Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2019 Google LLC
4 */
5
6/*
7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8 */
9
10#define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11
12#include <crypto/skcipher.h>
13#include <linux/blk-crypto.h>
14#include <linux/blk-crypto-profile.h>
15#include <linux/blkdev.h>
16#include <linux/crypto.h>
17#include <linux/mempool.h>
18#include <linux/module.h>
19#include <linux/random.h>
20#include <linux/scatterlist.h>
21
22#include "blk-cgroup.h"
23#include "blk-crypto-internal.h"
24
25static unsigned int num_prealloc_bounce_pg = 32;
26module_param(num_prealloc_bounce_pg, uint, 0);
27MODULE_PARM_DESC(num_prealloc_bounce_pg,
28 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
29
30static unsigned int blk_crypto_num_keyslots = 100;
31module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
32MODULE_PARM_DESC(num_keyslots,
33 "Number of keyslots for the blk-crypto crypto API fallback");
34
35static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
36module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
37MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
38 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
39
40struct bio_fallback_crypt_ctx {
41 struct bio_crypt_ctx crypt_ctx;
42 /*
43 * Copy of the bvec_iter when this bio was submitted.
44 * We only want to en/decrypt the part of the bio as described by the
45 * bvec_iter upon submission because bio might be split before being
46 * resubmitted
47 */
48 struct bvec_iter crypt_iter;
49 union {
50 struct {
51 struct work_struct work;
52 struct bio *bio;
53 };
54 struct {
55 void *bi_private_orig;
56 bio_end_io_t *bi_end_io_orig;
57 };
58 };
59};
60
61static struct kmem_cache *bio_fallback_crypt_ctx_cache;
62static mempool_t *bio_fallback_crypt_ctx_pool;
63
64/*
65 * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
66 * all of a mode's tfms when that mode starts being used. Since each mode may
67 * need all the keyslots at some point, each mode needs its own tfm for each
68 * keyslot; thus, a keyslot may contain tfms for multiple modes. However, to
69 * match the behavior of real inline encryption hardware (which only supports a
70 * single encryption context per keyslot), we only allow one tfm per keyslot to
71 * be used at a time - the rest of the unused tfms have their keys cleared.
72 */
73static DEFINE_MUTEX(tfms_init_lock);
74static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
75
76static struct blk_crypto_fallback_keyslot {
77 enum blk_crypto_mode_num crypto_mode;
78 struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
79} *blk_crypto_keyslots;
80
81static struct blk_crypto_profile *blk_crypto_fallback_profile;
82static struct workqueue_struct *blk_crypto_wq;
83static mempool_t *blk_crypto_bounce_page_pool;
84static struct bio_set crypto_bio_split;
85
86/*
87 * This is the key we set when evicting a keyslot. This *should* be the all 0's
88 * key, but AES-XTS rejects that key, so we use some random bytes instead.
89 */
90static u8 blank_key[BLK_CRYPTO_MAX_RAW_KEY_SIZE];
91
92static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
93{
94 struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
95 enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
96 int err;
97
98 WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
99
100 /* Clear the key in the skcipher */
101 err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102 blk_crypto_modes[crypto_mode].keysize);
103 WARN_ON(err);
104 slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105}
106
107static int
108blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
109 const struct blk_crypto_key *key,
110 unsigned int slot)
111{
112 struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
113 const enum blk_crypto_mode_num crypto_mode =
114 key->crypto_cfg.crypto_mode;
115 int err;
116
117 if (crypto_mode != slotp->crypto_mode &&
118 slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
119 blk_crypto_fallback_evict_keyslot(slot);
120
121 slotp->crypto_mode = crypto_mode;
122 err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->bytes,
123 key->size);
124 if (err) {
125 blk_crypto_fallback_evict_keyslot(slot);
126 return err;
127 }
128 return 0;
129}
130
131static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
132 const struct blk_crypto_key *key,
133 unsigned int slot)
134{
135 blk_crypto_fallback_evict_keyslot(slot);
136 return 0;
137}
138
139static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
140 .keyslot_program = blk_crypto_fallback_keyslot_program,
141 .keyslot_evict = blk_crypto_fallback_keyslot_evict,
142};
143
144static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
145{
146 struct bio *src_bio = enc_bio->bi_private;
147 int i;
148
149 for (i = 0; i < enc_bio->bi_vcnt; i++)
150 mempool_free(enc_bio->bi_io_vec[i].bv_page,
151 blk_crypto_bounce_page_pool);
152
153 src_bio->bi_status = enc_bio->bi_status;
154
155 bio_uninit(enc_bio);
156 kfree(enc_bio);
157 bio_endio(src_bio);
158}
159
160static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
161{
162 unsigned int nr_segs = bio_segments(bio_src);
163 struct bvec_iter iter;
164 struct bio_vec bv;
165 struct bio *bio;
166
167 bio = bio_kmalloc(nr_segs, GFP_NOIO);
168 if (!bio)
169 return NULL;
170 bio_init_inline(bio, bio_src->bi_bdev, nr_segs, bio_src->bi_opf);
171 if (bio_flagged(bio_src, BIO_REMAPPED))
172 bio_set_flag(bio, BIO_REMAPPED);
173 bio->bi_ioprio = bio_src->bi_ioprio;
174 bio->bi_write_hint = bio_src->bi_write_hint;
175 bio->bi_write_stream = bio_src->bi_write_stream;
176 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
177 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
178
179 bio_for_each_segment(bv, bio_src, iter)
180 bio->bi_io_vec[bio->bi_vcnt++] = bv;
181
182 bio_clone_blkg_association(bio, bio_src);
183
184 return bio;
185}
186
187static bool
188blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
189 struct skcipher_request **ciph_req_ret,
190 struct crypto_wait *wait)
191{
192 struct skcipher_request *ciph_req;
193 const struct blk_crypto_fallback_keyslot *slotp;
194 int keyslot_idx = blk_crypto_keyslot_index(slot);
195
196 slotp = &blk_crypto_keyslots[keyslot_idx];
197 ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
198 GFP_NOIO);
199 if (!ciph_req)
200 return false;
201
202 skcipher_request_set_callback(ciph_req,
203 CRYPTO_TFM_REQ_MAY_BACKLOG |
204 CRYPTO_TFM_REQ_MAY_SLEEP,
205 crypto_req_done, wait);
206 *ciph_req_ret = ciph_req;
207
208 return true;
209}
210
211static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
212{
213 struct bio *bio = *bio_ptr;
214 unsigned int i = 0;
215 unsigned int num_sectors = 0;
216 struct bio_vec bv;
217 struct bvec_iter iter;
218
219 bio_for_each_segment(bv, bio, iter) {
220 num_sectors += bv.bv_len >> SECTOR_SHIFT;
221 if (++i == BIO_MAX_VECS)
222 break;
223 }
224
225 if (num_sectors < bio_sectors(bio)) {
226 bio = bio_submit_split_bioset(bio, num_sectors,
227 &crypto_bio_split);
228 if (!bio)
229 return false;
230
231 *bio_ptr = bio;
232 }
233
234 return true;
235}
236
237union blk_crypto_iv {
238 __le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
239 u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
240};
241
242static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
243 union blk_crypto_iv *iv)
244{
245 int i;
246
247 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
248 iv->dun[i] = cpu_to_le64(dun[i]);
249}
250
251/*
252 * The crypto API fallback's encryption routine.
253 * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
254 * and replace *bio_ptr with the bounce bio. May split input bio if it's too
255 * large. Returns true on success. Returns false and sets bio->bi_status on
256 * error.
257 */
258static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
259{
260 struct bio *src_bio, *enc_bio;
261 struct bio_crypt_ctx *bc;
262 struct blk_crypto_keyslot *slot;
263 int data_unit_size;
264 struct skcipher_request *ciph_req = NULL;
265 DECLARE_CRYPTO_WAIT(wait);
266 u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
267 struct scatterlist src, dst;
268 union blk_crypto_iv iv;
269 unsigned int i, j;
270 bool ret = false;
271 blk_status_t blk_st;
272
273 /* Split the bio if it's too big for single page bvec */
274 if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
275 return false;
276
277 src_bio = *bio_ptr;
278 bc = src_bio->bi_crypt_context;
279 data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
280
281 /* Allocate bounce bio for encryption */
282 enc_bio = blk_crypto_fallback_clone_bio(src_bio);
283 if (!enc_bio) {
284 src_bio->bi_status = BLK_STS_RESOURCE;
285 return false;
286 }
287
288 /*
289 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
290 * this bio's algorithm and key.
291 */
292 blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
293 bc->bc_key, &slot);
294 if (blk_st != BLK_STS_OK) {
295 src_bio->bi_status = blk_st;
296 goto out_put_enc_bio;
297 }
298
299 /* and then allocate an skcipher_request for it */
300 if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
301 src_bio->bi_status = BLK_STS_RESOURCE;
302 goto out_release_keyslot;
303 }
304
305 memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
306 sg_init_table(&src, 1);
307 sg_init_table(&dst, 1);
308
309 skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
310 iv.bytes);
311
312 /* Encrypt each page in the bounce bio */
313 for (i = 0; i < enc_bio->bi_vcnt; i++) {
314 struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
315 struct page *plaintext_page = enc_bvec->bv_page;
316 struct page *ciphertext_page =
317 mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
318
319 enc_bvec->bv_page = ciphertext_page;
320
321 if (!ciphertext_page) {
322 src_bio->bi_status = BLK_STS_RESOURCE;
323 goto out_free_bounce_pages;
324 }
325
326 sg_set_page(&src, plaintext_page, data_unit_size,
327 enc_bvec->bv_offset);
328 sg_set_page(&dst, ciphertext_page, data_unit_size,
329 enc_bvec->bv_offset);
330
331 /* Encrypt each data unit in this page */
332 for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
333 blk_crypto_dun_to_iv(curr_dun, &iv);
334 if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
335 &wait)) {
336 i++;
337 src_bio->bi_status = BLK_STS_IOERR;
338 goto out_free_bounce_pages;
339 }
340 bio_crypt_dun_increment(curr_dun, 1);
341 src.offset += data_unit_size;
342 dst.offset += data_unit_size;
343 }
344 }
345
346 enc_bio->bi_private = src_bio;
347 enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
348 *bio_ptr = enc_bio;
349 ret = true;
350
351 enc_bio = NULL;
352 goto out_free_ciph_req;
353
354out_free_bounce_pages:
355 while (i > 0)
356 mempool_free(enc_bio->bi_io_vec[--i].bv_page,
357 blk_crypto_bounce_page_pool);
358out_free_ciph_req:
359 skcipher_request_free(ciph_req);
360out_release_keyslot:
361 blk_crypto_put_keyslot(slot);
362out_put_enc_bio:
363 if (enc_bio)
364 bio_uninit(enc_bio);
365 kfree(enc_bio);
366 return ret;
367}
368
369/*
370 * The crypto API fallback's main decryption routine.
371 * Decrypts input bio in place, and calls bio_endio on the bio.
372 */
373static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
374{
375 struct bio_fallback_crypt_ctx *f_ctx =
376 container_of(work, struct bio_fallback_crypt_ctx, work);
377 struct bio *bio = f_ctx->bio;
378 struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
379 struct blk_crypto_keyslot *slot;
380 struct skcipher_request *ciph_req = NULL;
381 DECLARE_CRYPTO_WAIT(wait);
382 u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
383 union blk_crypto_iv iv;
384 struct scatterlist sg;
385 struct bio_vec bv;
386 struct bvec_iter iter;
387 const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
388 unsigned int i;
389 blk_status_t blk_st;
390
391 /*
392 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
393 * this bio's algorithm and key.
394 */
395 blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
396 bc->bc_key, &slot);
397 if (blk_st != BLK_STS_OK) {
398 bio->bi_status = blk_st;
399 goto out_no_keyslot;
400 }
401
402 /* and then allocate an skcipher_request for it */
403 if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
404 bio->bi_status = BLK_STS_RESOURCE;
405 goto out;
406 }
407
408 memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
409 sg_init_table(&sg, 1);
410 skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
411 iv.bytes);
412
413 /* Decrypt each segment in the bio */
414 __bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
415 struct page *page = bv.bv_page;
416
417 sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
418
419 /* Decrypt each data unit in the segment */
420 for (i = 0; i < bv.bv_len; i += data_unit_size) {
421 blk_crypto_dun_to_iv(curr_dun, &iv);
422 if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
423 &wait)) {
424 bio->bi_status = BLK_STS_IOERR;
425 goto out;
426 }
427 bio_crypt_dun_increment(curr_dun, 1);
428 sg.offset += data_unit_size;
429 }
430 }
431
432out:
433 skcipher_request_free(ciph_req);
434 blk_crypto_put_keyslot(slot);
435out_no_keyslot:
436 mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
437 bio_endio(bio);
438}
439
440/**
441 * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
442 *
443 * @bio: the bio to queue
444 *
445 * Restore bi_private and bi_end_io, and queue the bio for decryption into a
446 * workqueue, since this function will be called from an atomic context.
447 */
448static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
449{
450 struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
451
452 bio->bi_private = f_ctx->bi_private_orig;
453 bio->bi_end_io = f_ctx->bi_end_io_orig;
454
455 /* If there was an IO error, don't queue for decrypt. */
456 if (bio->bi_status) {
457 mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
458 bio_endio(bio);
459 return;
460 }
461
462 INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
463 f_ctx->bio = bio;
464 queue_work(blk_crypto_wq, &f_ctx->work);
465}
466
467/**
468 * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
469 *
470 * @bio_ptr: pointer to the bio to prepare
471 *
472 * If bio is doing a WRITE operation, this splits the bio into two parts if it's
473 * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
474 * bounce bio for the first part, encrypts it, and updates bio_ptr to point to
475 * the bounce bio.
476 *
477 * For a READ operation, we mark the bio for decryption by using bi_private and
478 * bi_end_io.
479 *
480 * In either case, this function will make the bio look like a regular bio (i.e.
481 * as if no encryption context was ever specified) for the purposes of the rest
482 * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
483 * currently supported together).
484 *
485 * Return: true on success. Sets bio->bi_status and returns false on error.
486 */
487bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
488{
489 struct bio *bio = *bio_ptr;
490 struct bio_crypt_ctx *bc = bio->bi_crypt_context;
491 struct bio_fallback_crypt_ctx *f_ctx;
492
493 if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
494 /* User didn't call blk_crypto_start_using_key() first */
495 bio->bi_status = BLK_STS_IOERR;
496 return false;
497 }
498
499 if (!__blk_crypto_cfg_supported(blk_crypto_fallback_profile,
500 &bc->bc_key->crypto_cfg)) {
501 bio->bi_status = BLK_STS_NOTSUPP;
502 return false;
503 }
504
505 if (bio_data_dir(bio) == WRITE)
506 return blk_crypto_fallback_encrypt_bio(bio_ptr);
507
508 /*
509 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
510 * bi_end_io appropriately to trigger decryption when the bio is ended.
511 */
512 f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
513 f_ctx->crypt_ctx = *bc;
514 f_ctx->crypt_iter = bio->bi_iter;
515 f_ctx->bi_private_orig = bio->bi_private;
516 f_ctx->bi_end_io_orig = bio->bi_end_io;
517 bio->bi_private = (void *)f_ctx;
518 bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
519 bio_crypt_free_ctx(bio);
520
521 return true;
522}
523
524int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
525{
526 return __blk_crypto_evict_key(blk_crypto_fallback_profile, key);
527}
528
529static bool blk_crypto_fallback_inited;
530static int blk_crypto_fallback_init(void)
531{
532 int i;
533 int err;
534
535 if (blk_crypto_fallback_inited)
536 return 0;
537
538 get_random_bytes(blank_key, sizeof(blank_key));
539
540 err = bioset_init(&crypto_bio_split, 64, 0, 0);
541 if (err)
542 goto out;
543
544 /* Dynamic allocation is needed because of lockdep_register_key(). */
545 blk_crypto_fallback_profile =
546 kzalloc(sizeof(*blk_crypto_fallback_profile), GFP_KERNEL);
547 if (!blk_crypto_fallback_profile) {
548 err = -ENOMEM;
549 goto fail_free_bioset;
550 }
551
552 err = blk_crypto_profile_init(blk_crypto_fallback_profile,
553 blk_crypto_num_keyslots);
554 if (err)
555 goto fail_free_profile;
556 err = -ENOMEM;
557
558 blk_crypto_fallback_profile->ll_ops = blk_crypto_fallback_ll_ops;
559 blk_crypto_fallback_profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
560 blk_crypto_fallback_profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_RAW;
561
562 /* All blk-crypto modes have a crypto API fallback. */
563 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
564 blk_crypto_fallback_profile->modes_supported[i] = 0xFFFFFFFF;
565 blk_crypto_fallback_profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
566
567 blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
568 WQ_UNBOUND | WQ_HIGHPRI |
569 WQ_MEM_RECLAIM, num_online_cpus());
570 if (!blk_crypto_wq)
571 goto fail_destroy_profile;
572
573 blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
574 sizeof(blk_crypto_keyslots[0]),
575 GFP_KERNEL);
576 if (!blk_crypto_keyslots)
577 goto fail_free_wq;
578
579 blk_crypto_bounce_page_pool =
580 mempool_create_page_pool(num_prealloc_bounce_pg, 0);
581 if (!blk_crypto_bounce_page_pool)
582 goto fail_free_keyslots;
583
584 bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
585 if (!bio_fallback_crypt_ctx_cache)
586 goto fail_free_bounce_page_pool;
587
588 bio_fallback_crypt_ctx_pool =
589 mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
590 bio_fallback_crypt_ctx_cache);
591 if (!bio_fallback_crypt_ctx_pool)
592 goto fail_free_crypt_ctx_cache;
593
594 blk_crypto_fallback_inited = true;
595
596 return 0;
597fail_free_crypt_ctx_cache:
598 kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
599fail_free_bounce_page_pool:
600 mempool_destroy(blk_crypto_bounce_page_pool);
601fail_free_keyslots:
602 kfree(blk_crypto_keyslots);
603fail_free_wq:
604 destroy_workqueue(blk_crypto_wq);
605fail_destroy_profile:
606 blk_crypto_profile_destroy(blk_crypto_fallback_profile);
607fail_free_profile:
608 kfree(blk_crypto_fallback_profile);
609fail_free_bioset:
610 bioset_exit(&crypto_bio_split);
611out:
612 return err;
613}
614
615/*
616 * Prepare blk-crypto-fallback for the specified crypto mode.
617 * Returns -ENOPKG if the needed crypto API support is missing.
618 */
619int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
620{
621 const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
622 struct blk_crypto_fallback_keyslot *slotp;
623 unsigned int i;
624 int err = 0;
625
626 /*
627 * Fast path
628 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
629 * for each i are visible before we try to access them.
630 */
631 if (likely(smp_load_acquire(&tfms_inited[mode_num])))
632 return 0;
633
634 mutex_lock(&tfms_init_lock);
635 if (tfms_inited[mode_num])
636 goto out;
637
638 err = blk_crypto_fallback_init();
639 if (err)
640 goto out;
641
642 for (i = 0; i < blk_crypto_num_keyslots; i++) {
643 slotp = &blk_crypto_keyslots[i];
644 slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
645 if (IS_ERR(slotp->tfms[mode_num])) {
646 err = PTR_ERR(slotp->tfms[mode_num]);
647 if (err == -ENOENT) {
648 pr_warn_once("Missing crypto API support for \"%s\"\n",
649 cipher_str);
650 err = -ENOPKG;
651 }
652 slotp->tfms[mode_num] = NULL;
653 goto out_free_tfms;
654 }
655
656 crypto_skcipher_set_flags(slotp->tfms[mode_num],
657 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
658 }
659
660 /*
661 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
662 * for each i are visible before we set tfms_inited[mode_num].
663 */
664 smp_store_release(&tfms_inited[mode_num], true);
665 goto out;
666
667out_free_tfms:
668 for (i = 0; i < blk_crypto_num_keyslots; i++) {
669 slotp = &blk_crypto_keyslots[i];
670 crypto_free_skcipher(slotp->tfms[mode_num]);
671 slotp->tfms[mode_num] = NULL;
672 }
673out:
674 mutex_unlock(&tfms_init_lock);
675 return err;
676}