Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4 * scalable techniques.
5 *
6 * Copyright (C) 2017 Facebook
7 */
8
9#include <linux/kernel.h>
10#include <linux/blkdev.h>
11#include <linux/module.h>
12#include <linux/sbitmap.h>
13
14#include <trace/events/block.h>
15
16#include "elevator.h"
17#include "blk.h"
18#include "blk-mq.h"
19#include "blk-mq-debugfs.h"
20#include "blk-mq-sched.h"
21
22#define CREATE_TRACE_POINTS
23#include <trace/events/kyber.h>
24
25/*
26 * Scheduling domains: the device is divided into multiple domains based on the
27 * request type.
28 */
29enum {
30 KYBER_READ,
31 KYBER_WRITE,
32 KYBER_DISCARD,
33 KYBER_OTHER,
34 KYBER_NUM_DOMAINS,
35};
36
37static const char *kyber_domain_names[] = {
38 [KYBER_READ] = "READ",
39 [KYBER_WRITE] = "WRITE",
40 [KYBER_DISCARD] = "DISCARD",
41 [KYBER_OTHER] = "OTHER",
42};
43
44enum {
45 /*
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
48 * operations.
49 */
50 KYBER_ASYNC_PERCENT = 75,
51};
52
53/*
54 * Maximum device-wide depth for each scheduling domain.
55 *
56 * Even for fast devices with lots of tags like NVMe, you can saturate the
57 * device with only a fraction of the maximum possible queue depth. So, we cap
58 * these to a reasonable value.
59 */
60static const unsigned int kyber_depth[] = {
61 [KYBER_READ] = 256,
62 [KYBER_WRITE] = 128,
63 [KYBER_DISCARD] = 64,
64 [KYBER_OTHER] = 16,
65};
66
67/*
68 * Default latency targets for each scheduling domain.
69 */
70static const u64 kyber_latency_targets[] = {
71 [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74};
75
76/*
77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
78 * domain.
79 */
80static const unsigned int kyber_batch_size[] = {
81 [KYBER_READ] = 16,
82 [KYBER_WRITE] = 8,
83 [KYBER_DISCARD] = 1,
84 [KYBER_OTHER] = 1,
85};
86
87/*
88 * Requests latencies are recorded in a histogram with buckets defined relative
89 * to the target latency:
90 *
91 * <= 1/4 * target latency
92 * <= 1/2 * target latency
93 * <= 3/4 * target latency
94 * <= target latency
95 * <= 1 1/4 * target latency
96 * <= 1 1/2 * target latency
97 * <= 1 3/4 * target latency
98 * > 1 3/4 * target latency
99 */
100enum {
101 /*
102 * The width of the latency histogram buckets is
103 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104 */
105 KYBER_LATENCY_SHIFT = 2,
106 /*
107 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108 * thus, "good".
109 */
110 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113};
114
115/*
116 * We measure both the total latency and the I/O latency (i.e., latency after
117 * submitting to the device).
118 */
119enum {
120 KYBER_TOTAL_LATENCY,
121 KYBER_IO_LATENCY,
122};
123
124static const char *kyber_latency_type_names[] = {
125 [KYBER_TOTAL_LATENCY] = "total",
126 [KYBER_IO_LATENCY] = "I/O",
127};
128
129/*
130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131 * domain except for KYBER_OTHER.
132 */
133struct kyber_cpu_latency {
134 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135};
136
137/*
138 * There is a same mapping between ctx & hctx and kcq & khd,
139 * we use request->mq_ctx->index_hw to index the kcq in khd.
140 */
141struct kyber_ctx_queue {
142 /*
143 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 * Also protect the rqs on rq_list when merge.
145 */
146 spinlock_t lock;
147 struct list_head rq_list[KYBER_NUM_DOMAINS];
148} ____cacheline_aligned_in_smp;
149
150struct kyber_queue_data {
151 struct request_queue *q;
152 dev_t dev;
153
154 /*
155 * Each scheduling domain has a limited number of in-flight requests
156 * device-wide, limited by these tokens.
157 */
158 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
159
160 /* Number of allowed async requests. */
161 unsigned int async_depth;
162
163 struct kyber_cpu_latency __percpu *cpu_latency;
164
165 /* Timer for stats aggregation and adjusting domain tokens. */
166 struct timer_list timer;
167
168 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
169
170 unsigned long latency_timeout[KYBER_OTHER];
171
172 int domain_p99[KYBER_OTHER];
173
174 /* Target latencies in nanoseconds. */
175 u64 latency_targets[KYBER_OTHER];
176};
177
178struct kyber_hctx_data {
179 spinlock_t lock;
180 struct list_head rqs[KYBER_NUM_DOMAINS];
181 unsigned int cur_domain;
182 unsigned int batching;
183 struct kyber_ctx_queue *kcqs;
184 struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
185 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
186 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
187 atomic_t wait_index[KYBER_NUM_DOMAINS];
188};
189
190static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
191 void *key);
192
193static unsigned int kyber_sched_domain(blk_opf_t opf)
194{
195 switch (opf & REQ_OP_MASK) {
196 case REQ_OP_READ:
197 return KYBER_READ;
198 case REQ_OP_WRITE:
199 return KYBER_WRITE;
200 case REQ_OP_DISCARD:
201 return KYBER_DISCARD;
202 default:
203 return KYBER_OTHER;
204 }
205}
206
207static void flush_latency_buckets(struct kyber_queue_data *kqd,
208 struct kyber_cpu_latency *cpu_latency,
209 unsigned int sched_domain, unsigned int type)
210{
211 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
212 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
213 unsigned int bucket;
214
215 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
216 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
217}
218
219/*
220 * Calculate the histogram bucket with the given percentile rank, or -1 if there
221 * aren't enough samples yet.
222 */
223static int calculate_percentile(struct kyber_queue_data *kqd,
224 unsigned int sched_domain, unsigned int type,
225 unsigned int percentile)
226{
227 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
228 unsigned int bucket, samples = 0, percentile_samples;
229
230 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
231 samples += buckets[bucket];
232
233 if (!samples)
234 return -1;
235
236 /*
237 * We do the calculation once we have 500 samples or one second passes
238 * since the first sample was recorded, whichever comes first.
239 */
240 if (!kqd->latency_timeout[sched_domain])
241 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
242 if (samples < 500 &&
243 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
244 return -1;
245 }
246 kqd->latency_timeout[sched_domain] = 0;
247
248 percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
249 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
250 if (buckets[bucket] >= percentile_samples)
251 break;
252 percentile_samples -= buckets[bucket];
253 }
254 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
255
256 trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
257 kyber_latency_type_names[type], percentile,
258 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
259
260 return bucket;
261}
262
263static void kyber_resize_domain(struct kyber_queue_data *kqd,
264 unsigned int sched_domain, unsigned int depth)
265{
266 depth = clamp(depth, 1U, kyber_depth[sched_domain]);
267 if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
268 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
269 trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
270 depth);
271 }
272}
273
274static void kyber_timer_fn(struct timer_list *t)
275{
276 struct kyber_queue_data *kqd = timer_container_of(kqd, t, timer);
277 unsigned int sched_domain;
278 int cpu;
279 bool bad = false;
280
281 /* Sum all of the per-cpu latency histograms. */
282 for_each_online_cpu(cpu) {
283 struct kyber_cpu_latency *cpu_latency;
284
285 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
286 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
287 flush_latency_buckets(kqd, cpu_latency, sched_domain,
288 KYBER_TOTAL_LATENCY);
289 flush_latency_buckets(kqd, cpu_latency, sched_domain,
290 KYBER_IO_LATENCY);
291 }
292 }
293
294 /*
295 * Check if any domains have a high I/O latency, which might indicate
296 * congestion in the device. Note that we use the p90; we don't want to
297 * be too sensitive to outliers here.
298 */
299 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
300 int p90;
301
302 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
303 90);
304 if (p90 >= KYBER_GOOD_BUCKETS)
305 bad = true;
306 }
307
308 /*
309 * Adjust the scheduling domain depths. If we determined that there was
310 * congestion, we throttle all domains with good latencies. Either way,
311 * we ease up on throttling domains with bad latencies.
312 */
313 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
314 unsigned int orig_depth, depth;
315 int p99;
316
317 p99 = calculate_percentile(kqd, sched_domain,
318 KYBER_TOTAL_LATENCY, 99);
319 /*
320 * This is kind of subtle: different domains will not
321 * necessarily have enough samples to calculate the latency
322 * percentiles during the same window, so we have to remember
323 * the p99 for the next time we observe congestion; once we do,
324 * we don't want to throttle again until we get more data, so we
325 * reset it to -1.
326 */
327 if (bad) {
328 if (p99 < 0)
329 p99 = kqd->domain_p99[sched_domain];
330 kqd->domain_p99[sched_domain] = -1;
331 } else if (p99 >= 0) {
332 kqd->domain_p99[sched_domain] = p99;
333 }
334 if (p99 < 0)
335 continue;
336
337 /*
338 * If this domain has bad latency, throttle less. Otherwise,
339 * throttle more iff we determined that there is congestion.
340 *
341 * The new depth is scaled linearly with the p99 latency vs the
342 * latency target. E.g., if the p99 is 3/4 of the target, then
343 * we throttle down to 3/4 of the current depth, and if the p99
344 * is 2x the target, then we double the depth.
345 */
346 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
347 orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
348 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
349 kyber_resize_domain(kqd, sched_domain, depth);
350 }
351 }
352}
353
354static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
355{
356 struct kyber_queue_data *kqd;
357 int ret = -ENOMEM;
358 int i;
359
360 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
361 if (!kqd)
362 goto err;
363
364 kqd->q = q;
365 kqd->dev = disk_devt(q->disk);
366
367 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
368 GFP_KERNEL | __GFP_ZERO);
369 if (!kqd->cpu_latency)
370 goto err_kqd;
371
372 timer_setup(&kqd->timer, kyber_timer_fn, 0);
373
374 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
375 WARN_ON(!kyber_depth[i]);
376 WARN_ON(!kyber_batch_size[i]);
377 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
378 kyber_depth[i], -1, false,
379 GFP_KERNEL, q->node);
380 if (ret) {
381 while (--i >= 0)
382 sbitmap_queue_free(&kqd->domain_tokens[i]);
383 goto err_buckets;
384 }
385 }
386
387 for (i = 0; i < KYBER_OTHER; i++) {
388 kqd->domain_p99[i] = -1;
389 kqd->latency_targets[i] = kyber_latency_targets[i];
390 }
391
392 return kqd;
393
394err_buckets:
395 free_percpu(kqd->cpu_latency);
396err_kqd:
397 kfree(kqd);
398err:
399 return ERR_PTR(ret);
400}
401
402static void kyber_depth_updated(struct request_queue *q)
403{
404 struct kyber_queue_data *kqd = q->elevator->elevator_data;
405
406 kqd->async_depth = q->nr_requests * KYBER_ASYNC_PERCENT / 100U;
407 blk_mq_set_min_shallow_depth(q, kqd->async_depth);
408}
409
410static int kyber_init_sched(struct request_queue *q, struct elevator_queue *eq)
411{
412 blk_stat_enable_accounting(q);
413
414 blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
415
416 q->elevator = eq;
417 kyber_depth_updated(q);
418
419 return 0;
420}
421
422static void *kyber_alloc_sched_data(struct request_queue *q)
423{
424 struct kyber_queue_data *kqd;
425
426 kqd = kyber_queue_data_alloc(q);
427 if (IS_ERR(kqd))
428 return NULL;
429
430 return kqd;
431}
432
433static void kyber_exit_sched(struct elevator_queue *e)
434{
435 struct kyber_queue_data *kqd = e->elevator_data;
436
437 timer_shutdown_sync(&kqd->timer);
438 blk_stat_disable_accounting(kqd->q);
439}
440
441static void kyber_free_sched_data(void *elv_data)
442{
443 struct kyber_queue_data *kqd = elv_data;
444 int i;
445
446 if (!kqd)
447 return;
448
449 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
450 sbitmap_queue_free(&kqd->domain_tokens[i]);
451 free_percpu(kqd->cpu_latency);
452 kfree(kqd);
453}
454
455static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
456{
457 unsigned int i;
458
459 spin_lock_init(&kcq->lock);
460 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
461 INIT_LIST_HEAD(&kcq->rq_list[i]);
462}
463
464static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
465{
466 struct kyber_hctx_data *khd;
467 int i;
468
469 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
470 if (!khd)
471 return -ENOMEM;
472
473 khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
474 sizeof(struct kyber_ctx_queue),
475 GFP_KERNEL, hctx->numa_node);
476 if (!khd->kcqs)
477 goto err_khd;
478
479 for (i = 0; i < hctx->nr_ctx; i++)
480 kyber_ctx_queue_init(&khd->kcqs[i]);
481
482 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
483 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
484 ilog2(8), GFP_KERNEL, hctx->numa_node,
485 false, false)) {
486 while (--i >= 0)
487 sbitmap_free(&khd->kcq_map[i]);
488 goto err_kcqs;
489 }
490 }
491
492 spin_lock_init(&khd->lock);
493
494 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
495 INIT_LIST_HEAD(&khd->rqs[i]);
496 khd->domain_wait[i].sbq = NULL;
497 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
498 kyber_domain_wake);
499 khd->domain_wait[i].wait.private = hctx;
500 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
501 atomic_set(&khd->wait_index[i], 0);
502 }
503
504 khd->cur_domain = 0;
505 khd->batching = 0;
506
507 hctx->sched_data = khd;
508
509 return 0;
510
511err_kcqs:
512 kfree(khd->kcqs);
513err_khd:
514 kfree(khd);
515 return -ENOMEM;
516}
517
518static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
519{
520 struct kyber_hctx_data *khd = hctx->sched_data;
521 int i;
522
523 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
524 sbitmap_free(&khd->kcq_map[i]);
525 kfree(khd->kcqs);
526 kfree(hctx->sched_data);
527}
528
529static int rq_get_domain_token(struct request *rq)
530{
531 return (long)rq->elv.priv[0];
532}
533
534static void rq_set_domain_token(struct request *rq, int token)
535{
536 rq->elv.priv[0] = (void *)(long)token;
537}
538
539static void rq_clear_domain_token(struct kyber_queue_data *kqd,
540 struct request *rq)
541{
542 unsigned int sched_domain;
543 int nr;
544
545 nr = rq_get_domain_token(rq);
546 if (nr != -1) {
547 sched_domain = kyber_sched_domain(rq->cmd_flags);
548 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
549 rq->mq_ctx->cpu);
550 }
551}
552
553static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
554{
555 /*
556 * We use the scheduler tags as per-hardware queue queueing tokens.
557 * Async requests can be limited at this stage.
558 */
559 if (!op_is_sync(opf)) {
560 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
561
562 data->shallow_depth = kqd->async_depth;
563 }
564}
565
566static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
567 unsigned int nr_segs)
568{
569 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
570 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(bio->bi_opf, ctx);
571 struct kyber_hctx_data *khd = hctx->sched_data;
572 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
573 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
574 struct list_head *rq_list = &kcq->rq_list[sched_domain];
575 bool merged;
576
577 spin_lock(&kcq->lock);
578 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
579 spin_unlock(&kcq->lock);
580
581 return merged;
582}
583
584static void kyber_prepare_request(struct request *rq)
585{
586 rq_set_domain_token(rq, -1);
587}
588
589static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
590 struct list_head *rq_list,
591 blk_insert_t flags)
592{
593 struct kyber_hctx_data *khd = hctx->sched_data;
594 struct request *rq, *next;
595
596 list_for_each_entry_safe(rq, next, rq_list, queuelist) {
597 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
598 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
599 struct list_head *head = &kcq->rq_list[sched_domain];
600
601 spin_lock(&kcq->lock);
602 trace_block_rq_insert(rq);
603 if (flags & BLK_MQ_INSERT_AT_HEAD)
604 list_move(&rq->queuelist, head);
605 else
606 list_move_tail(&rq->queuelist, head);
607 sbitmap_set_bit(&khd->kcq_map[sched_domain],
608 rq->mq_ctx->index_hw[hctx->type]);
609 spin_unlock(&kcq->lock);
610 }
611}
612
613static void kyber_finish_request(struct request *rq)
614{
615 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
616
617 rq_clear_domain_token(kqd, rq);
618}
619
620static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
621 unsigned int sched_domain, unsigned int type,
622 u64 target, u64 latency)
623{
624 unsigned int bucket;
625 u64 divisor;
626
627 if (latency > 0) {
628 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
629 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
630 KYBER_LATENCY_BUCKETS - 1);
631 } else {
632 bucket = 0;
633 }
634
635 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
636}
637
638static void kyber_completed_request(struct request *rq, u64 now)
639{
640 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
641 struct kyber_cpu_latency *cpu_latency;
642 unsigned int sched_domain;
643 u64 target;
644
645 sched_domain = kyber_sched_domain(rq->cmd_flags);
646 if (sched_domain == KYBER_OTHER)
647 return;
648
649 cpu_latency = get_cpu_ptr(kqd->cpu_latency);
650 target = kqd->latency_targets[sched_domain];
651 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
652 target, now - rq->start_time_ns);
653 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
654 now - rq->io_start_time_ns);
655 put_cpu_ptr(kqd->cpu_latency);
656
657 timer_reduce(&kqd->timer, jiffies + HZ / 10);
658}
659
660struct flush_kcq_data {
661 struct kyber_hctx_data *khd;
662 unsigned int sched_domain;
663 struct list_head *list;
664};
665
666static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
667{
668 struct flush_kcq_data *flush_data = data;
669 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
670
671 spin_lock(&kcq->lock);
672 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
673 flush_data->list);
674 sbitmap_clear_bit(sb, bitnr);
675 spin_unlock(&kcq->lock);
676
677 return true;
678}
679
680static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
681 unsigned int sched_domain,
682 struct list_head *list)
683{
684 struct flush_kcq_data data = {
685 .khd = khd,
686 .sched_domain = sched_domain,
687 .list = list,
688 };
689
690 sbitmap_for_each_set(&khd->kcq_map[sched_domain],
691 flush_busy_kcq, &data);
692}
693
694static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
695 void *key)
696{
697 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
698 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
699
700 sbitmap_del_wait_queue(wait);
701 blk_mq_run_hw_queue(hctx, true);
702 return 1;
703}
704
705static int kyber_get_domain_token(struct kyber_queue_data *kqd,
706 struct kyber_hctx_data *khd,
707 struct blk_mq_hw_ctx *hctx)
708{
709 unsigned int sched_domain = khd->cur_domain;
710 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
711 struct sbq_wait *wait = &khd->domain_wait[sched_domain];
712 struct sbq_wait_state *ws;
713 int nr;
714
715 nr = __sbitmap_queue_get(domain_tokens);
716
717 /*
718 * If we failed to get a domain token, make sure the hardware queue is
719 * run when one becomes available. Note that this is serialized on
720 * khd->lock, but we still need to be careful about the waker.
721 */
722 if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
723 ws = sbq_wait_ptr(domain_tokens,
724 &khd->wait_index[sched_domain]);
725 khd->domain_ws[sched_domain] = ws;
726 sbitmap_add_wait_queue(domain_tokens, ws, wait);
727
728 /*
729 * Try again in case a token was freed before we got on the wait
730 * queue.
731 */
732 nr = __sbitmap_queue_get(domain_tokens);
733 }
734
735 /*
736 * If we got a token while we were on the wait queue, remove ourselves
737 * from the wait queue to ensure that all wake ups make forward
738 * progress. It's possible that the waker already deleted the entry
739 * between the !list_empty_careful() check and us grabbing the lock, but
740 * list_del_init() is okay with that.
741 */
742 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
743 ws = khd->domain_ws[sched_domain];
744 spin_lock_irq(&ws->wait.lock);
745 sbitmap_del_wait_queue(wait);
746 spin_unlock_irq(&ws->wait.lock);
747 }
748
749 return nr;
750}
751
752static struct request *
753kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
754 struct kyber_hctx_data *khd,
755 struct blk_mq_hw_ctx *hctx)
756{
757 struct list_head *rqs;
758 struct request *rq;
759 int nr;
760
761 rqs = &khd->rqs[khd->cur_domain];
762
763 /*
764 * If we already have a flushed request, then we just need to get a
765 * token for it. Otherwise, if there are pending requests in the kcqs,
766 * flush the kcqs, but only if we can get a token. If not, we should
767 * leave the requests in the kcqs so that they can be merged. Note that
768 * khd->lock serializes the flushes, so if we observed any bit set in
769 * the kcq_map, we will always get a request.
770 */
771 rq = list_first_entry_or_null(rqs, struct request, queuelist);
772 if (rq) {
773 nr = kyber_get_domain_token(kqd, khd, hctx);
774 if (nr >= 0) {
775 khd->batching++;
776 rq_set_domain_token(rq, nr);
777 list_del_init(&rq->queuelist);
778 return rq;
779 } else {
780 trace_kyber_throttled(kqd->dev,
781 kyber_domain_names[khd->cur_domain]);
782 }
783 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
784 nr = kyber_get_domain_token(kqd, khd, hctx);
785 if (nr >= 0) {
786 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
787 rq = list_first_entry(rqs, struct request, queuelist);
788 khd->batching++;
789 rq_set_domain_token(rq, nr);
790 list_del_init(&rq->queuelist);
791 return rq;
792 } else {
793 trace_kyber_throttled(kqd->dev,
794 kyber_domain_names[khd->cur_domain]);
795 }
796 }
797
798 /* There were either no pending requests or no tokens. */
799 return NULL;
800}
801
802static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
803{
804 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
805 struct kyber_hctx_data *khd = hctx->sched_data;
806 struct request *rq;
807 int i;
808
809 spin_lock(&khd->lock);
810
811 /*
812 * First, if we are still entitled to batch, try to dispatch a request
813 * from the batch.
814 */
815 if (khd->batching < kyber_batch_size[khd->cur_domain]) {
816 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
817 if (rq)
818 goto out;
819 }
820
821 /*
822 * Either,
823 * 1. We were no longer entitled to a batch.
824 * 2. The domain we were batching didn't have any requests.
825 * 3. The domain we were batching was out of tokens.
826 *
827 * Start another batch. Note that this wraps back around to the original
828 * domain if no other domains have requests or tokens.
829 */
830 khd->batching = 0;
831 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
832 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
833 khd->cur_domain = 0;
834 else
835 khd->cur_domain++;
836
837 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
838 if (rq)
839 goto out;
840 }
841
842 rq = NULL;
843out:
844 spin_unlock(&khd->lock);
845 return rq;
846}
847
848static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
849{
850 struct kyber_hctx_data *khd = hctx->sched_data;
851 int i;
852
853 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
854 if (!list_empty_careful(&khd->rqs[i]) ||
855 sbitmap_any_bit_set(&khd->kcq_map[i]))
856 return true;
857 }
858
859 return false;
860}
861
862#define KYBER_LAT_SHOW_STORE(domain, name) \
863static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
864 char *page) \
865{ \
866 struct kyber_queue_data *kqd = e->elevator_data; \
867 \
868 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
869} \
870 \
871static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
872 const char *page, size_t count) \
873{ \
874 struct kyber_queue_data *kqd = e->elevator_data; \
875 unsigned long long nsec; \
876 int ret; \
877 \
878 ret = kstrtoull(page, 10, &nsec); \
879 if (ret) \
880 return ret; \
881 \
882 kqd->latency_targets[domain] = nsec; \
883 \
884 return count; \
885}
886KYBER_LAT_SHOW_STORE(KYBER_READ, read);
887KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
888#undef KYBER_LAT_SHOW_STORE
889
890#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
891static const struct elv_fs_entry kyber_sched_attrs[] = {
892 KYBER_LAT_ATTR(read),
893 KYBER_LAT_ATTR(write),
894 __ATTR_NULL
895};
896#undef KYBER_LAT_ATTR
897
898#ifdef CONFIG_BLK_DEBUG_FS
899#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
900static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
901{ \
902 struct request_queue *q = data; \
903 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
904 \
905 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
906 return 0; \
907} \
908 \
909static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
910 __acquires(&khd->lock) \
911{ \
912 struct blk_mq_hw_ctx *hctx = m->private; \
913 struct kyber_hctx_data *khd = hctx->sched_data; \
914 \
915 spin_lock(&khd->lock); \
916 return seq_list_start(&khd->rqs[domain], *pos); \
917} \
918 \
919static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
920 loff_t *pos) \
921{ \
922 struct blk_mq_hw_ctx *hctx = m->private; \
923 struct kyber_hctx_data *khd = hctx->sched_data; \
924 \
925 return seq_list_next(v, &khd->rqs[domain], pos); \
926} \
927 \
928static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
929 __releases(&khd->lock) \
930{ \
931 struct blk_mq_hw_ctx *hctx = m->private; \
932 struct kyber_hctx_data *khd = hctx->sched_data; \
933 \
934 spin_unlock(&khd->lock); \
935} \
936 \
937static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
938 .start = kyber_##name##_rqs_start, \
939 .next = kyber_##name##_rqs_next, \
940 .stop = kyber_##name##_rqs_stop, \
941 .show = blk_mq_debugfs_rq_show, \
942}; \
943 \
944static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
945{ \
946 struct blk_mq_hw_ctx *hctx = data; \
947 struct kyber_hctx_data *khd = hctx->sched_data; \
948 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \
949 \
950 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
951 return 0; \
952}
953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
954KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
955KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
956KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
957#undef KYBER_DEBUGFS_DOMAIN_ATTRS
958
959static int kyber_async_depth_show(void *data, struct seq_file *m)
960{
961 struct request_queue *q = data;
962 struct kyber_queue_data *kqd = q->elevator->elevator_data;
963
964 seq_printf(m, "%u\n", kqd->async_depth);
965 return 0;
966}
967
968static int kyber_cur_domain_show(void *data, struct seq_file *m)
969{
970 struct blk_mq_hw_ctx *hctx = data;
971 struct kyber_hctx_data *khd = hctx->sched_data;
972
973 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
974 return 0;
975}
976
977static int kyber_batching_show(void *data, struct seq_file *m)
978{
979 struct blk_mq_hw_ctx *hctx = data;
980 struct kyber_hctx_data *khd = hctx->sched_data;
981
982 seq_printf(m, "%u\n", khd->batching);
983 return 0;
984}
985
986#define KYBER_QUEUE_DOMAIN_ATTRS(name) \
987 {#name "_tokens", 0400, kyber_##name##_tokens_show}
988static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
989 KYBER_QUEUE_DOMAIN_ATTRS(read),
990 KYBER_QUEUE_DOMAIN_ATTRS(write),
991 KYBER_QUEUE_DOMAIN_ATTRS(discard),
992 KYBER_QUEUE_DOMAIN_ATTRS(other),
993 {"async_depth", 0400, kyber_async_depth_show},
994 {},
995};
996#undef KYBER_QUEUE_DOMAIN_ATTRS
997
998#define KYBER_HCTX_DOMAIN_ATTRS(name) \
999 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
1000 {#name "_waiting", 0400, kyber_##name##_waiting_show}
1001static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1002 KYBER_HCTX_DOMAIN_ATTRS(read),
1003 KYBER_HCTX_DOMAIN_ATTRS(write),
1004 KYBER_HCTX_DOMAIN_ATTRS(discard),
1005 KYBER_HCTX_DOMAIN_ATTRS(other),
1006 {"cur_domain", 0400, kyber_cur_domain_show},
1007 {"batching", 0400, kyber_batching_show},
1008 {},
1009};
1010#undef KYBER_HCTX_DOMAIN_ATTRS
1011#endif
1012
1013static struct elevator_type kyber_sched = {
1014 .ops = {
1015 .init_sched = kyber_init_sched,
1016 .exit_sched = kyber_exit_sched,
1017 .init_hctx = kyber_init_hctx,
1018 .exit_hctx = kyber_exit_hctx,
1019 .alloc_sched_data = kyber_alloc_sched_data,
1020 .free_sched_data = kyber_free_sched_data,
1021 .limit_depth = kyber_limit_depth,
1022 .bio_merge = kyber_bio_merge,
1023 .prepare_request = kyber_prepare_request,
1024 .insert_requests = kyber_insert_requests,
1025 .finish_request = kyber_finish_request,
1026 .requeue_request = kyber_finish_request,
1027 .completed_request = kyber_completed_request,
1028 .dispatch_request = kyber_dispatch_request,
1029 .has_work = kyber_has_work,
1030 .depth_updated = kyber_depth_updated,
1031 },
1032#ifdef CONFIG_BLK_DEBUG_FS
1033 .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1034 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1035#endif
1036 .elevator_attrs = kyber_sched_attrs,
1037 .elevator_name = "kyber",
1038 .elevator_owner = THIS_MODULE,
1039};
1040
1041static int __init kyber_init(void)
1042{
1043 return elv_register(&kyber_sched);
1044}
1045
1046static void __exit kyber_exit(void)
1047{
1048 elv_unregister(&kyber_sched);
1049}
1050
1051module_init(kyber_init);
1052module_exit(kyber_exit);
1053
1054MODULE_AUTHOR("Omar Sandoval");
1055MODULE_LICENSE("GPL");
1056MODULE_DESCRIPTION("Kyber I/O scheduler");