at master 20 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct io_bitmap; 11struct vm86; 12 13#include <asm/math_emu.h> 14#include <asm/segment.h> 15#include <asm/types.h> 16#include <uapi/asm/sigcontext.h> 17#include <asm/current.h> 18#include <asm/cpufeatures.h> 19#include <asm/cpuid/api.h> 20#include <asm/page.h> 21#include <asm/pgtable_types.h> 22#include <asm/percpu.h> 23#include <asm/desc_defs.h> 24#include <asm/nops.h> 25#include <asm/special_insns.h> 26#include <asm/fpu/types.h> 27#include <asm/unwind_hints.h> 28#include <asm/vmxfeatures.h> 29#include <asm/vdso/processor.h> 30#include <asm/shstk.h> 31 32#include <linux/personality.h> 33#include <linux/cache.h> 34#include <linux/threads.h> 35#include <linux/math64.h> 36#include <linux/err.h> 37#include <linux/irqflags.h> 38#include <linux/mem_encrypt.h> 39 40/* 41 * We handle most unaligned accesses in hardware. On the other hand 42 * unaligned DMA can be quite expensive on some Nehalem processors. 43 * 44 * Based on this we disable the IP header alignment in network drivers. 45 */ 46#define NET_IP_ALIGN 0 47 48#define HBP_NUM 4 49 50/* 51 * These alignment constraints are for performance in the vSMP case, 52 * but in the task_struct case we must also meet hardware imposed 53 * alignment requirements of the FPU state: 54 */ 55#ifdef CONFIG_X86_VSMP 56# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 57# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 58#else 59# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 60# define ARCH_MIN_MMSTRUCT_ALIGN 0 61#endif 62 63extern u16 __read_mostly tlb_lli_4k; 64extern u16 __read_mostly tlb_lli_2m; 65extern u16 __read_mostly tlb_lli_4m; 66extern u16 __read_mostly tlb_lld_4k; 67extern u16 __read_mostly tlb_lld_2m; 68extern u16 __read_mostly tlb_lld_4m; 69extern u16 __read_mostly tlb_lld_1g; 70 71/* 72 * CPU type and hardware bug flags. Kept separately for each CPU. 73 */ 74 75struct cpuinfo_topology { 76 // Real APIC ID read from the local APIC 77 u32 apicid; 78 // The initial APIC ID provided by CPUID 79 u32 initial_apicid; 80 81 // Physical package ID 82 u32 pkg_id; 83 84 // Physical die ID on AMD, Relative on Intel 85 u32 die_id; 86 87 // Compute unit ID - AMD specific 88 u32 cu_id; 89 90 // Core ID relative to the package 91 u32 core_id; 92 93 // Logical ID mappings 94 u32 logical_pkg_id; 95 u32 logical_die_id; 96 u32 logical_core_id; 97 98 // AMD Node ID and Nodes per Package info 99 u32 amd_node_id; 100 101 // Cache level topology IDs 102 u32 llc_id; 103 u32 l2c_id; 104 105 // Hardware defined CPU-type 106 union { 107 u32 cpu_type; 108 struct { 109 // CPUID.1A.EAX[23-0] 110 u32 intel_native_model_id :24; 111 // CPUID.1A.EAX[31-24] 112 u32 intel_type :8; 113 }; 114 struct { 115 // CPUID 0x80000026.EBX 116 u32 amd_num_processors :16, 117 amd_power_eff_ranking :8, 118 amd_native_model_id :4, 119 amd_type :4; 120 }; 121 }; 122}; 123 124struct cpuinfo_x86 { 125 union { 126 /* 127 * The particular ordering (low-to-high) of (vendor, 128 * family, model) is done in case range of models, like 129 * it is usually done on AMD, need to be compared. 130 */ 131 struct { 132 __u8 x86_model; 133 /* CPU family */ 134 __u8 x86; 135 /* CPU vendor */ 136 __u8 x86_vendor; 137 __u8 x86_reserved; 138 }; 139 /* combined vendor, family, model */ 140 __u32 x86_vfm; 141 }; 142 __u8 x86_stepping; 143#ifdef CONFIG_X86_64 144 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 145 int x86_tlbsize; 146#endif 147#ifdef CONFIG_X86_VMX_FEATURE_NAMES 148 __u32 vmx_capability[NVMXINTS]; 149#endif 150 __u8 x86_virt_bits; 151 __u8 x86_phys_bits; 152 /* Max extended CPUID function supported: */ 153 __u32 extended_cpuid_level; 154 /* Maximum supported CPUID level, -1=no CPUID: */ 155 int cpuid_level; 156 /* 157 * Align to size of unsigned long because the x86_capability array 158 * is passed to bitops which require the alignment. Use unnamed 159 * union to enforce the array is aligned to size of unsigned long. 160 */ 161 union { 162 __u32 x86_capability[NCAPINTS + NBUGINTS]; 163 unsigned long x86_capability_alignment; 164 }; 165 char x86_vendor_id[16]; 166 char x86_model_id[64]; 167 struct cpuinfo_topology topo; 168 /* in KB - valid for CPUS which support this call: */ 169 unsigned int x86_cache_size; 170 int x86_cache_alignment; /* In bytes */ 171 /* Cache QoS architectural values, valid only on the BSP: */ 172 int x86_cache_max_rmid; /* max index */ 173 int x86_cache_occ_scale; /* scale to bytes */ 174 int x86_cache_mbm_width_offset; 175 int x86_power; 176 unsigned long loops_per_jiffy; 177 /* protected processor identification number */ 178 u64 ppin; 179 u16 x86_clflush_size; 180 /* number of cores as seen by the OS: */ 181 u16 booted_cores; 182 /* Index into per_cpu list: */ 183 u16 cpu_index; 184 /* Is SMT active on this core? */ 185 bool smt_active; 186 u32 microcode; 187 /* Address space bits used by the cache internally */ 188 u8 x86_cache_bits; 189 unsigned initialized : 1; 190} __randomize_layout; 191 192#define X86_VENDOR_INTEL 0 193#define X86_VENDOR_CYRIX 1 194#define X86_VENDOR_AMD 2 195#define X86_VENDOR_UMC 3 196#define X86_VENDOR_CENTAUR 5 197#define X86_VENDOR_TRANSMETA 7 198#define X86_VENDOR_NSC 8 199#define X86_VENDOR_HYGON 9 200#define X86_VENDOR_ZHAOXIN 10 201#define X86_VENDOR_VORTEX 11 202#define X86_VENDOR_NUM 12 203 204#define X86_VENDOR_UNKNOWN 0xff 205 206/* 207 * capabilities of CPUs 208 */ 209extern struct cpuinfo_x86 boot_cpu_data; 210extern struct cpuinfo_x86 new_cpu_data; 211 212extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 213extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 214 215DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 216#define cpu_data(cpu) per_cpu(cpu_info, cpu) 217 218extern const struct seq_operations cpuinfo_op; 219 220#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 221 222extern void cpu_detect(struct cpuinfo_x86 *c); 223 224static inline unsigned long long l1tf_pfn_limit(void) 225{ 226 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 227} 228 229void init_cpu_devs(void); 230void get_cpu_vendor(struct cpuinfo_x86 *c); 231extern void early_cpu_init(void); 232extern void identify_secondary_cpu(unsigned int cpu); 233extern void print_cpu_info(struct cpuinfo_x86 *); 234void print_cpu_msr(struct cpuinfo_x86 *); 235 236/* 237 * Friendlier CR3 helpers. 238 */ 239static inline unsigned long read_cr3_pa(void) 240{ 241 return __read_cr3() & CR3_ADDR_MASK; 242} 243 244static inline unsigned long native_read_cr3_pa(void) 245{ 246 return __native_read_cr3() & CR3_ADDR_MASK; 247} 248 249static inline void load_cr3(pgd_t *pgdir) 250{ 251 write_cr3(__sme_pa(pgdir)); 252} 253 254/* 255 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 256 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 257 * unrelated to the task-switch mechanism: 258 */ 259#ifdef CONFIG_X86_32 260/* This is the TSS defined by the hardware. */ 261struct x86_hw_tss { 262 unsigned short back_link, __blh; 263 unsigned long sp0; 264 unsigned short ss0, __ss0h; 265 unsigned long sp1; 266 267 /* 268 * We don't use ring 1, so ss1 is a convenient scratch space in 269 * the same cacheline as sp0. We use ss1 to cache the value in 270 * MSR_IA32_SYSENTER_CS. When we context switch 271 * MSR_IA32_SYSENTER_CS, we first check if the new value being 272 * written matches ss1, and, if it's not, then we wrmsr the new 273 * value and update ss1. 274 * 275 * The only reason we context switch MSR_IA32_SYSENTER_CS is 276 * that we set it to zero in vm86 tasks to avoid corrupting the 277 * stack if we were to go through the sysenter path from vm86 278 * mode. 279 */ 280 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 281 282 unsigned short __ss1h; 283 unsigned long sp2; 284 unsigned short ss2, __ss2h; 285 unsigned long __cr3; 286 unsigned long ip; 287 unsigned long flags; 288 unsigned long ax; 289 unsigned long cx; 290 unsigned long dx; 291 unsigned long bx; 292 unsigned long sp; 293 unsigned long bp; 294 unsigned long si; 295 unsigned long di; 296 unsigned short es, __esh; 297 unsigned short cs, __csh; 298 unsigned short ss, __ssh; 299 unsigned short ds, __dsh; 300 unsigned short fs, __fsh; 301 unsigned short gs, __gsh; 302 unsigned short ldt, __ldth; 303 unsigned short trace; 304 unsigned short io_bitmap_base; 305 306} __attribute__((packed)); 307#else 308struct x86_hw_tss { 309 u32 reserved1; 310 u64 sp0; 311 u64 sp1; 312 313 /* 314 * Since Linux does not use ring 2, the 'sp2' slot is unused by 315 * hardware. entry_SYSCALL_64 uses it as scratch space to stash 316 * the user RSP value. 317 */ 318 u64 sp2; 319 320 u64 reserved2; 321 u64 ist[7]; 322 u32 reserved3; 323 u32 reserved4; 324 u16 reserved5; 325 u16 io_bitmap_base; 326 327} __attribute__((packed)); 328#endif 329 330/* 331 * IO-bitmap sizes: 332 */ 333#define IO_BITMAP_BITS 65536 334#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) 335#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) 336 337#define IO_BITMAP_OFFSET_VALID_MAP \ 338 (offsetof(struct tss_struct, io_bitmap.bitmap) - \ 339 offsetof(struct tss_struct, x86_tss)) 340 341#define IO_BITMAP_OFFSET_VALID_ALL \ 342 (offsetof(struct tss_struct, io_bitmap.mapall) - \ 343 offsetof(struct tss_struct, x86_tss)) 344 345#ifdef CONFIG_X86_IOPL_IOPERM 346/* 347 * sizeof(unsigned long) coming from an extra "long" at the end of the 348 * iobitmap. The limit is inclusive, i.e. the last valid byte. 349 */ 350# define __KERNEL_TSS_LIMIT \ 351 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ 352 sizeof(unsigned long) - 1) 353#else 354# define __KERNEL_TSS_LIMIT \ 355 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) 356#endif 357 358/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ 359#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) 360 361struct entry_stack { 362 char stack[PAGE_SIZE]; 363}; 364 365struct entry_stack_page { 366 struct entry_stack stack; 367} __aligned(PAGE_SIZE); 368 369/* 370 * All IO bitmap related data stored in the TSS: 371 */ 372struct x86_io_bitmap { 373 /* The sequence number of the last active bitmap. */ 374 u64 prev_sequence; 375 376 /* 377 * Store the dirty size of the last io bitmap offender. The next 378 * one will have to do the cleanup as the switch out to a non io 379 * bitmap user will just set x86_tss.io_bitmap_base to a value 380 * outside of the TSS limit. So for sane tasks there is no need to 381 * actually touch the io_bitmap at all. 382 */ 383 unsigned int prev_max; 384 385 /* 386 * The extra 1 is there because the CPU will access an 387 * additional byte beyond the end of the IO permission 388 * bitmap. The extra byte must be all 1 bits, and must 389 * be within the limit. 390 */ 391 unsigned long bitmap[IO_BITMAP_LONGS + 1]; 392 393 /* 394 * Special I/O bitmap to emulate IOPL(3). All bytes zero, 395 * except the additional byte at the end. 396 */ 397 unsigned long mapall[IO_BITMAP_LONGS + 1]; 398}; 399 400struct tss_struct { 401 /* 402 * The fixed hardware portion. This must not cross a page boundary 403 * at risk of violating the SDM's advice and potentially triggering 404 * errata. 405 */ 406 struct x86_hw_tss x86_tss; 407 408 struct x86_io_bitmap io_bitmap; 409} __aligned(PAGE_SIZE); 410 411DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 412 413/* Per CPU interrupt stacks */ 414struct irq_stack { 415 char stack[IRQ_STACK_SIZE]; 416} __aligned(IRQ_STACK_SIZE); 417 418DECLARE_PER_CPU_CACHE_HOT(struct irq_stack *, hardirq_stack_ptr); 419#ifdef CONFIG_X86_64 420DECLARE_PER_CPU_CACHE_HOT(bool, hardirq_stack_inuse); 421#else 422DECLARE_PER_CPU_CACHE_HOT(struct irq_stack *, softirq_stack_ptr); 423#endif 424 425DECLARE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack); 426/* const-qualified alias provided by the linker. */ 427DECLARE_PER_CPU_CACHE_HOT(const unsigned long __percpu_seg_override, 428 const_cpu_current_top_of_stack); 429 430#ifdef CONFIG_X86_64 431static inline unsigned long cpu_kernelmode_gs_base(int cpu) 432{ 433#ifdef CONFIG_SMP 434 return per_cpu_offset(cpu); 435#else 436 return 0; 437#endif 438} 439 440extern asmlinkage void entry_SYSCALL32_ignore(void); 441 442/* Save actual FS/GS selectors and bases to current->thread */ 443void current_save_fsgs(void); 444#endif /* X86_64 */ 445 446struct perf_event; 447 448struct thread_struct { 449 /* Cached TLS descriptors: */ 450 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 451#ifdef CONFIG_X86_32 452 unsigned long sp0; 453#endif 454 unsigned long sp; 455#ifdef CONFIG_X86_32 456 unsigned long sysenter_cs; 457#else 458 unsigned short es; 459 unsigned short ds; 460 unsigned short fsindex; 461 unsigned short gsindex; 462#endif 463 464#ifdef CONFIG_X86_64 465 unsigned long fsbase; 466 unsigned long gsbase; 467#else 468 /* 469 * XXX: this could presumably be unsigned short. Alternatively, 470 * 32-bit kernels could be taught to use fsindex instead. 471 */ 472 unsigned long fs; 473 unsigned long gs; 474#endif 475 476 /* Save middle states of ptrace breakpoints */ 477 struct perf_event *ptrace_bps[HBP_NUM]; 478 /* Debug status used for traps, single steps, etc... */ 479 unsigned long virtual_dr6; 480 /* Keep track of the exact dr7 value set by the user */ 481 unsigned long ptrace_dr7; 482 /* Fault info: */ 483 unsigned long cr2; 484 unsigned long trap_nr; 485 unsigned long error_code; 486#ifdef CONFIG_VM86 487 /* Virtual 86 mode info */ 488 struct vm86 *vm86; 489#endif 490 /* IO permissions: */ 491 struct io_bitmap *io_bitmap; 492 493 /* 494 * IOPL. Privilege level dependent I/O permission which is 495 * emulated via the I/O bitmap to prevent user space from disabling 496 * interrupts. 497 */ 498 unsigned long iopl_emul; 499 500 unsigned int iopl_warn:1; 501 502 /* 503 * Protection Keys Register for Userspace. Loaded immediately on 504 * context switch. Store it in thread_struct to avoid a lookup in 505 * the tasks's FPU xstate buffer. This value is only valid when a 506 * task is scheduled out. For 'current' the authoritative source of 507 * PKRU is the hardware itself. 508 */ 509 u32 pkru; 510 511#ifdef CONFIG_X86_USER_SHADOW_STACK 512 unsigned long features; 513 unsigned long features_locked; 514 515 struct thread_shstk shstk; 516#endif 517}; 518 519#ifdef CONFIG_X86_DEBUG_FPU 520extern struct fpu *x86_task_fpu(struct task_struct *task); 521#else 522# define x86_task_fpu(task) ((struct fpu *)((void *)(task) + sizeof(*(task)))) 523#endif 524 525extern void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size); 526 527static inline void arch_thread_struct_whitelist(unsigned long *offset, 528 unsigned long *size) 529{ 530 fpu_thread_struct_whitelist(offset, size); 531} 532 533static inline void 534native_load_sp0(unsigned long sp0) 535{ 536 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 537} 538 539static __always_inline void native_swapgs(void) 540{ 541#ifdef CONFIG_X86_64 542 asm volatile("swapgs" ::: "memory"); 543#endif 544} 545 546static __always_inline unsigned long current_top_of_stack(void) 547{ 548 /* 549 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 550 * and around vm86 mode and sp0 on x86_64 is special because of the 551 * entry trampoline. 552 */ 553 if (IS_ENABLED(CONFIG_USE_X86_SEG_SUPPORT)) 554 return this_cpu_read_const(const_cpu_current_top_of_stack); 555 556 return this_cpu_read_stable(cpu_current_top_of_stack); 557} 558 559static __always_inline bool on_thread_stack(void) 560{ 561 return (unsigned long)(current_top_of_stack() - 562 current_stack_pointer) < THREAD_SIZE; 563} 564 565#ifdef CONFIG_PARAVIRT_XXL 566#include <asm/paravirt.h> 567#else 568 569static inline void load_sp0(unsigned long sp0) 570{ 571 native_load_sp0(sp0); 572} 573 574#endif /* CONFIG_PARAVIRT_XXL */ 575 576unsigned long __get_wchan(struct task_struct *p); 577 578extern void select_idle_routine(void); 579extern void amd_e400_c1e_apic_setup(void); 580 581extern unsigned long boot_option_idle_override; 582 583enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 584 IDLE_POLL}; 585 586extern void enable_sep_cpu(void); 587 588 589/* Defined in head.S */ 590extern struct desc_ptr early_gdt_descr; 591 592extern void switch_gdt_and_percpu_base(int); 593extern void load_direct_gdt(int); 594extern void load_fixmap_gdt(int); 595extern void cpu_init(void); 596extern void cpu_init_exception_handling(bool boot_cpu); 597extern void cpu_init_replace_early_idt(void); 598extern void cr4_init(void); 599 600extern void set_task_blockstep(struct task_struct *task, bool on); 601 602/* Boot loader type from the setup header: */ 603extern int bootloader_type; 604extern int bootloader_version; 605 606extern char ignore_fpu_irq; 607 608#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 609#define ARCH_HAS_PREFETCHW 610 611#ifdef CONFIG_X86_32 612# define BASE_PREFETCH "" 613# define ARCH_HAS_PREFETCH 614#else 615# define BASE_PREFETCH "prefetcht0 %1" 616#endif 617 618/* 619 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 620 * 621 * It's not worth to care about 3dnow prefetches for the K6 622 * because they are microcoded there and very slow. 623 */ 624static inline void prefetch(const void *x) 625{ 626 alternative_input(BASE_PREFETCH, "prefetchnta %1", 627 X86_FEATURE_XMM, 628 "m" (*(const char *)x)); 629} 630 631/* 632 * 3dnow prefetch to get an exclusive cache line. 633 * Useful for spinlocks to avoid one state transition in the 634 * cache coherency protocol: 635 */ 636static __always_inline void prefetchw(const void *x) 637{ 638 alternative_input(BASE_PREFETCH, "prefetchw %1", 639 X86_FEATURE_3DNOWPREFETCH, 640 "m" (*(const char *)x)); 641} 642 643#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 644 TOP_OF_KERNEL_STACK_PADDING) 645 646#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 647 648#define task_pt_regs(task) \ 649({ \ 650 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 651 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 652 ((struct pt_regs *)__ptr) - 1; \ 653}) 654 655#ifdef CONFIG_X86_32 656#define INIT_THREAD { \ 657 .sp0 = TOP_OF_INIT_STACK, \ 658 .sysenter_cs = __KERNEL_CS, \ 659} 660 661#else 662extern unsigned long __top_init_kernel_stack[]; 663 664#define INIT_THREAD { \ 665 .sp = (unsigned long)&__top_init_kernel_stack, \ 666} 667 668#endif /* CONFIG_X86_64 */ 669 670extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 671 unsigned long new_sp); 672 673/* 674 * This decides where the kernel will search for a free chunk of vm 675 * space during mmap's. 676 */ 677#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 678#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 679 680#define KSTK_EIP(task) (task_pt_regs(task)->ip) 681#define KSTK_ESP(task) (task_pt_regs(task)->sp) 682 683/* Get/set a process' ability to use the timestamp counter instruction */ 684#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 685#define SET_TSC_CTL(val) set_tsc_mode((val)) 686 687extern int get_tsc_mode(unsigned long adr); 688extern int set_tsc_mode(unsigned int val); 689 690DECLARE_PER_CPU(u64, msr_misc_features_shadow); 691 692static inline u32 per_cpu_llc_id(unsigned int cpu) 693{ 694 return per_cpu(cpu_info.topo.llc_id, cpu); 695} 696 697static inline u32 per_cpu_l2c_id(unsigned int cpu) 698{ 699 return per_cpu(cpu_info.topo.l2c_id, cpu); 700} 701 702#ifdef CONFIG_CPU_SUP_AMD 703/* 704 * Issue a DIV 0/1 insn to clear any division data from previous DIV 705 * operations. 706 */ 707static __always_inline void amd_clear_divider(void) 708{ 709 asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0) 710 :: "a" (0), "d" (0), "r" (1)); 711} 712 713extern void amd_check_microcode(void); 714#else 715static inline void amd_clear_divider(void) { } 716static inline void amd_check_microcode(void) { } 717#endif 718 719extern unsigned long arch_align_stack(unsigned long sp); 720void free_init_pages(const char *what, unsigned long begin, unsigned long end); 721extern void free_kernel_image_pages(const char *what, void *begin, void *end); 722 723void default_idle(void); 724#ifdef CONFIG_XEN 725bool xen_set_default_idle(void); 726#else 727#define xen_set_default_idle 0 728#endif 729 730void __noreturn stop_this_cpu(void *dummy); 731void microcode_check(struct cpuinfo_x86 *prev_info); 732void store_cpu_caps(struct cpuinfo_x86 *info); 733 734DECLARE_PER_CPU(bool, cache_state_incoherent); 735 736enum l1tf_mitigations { 737 L1TF_MITIGATION_OFF, 738 L1TF_MITIGATION_AUTO, 739 L1TF_MITIGATION_FLUSH_NOWARN, 740 L1TF_MITIGATION_FLUSH, 741 L1TF_MITIGATION_FLUSH_NOSMT, 742 L1TF_MITIGATION_FULL, 743 L1TF_MITIGATION_FULL_FORCE 744}; 745 746extern enum l1tf_mitigations l1tf_mitigation; 747 748enum mds_mitigations { 749 MDS_MITIGATION_OFF, 750 MDS_MITIGATION_AUTO, 751 MDS_MITIGATION_FULL, 752 MDS_MITIGATION_VMWERV, 753}; 754 755extern bool gds_ucode_mitigated(void); 756 757/* 758 * Make previous memory operations globally visible before 759 * a WRMSR. 760 * 761 * MFENCE makes writes visible, but only affects load/store 762 * instructions. WRMSR is unfortunately not a load/store 763 * instruction and is unaffected by MFENCE. The LFENCE ensures 764 * that the WRMSR is not reordered. 765 * 766 * Most WRMSRs are full serializing instructions themselves and 767 * do not require this barrier. This is only required for the 768 * IA32_TSC_DEADLINE and X2APIC MSRs. 769 */ 770static inline void weak_wrmsr_fence(void) 771{ 772 alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE)); 773} 774 775#endif /* _ASM_X86_PROCESSOR_H */