Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions related to segment and merge handling
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/blk-integrity.h>
10#include <linux/part_stat.h>
11#include <linux/blk-cgroup.h>
12
13#include <trace/events/block.h>
14
15#include "blk.h"
16#include "blk-mq-sched.h"
17#include "blk-rq-qos.h"
18#include "blk-throttle.h"
19
20static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
21{
22 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
23}
24
25static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
26{
27 struct bvec_iter iter = bio->bi_iter;
28 int idx;
29
30 bio_get_first_bvec(bio, bv);
31 if (bv->bv_len == bio->bi_iter.bi_size)
32 return; /* this bio only has a single bvec */
33
34 bio_advance_iter(bio, &iter, iter.bi_size);
35
36 if (!iter.bi_bvec_done)
37 idx = iter.bi_idx - 1;
38 else /* in the middle of bvec */
39 idx = iter.bi_idx;
40
41 *bv = bio->bi_io_vec[idx];
42
43 /*
44 * iter.bi_bvec_done records actual length of the last bvec
45 * if this bio ends in the middle of one io vector
46 */
47 if (iter.bi_bvec_done)
48 bv->bv_len = iter.bi_bvec_done;
49}
50
51static inline bool bio_will_gap(struct request_queue *q,
52 struct request *prev_rq, struct bio *prev, struct bio *next)
53{
54 struct bio_vec pb, nb;
55
56 if (!bio_has_data(prev) || !queue_virt_boundary(q))
57 return false;
58
59 /*
60 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
61 * is quite difficult to respect the sg gap limit. We work hard to
62 * merge a huge number of small single bios in case of mkfs.
63 */
64 if (prev_rq)
65 bio_get_first_bvec(prev_rq->bio, &pb);
66 else
67 bio_get_first_bvec(prev, &pb);
68 if (pb.bv_offset & queue_virt_boundary(q))
69 return true;
70
71 /*
72 * We don't need to worry about the situation that the merged segment
73 * ends in unaligned virt boundary:
74 *
75 * - if 'pb' ends aligned, the merged segment ends aligned
76 * - if 'pb' ends unaligned, the next bio must include
77 * one single bvec of 'nb', otherwise the 'nb' can't
78 * merge with 'pb'
79 */
80 bio_get_last_bvec(prev, &pb);
81 bio_get_first_bvec(next, &nb);
82 if (biovec_phys_mergeable(q, &pb, &nb))
83 return false;
84 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
85}
86
87static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
88{
89 return bio_will_gap(req->q, req, req->biotail, bio);
90}
91
92static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
93{
94 return bio_will_gap(req->q, NULL, bio, req->bio);
95}
96
97/*
98 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
99 * is defined as 'unsigned int', meantime it has to be aligned to with the
100 * logical block size, which is the minimum accepted unit by hardware.
101 */
102static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
103{
104 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
105}
106
107/*
108 * bio_submit_split_bioset - Submit a bio, splitting it at a designated sector
109 * @bio: the original bio to be submitted and split
110 * @split_sectors: the sector count at which to split
111 * @bs: the bio set used for allocating the new split bio
112 *
113 * The original bio is modified to contain the remaining sectors and submitted.
114 * The caller is responsible for submitting the returned bio.
115 *
116 * If succeed, the newly allocated bio representing the initial part will be
117 * returned, on failure NULL will be returned and original bio will fail.
118 */
119struct bio *bio_submit_split_bioset(struct bio *bio, unsigned int split_sectors,
120 struct bio_set *bs)
121{
122 struct bio *split = bio_split(bio, split_sectors, GFP_NOIO, bs);
123
124 if (IS_ERR(split)) {
125 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
126 bio_endio(bio);
127 return NULL;
128 }
129
130 bio_chain(split, bio);
131 trace_block_split(split, bio->bi_iter.bi_sector);
132 WARN_ON_ONCE(bio_zone_write_plugging(bio));
133
134 if (should_fail_bio(bio))
135 bio_io_error(bio);
136 else if (!blk_throtl_bio(bio))
137 submit_bio_noacct_nocheck(bio, true);
138
139 return split;
140}
141EXPORT_SYMBOL_GPL(bio_submit_split_bioset);
142
143static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
144{
145 if (unlikely(split_sectors < 0)) {
146 bio->bi_status = errno_to_blk_status(split_sectors);
147 bio_endio(bio);
148 return NULL;
149 }
150
151 if (split_sectors) {
152 bio = bio_submit_split_bioset(bio, split_sectors,
153 &bio->bi_bdev->bd_disk->bio_split);
154 if (bio)
155 bio->bi_opf |= REQ_NOMERGE;
156 }
157
158 return bio;
159}
160
161struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
162 unsigned *nsegs)
163{
164 unsigned int max_discard_sectors, granularity;
165 sector_t tmp;
166 unsigned split_sectors;
167
168 *nsegs = 1;
169
170 granularity = max(lim->discard_granularity >> 9, 1U);
171
172 max_discard_sectors =
173 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
174 max_discard_sectors -= max_discard_sectors % granularity;
175 if (unlikely(!max_discard_sectors))
176 return bio;
177
178 if (bio_sectors(bio) <= max_discard_sectors)
179 return bio;
180
181 split_sectors = max_discard_sectors;
182
183 /*
184 * If the next starting sector would be misaligned, stop the discard at
185 * the previous aligned sector.
186 */
187 tmp = bio->bi_iter.bi_sector + split_sectors -
188 ((lim->discard_alignment >> 9) % granularity);
189 tmp = sector_div(tmp, granularity);
190
191 if (split_sectors > tmp)
192 split_sectors -= tmp;
193
194 return bio_submit_split(bio, split_sectors);
195}
196
197static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
198 bool is_atomic)
199{
200 /*
201 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if
202 * both non-zero.
203 */
204 if (is_atomic && lim->atomic_write_boundary_sectors)
205 return lim->atomic_write_boundary_sectors;
206
207 return lim->chunk_sectors;
208}
209
210/*
211 * Return the maximum number of sectors from the start of a bio that may be
212 * submitted as a single request to a block device. If enough sectors remain,
213 * align the end to the physical block size. Otherwise align the end to the
214 * logical block size. This approach minimizes the number of non-aligned
215 * requests that are submitted to a block device if the start of a bio is not
216 * aligned to a physical block boundary.
217 */
218static inline unsigned get_max_io_size(struct bio *bio,
219 const struct queue_limits *lim)
220{
221 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
222 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
223 bool is_atomic = bio->bi_opf & REQ_ATOMIC;
224 unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
225 unsigned max_sectors, start, end;
226
227 /*
228 * We ignore lim->max_sectors for atomic writes because it may less
229 * than the actual bio size, which we cannot tolerate.
230 */
231 if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
232 max_sectors = lim->max_write_zeroes_sectors;
233 else if (is_atomic)
234 max_sectors = lim->atomic_write_max_sectors;
235 else
236 max_sectors = lim->max_sectors;
237
238 if (boundary_sectors) {
239 max_sectors = min(max_sectors,
240 blk_boundary_sectors_left(bio->bi_iter.bi_sector,
241 boundary_sectors));
242 }
243
244 start = bio->bi_iter.bi_sector & (pbs - 1);
245 end = (start + max_sectors) & ~(pbs - 1);
246 if (end > start)
247 return end - start;
248 return max_sectors & ~(lbs - 1);
249}
250
251/**
252 * bvec_split_segs - verify whether or not a bvec should be split in the middle
253 * @lim: [in] queue limits to split based on
254 * @bv: [in] bvec to examine
255 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
256 * by the number of segments from @bv that may be appended to that
257 * bio without exceeding @max_segs
258 * @bytes: [in,out] Number of bytes in the bio being built. Incremented
259 * by the number of bytes from @bv that may be appended to that
260 * bio without exceeding @max_bytes
261 * @max_segs: [in] upper bound for *@nsegs
262 * @max_bytes: [in] upper bound for *@bytes
263 *
264 * When splitting a bio, it can happen that a bvec is encountered that is too
265 * big to fit in a single segment and hence that it has to be split in the
266 * middle. This function verifies whether or not that should happen. The value
267 * %true is returned if and only if appending the entire @bv to a bio with
268 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
269 * the block driver.
270 */
271static bool bvec_split_segs(const struct queue_limits *lim,
272 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
273 unsigned max_segs, unsigned max_bytes)
274{
275 unsigned max_len = max_bytes - *bytes;
276 unsigned len = min(bv->bv_len, max_len);
277 unsigned total_len = 0;
278 unsigned seg_size = 0;
279
280 while (len && *nsegs < max_segs) {
281 seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
282
283 (*nsegs)++;
284 total_len += seg_size;
285 len -= seg_size;
286
287 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
288 break;
289 }
290
291 *bytes += total_len;
292
293 /* tell the caller to split the bvec if it is too big to fit */
294 return len > 0 || bv->bv_len > max_len;
295}
296
297static unsigned int bio_split_alignment(struct bio *bio,
298 const struct queue_limits *lim)
299{
300 if (op_is_write(bio_op(bio)) && lim->zone_write_granularity)
301 return lim->zone_write_granularity;
302 return lim->logical_block_size;
303}
304
305static inline unsigned int bvec_seg_gap(struct bio_vec *bvprv,
306 struct bio_vec *bv)
307{
308 return bv->bv_offset | (bvprv->bv_offset + bvprv->bv_len);
309}
310
311/**
312 * bio_split_io_at - check if and where to split a bio
313 * @bio: [in] bio to be split
314 * @lim: [in] queue limits to split based on
315 * @segs: [out] number of segments in the bio with the first half of the sectors
316 * @max_bytes: [in] maximum number of bytes per bio
317 * @len_align_mask: [in] length alignment mask for each vector
318 *
319 * Find out if @bio needs to be split to fit the queue limits in @lim and a
320 * maximum size of @max_bytes. Returns a negative error number if @bio can't be
321 * split, 0 if the bio doesn't have to be split, or a positive sector offset if
322 * @bio needs to be split.
323 */
324int bio_split_io_at(struct bio *bio, const struct queue_limits *lim,
325 unsigned *segs, unsigned max_bytes, unsigned len_align_mask)
326{
327 struct bio_vec bv, bvprv, *bvprvp = NULL;
328 unsigned nsegs = 0, bytes = 0, gaps = 0;
329 struct bvec_iter iter;
330
331 bio_for_each_bvec(bv, bio, iter) {
332 if (bv.bv_offset & lim->dma_alignment ||
333 bv.bv_len & len_align_mask)
334 return -EINVAL;
335
336 /*
337 * If the queue doesn't support SG gaps and adding this
338 * offset would create a gap, disallow it.
339 */
340 if (bvprvp) {
341 if (bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
342 goto split;
343 gaps |= bvec_seg_gap(bvprvp, &bv);
344 }
345
346 if (nsegs < lim->max_segments &&
347 bytes + bv.bv_len <= max_bytes &&
348 bv.bv_offset + bv.bv_len <= lim->max_fast_segment_size) {
349 nsegs++;
350 bytes += bv.bv_len;
351 } else {
352 if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
353 lim->max_segments, max_bytes))
354 goto split;
355 }
356
357 bvprv = bv;
358 bvprvp = &bvprv;
359 }
360
361 *segs = nsegs;
362 bio->bi_bvec_gap_bit = ffs(gaps);
363 return 0;
364split:
365 if (bio->bi_opf & REQ_ATOMIC)
366 return -EINVAL;
367
368 /*
369 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
370 * with EAGAIN if splitting is required and return an error pointer.
371 */
372 if (bio->bi_opf & REQ_NOWAIT)
373 return -EAGAIN;
374
375 *segs = nsegs;
376
377 /*
378 * Individual bvecs might not be logical block aligned. Round down the
379 * split size so that each bio is properly block size aligned, even if
380 * we do not use the full hardware limits.
381 *
382 * It is possible to submit a bio that can't be split into a valid io:
383 * there may either be too many discontiguous vectors for the max
384 * segments limit, or contain virtual boundary gaps without having a
385 * valid block sized split. A zero byte result means one of those
386 * conditions occured.
387 */
388 bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim));
389 if (!bytes)
390 return -EINVAL;
391
392 /*
393 * Bio splitting may cause subtle trouble such as hang when doing sync
394 * iopoll in direct IO routine. Given performance gain of iopoll for
395 * big IO can be trival, disable iopoll when split needed.
396 */
397 bio_clear_polled(bio);
398 bio->bi_bvec_gap_bit = ffs(gaps);
399 return bytes >> SECTOR_SHIFT;
400}
401EXPORT_SYMBOL_GPL(bio_split_io_at);
402
403struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
404 unsigned *nr_segs)
405{
406 return bio_submit_split(bio,
407 bio_split_rw_at(bio, lim, nr_segs,
408 get_max_io_size(bio, lim) << SECTOR_SHIFT));
409}
410
411/*
412 * REQ_OP_ZONE_APPEND bios must never be split by the block layer.
413 *
414 * But we want the nr_segs calculation provided by bio_split_rw_at, and having
415 * a good sanity check that the submitter built the bio correctly is nice to
416 * have as well.
417 */
418struct bio *bio_split_zone_append(struct bio *bio,
419 const struct queue_limits *lim, unsigned *nr_segs)
420{
421 int split_sectors;
422
423 split_sectors = bio_split_rw_at(bio, lim, nr_segs,
424 lim->max_zone_append_sectors << SECTOR_SHIFT);
425 if (WARN_ON_ONCE(split_sectors > 0))
426 split_sectors = -EINVAL;
427 return bio_submit_split(bio, split_sectors);
428}
429
430struct bio *bio_split_write_zeroes(struct bio *bio,
431 const struct queue_limits *lim, unsigned *nsegs)
432{
433 unsigned int max_sectors = get_max_io_size(bio, lim);
434
435 *nsegs = 0;
436
437 /*
438 * An unset limit should normally not happen, as bio submission is keyed
439 * off having a non-zero limit. But SCSI can clear the limit in the
440 * I/O completion handler, and we can race and see this. Splitting to a
441 * zero limit obviously doesn't make sense, so band-aid it here.
442 */
443 if (!max_sectors)
444 return bio;
445 if (bio_sectors(bio) <= max_sectors)
446 return bio;
447 return bio_submit_split(bio, max_sectors);
448}
449
450/**
451 * bio_split_to_limits - split a bio to fit the queue limits
452 * @bio: bio to be split
453 *
454 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
455 * if so split off a bio fitting the limits from the beginning of @bio and
456 * return it. @bio is shortened to the remainder and re-submitted.
457 *
458 * The split bio is allocated from @q->bio_split, which is provided by the
459 * block layer.
460 */
461struct bio *bio_split_to_limits(struct bio *bio)
462{
463 unsigned int nr_segs;
464
465 return __bio_split_to_limits(bio, bdev_limits(bio->bi_bdev), &nr_segs);
466}
467EXPORT_SYMBOL(bio_split_to_limits);
468
469unsigned int blk_recalc_rq_segments(struct request *rq)
470{
471 unsigned int nr_phys_segs = 0;
472 unsigned int bytes = 0;
473 struct req_iterator iter;
474 struct bio_vec bv;
475
476 if (!rq->bio)
477 return 0;
478
479 switch (bio_op(rq->bio)) {
480 case REQ_OP_DISCARD:
481 case REQ_OP_SECURE_ERASE:
482 if (queue_max_discard_segments(rq->q) > 1) {
483 struct bio *bio = rq->bio;
484
485 for_each_bio(bio)
486 nr_phys_segs++;
487 return nr_phys_segs;
488 }
489 return 1;
490 case REQ_OP_WRITE_ZEROES:
491 return 0;
492 default:
493 break;
494 }
495
496 rq_for_each_bvec(bv, rq, iter)
497 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
498 UINT_MAX, UINT_MAX);
499 return nr_phys_segs;
500}
501
502static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
503 sector_t offset)
504{
505 struct request_queue *q = rq->q;
506 struct queue_limits *lim = &q->limits;
507 unsigned int max_sectors, boundary_sectors;
508 bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
509
510 if (blk_rq_is_passthrough(rq))
511 return q->limits.max_hw_sectors;
512
513 boundary_sectors = blk_boundary_sectors(lim, is_atomic);
514 max_sectors = blk_queue_get_max_sectors(rq);
515
516 if (!boundary_sectors ||
517 req_op(rq) == REQ_OP_DISCARD ||
518 req_op(rq) == REQ_OP_SECURE_ERASE)
519 return max_sectors;
520 return min(max_sectors,
521 blk_boundary_sectors_left(offset, boundary_sectors));
522}
523
524static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
525 unsigned int nr_phys_segs)
526{
527 if (!blk_cgroup_mergeable(req, bio))
528 goto no_merge;
529
530 if (blk_integrity_merge_bio(req->q, req, bio) == false)
531 goto no_merge;
532
533 /* discard request merge won't add new segment */
534 if (req_op(req) == REQ_OP_DISCARD)
535 return 1;
536
537 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
538 goto no_merge;
539
540 /*
541 * This will form the start of a new hw segment. Bump both
542 * counters.
543 */
544 req->nr_phys_segments += nr_phys_segs;
545 if (bio_integrity(bio))
546 req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
547 bio);
548 return 1;
549
550no_merge:
551 req_set_nomerge(req->q, req);
552 return 0;
553}
554
555int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
556{
557 if (req_gap_back_merge(req, bio))
558 return 0;
559 if (blk_integrity_rq(req) &&
560 integrity_req_gap_back_merge(req, bio))
561 return 0;
562 if (!bio_crypt_ctx_back_mergeable(req, bio))
563 return 0;
564 if (blk_rq_sectors(req) + bio_sectors(bio) >
565 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
566 req_set_nomerge(req->q, req);
567 return 0;
568 }
569
570 return ll_new_hw_segment(req, bio, nr_segs);
571}
572
573static int ll_front_merge_fn(struct request *req, struct bio *bio,
574 unsigned int nr_segs)
575{
576 if (req_gap_front_merge(req, bio))
577 return 0;
578 if (blk_integrity_rq(req) &&
579 integrity_req_gap_front_merge(req, bio))
580 return 0;
581 if (!bio_crypt_ctx_front_mergeable(req, bio))
582 return 0;
583 if (blk_rq_sectors(req) + bio_sectors(bio) >
584 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
585 req_set_nomerge(req->q, req);
586 return 0;
587 }
588
589 return ll_new_hw_segment(req, bio, nr_segs);
590}
591
592static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
593 struct request *next)
594{
595 unsigned short segments = blk_rq_nr_discard_segments(req);
596
597 if (segments >= queue_max_discard_segments(q))
598 goto no_merge;
599 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
600 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
601 goto no_merge;
602
603 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
604 return true;
605no_merge:
606 req_set_nomerge(q, req);
607 return false;
608}
609
610static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
611 struct request *next)
612{
613 int total_phys_segments;
614
615 if (req_gap_back_merge(req, next->bio))
616 return 0;
617
618 /*
619 * Will it become too large?
620 */
621 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
622 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
623 return 0;
624
625 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
626 if (total_phys_segments > blk_rq_get_max_segments(req))
627 return 0;
628
629 if (!blk_cgroup_mergeable(req, next->bio))
630 return 0;
631
632 if (blk_integrity_merge_rq(q, req, next) == false)
633 return 0;
634
635 if (!bio_crypt_ctx_merge_rq(req, next))
636 return 0;
637
638 /* Merge is OK... */
639 req->nr_phys_segments = total_phys_segments;
640 req->nr_integrity_segments += next->nr_integrity_segments;
641 return 1;
642}
643
644/**
645 * blk_rq_set_mixed_merge - mark a request as mixed merge
646 * @rq: request to mark as mixed merge
647 *
648 * Description:
649 * @rq is about to be mixed merged. Make sure the attributes
650 * which can be mixed are set in each bio and mark @rq as mixed
651 * merged.
652 */
653static void blk_rq_set_mixed_merge(struct request *rq)
654{
655 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
656 struct bio *bio;
657
658 if (rq->rq_flags & RQF_MIXED_MERGE)
659 return;
660
661 /*
662 * @rq will no longer represent mixable attributes for all the
663 * contained bios. It will just track those of the first one.
664 * Distributes the attributs to each bio.
665 */
666 for (bio = rq->bio; bio; bio = bio->bi_next) {
667 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
668 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
669 bio->bi_opf |= ff;
670 }
671 rq->rq_flags |= RQF_MIXED_MERGE;
672}
673
674static inline blk_opf_t bio_failfast(const struct bio *bio)
675{
676 if (bio->bi_opf & REQ_RAHEAD)
677 return REQ_FAILFAST_MASK;
678
679 return bio->bi_opf & REQ_FAILFAST_MASK;
680}
681
682/*
683 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
684 * as failfast, and request's failfast has to be updated in case of
685 * front merge.
686 */
687static inline void blk_update_mixed_merge(struct request *req,
688 struct bio *bio, bool front_merge)
689{
690 if (req->rq_flags & RQF_MIXED_MERGE) {
691 if (bio->bi_opf & REQ_RAHEAD)
692 bio->bi_opf |= REQ_FAILFAST_MASK;
693
694 if (front_merge) {
695 req->cmd_flags &= ~REQ_FAILFAST_MASK;
696 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
697 }
698 }
699}
700
701static void blk_account_io_merge_request(struct request *req)
702{
703 if (req->rq_flags & RQF_IO_STAT) {
704 part_stat_lock();
705 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
706 part_stat_local_dec(req->part,
707 in_flight[op_is_write(req_op(req))]);
708 part_stat_unlock();
709 }
710}
711
712static enum elv_merge blk_try_req_merge(struct request *req,
713 struct request *next)
714{
715 if (blk_discard_mergable(req))
716 return ELEVATOR_DISCARD_MERGE;
717 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
718 return ELEVATOR_BACK_MERGE;
719
720 return ELEVATOR_NO_MERGE;
721}
722
723static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
724 struct bio *bio)
725{
726 return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
727}
728
729static bool blk_atomic_write_mergeable_rqs(struct request *rq,
730 struct request *next)
731{
732 return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
733}
734
735u8 bio_seg_gap(struct request_queue *q, struct bio *prev, struct bio *next,
736 u8 gaps_bit)
737{
738 struct bio_vec pb, nb;
739
740 if (!bio_has_data(prev))
741 return 0;
742
743 gaps_bit = min_not_zero(gaps_bit, prev->bi_bvec_gap_bit);
744 gaps_bit = min_not_zero(gaps_bit, next->bi_bvec_gap_bit);
745
746 bio_get_last_bvec(prev, &pb);
747 bio_get_first_bvec(next, &nb);
748 if (!biovec_phys_mergeable(q, &pb, &nb))
749 gaps_bit = min_not_zero(gaps_bit, ffs(bvec_seg_gap(&pb, &nb)));
750 return gaps_bit;
751}
752
753/*
754 * For non-mq, this has to be called with the request spinlock acquired.
755 * For mq with scheduling, the appropriate queue wide lock should be held.
756 */
757static struct request *attempt_merge(struct request_queue *q,
758 struct request *req, struct request *next)
759{
760 if (!rq_mergeable(req) || !rq_mergeable(next))
761 return NULL;
762
763 if (req_op(req) != req_op(next))
764 return NULL;
765
766 if (req->bio->bi_write_hint != next->bio->bi_write_hint)
767 return NULL;
768 if (req->bio->bi_write_stream != next->bio->bi_write_stream)
769 return NULL;
770 if (req->bio->bi_ioprio != next->bio->bi_ioprio)
771 return NULL;
772 if (!blk_atomic_write_mergeable_rqs(req, next))
773 return NULL;
774
775 /*
776 * If we are allowed to merge, then append bio list
777 * from next to rq and release next. merge_requests_fn
778 * will have updated segment counts, update sector
779 * counts here. Handle DISCARDs separately, as they
780 * have separate settings.
781 */
782
783 switch (blk_try_req_merge(req, next)) {
784 case ELEVATOR_DISCARD_MERGE:
785 if (!req_attempt_discard_merge(q, req, next))
786 return NULL;
787 break;
788 case ELEVATOR_BACK_MERGE:
789 if (!ll_merge_requests_fn(q, req, next))
790 return NULL;
791 break;
792 default:
793 return NULL;
794 }
795
796 /*
797 * If failfast settings disagree or any of the two is already
798 * a mixed merge, mark both as mixed before proceeding. This
799 * makes sure that all involved bios have mixable attributes
800 * set properly.
801 */
802 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
803 (req->cmd_flags & REQ_FAILFAST_MASK) !=
804 (next->cmd_flags & REQ_FAILFAST_MASK)) {
805 blk_rq_set_mixed_merge(req);
806 blk_rq_set_mixed_merge(next);
807 }
808
809 /*
810 * At this point we have either done a back merge or front merge. We
811 * need the smaller start_time_ns of the merged requests to be the
812 * current request for accounting purposes.
813 */
814 if (next->start_time_ns < req->start_time_ns)
815 req->start_time_ns = next->start_time_ns;
816
817 req->phys_gap_bit = bio_seg_gap(req->q, req->biotail, next->bio,
818 min_not_zero(next->phys_gap_bit,
819 req->phys_gap_bit));
820 req->biotail->bi_next = next->bio;
821 req->biotail = next->biotail;
822
823 req->__data_len += blk_rq_bytes(next);
824
825 if (!blk_discard_mergable(req))
826 elv_merge_requests(q, req, next);
827
828 blk_crypto_rq_put_keyslot(next);
829
830 /*
831 * 'next' is going away, so update stats accordingly
832 */
833 blk_account_io_merge_request(next);
834
835 trace_block_rq_merge(next);
836
837 /*
838 * ownership of bio passed from next to req, return 'next' for
839 * the caller to free
840 */
841 next->bio = NULL;
842 return next;
843}
844
845static struct request *attempt_back_merge(struct request_queue *q,
846 struct request *rq)
847{
848 struct request *next = elv_latter_request(q, rq);
849
850 if (next)
851 return attempt_merge(q, rq, next);
852
853 return NULL;
854}
855
856static struct request *attempt_front_merge(struct request_queue *q,
857 struct request *rq)
858{
859 struct request *prev = elv_former_request(q, rq);
860
861 if (prev)
862 return attempt_merge(q, prev, rq);
863
864 return NULL;
865}
866
867/*
868 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
869 * otherwise. The caller is responsible for freeing 'next' if the merge
870 * happened.
871 */
872bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
873 struct request *next)
874{
875 return attempt_merge(q, rq, next);
876}
877
878bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
879{
880 if (!rq_mergeable(rq) || !bio_mergeable(bio))
881 return false;
882
883 if (req_op(rq) != bio_op(bio))
884 return false;
885
886 if (!blk_cgroup_mergeable(rq, bio))
887 return false;
888 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
889 return false;
890 if (!bio_crypt_rq_ctx_compatible(rq, bio))
891 return false;
892 if (rq->bio->bi_write_hint != bio->bi_write_hint)
893 return false;
894 if (rq->bio->bi_write_stream != bio->bi_write_stream)
895 return false;
896 if (rq->bio->bi_ioprio != bio->bi_ioprio)
897 return false;
898 if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
899 return false;
900
901 return true;
902}
903
904enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
905{
906 if (blk_discard_mergable(rq))
907 return ELEVATOR_DISCARD_MERGE;
908 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
909 return ELEVATOR_BACK_MERGE;
910 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
911 return ELEVATOR_FRONT_MERGE;
912 return ELEVATOR_NO_MERGE;
913}
914
915static void blk_account_io_merge_bio(struct request *req)
916{
917 if (req->rq_flags & RQF_IO_STAT) {
918 part_stat_lock();
919 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
920 part_stat_unlock();
921 }
922}
923
924enum bio_merge_status bio_attempt_back_merge(struct request *req,
925 struct bio *bio, unsigned int nr_segs)
926{
927 const blk_opf_t ff = bio_failfast(bio);
928
929 if (!ll_back_merge_fn(req, bio, nr_segs))
930 return BIO_MERGE_FAILED;
931
932 trace_block_bio_backmerge(bio);
933 rq_qos_merge(req->q, req, bio);
934
935 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
936 blk_rq_set_mixed_merge(req);
937
938 blk_update_mixed_merge(req, bio, false);
939
940 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
941 blk_zone_write_plug_bio_merged(bio);
942
943 req->phys_gap_bit = bio_seg_gap(req->q, req->biotail, bio,
944 req->phys_gap_bit);
945 req->biotail->bi_next = bio;
946 req->biotail = bio;
947 req->__data_len += bio->bi_iter.bi_size;
948
949 bio_crypt_free_ctx(bio);
950
951 blk_account_io_merge_bio(req);
952 return BIO_MERGE_OK;
953}
954
955static enum bio_merge_status bio_attempt_front_merge(struct request *req,
956 struct bio *bio, unsigned int nr_segs)
957{
958 const blk_opf_t ff = bio_failfast(bio);
959
960 /*
961 * A front merge for writes to sequential zones of a zoned block device
962 * can happen only if the user submitted writes out of order. Do not
963 * merge such write to let it fail.
964 */
965 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
966 return BIO_MERGE_FAILED;
967
968 if (!ll_front_merge_fn(req, bio, nr_segs))
969 return BIO_MERGE_FAILED;
970
971 trace_block_bio_frontmerge(bio);
972 rq_qos_merge(req->q, req, bio);
973
974 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
975 blk_rq_set_mixed_merge(req);
976
977 blk_update_mixed_merge(req, bio, true);
978
979 req->phys_gap_bit = bio_seg_gap(req->q, bio, req->bio,
980 req->phys_gap_bit);
981 bio->bi_next = req->bio;
982 req->bio = bio;
983
984 req->__sector = bio->bi_iter.bi_sector;
985 req->__data_len += bio->bi_iter.bi_size;
986
987 bio_crypt_do_front_merge(req, bio);
988
989 blk_account_io_merge_bio(req);
990 return BIO_MERGE_OK;
991}
992
993static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
994 struct request *req, struct bio *bio)
995{
996 unsigned short segments = blk_rq_nr_discard_segments(req);
997
998 if (segments >= queue_max_discard_segments(q))
999 goto no_merge;
1000 if (blk_rq_sectors(req) + bio_sectors(bio) >
1001 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1002 goto no_merge;
1003
1004 rq_qos_merge(q, req, bio);
1005
1006 req->biotail->bi_next = bio;
1007 req->biotail = bio;
1008 req->__data_len += bio->bi_iter.bi_size;
1009 req->nr_phys_segments = segments + 1;
1010
1011 blk_account_io_merge_bio(req);
1012 return BIO_MERGE_OK;
1013no_merge:
1014 req_set_nomerge(q, req);
1015 return BIO_MERGE_FAILED;
1016}
1017
1018static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1019 struct request *rq,
1020 struct bio *bio,
1021 unsigned int nr_segs,
1022 bool sched_allow_merge)
1023{
1024 if (!blk_rq_merge_ok(rq, bio))
1025 return BIO_MERGE_NONE;
1026
1027 switch (blk_try_merge(rq, bio)) {
1028 case ELEVATOR_BACK_MERGE:
1029 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1030 return bio_attempt_back_merge(rq, bio, nr_segs);
1031 break;
1032 case ELEVATOR_FRONT_MERGE:
1033 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1034 return bio_attempt_front_merge(rq, bio, nr_segs);
1035 break;
1036 case ELEVATOR_DISCARD_MERGE:
1037 return bio_attempt_discard_merge(q, rq, bio);
1038 default:
1039 return BIO_MERGE_NONE;
1040 }
1041
1042 return BIO_MERGE_FAILED;
1043}
1044
1045/**
1046 * blk_attempt_plug_merge - try to merge with %current's plugged list
1047 * @q: request_queue new bio is being queued at
1048 * @bio: new bio being queued
1049 * @nr_segs: number of segments in @bio
1050 * from the passed in @q already in the plug list
1051 *
1052 * Determine whether @bio being queued on @q can be merged with the previous
1053 * request on %current's plugged list. Returns %true if merge was successful,
1054 * otherwise %false.
1055 *
1056 * Plugging coalesces IOs from the same issuer for the same purpose without
1057 * going through @q->queue_lock. As such it's more of an issuing mechanism
1058 * than scheduling, and the request, while may have elvpriv data, is not
1059 * added on the elevator at this point. In addition, we don't have
1060 * reliable access to the elevator outside queue lock. Only check basic
1061 * merging parameters without querying the elevator.
1062 *
1063 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1064 */
1065bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1066 unsigned int nr_segs)
1067{
1068 struct blk_plug *plug = current->plug;
1069 struct request *rq;
1070
1071 if (!plug || rq_list_empty(&plug->mq_list))
1072 return false;
1073
1074 rq = plug->mq_list.tail;
1075 if (rq->q == q)
1076 return blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1077 BIO_MERGE_OK;
1078 else if (!plug->multiple_queues)
1079 return false;
1080
1081 rq_list_for_each(&plug->mq_list, rq) {
1082 if (rq->q != q)
1083 continue;
1084 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1085 BIO_MERGE_OK)
1086 return true;
1087 break;
1088 }
1089 return false;
1090}
1091
1092/*
1093 * Iterate list of requests and see if we can merge this bio with any
1094 * of them.
1095 */
1096bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1097 struct bio *bio, unsigned int nr_segs)
1098{
1099 struct request *rq;
1100 int checked = 8;
1101
1102 list_for_each_entry_reverse(rq, list, queuelist) {
1103 if (!checked--)
1104 break;
1105
1106 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1107 case BIO_MERGE_NONE:
1108 continue;
1109 case BIO_MERGE_OK:
1110 return true;
1111 case BIO_MERGE_FAILED:
1112 return false;
1113 }
1114
1115 }
1116
1117 return false;
1118}
1119EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1120
1121bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1122 unsigned int nr_segs, struct request **merged_request)
1123{
1124 struct request *rq;
1125
1126 switch (elv_merge(q, &rq, bio)) {
1127 case ELEVATOR_BACK_MERGE:
1128 if (!blk_mq_sched_allow_merge(q, rq, bio))
1129 return false;
1130 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1131 return false;
1132 *merged_request = attempt_back_merge(q, rq);
1133 if (!*merged_request)
1134 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1135 return true;
1136 case ELEVATOR_FRONT_MERGE:
1137 if (!blk_mq_sched_allow_merge(q, rq, bio))
1138 return false;
1139 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1140 return false;
1141 *merged_request = attempt_front_merge(q, rq);
1142 if (!*merged_request)
1143 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1144 return true;
1145 case ELEVATOR_DISCARD_MERGE:
1146 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1147 default:
1148 return false;
1149 }
1150}
1151EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);