cmd *qc)
4696{
4697 struct ata_link *link = qc->dev->link;
4698
4699 if (ata_is_ncq(qc->tf.protocol)) {
4700 if (!ata_tag_valid(link->active_tag))
4701 return 0;
4702 } else {
4703 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4704 return 0;
4705 }
4706
4707 return ATA_DEFER_LINK;
4708}
4709EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4710
4711/**
4712 * ata_sg_init - Associate command with scatter-gather table.
4713 * @qc: Command to be associated
4714 * @sg: Scatter-gather table.
4715 * @n_elem: Number of elements in s/g table.
4716 *
4717 * Initialize the data-related elements of queued_cmd @qc
4718 * to point to a scatter-gather table @sg, containing @n_elem
4719 * elements.
4720 *
4721 * LOCKING:
4722 * spin_lock_irqsave(host lock)
4723 */
4724void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4725 unsigned int n_elem)
4726{
4727 qc->sg = sg;
4728 qc->n_elem = n_elem;
4729 qc->cursg = qc->sg;
4730}
4731
4732#ifdef CONFIG_HAS_DMA
4733
4734/**
4735 * ata_sg_clean - Unmap DMA memory associated with command
4736 * @qc: Command containing DMA memory to be released
4737 *
4738 * Unmap all mapped DMA memory associated with this command.
4739 *
4740 * LOCKING:
4741 * spin_lock_irqsave(host lock)
4742 */
4743static void ata_sg_clean(struct ata_queued_cmd *qc)
4744{
4745 struct ata_port *ap = qc->ap;
4746 struct scatterlist *sg = qc->sg;
4747 int dir = qc->dma_dir;
4748
4749 WARN_ON_ONCE(sg == NULL);
4750
4751 if (qc->n_elem)
4752 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4753
4754 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4755 qc->sg = NULL;
4756}
4757
4758/**
4759 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4760 * @qc: Command with scatter-gather table to be mapped.
4761 *
4762 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4763 *
4764 * LOCKING:
4765 * spin_lock_irqsave(host lock)
4766 *
4767 * RETURNS:
4768 * Zero on success, negative on error.
4769 *
4770 */
4771static int ata_sg_setup(struct ata_queued_cmd *qc)
4772{
4773 struct ata_port *ap = qc->ap;
4774 unsigned int n_elem;
4775
4776 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4777 if (n_elem < 1)
4778 return -1;
4779
4780 qc->orig_n_elem = qc->n_elem;
4781 qc->n_elem = n_elem;
4782 qc->flags |= ATA_QCFLAG_DMAMAP;
4783
4784 return 0;
4785}
4786
4787#else /* !CONFIG_HAS_DMA */
4788
4789static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4790static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4791
4792#endif /* !CONFIG_HAS_DMA */
4793
4794/**
4795 * swap_buf_le16 - swap halves of 16-bit words in place
4796 * @buf: Buffer to swap
4797 * @buf_words: Number of 16-bit words in buffer.
4798 *
4799 * Swap halves of 16-bit words if needed to convert from
4800 * little-endian byte order to native cpu byte order, or
4801 * vice-versa.
4802 *
4803 * LOCKING:
4804 * Inherited from caller.
4805 */
4806void swap_buf_le16(u16 *buf, unsigned int buf_words)
4807{
4808#ifdef __BIG_ENDIAN
4809 unsigned int i;
4810
4811 for (i = 0; i < buf_words; i++)
4812 buf[i] = le16_to_cpu(buf[i]);
4813#endif /* __BIG_ENDIAN */
4814}
4815
4816/**
4817 * ata_qc_free - free unused ata_queued_cmd
4818 * @qc: Command to complete
4819 *
4820 * Designed to free unused ata_queued_cmd object
4821 * in case something prevents using it.
4822 *
4823 * LOCKING:
4824 * spin_lock_irqsave(host lock)
4825 */
4826void ata_qc_free(struct ata_queued_cmd *qc)
4827{
4828 qc->flags = 0;
4829 if (ata_tag_valid(qc->tag))
4830 qc->tag = ATA_TAG_POISON;
4831}
4832
4833void __ata_qc_complete(struct ata_queued_cmd *qc)
4834{
4835 struct ata_port *ap;
4836 struct ata_link *link;
4837
4838 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4839 return;
4840
4841 ap = qc->ap;
4842 link = qc->dev->link;
4843
4844 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4845 ata_sg_clean(qc);
4846
4847 /* command should be marked inactive atomically with qc completion */
4848 if (ata_is_ncq(qc->tf.protocol)) {
4849 link->sactive &= ~(1 << qc->hw_tag);
4850 if (!link->sactive)
4851 ap->nr_active_links--;
4852 } else {
4853 link->active_tag = ATA_TAG_POISON;
4854 ap->nr_active_links--;
4855 }
4856
4857 /* clear exclusive status */
4858 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4859 ap->excl_link == link))
4860 ap->excl_link = NULL;
4861
4862 /*
4863 * Mark qc as inactive to prevent the port interrupt handler from
4864 * completing the command twice later, before the error handler is
4865 * called.
4866 */
4867 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4868 ap->qc_active &= ~(1ULL << qc->tag);
4869
4870 /* call completion callback */
4871 qc->complete_fn(qc);
4872}
4873
4874static void fill_result_tf(struct ata_queued_cmd *qc)
4875{
4876 struct ata_port *ap = qc->ap;
4877
4878 /*
4879 * rtf may already be filled (e.g. for successful NCQ commands).
4880 * If that is the case, we have nothing to do.
4881 */
4882 if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4883 return;
4884
4885 qc->result_tf.flags = qc->tf.flags;
4886 ap->ops->qc_fill_rtf(qc);
4887 qc->flags |= ATA_QCFLAG_RTF_FILLED;
4888}
4889
4890static void ata_verify_xfer(struct ata_queued_cmd *qc)
4891{
4892 struct ata_device *dev = qc->dev;
4893
4894 if (!ata_is_data(qc->tf.protocol))
4895 return;
4896
4897 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4898 return;
4899
4900 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4901}
4902
4903/**
4904 * ata_qc_complete - Complete an active ATA command
4905 * @qc: Command to complete
4906 *
4907 * Indicate to the mid and upper layers that an ATA command has
4908 * completed, with either an ok or not-ok status.
4909 *
4910 * Refrain from calling this function multiple times when
4911 * successfully completing multiple NCQ commands.
4912 * ata_qc_complete_multiple() should be used instead, which will
4913 * properly update IRQ expect state.
4914 *
4915 * LOCKING:
4916 * spin_lock_irqsave(host lock)
4917 */
4918void ata_qc_complete(struct ata_queued_cmd *qc)
4919{
4920 struct ata_port *ap = qc->ap;
4921 struct ata_device *dev = qc->dev;
4922 struct ata_eh_info *ehi = &dev->link->eh_info;
4923
4924 /* Trigger the LED (if available) */
4925 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4926
4927 /*
4928 * In order to synchronize EH with the regular execution path, a qc that
4929 * is owned by EH is marked with ATA_QCFLAG_EH.
4930 *
4931 * The normal execution path is responsible for not accessing a qc owned
4932 * by EH. libata core enforces the rule by returning NULL from
4933 * ata_qc_from_tag() for qcs owned by EH.
4934 */
4935 if (unlikely(qc->err_mask))
4936 qc->flags |= ATA_QCFLAG_EH;
4937
4938 /*
4939 * Finish internal commands without any further processing and always
4940 * with the result TF filled.
4941 */
4942 if (unlikely(ata_tag_internal(qc->tag))) {
4943 fill_result_tf(qc);
4944 trace_ata_qc_complete_internal(qc);
4945 __ata_qc_complete(qc);
4946 return;
4947 }
4948
4949 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4950 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4951 fill_result_tf(qc);
4952 trace_ata_qc_complete_failed(qc);
4953 ata_qc_schedule_eh(qc);
4954 return;
4955 }
4956
4957 WARN_ON_ONCE(ata_port_is_frozen(ap));
4958
4959 /* read result TF if requested */
4960 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4961 fill_result_tf(qc);
4962
4963 trace_ata_qc_complete_done(qc);
4964
4965 /*
4966 * For CDL commands that completed without an error, check if we have
4967 * sense data (ATA_SENSE is set). If we do, then the command may have
4968 * been aborted by the device due to a limit timeout using the policy
4969 * 0xD. For these commands, invoke EH to get the command sense data.
4970 */
4971 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4972 qc->result_tf.status & ATA_SENSE) {
4973 /*
4974 * Tell SCSI EH to not overwrite scmd->result even if this
4975 * command is finished with result SAM_STAT_GOOD.
4976 */
4977 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4978 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4979 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4980
4981 /*
4982 * set pending so that ata_qc_schedule_eh() does not trigger
4983 * fast drain, and freeze the port.
4984 */
4985 ap->pflags |= ATA_PFLAG_EH_PENDING;
4986 ata_qc_schedule_eh(qc);
4987 return;
4988 }
4989
4990 /* Some commands need post-processing after successful completion. */
4991 switch (qc->tf.command) {
4992 case ATA_CMD_SET_FEATURES:
4993 if (qc->tf.feature != SETFEATURES_WC_ON &&
4994 qc->tf.feature != SETFEATURES_WC_OFF &&
4995 qc->tf.feature != SETFEATURES_RA_ON &&
4996 qc->tf.feature != SETFEATURES_RA_OFF)
4997 break;
4998 fallthrough;
4999 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5000 case ATA_CMD_SET_MULTI: /* multi_count changed */
5001 /* revalidate device */
5002 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5003 ata_port_schedule_eh(ap);
5004 break;
5005
5006 case ATA_CMD_SLEEP:
5007 dev->flags |= ATA_DFLAG_SLEEPING;
5008 break;
5009 }
5010
5011 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5012 ata_verify_xfer(qc);
5013
5014 __ata_qc_complete(qc);
5015}
5016EXPORT_SYMBOL_GPL(ata_qc_complete);
5017
5018/**
5019 * ata_qc_get_active - get bitmask of active qcs
5020 * @ap: port in question
5021 *
5022 * LOCKING:
5023 * spin_lock_irqsave(host lock)
5024 *
5025 * RETURNS:
5026 * Bitmask of active qcs
5027 */
5028u64 ata_qc_get_active(struct ata_port *ap)
5029{
5030 u64 qc_active = ap->qc_active;
5031
5032 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5033 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5034 qc_active |= (1 << 0);
5035 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5036 }
5037
5038 return qc_active;
5039}
5040EXPORT_SYMBOL_GPL(ata_qc_get_active);
5041
5042/**
5043 * ata_qc_issue - issue taskfile to device
5044 * @qc: command to issue to device
5045 *
5046 * Prepare an ATA command to submission to device.
5047 * This includes mapping the data into a DMA-able
5048 * area, filling in the S/G table, and finally
5049 * writing the taskfile to hardware, starting the command.
5050 *
5051 * LOCKING:
5052 * spin_lock_irqsave(host lock)
5053 */
5054void ata_qc_issue(struct ata_queued_cmd *qc)
5055{
5056 struct ata_port *ap = qc->ap;
5057 struct ata_link *link = qc->dev->link;
5058 u8 prot = qc->tf.protocol;
5059
5060 /* Make sure only one non-NCQ command is outstanding. */
5061 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5062
5063 if (ata_is_ncq(prot)) {
5064 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5065
5066 if (!link->sactive)
5067 ap->nr_active_links++;
5068 link->sactive |= 1 << qc->hw_tag;
5069 } else {
5070 WARN_ON_ONCE(link->sactive);
5071
5072 ap->nr_active_links++;
5073 link->active_tag = qc->tag;
5074 }
5075
5076 qc->flags |= ATA_QCFLAG_ACTIVE;
5077 ap->qc_active |= 1ULL << qc->tag;
5078
5079 /*
5080 * We guarantee to LLDs that they will have at least one
5081 * non-zero sg if the command is a data command.
5082 */
5083 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5084 goto sys_err;
5085
5086 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5087 (ap->flags & ATA_FLAG_PIO_DMA)))
5088 if (ata_sg_setup(qc))
5089 goto sys_err;
5090
5091 /* if device is sleeping, schedule reset and abort the link */
5092 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5093 link->eh_info.action |= ATA_EH_RESET;
5094 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5095 ata_link_abort(link);
5096 return;
5097 }
5098
5099 if (ap->ops->qc_prep) {
5100 trace_ata_qc_prep(qc);
5101 qc->err_mask |= ap->ops->qc_prep(qc);
5102 if (unlikely(qc->err_mask))
5103 goto err;
5104 }
5105
5106 trace_ata_qc_issue(qc);
5107 qc->err_mask |= ap->ops->qc_issue(qc);
5108 if (unlikely(qc->err_mask))
5109 goto err;
5110 return;
5111
5112sys_err:
5113 qc->err_mask |= AC_ERR_SYSTEM;
5114err:
5115 ata_qc_complete(qc);
5116}
5117
5118/**
5119 * ata_phys_link_online - test whether the given link is online
5120 * @link: ATA link to test
5121 *
5122 * Test whether @link is online. Note that this function returns
5123 * 0 if online status of @link cannot be obtained, so
5124 * ata_link_online(link) != !ata_link_offline(link).
5125 *
5126 * LOCKING:
5127 * None.
5128 *
5129 * RETURNS:
5130 * True if the port online status is available and online.
5131 */
5132bool ata_phys_link_online(struct ata_link *link)
5133{
5134 u32 sstatus;
5135
5136 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5137 ata_sstatus_online(sstatus))
5138 return true;
5139 return false;
5140}
5141
5142/**
5143 * ata_phys_link_offline - test whether the given link is offline
5144 * @link: ATA link to test
5145 *
5146 * Test whether @link is offline. Note that this function
5147 * returns 0 if offline status of @link cannot be obtained, so
5148 * ata_link_online(link) != !ata_link_offline(link).
5149 *
5150 * LOCKING:
5151 * None.
5152 *
5153 * RETURNS:
5154 * True if the port offline status is available and offline.
5155 */
5156bool ata_phys_link_offline(struct ata_link *link)
5157{
5158 u32 sstatus;
5159
5160 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5161 !ata_sstatus_online(sstatus))
5162 return true;
5163 return false;
5164}
5165
5166/**
5167 * ata_link_online - test whether the given link is online
5168 * @link: ATA link to test
5169 *
5170 * Test whether @link is online. This is identical to
5171 * ata_phys_link_online() when there's no slave link. When
5172 * there's a slave link, this function should only be called on
5173 * the master link and will return true if any of M/S links is
5174 * online.
5175 *
5176 * LOCKING:
5177 * None.
5178 *
5179 * RETURNS:
5180 * True if the port online status is available and online.
5181 */
5182bool ata_link_online(struct ata_link *link)
5183{
5184 struct ata_link *slave = link->ap->slave_link;
5185
5186 WARN_ON(link == slave); /* shouldn't be called on slave link */
5187
5188 return ata_phys_link_online(link) ||
5189 (slave && ata_phys_link_online(slave));
5190}
5191EXPORT_SYMBOL_GPL(ata_link_online);
5192
5193/**
5194 * ata_link_offline - test whether the given link is offline
5195 * @link: ATA link to test
5196 *
5197 * Test whether @link is offline. This is identical to
5198 * ata_phys_link_offline() when there's no slave link. When
5199 * there's a slave link, this function should only be called on
5200 * the master link and will return true if both M/S links are
5201 * offline.
5202 *
5203 * LOCKING:
5204 * None.
5205 *
5206 * RETURNS:
5207 * True if the port offline status is available and offline.
5208 */
5209bool ata_link_offline(struct ata_link *link)
5210{
5211 struct ata_link *slave = link->ap->slave_link;
5212
5213 WARN_ON(link == slave); /* shouldn't be called on slave link */
5214
5215 return ata_phys_link_offline(link) &&
5216 (!slave || ata_phys_link_offline(slave));
5217}
5218EXPORT_SYMBOL_GPL(ata_link_offline);
5219
5220#ifdef CONFIG_PM
5221static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5222 unsigned int action, unsigned int ehi_flags,
5223 bool async)
5224{
5225 struct ata_link *link;
5226 unsigned long flags;
5227
5228 spin_lock_irqsave(ap->lock, flags);
5229
5230 /*
5231 * A previous PM operation might still be in progress. Wait for
5232 * ATA_PFLAG_PM_PENDING to clear.
5233 */
5234 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5235 spin_unlock_irqrestore(ap->lock, flags);
5236 ata_port_wait_eh(ap);
5237 spin_lock_irqsave(ap->lock, flags);
5238 }
5239
5240 /* Request PM operation to EH */
5241 ap->pm_mesg = mesg;
5242 ap->pflags |= ATA_PFLAG_PM_PENDING;
5243 ata_for_each_link(link, ap, HOST_FIRST) {
5244 link->eh_info.action |= action;
5245 link->eh_info.flags |= ehi_flags;
5246 }
5247
5248 ata_port_schedule_eh(ap);
5249
5250 spin_unlock_irqrestore(ap->lock, flags);
5251
5252 if (!async)
5253 ata_port_wait_eh(ap);
5254}
5255
5256static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5257 bool async)
5258{
5259 /*
5260 * We are about to suspend the port, so we do not care about
5261 * scsi_rescan_device() calls scheduled by previous resume operations.
5262 * The next resume will schedule the rescan again. So cancel any rescan
5263 * that is not done yet.
5264 */
5265 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5266
5267 /*
5268 * On some hardware, device fails to respond after spun down for
5269 * suspend. As the device will not be used until being resumed, we
5270 * do not need to touch the device. Ask EH to skip the usual stuff
5271 * and proceed directly to suspend.
5272 *
5273 * http://thread.gmane.org/gmane.linux.ide/46764
5274 */
5275 ata_port_request_pm(ap, mesg, 0,
5276 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5277 ATA_EHI_NO_RECOVERY,
5278 async);
5279}
5280
5281static int ata_port_pm_suspend(struct device *dev)
5282{
5283 struct ata_port *ap = to_ata_port(dev);
5284
5285 if (pm_runtime_suspended(dev))
5286 return 0;
5287
5288 ata_port_suspend(ap, PMSG_SUSPEND, false);
5289 return 0;
5290}
5291
5292static int ata_port_pm_freeze(struct device *dev)
5293{
5294 struct ata_port *ap = to_ata_port(dev);
5295
5296 if (pm_runtime_suspended(dev))
5297 return 0;
5298
5299 ata_port_suspend(ap, PMSG_FREEZE, false);
5300 return 0;
5301}
5302
5303static int ata_port_pm_poweroff(struct device *dev)
5304{
5305 if (!pm_runtime_suspended(dev))
5306 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5307 return 0;
5308}
5309
5310static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5311 bool async)
5312{
5313 ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5314 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5315 async);
5316}
5317
5318static int ata_port_pm_resume(struct device *dev)
5319{
5320 if (!pm_runtime_suspended(dev))
5321 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5322 return 0;
5323}
5324
5325/*
5326 * For ODDs, the upper layer will poll for media change every few seconds,
5327 * which will make it enter and leave suspend state every few seconds. And
5328 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5329 * is very little and the ODD may malfunction after constantly being reset.
5330 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5331 * ODD is attached to the port.
5332 */
5333static int ata_port_runtime_idle(struct device *dev)
5334{
5335 struct ata_port *ap = to_ata_port(dev);
5336 struct ata_link *link;
5337 struct ata_device *adev;
5338
5339 ata_for_each_link(link, ap, HOST_FIRST) {
5340 ata_for_each_dev(adev, link, ENABLED)
5341 if (adev->class == ATA_DEV_ATAPI &&
5342 !zpodd_dev_enabled(adev))
5343 return -EBUSY;
5344 }
5345
5346 return 0;
5347}
5348
5349static int ata_port_runtime_suspend(struct device *dev)
5350{
5351 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5352 return 0;
5353}
5354
5355static int ata_port_runtime_resume(struct device *dev)
5356{
5357 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5358 return 0;
5359}
5360
5361static const struct dev_pm_ops ata_port_pm_ops = {
5362 .suspend = ata_port_pm_suspend,
5363 .resume = ata_port_pm_resume,
5364 .freeze = ata_port_pm_freeze,
5365 .thaw = ata_port_pm_resume,
5366 .poweroff = ata_port_pm_poweroff,
5367 .restore = ata_port_pm_resume,
5368
5369 .runtime_suspend = ata_port_runtime_suspend,
5370 .runtime_resume = ata_port_runtime_resume,
5371 .runtime_idle = ata_port_runtime_idle,
5372};
5373
5374/* sas ports don't participate in pm runtime management of ata_ports,
5375 * and need to resume ata devices at the domain level, not the per-port
5376 * level. sas suspend/resume is async to allow parallel port recovery
5377 * since sas has multiple ata_port instances per Scsi_Host.
5378 */
5379void ata_sas_port_suspend(struct ata_port *ap)
5380{
5381 ata_port_suspend(ap, PMSG_SUSPEND, true);
5382}
5383EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5384
5385void ata_sas_port_resume(struct ata_port *ap)
5386{
5387 ata_port_resume(ap, PMSG_RESUME, true);
5388}
5389EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5390
5391/**
5392 * ata_host_suspend - suspend host
5393 * @host: host to suspend
5394 * @mesg: PM message
5395 *
5396 * Suspend @host. Actual operation is performed by port suspend.
5397 */
5398void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5399{
5400 host->dev->power.power_state = mesg;
5401}
5402EXPORT_SYMBOL_GPL(ata_host_suspend);
5403
5404/**
5405 * ata_host_resume - resume host
5406 * @host: host to resume
5407 *
5408 * Resume @host. Actual operation is performed by port resume.
5409 */
5410void ata_host_resume(struct ata_host *host)
5411{
5412 host->dev->power.power_state = PMSG_ON;
5413}
5414EXPORT_SYMBOL_GPL(ata_host_resume);
5415#endif
5416
5417const struct device_type ata_port_type = {
5418 .name = ATA_PORT_TYPE_NAME,
5419#ifdef CONFIG_PM
5420 .pm = &ata_port_pm_ops,
5421#endif
5422};
5423
5424/**
5425 * ata_dev_init - Initialize an ata_device structure
5426 * @dev: Device structure to initialize
5427 *
5428 * Initialize @dev in preparation for probing.
5429 *
5430 * LOCKING:
5431 * Inherited from caller.
5432 */
5433void ata_dev_init(struct ata_device *dev)
5434{
5435 struct ata_link *link = ata_dev_phys_link(dev);
5436 struct ata_port *ap = link->ap;
5437 unsigned long flags;
5438
5439 /* SATA spd limit is bound to the attached device, reset together */
5440 link->sata_spd_limit = link->hw_sata_spd_limit;
5441 link->sata_spd = 0;
5442
5443 /* High bits of dev->flags are used to record warm plug
5444 * requests which occur asynchronously. Synchronize using
5445 * host lock.
5446 */
5447 spin_lock_irqsave(ap->lock, flags);
5448 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5449 dev->quirks = 0;
5450 spin_unlock_irqrestore(ap->lock, flags);
5451
5452 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5453 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5454 dev->pio_mask = UINT_MAX;
5455 dev->mwdma_mask = UINT_MAX;
5456 dev->udma_mask = UINT_MAX;
5457}
5458
5459/**
5460 * ata_link_init - Initialize an ata_link structure
5461 * @ap: ATA port link is attached to
5462 * @link: Link structure to initialize
5463 * @pmp: Port multiplier port number
5464 *
5465 * Initialize @link.
5466 *
5467 * LOCKING:
5468 * Kernel thread context (may sleep)
5469 */
5470void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5471{
5472 int i;
5473
5474 /* clear everything except for devices */
5475 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5476 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5477
5478 link->ap = ap;
5479 link->pmp = pmp;
5480 link->active_tag = ATA_TAG_POISON;
5481 link->hw_sata_spd_limit = UINT_MAX;
5482
5483 /* can't use iterator, ap isn't initialized yet */
5484 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5485 struct ata_device *dev = &link->device[i];
5486
5487 dev->link = link;
5488 dev->devno = dev - link->device;
5489#ifdef CONFIG_ATA_ACPI
5490 dev->gtf_filter = ata_acpi_gtf_filter;
5491#endif
5492 ata_dev_init(dev);
5493 }
5494}
5495
5496/**
5497 * sata_link_init_spd - Initialize link->sata_spd_limit
5498 * @link: Link to configure sata_spd_limit for
5499 *
5500 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5501 * configured value.
5502 *
5503 * LOCKING:
5504 * Kernel thread context (may sleep).
5505 *
5506 * RETURNS:
5507 * 0 on success, -errno on failure.
5508 */
5509int sata_link_init_spd(struct ata_link *link)
5510{
5511 u8 spd;
5512 int rc;
5513
5514 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5515 if (rc)
5516 return rc;
5517
5518 spd = (link->saved_scontrol >> 4) & 0xf;
5519 if (spd)
5520 link->hw_sata_spd_limit &= (1 << spd) - 1;
5521
5522 ata_force_link_limits(link);
5523
5524 link->sata_spd_limit = link->hw_sata_spd_limit;
5525
5526 return 0;
5527}
5528
5529/**
5530 * ata_port_alloc - allocate and initialize basic ATA port resources
5531 * @host: ATA host this allocated port belongs to
5532 *
5533 * Allocate and initialize basic ATA port resources.
5534 *
5535 * RETURNS:
5536 * Allocate ATA port on success, NULL on failure.
5537 *
5538 * LOCKING:
5539 * Inherited from calling layer (may sleep).
5540 */
5541struct ata_port *ata_port_alloc(struct ata_host *host)
5542{
5543 struct ata_port *ap;
5544 int id;
5545
5546 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5547 if (!ap)
5548 return NULL;
5549
5550 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5551 ap->lock = &host->lock;
5552 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5553 if (id < 0) {
5554 kfree(ap);
5555 return NULL;
5556 }
5557 ap->print_id = id;
5558 ap->host = host;
5559 ap->dev = host->dev;
5560
5561 mutex_init(&ap->scsi_scan_mutex);
5562 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5563 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5564 INIT_LIST_HEAD(&ap->eh_done_q);
5565 init_waitqueue_head(&ap->eh_wait_q);
5566 init_completion(&ap->park_req_pending);
5567 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5568 TIMER_DEFERRABLE);
5569
5570 ap->cbl = ATA_CBL_NONE;
5571
5572 ata_link_init(ap, &ap->link, 0);
5573
5574#ifdef ATA_IRQ_TRAP
5575 ap->stats.unhandled_irq = 1;
5576 ap->stats.idle_irq = 1;
5577#endif
5578 ata_sff_port_init(ap);
5579
5580 ata_force_pflags(ap);
5581
5582 return ap;
5583}
5584EXPORT_SYMBOL_GPL(ata_port_alloc);
5585
5586void ata_port_free(struct ata_port *ap)
5587{
5588 if (!ap)
5589 return;
5590
5591 kfree(ap->pmp_link);
5592 kfree(ap->slave_link);
5593 ida_free(&ata_ida, ap->print_id);
5594 kfree(ap);
5595}
5596EXPORT_SYMBOL_GPL(ata_port_free);
5597
5598static void ata_devres_release(struct device *gendev, void *res)
5599{
5600 struct ata_host *host = dev_get_drvdata(gendev);
5601 int i;
5602
5603 for (i = 0; i < host->n_ports; i++) {
5604 struct ata_port *ap = host->ports[i];
5605
5606 if (!ap)
5607 continue;
5608
5609 if (ap->scsi_host)
5610 scsi_host_put(ap->scsi_host);
5611
5612 }
5613
5614 dev_set_drvdata(gendev, NULL);
5615 ata_host_put(host);
5616}
5617
5618static void ata_host_release(struct kref *kref)
5619{
5620 struct ata_host *host = container_of(kref, struct ata_host, kref);
5621 int i;
5622
5623 for (i = 0; i < host->n_ports; i++) {
5624 ata_port_free(host->ports[i]);
5625 host->ports[i] = NULL;
5626 }
5627 kfree(host);
5628}
5629
5630void ata_host_get(struct ata_host *host)
5631{
5632 kref_get(&host->kref);
5633}
5634
5635void ata_host_put(struct ata_host *host)
5636{
5637 kref_put(&host->kref, ata_host_release);
5638}
5639EXPORT_SYMBOL_GPL(ata_host_put);
5640
5641/**
5642 * ata_host_alloc - allocate and init basic ATA host resources
5643 * @dev: generic device this host is associated with
5644 * @n_ports: the number of ATA ports associated with this host
5645 *
5646 * Allocate and initialize basic ATA host resources. LLD calls
5647 * this function to allocate a host, initializes it fully and
5648 * attaches it using ata_host_register().
5649 *
5650 * RETURNS:
5651 * Allocate ATA host on success, NULL on failure.
5652 *
5653 * LOCKING:
5654 * Inherited from calling layer (may sleep).
5655 */
5656struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5657{
5658 struct ata_host *host;
5659 size_t sz;
5660 int i;
5661 void *dr;
5662
5663 /* alloc a container for our list of ATA ports (buses) */
5664 sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5665 host = kzalloc(sz, GFP_KERNEL);
5666 if (!host)
5667 return NULL;
5668
5669 if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5670 kfree(host);
5671 return NULL;
5672 }
5673
5674 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5675 if (!dr) {
5676 kfree(host);
5677 goto err_out;
5678 }
5679
5680 devres_add(dev, dr);
5681 dev_set_drvdata(dev, host);
5682
5683 spin_lock_init(&host->lock);
5684 mutex_init(&host->eh_mutex);
5685 host->dev = dev;
5686 host->n_ports = n_ports;
5687 kref_init(&host->kref);
5688
5689 /* allocate ports bound to this host */
5690 for (i = 0; i < n_ports; i++) {
5691 struct ata_port *ap;
5692
5693 ap = ata_port_alloc(host);
5694 if (!ap)
5695 goto err_out;
5696
5697 ap->port_no = i;
5698 host->ports[i] = ap;
5699 }
5700
5701 devres_remove_group(dev, NULL);
5702 return host;
5703
5704 err_out:
5705 devres_release_group(dev, NULL);
5706 return NULL;
5707}
5708EXPORT_SYMBOL_GPL(ata_host_alloc);
5709
5710/**
5711 * ata_host_alloc_pinfo - alloc host and init with port_info array
5712 * @dev: generic device this host is associated with
5713 * @ppi: array of ATA port_info to initialize host with
5714 * @n_ports: number of ATA ports attached to this host
5715 *
5716 * Allocate ATA host and initialize with info from @ppi. If NULL
5717 * terminated, @ppi may contain fewer entries than @n_ports. The
5718 * last entry will be used for the remaining ports.
5719 *
5720 * RETURNS:
5721 * Allocate ATA host on success, NULL on failure.
5722 *
5723 * LOCKING:
5724 * Inherited from calling layer (may sleep).
5725 */
5726struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5727 const struct ata_port_info * const * ppi,
5728 int n_ports)
5729{
5730 const struct ata_port_info *pi = &ata_dummy_port_info;
5731 struct ata_host *host;
5732 int i, j;
5733
5734 host = ata_host_alloc(dev, n_ports);
5735 if (!host)
5736 return NULL;
5737
5738 for (i = 0, j = 0; i < host->n_ports; i++) {
5739 struct ata_port *ap = host->ports[i];
5740
5741 if (ppi[j])
5742 pi = ppi[j++];
5743
5744 ap->pio_mask = pi->pio_mask;
5745 ap->mwdma_mask = pi->mwdma_mask;
5746 ap->udma_mask = pi->udma_mask;
5747 ap->flags |= pi->flags;
5748 ap->link.flags |= pi->link_flags;
5749 ap->ops = pi->port_ops;
5750
5751 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5752 host->ops = pi->port_ops;
5753 }
5754
5755 return host;
5756}
5757EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5758
5759static void ata_host_stop(struct device *gendev, void *res)
5760{
5761 struct ata_host *host = dev_get_drvdata(gendev);
5762 int i;
5763
5764 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5765
5766 for (i = 0; i < host->n_ports; i++) {
5767 struct ata_port *ap = host->ports[i];
5768
5769 if (ap->ops->port_stop)
5770 ap->ops->port_stop(ap);
5771 }
5772
5773 if (host->ops->host_stop)
5774 host->ops->host_stop(host);
5775}
5776
5777/**
5778 * ata_finalize_port_ops - finalize ata_port_operations
5779 * @ops: ata_port_operations to finalize
5780 *
5781 * An ata_port_operations can inherit from another ops and that
5782 * ops can again inherit from another. This can go on as many
5783 * times as necessary as long as there is no loop in the
5784 * inheritance chain.
5785 *
5786 * Ops tables are finalized when the host is started. NULL or
5787 * unspecified entries are inherited from the closet ancestor
5788 * which has the method and the entry is populated with it.
5789 * After finalization, the ops table directly points to all the
5790 * methods and ->inherits is no longer necessary and cleared.
5791 *
5792 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5793 *
5794 * LOCKING:
5795 * None.
5796 */
5797static void ata_finalize_port_ops(struct ata_port_operations *ops)
5798{
5799 static DEFINE_SPINLOCK(lock);
5800 const struct ata_port_operations *cur;
5801 void **begin = (void **)ops;
5802 void **end = (void **)&ops->inherits;
5803 void **pp;
5804
5805 if (!ops || !ops->inherits)
5806 return;
5807
5808 spin_lock(&lock);
5809
5810 for (cur = ops->inherits; cur; cur = cur->inherits) {
5811 void **inherit = (void **)cur;
5812
5813 for (pp = begin; pp < end; pp++, inherit++)
5814 if (!*pp)
5815 *pp = *inherit;
5816 }
5817
5818 for (pp = begin; pp < end; pp++)
5819 if (IS_ERR(*pp))
5820 *pp = NULL;
5821
5822 ops->inherits = NULL;
5823
5824 spin_unlock(&lock);
5825}
5826
5827/**
5828 * ata_host_start - start and freeze ports of an ATA host
5829 * @host: ATA host to start ports for
5830 *
5831 * Start and then freeze ports of @host. Started status is
5832 * recorded in host->flags, so this function can be called
5833 * multiple times. Ports are guaranteed to get started only
5834 * once. If host->ops is not initialized yet, it is set to the
5835 * first non-dummy port ops.
5836 *
5837 * LOCKING:
5838 * Inherited from calling layer (may sleep).
5839 *
5840 * RETURNS:
5841 * 0 if all ports are started successfully, -errno otherwise.
5842 */
5843int ata_host_start(struct ata_host *host)
5844{
5845 int have_stop = 0;
5846 void *start_dr = NULL;
5847 int i, rc;
5848
5849 if (host->flags & ATA_HOST_STARTED)
5850 return 0;
5851
5852 ata_finalize_port_ops(host->ops);
5853
5854 for (i = 0; i < host->n_ports; i++) {
5855 struct ata_port *ap = host->ports[i];
5856
5857 ata_finalize_port_ops(ap->ops);
5858
5859 if (!host->ops && !ata_port_is_dummy(ap))
5860 host->ops = ap->ops;
5861
5862 if (ap->ops->port_stop)
5863 have_stop = 1;
5864 }
5865
5866 if (host->ops && host->ops->host_stop)
5867 have_stop = 1;
5868
5869 if (have_stop) {
5870 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5871 if (!start_dr)
5872 return -ENOMEM;
5873 }
5874
5875 for (i = 0; i < host->n_ports; i++) {
5876 struct ata_port *ap = host->ports[i];
5877
5878 if (ap->ops->port_start) {
5879 rc = ap->ops->port_start(ap);
5880 if (rc) {
5881 if (rc != -ENODEV)
5882 dev_err(host->dev,
5883 "failed to start port %d (errno=%d)\n",
5884 i, rc);
5885 goto err_out;
5886 }
5887 }
5888 ata_eh_freeze_port(ap);
5889 }
5890
5891 if (start_dr)
5892 devres_add(host->dev, start_dr);
5893 host->flags |= ATA_HOST_STARTED;
5894 return 0;
5895
5896 err_out:
5897 while (--i >= 0) {
5898 struct ata_port *ap = host->ports[i];
5899
5900 if (ap->ops->port_stop)
5901 ap->ops->port_stop(ap);
5902 }
5903 devres_free(start_dr);
5904 return rc;
5905}
5906EXPORT_SYMBOL_GPL(ata_host_start);
5907
5908/**
5909 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5910 * @host: host to initialize
5911 * @dev: device host is attached to
5912 * @ops: port_ops
5913 *
5914 */
5915void ata_host_init(struct ata_host *host, struct device *dev,
5916 struct ata_port_operations *ops)
5917{
5918 spin_lock_init(&host->lock);
5919 mutex_init(&host->eh_mutex);
5920 host->n_tags = ATA_MAX_QUEUE;
5921 host->dev = dev;
5922 host->ops = ops;
5923 kref_init(&host->kref);
5924}
5925EXPORT_SYMBOL_GPL(ata_host_init);
5926
5927void ata_port_probe(struct ata_port *ap)
5928{
5929 struct ata_eh_info *ehi = &ap->link.eh_info;
5930 unsigned long flags;
5931
5932 ata_acpi_port_power_on(ap);
5933
5934 /* kick EH for boot probing */
5935 spin_lock_irqsave(ap->lock, flags);
5936
5937 ehi->probe_mask |= ATA_ALL_DEVICES;
5938 ehi->action |= ATA_EH_RESET;
5939 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5940
5941 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5942 ap->pflags |= ATA_PFLAG_LOADING;
5943 ata_port_schedule_eh(ap);
5944
5945 spin_unlock_irqrestore(ap->lock, flags);
5946}
5947EXPORT_SYMBOL_GPL(ata_port_probe);
5948
5949static void async_port_probe(void *data, async_cookie_t cookie)
5950{
5951 struct ata_port *ap = data;
5952
5953 /*
5954 * If we're not allowed to scan this host in parallel,
5955 * we need to wait until all previous scans have completed
5956 * before going further.
5957 * Jeff Garzik says this is only within a controller, so we
5958 * don't need to wait for port 0, only for later ports.
5959 */
5960 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5961 async_synchronize_cookie(cookie);
5962
5963 ata_port_probe(ap);
5964 ata_port_wait_eh(ap);
5965
5966 /* in order to keep device order, we need to synchronize at this point */
5967 async_synchronize_cookie(cookie);
5968
5969 ata_scsi_scan_host(ap, 1);
5970}
5971
5972/**
5973 * ata_host_register - register initialized ATA host
5974 * @host: ATA host to register
5975 * @sht: template for SCSI host
5976 *
5977 * Register initialized ATA host. @host is allocated using
5978 * ata_host_alloc() and fully initialized by LLD. This function
5979 * starts ports, registers @host with ATA and SCSI layers and
5980 * probe registered devices.
5981 *
5982 * LOCKING:
5983 * Inherited from calling layer (may sleep).
5984 *
5985 * RETURNS:
5986 * 0 on success, -errno otherwise.
5987 */
5988int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5989{
5990 int i, rc;
5991
5992 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5993
5994 /* host must have been started */
5995 if (!(host->flags & ATA_HOST_STARTED)) {
5996 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5997 WARN_ON(1);
5998 return -EINVAL;
5999 }
6000
6001 /* Create associated sysfs transport objects */
6002 for (i = 0; i < host->n_ports; i++) {
6003 rc = ata_tport_add(host->dev,host->ports[i]);
6004 if (rc) {
6005 goto err_tadd;
6006 }
6007 }
6008
6009 rc = ata_scsi_add_hosts(host, sht);
6010 if (rc)
6011 goto err_tadd;
6012
6013 /* set cable, sata_spd_limit and report */
6014 for (i = 0; i < host->n_ports; i++) {
6015 struct ata_port *ap = host->ports[i];
6016 unsigned int xfer_mask;
6017
6018 /* set SATA cable type if still unset */
6019 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6020 ap->cbl = ATA_CBL_SATA;
6021
6022 /* init sata_spd_limit to the current value */
6023 sata_link_init_spd(&ap->link);
6024 if (ap->slave_link)
6025 sata_link_init_spd(ap->slave_link);
6026
6027 /* print per-port info to dmesg */
6028 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6029 ap->udma_mask);
6030
6031 if (!ata_port_is_dummy(ap)) {
6032 ata_port_info(ap, "%cATA max %s %s\n",
6033 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6034 ata_mode_string(xfer_mask),
6035 ap->link.eh_info.desc);
6036 ata_ehi_clear_desc(&ap->link.eh_info);
6037 } else
6038 ata_port_info(ap, "DUMMY\n");
6039 }
6040
6041 /* perform each probe asynchronously */
6042 for (i = 0; i < host->n_ports; i++) {
6043 struct ata_port *ap = host->ports[i];
6044 ap->cookie = async_schedule(async_port_probe, ap);
6045 }
6046
6047 return 0;
6048
6049 err_tadd:
6050 while (--i >= 0) {
6051 ata_tport_delete(host->ports[i]);
6052 }
6053 return rc;
6054
6055}
6056EXPORT_SYMBOL_GPL(ata_host_register);
6057
6058/**
6059 * ata_host_activate - start host, request IRQ and register it
6060 * @host: target ATA host
6061 * @irq: IRQ to request
6062 * @irq_handler: irq_handler used when requesting IRQ
6063 * @irq_flags: irq_flags used when requesting IRQ
6064 * @sht: scsi_host_template to use when registering the host
6065 *
6066 * After allocating an ATA host and initializing it, most libata
6067 * LLDs perform three steps to activate the host - start host,
6068 * request IRQ and register it. This helper takes necessary
6069 * arguments and performs the three steps in one go.
6070 *
6071 * An invalid IRQ skips the IRQ registration and expects the host to
6072 * have set polling mode on the port. In this case, @irq_handler
6073 * should be NULL.
6074 *
6075 * LOCKING:
6076 * Inherited from calling layer (may sleep).
6077 *
6078 * RETURNS:
6079 * 0 on success, -errno otherwise.
6080 */
6081int ata_host_activate(struct ata_host *host, int irq,
6082 irq_handler_t irq_handler, unsigned long irq_flags,
6083 const struct scsi_host_template *sht)
6084{
6085 int i, rc;
6086 char *irq_desc;
6087
6088 rc = ata_host_start(host);
6089 if (rc)
6090 return rc;
6091
6092 /* Special case for polling mode */
6093 if (!irq) {
6094 WARN_ON(irq_handler);
6095 return ata_host_register(host, sht);
6096 }
6097
6098 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6099 dev_driver_string(host->dev),
6100 dev_name(host->dev));
6101 if (!irq_desc)
6102 return -ENOMEM;
6103
6104 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6105 irq_desc, host);
6106 if (rc)
6107 return rc;
6108
6109 for (i = 0; i < host->n_ports; i++)
6110 ata_port_desc_misc(host->ports[i], irq);
6111
6112 rc = ata_host_register(host, sht);
6113 /* if failed, just free the IRQ and leave ports alone */
6114 if (rc)
6115 devm_free_irq(host->dev, irq, host);
6116
6117 return rc;
6118}
6119EXPORT_SYMBOL_GPL(ata_host_activate);
6120
6121/**
6122 * ata_dev_free_resources - Free a device resources
6123 * @dev: Target ATA device
6124 *
6125 * Free resources allocated to support a device features.
6126 *
6127 * LOCKING:
6128 * Kernel thread context (may sleep).
6129 */
6130void ata_dev_free_resources(struct ata_device *dev)
6131{
6132 if (zpodd_dev_enabled(dev))
6133 zpodd_exit(dev);
6134
6135 ata_dev_cleanup_cdl_resources(dev);
6136}
6137
6138/**
6139 * ata_port_detach - Detach ATA port in preparation of device removal
6140 * @ap: ATA port to be detached
6141 *
6142 * Detach all ATA devices and the associated SCSI devices of @ap;
6143 * then, remove the associated SCSI host. @ap is guaranteed to
6144 * be quiescent on return from this function.
6145 *
6146 * LOCKING:
6147 * Kernel thread context (may sleep).
6148 */
6149static void ata_port_detach(struct ata_port *ap)
6150{
6151 unsigned long flags;
6152 struct ata_link *link;
6153 struct ata_device *dev;
6154
6155 /* Ensure ata_port probe has completed */
6156 async_synchronize_cookie(ap->cookie + 1);
6157
6158 /* Wait for any ongoing EH */
6159 ata_port_wait_eh(ap);
6160
6161 mutex_lock(&ap->scsi_scan_mutex);
6162 spin_lock_irqsave(ap->lock, flags);
6163
6164 /* Remove scsi devices */
6165 ata_for_each_link(link, ap, HOST_FIRST) {
6166 ata_for_each_dev(dev, link, ALL) {
6167 if (dev->sdev) {
6168 spin_unlock_irqrestore(ap->lock, flags);
6169 scsi_remove_device(dev->sdev);
6170 spin_lock_irqsave(ap->lock, flags);
6171 dev->sdev = NULL;
6172 }
6173 }
6174 }
6175
6176 /* Tell EH to disable all devices */
6177 ap->pflags |= ATA_PFLAG_UNLOADING;
6178 ata_port_schedule_eh(ap);
6179
6180 spin_unlock_irqrestore(ap->lock, flags);
6181 mutex_unlock(&ap->scsi_scan_mutex);
6182
6183 /* wait till EH commits suicide */
6184 ata_port_wait_eh(ap);
6185
6186 /* it better be dead now */
6187 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6188
6189 cancel_delayed_work_sync(&ap->hotplug_task);
6190 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6191
6192 /* Delete port multiplier link transport devices */
6193 if (ap->pmp_link) {
6194 int i;
6195
6196 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6197 ata_tlink_delete(&ap->pmp_link[i]);
6198 }
6199
6200 /* Remove the associated SCSI host */
6201 scsi_remove_host(ap->scsi_host);
6202 ata_tport_delete(ap);
6203}
6204
6205/**
6206 * ata_host_detach - Detach all ports of an ATA host
6207 * @host: Host to detach
6208 *
6209 * Detach all ports of @host.
6210 *
6211 * LOCKING:
6212 * Kernel thread context (may sleep).
6213 */
6214void ata_host_detach(struct ata_host *host)
6215{
6216 int i;
6217
6218 for (i = 0; i < host->n_ports; i++)
6219 ata_port_detach(host->ports[i]);
6220
6221 /* the host is dead now, dissociate ACPI */
6222 ata_acpi_dissociate(host);
6223}
6224EXPORT_SYMBOL_GPL(ata_host_detach);
6225
6226#ifdef CONFIG_PCI
6227
6228/**
6229 * ata_pci_remove_one - PCI layer callback for device removal
6230 * @pdev: PCI device that was removed
6231 *
6232 * PCI layer indicates to libata via this hook that hot-unplug or
6233 * module unload event has occurred. Detach all ports. Resource
6234 * release is handled via devres.
6235 *
6236 * LOCKING:
6237 * Inherited from PCI layer (may sleep).
6238 */
6239void ata_pci_remove_one(struct pci_dev *pdev)
6240{
6241 struct ata_host *host = pci_get_drvdata(pdev);
6242
6243 ata_host_detach(host);
6244}
6245EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6246
6247void ata_pci_shutdown_one(struct pci_dev *pdev)
6248{
6249 struct ata_host *host = pci_get_drvdata(pdev);
6250 int i;
6251
6252 for (i = 0; i < host->n_ports; i++) {
6253 struct ata_port *ap = host->ports[i];
6254
6255 ap->pflags |= ATA_PFLAG_FROZEN;
6256
6257 /* Disable port interrupts */
6258 if (ap->ops->freeze)
6259 ap->ops->freeze(ap);
6260
6261 /* Stop the port DMA engines */
6262 if (ap->ops->port_stop)
6263 ap->ops->port_stop(ap);
6264 }
6265}
6266EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6267
6268/* move to PCI subsystem */
6269int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6270{
6271 unsigned long tmp = 0;
6272
6273 switch (bits->width) {
6274 case 1: {
6275 u8 tmp8 = 0;
6276 pci_read_config_byte(pdev, bits->reg, &tmp8);
6277 tmp = tmp8;
6278 break;
6279 }
6280 case 2: {
6281 u16 tmp16 = 0;
6282 pci_read_config_word(pdev, bits->reg, &tmp16);
6283 tmp = tmp16;
6284 break;
6285 }
6286 case 4: {
6287 u32 tmp32 = 0;
6288 pci_read_config_dword(pdev, bits->reg, &tmp32);
6289 tmp = tmp32;
6290 break;
6291 }
6292
6293 default:
6294 return -EINVAL;
6295 }
6296
6297 tmp &= bits->mask;
6298
6299 return (tmp == bits->val) ? 1 : 0;
6300}
6301EXPORT_SYMBOL_GPL(pci_test_config_bits);
6302
6303#ifdef CONFIG_PM
6304void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6305{
6306 pci_save_state(pdev);
6307 pci_disable_device(pdev);
6308
6309 if (mesg.event & PM_EVENT_SLEEP)
6310 pci_set_power_state(pdev, PCI_D3hot);
6311}
6312EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6313
6314int ata_pci_device_do_resume(struct pci_dev *pdev)
6315{
6316 int rc;
6317
6318 pci_set_power_state(pdev, PCI_D0);
6319 pci_restore_state(pdev);
6320
6321 rc = pcim_enable_device(pdev);
6322 if (rc) {
6323 dev_err(&pdev->dev,
6324 "failed to enable device after resume (%d)\n", rc);
6325 return rc;
6326 }
6327
6328 pci_set_master(pdev);
6329 return 0;
6330}
6331EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6332
6333int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6334{
6335 struct ata_host *host = pci_get_drvdata(pdev);
6336
6337 ata_host_suspend(host, mesg);
6338
6339 ata_pci_device_do_suspend(pdev, mesg);
6340
6341 return 0;
6342}
6343EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6344
6345int ata_pci_device_resume(struct pci_dev *pdev)
6346{
6347 struct ata_host *host = pci_get_drvdata(pdev);
6348 int rc;
6349
6350 rc = ata_pci_device_do_resume(pdev);
6351 if (rc == 0)
6352 ata_host_resume(host);
6353 return rc;
6354}
6355EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6356#endif /* CONFIG_PM */
6357#endif /* CONFIG_PCI */
6358
6359/**
6360 * ata_platform_remove_one - Platform layer callback for device removal
6361 * @pdev: Platform device that was removed
6362 *
6363 * Platform layer indicates to libata via this hook that hot-unplug or
6364 * module unload event has occurred. Detach all ports. Resource
6365 * release is handled via devres.
6366 *
6367 * LOCKING:
6368 * Inherited from platform layer (may sleep).
6369 */
6370void ata_platform_remove_one(struct platform_device *pdev)
6371{
6372 struct ata_host *host = platform_get_drvdata(pdev);
6373
6374 ata_host_detach(host);
6375}
6376EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6377
6378#ifdef CONFIG_ATA_FORCE
6379
6380#define force_cbl(name, flag) \
6381 { #name, .cbl = (flag) }
6382
6383#define force_spd_limit(spd, val) \
6384 { #spd, .spd_limit = (val) }
6385
6386#define force_xfer(mode, shift) \
6387 { #mode, .xfer_mask = (1UL << (shift)) }
6388
6389#define force_lflag_on(name, flags) \
6390 { #name, .lflags_on = (flags) }
6391
6392#define force_lflag_onoff(name, flags) \
6393 { "no" #name, .lflags_on = (flags) }, \
6394 { #name, .lflags_off = (flags) }
6395
6396#define force_pflag_on(name, flags) \
6397 { #name, .pflags_on = (flags) }
6398
6399#define force_quirk_on(name, flag) \
6400 { #name, .quirk_on = (flag) }
6401
6402#define force_quirk_onoff(name, flag) \
6403 { "no" #name, .quirk_on = (flag) }, \
6404 { #name, .quirk_off = (flag) }
6405
6406static const struct ata_force_param force_tbl[] __initconst = {
6407 force_cbl(40c, ATA_CBL_PATA40),
6408 force_cbl(80c, ATA_CBL_PATA80),
6409 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6410 force_cbl(unk, ATA_CBL_PATA_UNK),
6411 force_cbl(ign, ATA_CBL_PATA_IGN),
6412 force_cbl(sata, ATA_CBL_SATA),
6413
6414 force_spd_limit(1.5Gbps, 1),
6415 force_spd_limit(3.0Gbps, 2),
6416
6417 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6418 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6419 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6420 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6421 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6422 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6423 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6424 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6425 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6426 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6427 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6428 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6429 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6430 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6431 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6432 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6433 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6434 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6435 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6436 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6437 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6438 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6439 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6440 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6441 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6442 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6443 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6444 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6445 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6446 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6447 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6448 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6449 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6450 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6451
6452 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6453 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6454 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6455 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6456 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6457
6458 force_pflag_on(external, ATA_PFLAG_EXTERNAL),
6459
6460 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ),
6461 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM),
6462 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI),
6463
6464 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM),
6465 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM),
6466 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M),
6467
6468 force_quirk_onoff(dma, ATA_QUIRK_NODMA),
6469 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR),
6470 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA),
6471
6472 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG),
6473 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG),
6474 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR),
6475
6476 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128),
6477 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024),
6478 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48),
6479
6480 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM),
6481 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER),
6482 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID),
6483 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA),
6484
6485 force_quirk_on(disable, ATA_QUIRK_DISABLE),
6486};
6487
6488static int __init ata_parse_force_one(char **cur,
6489 struct ata_force_ent *force_ent,
6490 const char **reason)
6491{
6492 char *start = *cur, *p = *cur;
6493 char *id, *val, *endp;
6494 const struct ata_force_param *match_fp = NULL;
6495 int nr_matches = 0, i;
6496
6497 /* find where this param ends and update *cur */
6498 while (*p != '\0' && *p != ',')
6499 p++;
6500
6501 if (*p == '\0')
6502 *cur = p;
6503 else
6504 *cur = p + 1;
6505
6506 *p = '\0';
6507
6508 /* parse */
6509 p = strchr(start, ':');
6510 if (!p) {
6511 val = strstrip(start);
6512 goto parse_val;
6513 }
6514 *p = '\0';
6515
6516 id = strstrip(start);
6517 val = strstrip(p + 1);
6518
6519 /* parse id */
6520 p = strchr(id, '.');
6521 if (p) {
6522 *p++ = '\0';
6523 force_ent->device = simple_strtoul(p, &endp, 10);
6524 if (p == endp || *endp != '\0') {
6525 *reason = "invalid device";
6526 return -EINVAL;
6527 }
6528 }
6529
6530 force_ent->port = simple_strtoul(id, &endp, 10);
6531 if (id == endp || *endp != '\0') {
6532 *reason = "invalid port/link";
6533 return -EINVAL;
6534 }
6535
6536 parse_val:
6537 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6538 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6539 const struct ata_force_param *fp = &force_tbl[i];
6540
6541 if (strncasecmp(val, fp->name, strlen(val)))
6542 continue;
6543
6544 nr_matches++;
6545 match_fp = fp;
6546
6547 if (strcasecmp(val, fp->name) == 0) {
6548 nr_matches = 1;
6549 break;
6550 }
6551 }
6552
6553 if (!nr_matches) {
6554 *reason = "unknown value";
6555 return -EINVAL;
6556 }
6557 if (nr_matches > 1) {
6558 *reason = "ambiguous value";
6559 return -EINVAL;
6560 }
6561
6562 force_ent->param = *match_fp;
6563
6564 return 0;
6565}
6566
6567static void __init ata_parse_force_param(void)
6568{
6569 int idx = 0, size = 1;
6570 int last_port = -1, last_device = -1;
6571 char *p, *cur, *next;
6572
6573 /* Calculate maximum number of params and allocate ata_force_tbl */
6574 for (p = ata_force_param_buf; *p; p++)
6575 if (*p == ',')
6576 size++;
6577
6578 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6579 if (!ata_force_tbl) {
6580 printk(KERN_WARNING "ata: failed to extend force table, "
6581 "libata.force ignored\n");
6582 return;
6583 }
6584
6585 /* parse and populate the table */
6586 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6587 const char *reason = "";
6588 struct ata_force_ent te = { .port = -1, .device = -1 };
6589
6590 next = cur;
6591 if (ata_parse_force_one(&next, &te, &reason)) {
6592 printk(KERN_WARNING "ata: failed to parse force "
6593 "parameter \"%s\" (%s)\n",
6594 cur, reason);
6595 continue;
6596 }
6597
6598 if (te.port == -1) {
6599 te.port = last_port;
6600 te.device = last_device;
6601 }
6602
6603 ata_force_tbl[idx++] = te;
6604
6605 last_port = te.port;
6606 last_device = te.device;
6607 }
6608
6609 ata_force_tbl_size = idx;
6610}
6611
6612static void ata_free_force_param(void)
6613{
6614 kfree(ata_force_tbl);
6615}
6616#else
6617static inline void ata_parse_force_param(void) { }
6618static inline void ata_free_force_param(void) { }
6619#endif
6620
6621static int __init ata_init(void)
6622{
6623 int rc;
6624
6625 ata_parse_force_param();
6626
6627 rc = ata_sff_init();
6628 if (rc) {
6629 ata_free_force_param();
6630 return rc;
6631 }
6632
6633 libata_transport_init();
6634 ata_scsi_transport_template = ata_attach_transport();
6635 if (!ata_scsi_transport_template) {
6636 ata_sff_exit();
6637 rc = -ENOMEM;
6638 goto err_out;
6639 }
6640
6641 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6642 return 0;
6643
6644err_out:
6645 return rc;
6646}
6647
6648static void __exit ata_exit(void)
6649{
6650 ata_release_transport(ata_scsi_transport_template);
6651 libata_transport_exit();
6652 ata_sff_exit();
6653 ata_free_force_param();
6654}
6655
6656subsys_initcall(ata_init);
6657module_exit(ata_exit);
6658
6659static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6660
6661int ata_ratelimit(void)
6662{
6663 return __ratelimit(&ratelimit);
6664}
6665EXPORT_SYMBOL_GPL(ata_ratelimit);
6666
6667/**
6668 * ata_msleep - ATA EH owner aware msleep
6669 * @ap: ATA port to attribute the sleep to
6670 * @msecs: duration to sleep in milliseconds
6671 *
6672 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6673 * ownership is released before going to sleep and reacquired
6674 * after the sleep is complete. IOW, other ports sharing the
6675 * @ap->host will be allowed to own the EH while this task is
6676 * sleeping.
6677 *
6678 * LOCKING:
6679 * Might sleep.
6680 */
6681void ata_msleep(struct ata_port *ap, unsigned int msecs)
6682{
6683 bool owns_eh = ap && ap->host->eh_owner == current;
6684
6685 if (owns_eh)
6686 ata_eh_release(ap);
6687
6688 if (msecs < 20) {
6689 unsigned long usecs = msecs * USEC_PER_MSEC;
6690 usleep_range(usecs, usecs + 50);
6691 } else {
6692 msleep(msecs);
6693 }
6694
6695 if (owns_eh)
6696 ata_eh_acquire(ap);
6697}
6698EXPORT_SYMBOL_GPL(ata_msleep);
6699
6700/**
6701 * ata_wait_register - wait until register value changes
6702 * @ap: ATA port to wait register for, can be NULL
6703 * @reg: IO-mapped register
6704 * @mask: Mask to apply to read register value
6705 * @val: Wait condition
6706 * @interval: polling interval in milliseconds
6707 * @timeout: timeout in milliseconds
6708 *
6709 * Waiting for some bits of register to change is a common
6710 * operation for ATA controllers. This function reads 32bit LE
6711 * IO-mapped register @reg and tests for the following condition.
6712 *
6713 * (*@reg & mask) != val
6714 *
6715 * If the condition is met, it returns; otherwise, the process is
6716 * repeated after @interval_msec until timeout.
6717 *
6718 * LOCKING:
6719 * Kernel thread context (may sleep)
6720 *
6721 * RETURNS:
6722 * The final register value.
6723 */
6724u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6725 unsigned int interval, unsigned int timeout)
6726{
6727 unsigned long deadline;
6728 u32 tmp;
6729
6730 tmp = ioread32(reg);
6731
6732 /* Calculate timeout _after_ the first read to make sure
6733 * preceding writes reach the controller before starting to
6734 * eat away the timeout.
6735 */
6736 deadline = ata_deadline(jiffies, timeout);
6737
6738 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6739 ata_msleep(ap, interval);
6740 tmp = ioread32(reg);
6741 }
6742
6743 return tmp;
6744}
6745EXPORT_SYMBOL_GPL(ata_wait_register);
6746
6747/*
6748 * Dummy port_ops
6749 */
6750static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6751{
6752 return AC_ERR_SYSTEM;
6753}
6754
6755static void ata_dummy_error_handler(struct ata_port *ap)
6756{
6757 /* truly dummy */
6758}
6759
6760struct ata_port_operations ata_dummy_port_ops = {
6761 .qc_issue = ata_dummy_qc_issue,
6762 .error_handler = ata_dummy_error_handler,
6763 .sched_eh = ata_std_sched_eh,
6764 .end_eh = ata_std_end_eh,
6765};
6766EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6767
6768const struct ata_port_info ata_dummy_port_info = {
6769 .port_ops = &ata_dummy_port_ops,
6770};
6771EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6772
6773EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6774EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6775EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6776EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6777EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);