at master 422 lines 14 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * include/asm-xtensa/pgtable.h 4 * 5 * Copyright (C) 2001 - 2013 Tensilica Inc. 6 */ 7 8#ifndef _XTENSA_PGTABLE_H 9#define _XTENSA_PGTABLE_H 10 11#include <asm/page.h> 12#include <asm/kmem_layout.h> 13#include <asm-generic/pgtable-nopmd.h> 14 15/* 16 * We only use two ring levels, user and kernel space. 17 */ 18 19#ifdef CONFIG_MMU 20#define USER_RING 1 /* user ring level */ 21#else 22#define USER_RING 0 23#endif 24#define KERNEL_RING 0 /* kernel ring level */ 25 26/* 27 * The Xtensa architecture port of Linux has a two-level page table system, 28 * i.e. the logical three-level Linux page table layout is folded. 29 * Each task has the following memory page tables: 30 * 31 * PGD table (page directory), ie. 3rd-level page table: 32 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables 33 * (Architectures that don't have the PMD folded point to the PMD tables) 34 * 35 * The pointer to the PGD table for a given task can be retrieved from 36 * the task structure (struct task_struct*) t, e.g. current(): 37 * (t->mm ? t->mm : t->active_mm)->pgd 38 * 39 * PMD tables (page middle-directory), ie. 2nd-level page tables: 40 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). 41 * 42 * PTE tables (page table entry), ie. 1st-level page tables: 43 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE 44 * invalid_pte_table for absent mappings. 45 * 46 * The individual pages are 4 kB big with special pages for the empty_zero_page. 47 */ 48 49#define PGDIR_SHIFT 22 50#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 51#define PGDIR_MASK (~(PGDIR_SIZE-1)) 52 53/* 54 * Entries per page directory level: we use two-level, so 55 * we don't really have any PMD directory physically. 56 */ 57#define PTRS_PER_PTE 1024 58#define PTRS_PER_PTE_SHIFT 10 59#define PTRS_PER_PGD 1024 60#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 61 62#ifdef CONFIG_MMU 63/* 64 * Virtual memory area. We keep a distance to other memory regions to be 65 * on the safe side. We also use this area for cache aliasing. 66 */ 67#define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000) 68#define VMALLOC_END (VMALLOC_START + 0x07FEFFFF) 69#define TLBTEMP_BASE_1 (VMALLOC_START + 0x08000000) 70#define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE) 71#if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE 72#define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE) 73#else 74#define TLBTEMP_SIZE ICACHE_WAY_SIZE 75#endif 76 77#else 78 79#define VMALLOC_START __XTENSA_UL_CONST(0) 80#define VMALLOC_END __XTENSA_UL_CONST(0xffffffff) 81 82#endif 83 84/* 85 * For the Xtensa architecture, the PTE layout is as follows: 86 * 87 * 31------12 11 10-9 8-6 5-4 3-2 1-0 88 * +-----------------------------------------+ 89 * | | Software | HARDWARE | 90 * | PPN | ADW | RI |Attribute| 91 * +-----------------------------------------+ 92 * pte_none | MBZ | 01 | 11 | 00 | 93 * +-----------------------------------------+ 94 * present | PPN | 0 | 00 | ADW | RI | CA | wx | 95 * +- - - - - - - - - - - - - - - - - - - - -+ 96 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 | 97 * +-----------------------------------------+ 98 * swap | index | type | 01 | 11 | e0 | 99 * +-----------------------------------------+ 100 * 101 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE) 102 * +-----------------------------------------+ 103 * present | PPN | 0 | 00 | ADW | RI | CA | w1 | 104 * +-----------------------------------------+ 105 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 | 106 * +-----------------------------------------+ 107 * 108 * Legend: 109 * PPN Physical Page Number 110 * ADW software: accessed (young) / dirty / writable 111 * RI ring (0=privileged, 1=user, 2 and 3 are unused) 112 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough 113 * (11 is invalid and used to mark pages that are not present) 114 * e exclusive marker in swap PTEs 115 * w page is writable (hw) 116 * x page is executable (hw) 117 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB) 118 * (note that the index is always non-zero) 119 * type swap type (5 bits -> 32 types) 120 * 121 * Notes: 122 * - (PROT_NONE) is a special case of 'present' but causes an exception for 123 * any access (read, write, and execute). 124 * - 'multihit-exception' has the highest priority of all MMU exceptions, 125 * so the ring must be set to 'RING_USER' even for 'non-present' pages. 126 * - on older hardware, the exectuable flag was not supported and 127 * used as a 'valid' flag, so it needs to be always set. 128 * - we need to keep track of certain flags in software (dirty and young) 129 * to do this, we use write exceptions and have a separate software w-flag. 130 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved 131 */ 132 133#define _PAGE_ATTRIB_MASK 0xf 134 135#define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */ 136#define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */ 137 138#define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */ 139#define _PAGE_CA_WB (1<<2) /* write-back */ 140#define _PAGE_CA_WT (2<<2) /* write-through */ 141#define _PAGE_CA_MASK (3<<2) 142#define _PAGE_CA_INVALID (3<<2) 143 144/* We use invalid attribute values to distinguish special pte entries */ 145#if XCHAL_HW_VERSION_MAJOR < 2000 146#define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */ 147#define _PAGE_NONE 0x04 148#else 149#define _PAGE_HW_VALID 0x00 150#define _PAGE_NONE 0x0f 151#endif 152 153#define _PAGE_USER (1<<4) /* user access (ring=1) */ 154 155/* Software */ 156#define _PAGE_WRITABLE_BIT 6 157#define _PAGE_WRITABLE (1<<6) /* software: page writable */ 158#define _PAGE_DIRTY (1<<7) /* software: page dirty */ 159#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ 160 161/* We borrow bit 1 to store the exclusive marker in swap PTEs. */ 162#define _PAGE_SWP_EXCLUSIVE (1<<1) 163 164#ifdef CONFIG_MMU 165 166#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 167#define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED) 168 169#define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER) 170#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) 171#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 172#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) 173#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 174#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE) 175#define PAGE_SHARED_EXEC \ 176 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC) 177#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE) 178#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT) 179#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC) 180 181#if (DCACHE_WAY_SIZE > PAGE_SIZE) 182# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS) 183#else 184# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB) 185#endif 186 187#else /* no mmu */ 188 189# define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 190# define PAGE_NONE __pgprot(0) 191# define PAGE_SHARED __pgprot(0) 192# define PAGE_COPY __pgprot(0) 193# define PAGE_READONLY __pgprot(0) 194# define PAGE_KERNEL __pgprot(0) 195 196#endif 197 198/* 199 * On certain configurations of Xtensa MMUs (eg. the initial Linux config), 200 * the MMU can't do page protection for execute, and considers that the same as 201 * read. Also, write permissions may imply read permissions. 202 * What follows is the closest we can get by reasonable means.. 203 * See linux/mm/mmap.c for protection_map[] array that uses these definitions. 204 */ 205#ifndef __ASSEMBLER__ 206 207#define pte_ERROR(e) \ 208 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 209#define pgd_ERROR(e) \ 210 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 211 212extern unsigned long empty_zero_page[1024]; 213 214#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 215 216#ifdef CONFIG_MMU 217extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; 218extern void paging_init(void); 219#else 220# define swapper_pg_dir NULL 221static inline void paging_init(void) { } 222#endif 223 224/* 225 * The pmd contains the kernel virtual address of the pte page. 226 */ 227#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) 228#define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT) 229#define pmd_page(pmd) virt_to_page(pmd_val(pmd)) 230 231/* 232 * pte status. 233 */ 234# define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER)) 235#if XCHAL_HW_VERSION_MAJOR < 2000 236# define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) 237#else 238# define pte_present(pte) \ 239 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \ 240 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE)) 241#endif 242#define pte_clear(mm,addr,ptep) \ 243 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0) 244 245#define pmd_none(pmd) (!pmd_val(pmd)) 246#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) 247#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 248#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) 249 250static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; } 251static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 252static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 253 254static inline pte_t pte_wrprotect(pte_t pte) 255 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; } 256static inline pte_t pte_mkclean(pte_t pte) 257 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; } 258static inline pte_t pte_mkold(pte_t pte) 259 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 260static inline pte_t pte_mkdirty(pte_t pte) 261 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 262static inline pte_t pte_mkyoung(pte_t pte) 263 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 264static inline pte_t pte_mkwrite_novma(pte_t pte) 265 { pte_val(pte) |= _PAGE_WRITABLE; return pte; } 266 267#define pgprot_noncached(prot) \ 268 ((__pgprot((pgprot_val(prot) & ~_PAGE_CA_MASK) | \ 269 _PAGE_CA_BYPASS))) 270 271#define PFN_PTE_SHIFT PAGE_SHIFT 272#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 273#define pte_same(a,b) (pte_val(a) == pte_val(b)) 274#define pte_page(x) pfn_to_page(pte_pfn(x)) 275#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 276 277static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 278{ 279 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 280} 281 282/* 283 * Certain architectures need to do special things when pte's 284 * within a page table are directly modified. Thus, the following 285 * hook is made available. 286 */ 287static inline void update_pte(pte_t *ptep, pte_t pteval) 288{ 289 *ptep = pteval; 290#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 291 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep)); 292#endif 293 294} 295 296struct mm_struct; 297 298static inline void set_pte(pte_t *ptep, pte_t pte) 299{ 300 update_pte(ptep, pte); 301} 302 303static inline void 304set_pmd(pmd_t *pmdp, pmd_t pmdval) 305{ 306 *pmdp = pmdval; 307} 308 309struct vm_area_struct; 310 311static inline int 312ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, 313 pte_t *ptep) 314{ 315 pte_t pte = *ptep; 316 if (!pte_young(pte)) 317 return 0; 318 update_pte(ptep, pte_mkold(pte)); 319 return 1; 320} 321 322static inline pte_t 323ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 324{ 325 pte_t pte = *ptep; 326 pte_clear(mm, addr, ptep); 327 return pte; 328} 329 330static inline void 331ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 332{ 333 pte_t pte = *ptep; 334 update_pte(ptep, pte_wrprotect(pte)); 335} 336 337/* 338 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 339 * are !pte_none() && !pte_present(). 340 */ 341#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5) 342 343#define __swp_type(entry) (((entry).val >> 6) & 0x1f) 344#define __swp_offset(entry) ((entry).val >> 11) 345#define __swp_entry(type,offs) \ 346 ((swp_entry_t){(((type) & 0x1f) << 6) | ((offs) << 11) | \ 347 _PAGE_CA_INVALID | _PAGE_USER}) 348#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 349#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 350 351static inline bool pte_swp_exclusive(pte_t pte) 352{ 353 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 354} 355 356static inline pte_t pte_swp_mkexclusive(pte_t pte) 357{ 358 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; 359 return pte; 360} 361 362static inline pte_t pte_swp_clear_exclusive(pte_t pte) 363{ 364 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; 365 return pte; 366} 367 368#endif /* !defined (__ASSEMBLER__) */ 369 370 371#ifdef __ASSEMBLER__ 372 373/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), 374 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), 375 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) 376 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) 377 * 378 * Note: We require an additional temporary register which can be the same as 379 * the register that holds the address. 380 * 381 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) 382 * 383 */ 384#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT 385#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT 386 387#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ 388 _PGD_INDEX(tmp, adr); \ 389 addx4 mm, tmp, mm 390 391#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ 392 srli pmd, pmd, PAGE_SHIFT; \ 393 slli pmd, pmd, PAGE_SHIFT; \ 394 addx4 pmd, tmp, pmd 395 396#else 397 398struct vm_fault; 399void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, 400 unsigned long address, pte_t *ptep, unsigned int nr); 401#define update_mmu_cache(vma, address, ptep) \ 402 update_mmu_cache_range(NULL, vma, address, ptep, 1) 403 404typedef pte_t *pte_addr_t; 405 406void update_mmu_tlb_range(struct vm_area_struct *vma, 407 unsigned long address, pte_t *ptep, unsigned int nr); 408#define update_mmu_tlb_range update_mmu_tlb_range 409 410#endif /* !defined (__ASSEMBLER__) */ 411 412#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 413#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 414#define __HAVE_ARCH_PTEP_SET_WRPROTECT 415#define __HAVE_ARCH_PTEP_MKDIRTY 416#define __HAVE_ARCH_PTE_SAME 417/* We provide our own get_unmapped_area to cope with 418 * SHM area cache aliasing for userland. 419 */ 420#define HAVE_ARCH_UNMAPPED_AREA 421 422#endif /* _XTENSA_PGTABLE_H */