Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4 *
5 * Copyright (C) 2018, ARM
6 *
7 * This file implements parsing of the Processor Properties Topology Table
8 * which is optionally used to describe the processor and cache topology.
9 * Due to the relative pointers used throughout the table, this doesn't
10 * leverage the existing subtable parsing in the kernel.
11 *
12 * The PPTT structure is an inverted tree, with each node potentially
13 * holding one or two inverted tree data structures describing
14 * the caches available at that level. Each cache structure optionally
15 * contains properties describing the cache at a given level which can be
16 * used to override hardware probed values.
17 */
18#define pr_fmt(fmt) "ACPI PPTT: " fmt
19
20#include <linux/acpi.h>
21#include <linux/cacheinfo.h>
22#include <acpi/processor.h>
23
24/*
25 * The acpi_pptt_cache_v1 in actbl2.h, which is imported from acpica,
26 * only contains the cache_id field rather than all the fields of the
27 * Cache Type Structure. Use this alternative structure until it is
28 * resolved in acpica.
29 */
30struct acpi_pptt_cache_v1_full {
31 struct acpi_subtable_header header;
32 u16 reserved;
33 u32 flags;
34 u32 next_level_of_cache;
35 u32 size;
36 u32 number_of_sets;
37 u8 associativity;
38 u8 attributes;
39 u16 line_size;
40 u32 cache_id;
41} __packed;
42
43static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
44 u32 pptt_ref)
45{
46 struct acpi_subtable_header *entry;
47
48 /* there isn't a subtable at reference 0 */
49 if (pptt_ref < sizeof(struct acpi_subtable_header))
50 return NULL;
51
52 if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
53 return NULL;
54
55 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
56
57 if (entry->length == 0)
58 return NULL;
59
60 if (pptt_ref + entry->length > table_hdr->length)
61 return NULL;
62
63 return entry;
64}
65
66static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
67 u32 pptt_ref)
68{
69 return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
70}
71
72static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
73 u32 pptt_ref)
74{
75 return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
76}
77
78static struct acpi_pptt_cache_v1_full *upgrade_pptt_cache(struct acpi_pptt_cache *cache)
79{
80 if (cache->header.length < sizeof(struct acpi_pptt_cache_v1_full))
81 return NULL;
82
83 /* No use for v1 if the only additional field is invalid */
84 if (!(cache->flags & ACPI_PPTT_CACHE_ID_VALID))
85 return NULL;
86
87 return (struct acpi_pptt_cache_v1_full *)cache;
88}
89
90static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
91 struct acpi_pptt_processor *node,
92 int resource)
93{
94 u32 *ref;
95
96 if (resource >= node->number_of_priv_resources)
97 return NULL;
98
99 ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
100 ref += resource;
101
102 return fetch_pptt_subtable(table_hdr, *ref);
103}
104
105static inline bool acpi_pptt_match_type(int table_type, int type)
106{
107 return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
108 table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
109}
110
111/**
112 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
113 * @table_hdr: Pointer to the head of the PPTT table
114 * @local_level: passed res reflects this cache level
115 * @split_levels: Number of split cache levels (data/instruction).
116 * @res: cache resource in the PPTT we want to walk
117 * @found: returns a pointer to the requested level if found
118 * @level: the requested cache level
119 * @type: the requested cache type
120 *
121 * Attempt to find a given cache level, while counting the max number
122 * of cache levels for the cache node.
123 *
124 * Given a pptt resource, verify that it is a cache node, then walk
125 * down each level of caches, counting how many levels are found
126 * as well as checking the cache type (icache, dcache, unified). If a
127 * level & type match, then we set found, and continue the search.
128 * Once the entire cache branch has been walked return its max
129 * depth.
130 *
131 * Return: The cache structure and the level we terminated with.
132 */
133static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
134 unsigned int local_level,
135 unsigned int *split_levels,
136 struct acpi_subtable_header *res,
137 struct acpi_pptt_cache **found,
138 unsigned int level, int type)
139{
140 struct acpi_pptt_cache *cache;
141
142 if (res->type != ACPI_PPTT_TYPE_CACHE)
143 return 0;
144
145 cache = (struct acpi_pptt_cache *) res;
146 while (cache) {
147 local_level++;
148
149 if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) {
150 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
151 continue;
152 }
153
154 if (split_levels &&
155 (acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) ||
156 acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR)))
157 *split_levels = local_level;
158
159 if (local_level == level &&
160 acpi_pptt_match_type(cache->attributes, type)) {
161 if (*found != NULL && cache != *found)
162 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
163
164 pr_debug("Found cache @ level %u\n", level);
165 *found = cache;
166 /*
167 * continue looking at this node's resource list
168 * to verify that we don't find a duplicate
169 * cache node.
170 */
171 }
172 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
173 }
174 return local_level;
175}
176
177static struct acpi_pptt_cache *
178acpi_find_cache_level(struct acpi_table_header *table_hdr,
179 struct acpi_pptt_processor *cpu_node,
180 unsigned int *starting_level, unsigned int *split_levels,
181 unsigned int level, int type)
182{
183 struct acpi_subtable_header *res;
184 unsigned int number_of_levels = *starting_level;
185 int resource = 0;
186 struct acpi_pptt_cache *ret = NULL;
187 unsigned int local_level;
188
189 /* walk down from processor node */
190 while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
191 resource++;
192
193 local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
194 split_levels, res, &ret,
195 level, type);
196 /*
197 * we are looking for the max depth. Since its potentially
198 * possible for a given node to have resources with differing
199 * depths verify that the depth we have found is the largest.
200 */
201 if (number_of_levels < local_level)
202 number_of_levels = local_level;
203 }
204 if (number_of_levels > *starting_level)
205 *starting_level = number_of_levels;
206
207 return ret;
208}
209
210/**
211 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the
212 * total number of levels and split cache levels (data/instruction).
213 * @table_hdr: Pointer to the head of the PPTT table
214 * @cpu_node: processor node we wish to count caches for
215 * @split_levels: Number of split cache levels (data/instruction) if
216 * success. Can by NULL.
217 *
218 * Return: number of levels.
219 * Given a processor node containing a processing unit, walk into it and count
220 * how many levels exist solely for it, and then walk up each level until we hit
221 * the root node (ignore the package level because it may be possible to have
222 * caches that exist across packages). Count the number of cache levels and
223 * split cache levels (data/instruction) that exist at each level on the way
224 * up.
225 */
226static int acpi_count_levels(struct acpi_table_header *table_hdr,
227 struct acpi_pptt_processor *cpu_node,
228 unsigned int *split_levels)
229{
230 int current_level = 0;
231
232 do {
233 acpi_find_cache_level(table_hdr, cpu_node, ¤t_level, split_levels, 0, 0);
234 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
235 } while (cpu_node);
236
237 return current_level;
238}
239
240/**
241 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
242 * @table_hdr: Pointer to the head of the PPTT table
243 * @node: passed node is checked to see if its a leaf
244 *
245 * Determine if the *node parameter is a leaf node by iterating the
246 * PPTT table, looking for nodes which reference it.
247 *
248 * Return: 0 if we find a node referencing the passed node (or table error),
249 * or 1 if we don't.
250 */
251static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
252 struct acpi_pptt_processor *node)
253{
254 struct acpi_subtable_header *entry;
255 unsigned long table_end;
256 u32 node_entry;
257 struct acpi_pptt_processor *cpu_node;
258 u32 proc_sz;
259
260 if (table_hdr->revision > 1)
261 return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
262
263 table_end = (unsigned long)table_hdr + table_hdr->length;
264 node_entry = ACPI_PTR_DIFF(node, table_hdr);
265 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
266 sizeof(struct acpi_table_pptt));
267 proc_sz = sizeof(struct acpi_pptt_processor);
268
269 /* ignore subtable types that are smaller than a processor node */
270 while ((unsigned long)entry + proc_sz <= table_end) {
271 cpu_node = (struct acpi_pptt_processor *)entry;
272
273 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
274 cpu_node->parent == node_entry)
275 return 0;
276 if (entry->length == 0)
277 return 0;
278
279 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
280 entry->length);
281 }
282 return 1;
283}
284
285/**
286 * acpi_find_processor_node() - Given a PPTT table find the requested processor
287 * @table_hdr: Pointer to the head of the PPTT table
288 * @acpi_cpu_id: CPU we are searching for
289 *
290 * Find the subtable entry describing the provided processor.
291 * This is done by iterating the PPTT table looking for processor nodes
292 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
293 * passed into the function. If we find a node that matches this criteria
294 * we verify that its a leaf node in the topology rather than depending
295 * on the valid flag, which doesn't need to be set for leaf nodes.
296 *
297 * Return: NULL, or the processors acpi_pptt_processor*
298 */
299static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
300 u32 acpi_cpu_id)
301{
302 struct acpi_subtable_header *entry;
303 unsigned long table_end;
304 struct acpi_pptt_processor *cpu_node;
305 u32 proc_sz;
306
307 table_end = (unsigned long)table_hdr + table_hdr->length;
308 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
309 sizeof(struct acpi_table_pptt));
310 proc_sz = sizeof(struct acpi_pptt_processor);
311
312 /* find the processor structure associated with this cpuid */
313 while ((unsigned long)entry + proc_sz <= table_end) {
314 cpu_node = (struct acpi_pptt_processor *)entry;
315
316 if (entry->length == 0) {
317 pr_warn("Invalid zero length subtable\n");
318 break;
319 }
320 /* entry->length may not equal proc_sz, revalidate the processor structure length */
321 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
322 acpi_cpu_id == cpu_node->acpi_processor_id &&
323 (unsigned long)entry + entry->length <= table_end &&
324 entry->length == proc_sz + cpu_node->number_of_priv_resources * sizeof(u32) &&
325 acpi_pptt_leaf_node(table_hdr, cpu_node)) {
326 return (struct acpi_pptt_processor *)entry;
327 }
328
329 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
330 entry->length);
331 }
332
333 return NULL;
334}
335
336static u8 acpi_cache_type(enum cache_type type)
337{
338 switch (type) {
339 case CACHE_TYPE_DATA:
340 pr_debug("Looking for data cache\n");
341 return ACPI_PPTT_CACHE_TYPE_DATA;
342 case CACHE_TYPE_INST:
343 pr_debug("Looking for instruction cache\n");
344 return ACPI_PPTT_CACHE_TYPE_INSTR;
345 default:
346 case CACHE_TYPE_UNIFIED:
347 pr_debug("Looking for unified cache\n");
348 /*
349 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
350 * contains the bit pattern that will match both
351 * ACPI unified bit patterns because we use it later
352 * to match both cases.
353 */
354 return ACPI_PPTT_CACHE_TYPE_UNIFIED;
355 }
356}
357
358static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
359 u32 acpi_cpu_id,
360 enum cache_type type,
361 unsigned int level,
362 struct acpi_pptt_processor **node)
363{
364 unsigned int total_levels = 0;
365 struct acpi_pptt_cache *found = NULL;
366 struct acpi_pptt_processor *cpu_node;
367 u8 acpi_type = acpi_cache_type(type);
368
369 pr_debug("Looking for CPU %d's level %u cache type %d\n",
370 acpi_cpu_id, level, acpi_type);
371
372 cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
373
374 while (cpu_node && !found) {
375 found = acpi_find_cache_level(table_hdr, cpu_node,
376 &total_levels, NULL, level, acpi_type);
377 *node = cpu_node;
378 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
379 }
380
381 return found;
382}
383
384/**
385 * update_cache_properties() - Update cacheinfo for the given processor
386 * @this_leaf: Kernel cache info structure being updated
387 * @found_cache: The PPTT node describing this cache instance
388 * @cpu_node: A unique reference to describe this cache instance
389 *
390 * The ACPI spec implies that the fields in the cache structures are used to
391 * extend and correct the information probed from the hardware. Lets only
392 * set fields that we determine are VALID.
393 *
394 * Return: nothing. Side effect of updating the global cacheinfo
395 */
396static void update_cache_properties(struct cacheinfo *this_leaf,
397 struct acpi_pptt_cache *found_cache,
398 struct acpi_pptt_processor *cpu_node)
399{
400 struct acpi_pptt_cache_v1_full *found_cache_v1;
401
402 this_leaf->fw_token = cpu_node;
403 if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
404 this_leaf->size = found_cache->size;
405 if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
406 this_leaf->coherency_line_size = found_cache->line_size;
407 if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
408 this_leaf->number_of_sets = found_cache->number_of_sets;
409 if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
410 this_leaf->ways_of_associativity = found_cache->associativity;
411 if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
412 switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
413 case ACPI_PPTT_CACHE_POLICY_WT:
414 this_leaf->attributes = CACHE_WRITE_THROUGH;
415 break;
416 case ACPI_PPTT_CACHE_POLICY_WB:
417 this_leaf->attributes = CACHE_WRITE_BACK;
418 break;
419 }
420 }
421 if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
422 switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
423 case ACPI_PPTT_CACHE_READ_ALLOCATE:
424 this_leaf->attributes |= CACHE_READ_ALLOCATE;
425 break;
426 case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
427 this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
428 break;
429 case ACPI_PPTT_CACHE_RW_ALLOCATE:
430 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
431 this_leaf->attributes |=
432 CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
433 break;
434 }
435 }
436 /*
437 * If cache type is NOCACHE, then the cache hasn't been specified
438 * via other mechanisms. Update the type if a cache type has been
439 * provided.
440 *
441 * Note, we assume such caches are unified based on conventional system
442 * design and known examples. Significant work is required elsewhere to
443 * fully support data/instruction only type caches which are only
444 * specified in PPTT.
445 */
446 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
447 found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
448 this_leaf->type = CACHE_TYPE_UNIFIED;
449
450 found_cache_v1 = upgrade_pptt_cache(found_cache);
451 if (found_cache_v1) {
452 this_leaf->id = found_cache_v1->cache_id;
453 this_leaf->attributes |= CACHE_ID;
454 }
455}
456
457static void cache_setup_acpi_cpu(struct acpi_table_header *table,
458 unsigned int cpu)
459{
460 struct acpi_pptt_cache *found_cache;
461 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
462 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
463 struct cacheinfo *this_leaf;
464 unsigned int index = 0;
465 struct acpi_pptt_processor *cpu_node = NULL;
466
467 while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
468 this_leaf = this_cpu_ci->info_list + index;
469 found_cache = acpi_find_cache_node(table, acpi_cpu_id,
470 this_leaf->type,
471 this_leaf->level,
472 &cpu_node);
473 pr_debug("found = %p %p\n", found_cache, cpu_node);
474 if (found_cache)
475 update_cache_properties(this_leaf, found_cache,
476 ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)));
477
478 index++;
479 }
480}
481
482static bool flag_identical(struct acpi_table_header *table_hdr,
483 struct acpi_pptt_processor *cpu)
484{
485 struct acpi_pptt_processor *next;
486
487 /* heterogeneous machines must use PPTT revision > 1 */
488 if (table_hdr->revision < 2)
489 return false;
490
491 /* Locate the last node in the tree with IDENTICAL set */
492 if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
493 next = fetch_pptt_node(table_hdr, cpu->parent);
494 if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
495 return true;
496 }
497
498 return false;
499}
500
501/* Passing level values greater than this will result in search termination */
502#define PPTT_ABORT_PACKAGE 0xFF
503
504static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
505 struct acpi_pptt_processor *cpu,
506 int level, int flag)
507{
508 struct acpi_pptt_processor *prev_node;
509
510 while (cpu && level) {
511 /* special case the identical flag to find last identical */
512 if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
513 if (flag_identical(table_hdr, cpu))
514 break;
515 } else if (cpu->flags & flag)
516 break;
517 pr_debug("level %d\n", level);
518 prev_node = fetch_pptt_node(table_hdr, cpu->parent);
519 if (prev_node == NULL)
520 break;
521 cpu = prev_node;
522 level--;
523 }
524 return cpu;
525}
526
527static void acpi_pptt_warn_missing(void)
528{
529 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
530}
531
532/**
533 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
534 * @table: Pointer to the head of the PPTT table
535 * @cpu: Kernel logical CPU number
536 * @level: A level that terminates the search
537 * @flag: A flag which terminates the search
538 *
539 * Get a unique value given a CPU, and a topology level, that can be
540 * matched to determine which cpus share common topological features
541 * at that level.
542 *
543 * Return: Unique value, or -ENOENT if unable to locate CPU
544 */
545static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
546 unsigned int cpu, int level, int flag)
547{
548 struct acpi_pptt_processor *cpu_node;
549 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
550
551 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
552 if (cpu_node) {
553 cpu_node = acpi_find_processor_tag(table, cpu_node,
554 level, flag);
555 /*
556 * As per specification if the processor structure represents
557 * an actual processor, then ACPI processor ID must be valid.
558 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
559 * should be set if the UID is valid
560 */
561 if (level == 0 ||
562 cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
563 return cpu_node->acpi_processor_id;
564 return ACPI_PTR_DIFF(cpu_node, table);
565 }
566 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
567 cpu, acpi_cpu_id);
568 return -ENOENT;
569}
570
571
572static struct acpi_table_header *acpi_get_pptt(void)
573{
574 static struct acpi_table_header *pptt;
575 static bool is_pptt_checked;
576 acpi_status status;
577
578 /*
579 * PPTT will be used at runtime on every CPU hotplug in path, so we
580 * don't need to call acpi_put_table() to release the table mapping.
581 */
582 if (!pptt && !is_pptt_checked) {
583 status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
584 if (ACPI_FAILURE(status))
585 acpi_pptt_warn_missing();
586
587 is_pptt_checked = true;
588 }
589
590 return pptt;
591}
592
593static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
594{
595 struct acpi_table_header *table;
596 int retval;
597
598 table = acpi_get_pptt();
599 if (!table)
600 return -ENOENT;
601
602 retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
603 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
604 cpu, level, retval);
605
606 return retval;
607}
608
609/**
610 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
611 * @cpu: Kernel logical CPU number
612 * @rev: The minimum PPTT revision defining the flag
613 * @flag: The flag itself
614 *
615 * Check the node representing a CPU for a given flag.
616 *
617 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
618 * the table revision isn't new enough.
619 * 1, any passed flag set
620 * 0, flag unset
621 */
622static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
623{
624 struct acpi_table_header *table;
625 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
626 struct acpi_pptt_processor *cpu_node = NULL;
627 int ret = -ENOENT;
628
629 table = acpi_get_pptt();
630 if (!table)
631 return -ENOENT;
632
633 if (table->revision >= rev)
634 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
635
636 if (cpu_node)
637 ret = (cpu_node->flags & flag) != 0;
638
639 return ret;
640}
641
642/**
643 * acpi_get_cache_info() - Determine the number of cache levels and
644 * split cache levels (data/instruction) and for a PE.
645 * @cpu: Kernel logical CPU number
646 * @levels: Number of levels if success.
647 * @split_levels: Number of levels being split (i.e. data/instruction)
648 * if success. Can by NULL.
649 *
650 * Given a logical CPU number, returns the number of levels of cache represented
651 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
652 * indicating we didn't find any cache levels.
653 *
654 * Return: -ENOENT if no PPTT table or no PPTT processor struct found.
655 * 0 on success.
656 */
657int acpi_get_cache_info(unsigned int cpu, unsigned int *levels,
658 unsigned int *split_levels)
659{
660 struct acpi_pptt_processor *cpu_node;
661 struct acpi_table_header *table;
662 u32 acpi_cpu_id;
663
664 *levels = 0;
665 if (split_levels)
666 *split_levels = 0;
667
668 table = acpi_get_pptt();
669 if (!table)
670 return -ENOENT;
671
672 pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu);
673
674 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
675 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
676 if (!cpu_node)
677 return -ENOENT;
678
679 *levels = acpi_count_levels(table, cpu_node, split_levels);
680
681 pr_debug("Cache Setup: last_level=%d split_levels=%d\n",
682 *levels, split_levels ? *split_levels : -1);
683
684 return 0;
685}
686
687/**
688 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
689 * @cpu: Kernel logical CPU number
690 *
691 * Updates the global cache info provided by cpu_get_cacheinfo()
692 * when there are valid properties in the acpi_pptt_cache nodes. A
693 * successful parse may not result in any updates if none of the
694 * cache levels have any valid flags set. Further, a unique value is
695 * associated with each known CPU cache entry. This unique value
696 * can be used to determine whether caches are shared between CPUs.
697 *
698 * Return: -ENOENT on failure to find table, or 0 on success
699 */
700int cache_setup_acpi(unsigned int cpu)
701{
702 struct acpi_table_header *table;
703
704 table = acpi_get_pptt();
705 if (!table)
706 return -ENOENT;
707
708 pr_debug("Cache Setup ACPI CPU %d\n", cpu);
709
710 cache_setup_acpi_cpu(table, cpu);
711
712 return 0;
713}
714
715/**
716 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
717 * @cpu: Kernel logical CPU number
718 *
719 * Return: 1, a thread
720 * 0, not a thread
721 * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
722 * the table revision isn't new enough.
723 */
724int acpi_pptt_cpu_is_thread(unsigned int cpu)
725{
726 return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
727}
728
729/**
730 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
731 * @cpu: Kernel logical CPU number
732 * @level: The topological level for which we would like a unique ID
733 *
734 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
735 * /socket/etc. This ID can then be used to group peers, which will have
736 * matching ids.
737 *
738 * The search terminates when either the requested level is found or
739 * we reach a root node. Levels beyond the termination point will return the
740 * same unique ID. The unique id for level 0 is the acpi processor id. All
741 * other levels beyond this use a generated value to uniquely identify
742 * a topological feature.
743 *
744 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
745 * Otherwise returns a value which represents a unique topological feature.
746 */
747int find_acpi_cpu_topology(unsigned int cpu, int level)
748{
749 return find_acpi_cpu_topology_tag(cpu, level, 0);
750}
751
752/**
753 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
754 * @cpu: Kernel logical CPU number
755 *
756 * Determine a topology unique package ID for the given CPU.
757 * This ID can then be used to group peers, which will have matching ids.
758 *
759 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
760 * flag set or we reach a root node.
761 *
762 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
763 * Otherwise returns a value which represents the package for this CPU.
764 */
765int find_acpi_cpu_topology_package(unsigned int cpu)
766{
767 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
768 ACPI_PPTT_PHYSICAL_PACKAGE);
769}
770
771/**
772 * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
773 * @cpu: Kernel logical CPU number
774 *
775 * Determine a topology unique cluster ID for the given CPU/thread.
776 * This ID can then be used to group peers, which will have matching ids.
777 *
778 * The cluster, if present is the level of topology above CPUs. In a
779 * multi-thread CPU, it will be the level above the CPU, not the thread.
780 * It may not exist in single CPU systems. In simple multi-CPU systems,
781 * it may be equal to the package topology level.
782 *
783 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
784 * or there is no toplogy level above the CPU..
785 * Otherwise returns a value which represents the package for this CPU.
786 */
787
788int find_acpi_cpu_topology_cluster(unsigned int cpu)
789{
790 struct acpi_table_header *table;
791 struct acpi_pptt_processor *cpu_node, *cluster_node;
792 u32 acpi_cpu_id;
793 int retval;
794 int is_thread;
795
796 table = acpi_get_pptt();
797 if (!table)
798 return -ENOENT;
799
800 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
801 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
802 if (!cpu_node || !cpu_node->parent)
803 return -ENOENT;
804
805 is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
806 cluster_node = fetch_pptt_node(table, cpu_node->parent);
807 if (!cluster_node)
808 return -ENOENT;
809
810 if (is_thread) {
811 if (!cluster_node->parent)
812 return -ENOENT;
813
814 cluster_node = fetch_pptt_node(table, cluster_node->parent);
815 if (!cluster_node)
816 return -ENOENT;
817 }
818 if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
819 retval = cluster_node->acpi_processor_id;
820 else
821 retval = ACPI_PTR_DIFF(cluster_node, table);
822
823 return retval;
824}
825
826/**
827 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
828 * @cpu: Kernel logical CPU number
829 *
830 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
831 * implementation should have matching tags.
832 *
833 * The returned tag can be used to group peers with identical implementation.
834 *
835 * The search terminates when a level is found with the identical implementation
836 * flag set or we reach a root node.
837 *
838 * Due to limitations in the PPTT data structure, there may be rare situations
839 * where two cores in a heterogeneous machine may be identical, but won't have
840 * the same tag.
841 *
842 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
843 * Otherwise returns a value which represents a group of identical cores
844 * similar to this CPU.
845 */
846int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
847{
848 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
849 ACPI_PPTT_ACPI_IDENTICAL);
850}
851
852/**
853 * acpi_pptt_get_child_cpus() - Find all the CPUs below a PPTT
854 * processor hierarchy node
855 *
856 * @table_hdr: A reference to the PPTT table
857 * @parent_node: A pointer to the processor hierarchy node in the
858 * table_hdr
859 * @cpus: A cpumask to fill with the CPUs below @parent_node
860 *
861 * Walks up the PPTT from every possible CPU to find if the provided
862 * @parent_node is a parent of this CPU.
863 */
864static void acpi_pptt_get_child_cpus(struct acpi_table_header *table_hdr,
865 struct acpi_pptt_processor *parent_node,
866 cpumask_t *cpus)
867{
868 struct acpi_pptt_processor *cpu_node;
869 u32 acpi_id;
870 int cpu;
871
872 cpumask_clear(cpus);
873
874 for_each_possible_cpu(cpu) {
875 acpi_id = get_acpi_id_for_cpu(cpu);
876 cpu_node = acpi_find_processor_node(table_hdr, acpi_id);
877
878 while (cpu_node) {
879 if (cpu_node == parent_node) {
880 cpumask_set_cpu(cpu, cpus);
881 break;
882 }
883 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
884 }
885 }
886}
887
888/**
889 * acpi_pptt_get_cpus_from_container() - Populate a cpumask with all CPUs in a
890 * processor container
891 * @acpi_cpu_id: The UID of the processor container
892 * @cpus: The resulting CPU mask
893 *
894 * Find the specified Processor Container, and fill @cpus with all the cpus
895 * below it.
896 *
897 * Not all 'Processor Hierarchy' entries in the PPTT are either a CPU
898 * or a Processor Container, they may exist purely to describe a
899 * Private resource. CPUs have to be leaves, so a Processor Container
900 * is a non-leaf that has the 'ACPI Processor ID valid' flag set.
901 */
902void acpi_pptt_get_cpus_from_container(u32 acpi_cpu_id, cpumask_t *cpus)
903{
904 struct acpi_table_header *table_hdr;
905 struct acpi_subtable_header *entry;
906 unsigned long table_end;
907 u32 proc_sz;
908
909 cpumask_clear(cpus);
910
911 table_hdr = acpi_get_pptt();
912 if (!table_hdr)
913 return;
914
915 table_end = (unsigned long)table_hdr + table_hdr->length;
916 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
917 sizeof(struct acpi_table_pptt));
918 proc_sz = sizeof(struct acpi_pptt_processor);
919 while ((unsigned long)entry + proc_sz <= table_end) {
920 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR) {
921 struct acpi_pptt_processor *cpu_node;
922
923 cpu_node = (struct acpi_pptt_processor *)entry;
924 if (cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID &&
925 !acpi_pptt_leaf_node(table_hdr, cpu_node) &&
926 cpu_node->acpi_processor_id == acpi_cpu_id) {
927 acpi_pptt_get_child_cpus(table_hdr, cpu_node, cpus);
928 break;
929 }
930 }
931 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
932 entry->length);
933 }
934}
935
936/**
937 * find_acpi_cache_level_from_id() - Get the level of the specified cache
938 * @cache_id: The id field of the cache
939 *
940 * Determine the level relative to any CPU for the cache identified by
941 * cache_id. This allows the property to be found even if the CPUs are offline.
942 *
943 * The returned level can be used to group caches that are peers.
944 *
945 * The PPTT table must be rev 3 or later.
946 *
947 * If one CPU's L2 is shared with another CPU as L3, this function will return
948 * an unpredictable value.
949 *
950 * Return: -ENOENT if the PPTT doesn't exist, the revision isn't supported or
951 * the cache cannot be found.
952 * Otherwise returns a value which represents the level of the specified cache.
953 */
954int find_acpi_cache_level_from_id(u32 cache_id)
955{
956 int cpu;
957 struct acpi_table_header *table;
958
959 table = acpi_get_pptt();
960 if (!table)
961 return -ENOENT;
962
963 if (table->revision < 3)
964 return -ENOENT;
965
966 for_each_possible_cpu(cpu) {
967 bool empty;
968 int level = 1;
969 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
970 struct acpi_pptt_cache *cache;
971 struct acpi_pptt_processor *cpu_node;
972
973 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
974 if (!cpu_node)
975 continue;
976
977 do {
978 int cache_type[] = {CACHE_TYPE_INST, CACHE_TYPE_DATA, CACHE_TYPE_UNIFIED};
979
980 empty = true;
981 for (int i = 0; i < ARRAY_SIZE(cache_type); i++) {
982 struct acpi_pptt_cache_v1_full *cache_v1;
983
984 cache = acpi_find_cache_node(table, acpi_cpu_id, cache_type[i],
985 level, &cpu_node);
986 if (!cache)
987 continue;
988
989 empty = false;
990
991 cache_v1 = upgrade_pptt_cache(cache);
992 if (cache_v1 && cache_v1->cache_id == cache_id)
993 return level;
994 }
995 level++;
996 } while (!empty);
997 }
998
999 return -ENOENT;
1000}
1001
1002/**
1003 * acpi_pptt_get_cpumask_from_cache_id() - Get the cpus associated with the
1004 * specified cache
1005 * @cache_id: The id field of the cache
1006 * @cpus: Where to build the cpumask
1007 *
1008 * Determine which CPUs are below this cache in the PPTT. This allows the property
1009 * to be found even if the CPUs are offline.
1010 *
1011 * The PPTT table must be rev 3 or later,
1012 *
1013 * Return: -ENOENT if the PPTT doesn't exist, or the cache cannot be found.
1014 * Otherwise returns 0 and sets the cpus in the provided cpumask.
1015 */
1016int acpi_pptt_get_cpumask_from_cache_id(u32 cache_id, cpumask_t *cpus)
1017{
1018 int cpu;
1019 struct acpi_table_header *table;
1020
1021 cpumask_clear(cpus);
1022
1023 table = acpi_get_pptt();
1024 if (!table)
1025 return -ENOENT;
1026
1027 if (table->revision < 3)
1028 return -ENOENT;
1029
1030 for_each_possible_cpu(cpu) {
1031 bool empty;
1032 int level = 1;
1033 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
1034 struct acpi_pptt_cache *cache;
1035 struct acpi_pptt_processor *cpu_node;
1036
1037 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
1038 if (!cpu_node)
1039 continue;
1040
1041 do {
1042 int cache_type[] = {CACHE_TYPE_INST, CACHE_TYPE_DATA, CACHE_TYPE_UNIFIED};
1043
1044 empty = true;
1045 for (int i = 0; i < ARRAY_SIZE(cache_type); i++) {
1046 struct acpi_pptt_cache_v1_full *cache_v1;
1047
1048 cache = acpi_find_cache_node(table, acpi_cpu_id, cache_type[i],
1049 level, &cpu_node);
1050
1051 if (!cache)
1052 continue;
1053
1054 empty = false;
1055
1056 cache_v1 = upgrade_pptt_cache(cache);
1057 if (cache_v1 && cache_v1->cache_id == cache_id)
1058 cpumask_set_cpu(cpu, cpus);
1059 }
1060 level++;
1061 } while (!empty);
1062 }
1063
1064 return 0;
1065}