at master 9.0 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 4 * Copyright 2003 PathScale, Inc. 5 * Derived from include/asm-i386/pgtable.h 6 */ 7 8#ifndef __UM_PGTABLE_H 9#define __UM_PGTABLE_H 10 11#include <asm/page.h> 12#include <linux/mm_types.h> 13 14#define _PAGE_PRESENT 0x001 15#define _PAGE_NEEDSYNC 0x002 16#define _PAGE_RW 0x020 17#define _PAGE_USER 0x040 18#define _PAGE_ACCESSED 0x080 19#define _PAGE_DIRTY 0x100 20/* If _PAGE_PRESENT is clear, we use these: */ 21#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 22 pte_present gives true */ 23 24/* We borrow bit 10 to store the exclusive marker in swap PTEs. */ 25#define _PAGE_SWP_EXCLUSIVE 0x400 26 27#if CONFIG_PGTABLE_LEVELS == 4 28#include <asm/pgtable-4level.h> 29#elif CONFIG_PGTABLE_LEVELS == 2 30#include <asm/pgtable-2level.h> 31#else 32#error "Unsupported number of page table levels" 33#endif 34 35extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 36 37/* zero page used for uninitialized stuff */ 38extern unsigned long *empty_zero_page; 39 40/* Just any arbitrary offset to the start of the vmalloc VM area: the 41 * current 8MB value just means that there will be a 8MB "hole" after the 42 * physical memory until the kernel virtual memory starts. That means that 43 * any out-of-bounds memory accesses will hopefully be caught. 44 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 45 * area for the same reason. ;) 46 */ 47 48#ifndef COMPILE_OFFSETS 49#include <as-layout.h> /* for high_physmem */ 50#endif 51 52#define VMALLOC_OFFSET (__va_space) 53#define VMALLOC_START ((high_physmem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 54#define VMALLOC_END (TASK_SIZE-2*PAGE_SIZE) 55#define MODULES_VADDR VMALLOC_START 56#define MODULES_END VMALLOC_END 57 58#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 59#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 60#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 61#define __PAGE_KERNEL_EXEC \ 62 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 63#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 64#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 65#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 66#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 67#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 68#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 69 70/* 71 * The i386 can't do page protection for execute, and considers that the same 72 * are read. 73 * Also, write permissions imply read permissions. This is the closest we can 74 * get.. 75 */ 76 77/* 78 * ZERO_PAGE is a global shared page that is always zero: used 79 * for zero-mapped memory areas etc.. 80 */ 81#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 82 83#define pte_clear(mm, addr, xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEEDSYNC)) 84 85#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEEDSYNC)) 86#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 87 88#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 89#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEEDSYNC; } while (0) 90 91#define pmd_needsync(x) (pmd_val(x) & _PAGE_NEEDSYNC) 92#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEEDSYNC) 93 94#define pud_needsync(x) (pud_val(x) & _PAGE_NEEDSYNC) 95#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEEDSYNC) 96 97#define p4d_needsync(x) (p4d_val(x) & _PAGE_NEEDSYNC) 98#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEEDSYNC) 99 100#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) 101#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 102 103#define pte_page(x) pfn_to_page(pte_pfn(x)) 104 105#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 106 107/* 108 * ================================= 109 * Flags checking section. 110 * ================================= 111 */ 112 113static inline int pte_none(pte_t pte) 114{ 115 return pte_is_zero(pte); 116} 117 118/* 119 * The following only work if pte_present() is true. 120 * Undefined behaviour if not.. 121 */ 122static inline int pte_read(pte_t pte) 123{ 124 return((pte_get_bits(pte, _PAGE_USER)) && 125 !(pte_get_bits(pte, _PAGE_PROTNONE))); 126} 127 128static inline int pte_exec(pte_t pte){ 129 return((pte_get_bits(pte, _PAGE_USER)) && 130 !(pte_get_bits(pte, _PAGE_PROTNONE))); 131} 132 133static inline int pte_write(pte_t pte) 134{ 135 return((pte_get_bits(pte, _PAGE_RW)) && 136 !(pte_get_bits(pte, _PAGE_PROTNONE))); 137} 138 139static inline int pte_dirty(pte_t pte) 140{ 141 return pte_get_bits(pte, _PAGE_DIRTY); 142} 143 144static inline int pte_young(pte_t pte) 145{ 146 return pte_get_bits(pte, _PAGE_ACCESSED); 147} 148 149static inline int pte_needsync(pte_t pte) 150{ 151 return pte_get_bits(pte, _PAGE_NEEDSYNC); 152} 153 154/* 155 * ================================= 156 * Flags setting section. 157 * ================================= 158 */ 159 160static inline pte_t pte_mkclean(pte_t pte) 161{ 162 pte_clear_bits(pte, _PAGE_DIRTY); 163 return(pte); 164} 165 166static inline pte_t pte_mkold(pte_t pte) 167{ 168 pte_clear_bits(pte, _PAGE_ACCESSED); 169 return(pte); 170} 171 172static inline pte_t pte_wrprotect(pte_t pte) 173{ 174 pte_clear_bits(pte, _PAGE_RW); 175 return pte; 176} 177 178static inline pte_t pte_mkread(pte_t pte) 179{ 180 pte_set_bits(pte, _PAGE_USER); 181 return pte; 182} 183 184static inline pte_t pte_mkdirty(pte_t pte) 185{ 186 pte_set_bits(pte, _PAGE_DIRTY); 187 return(pte); 188} 189 190static inline pte_t pte_mkyoung(pte_t pte) 191{ 192 pte_set_bits(pte, _PAGE_ACCESSED); 193 return(pte); 194} 195 196static inline pte_t pte_mkwrite_novma(pte_t pte) 197{ 198 pte_set_bits(pte, _PAGE_RW); 199 return pte; 200} 201 202static inline pte_t pte_mkuptodate(pte_t pte) 203{ 204 pte_clear_bits(pte, _PAGE_NEEDSYNC); 205 return pte; 206} 207 208static inline pte_t pte_mkneedsync(pte_t pte) 209{ 210 pte_set_bits(pte, _PAGE_NEEDSYNC); 211 return(pte); 212} 213 214static inline void set_pte(pte_t *pteptr, pte_t pteval) 215{ 216 pte_copy(*pteptr, pteval); 217 218 /* If it's a swap entry, it needs to be marked _PAGE_NEEDSYNC so 219 * update_pte_range knows to unmap it. 220 */ 221 222 *pteptr = pte_mkneedsync(*pteptr); 223} 224 225#define PFN_PTE_SHIFT PAGE_SHIFT 226 227static inline void um_tlb_mark_sync(struct mm_struct *mm, unsigned long start, 228 unsigned long end) 229{ 230 guard(spinlock_irqsave)(&mm->context.sync_tlb_lock); 231 232 if (!mm->context.sync_tlb_range_to) { 233 mm->context.sync_tlb_range_from = start; 234 mm->context.sync_tlb_range_to = end; 235 } else { 236 if (start < mm->context.sync_tlb_range_from) 237 mm->context.sync_tlb_range_from = start; 238 if (end > mm->context.sync_tlb_range_to) 239 mm->context.sync_tlb_range_to = end; 240 } 241} 242 243#define set_ptes set_ptes 244static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 245 pte_t *ptep, pte_t pte, int nr) 246{ 247 /* Basically the default implementation */ 248 size_t length = nr * PAGE_SIZE; 249 250 for (;;) { 251 set_pte(ptep, pte); 252 if (--nr == 0) 253 break; 254 ptep++; 255 pte = __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); 256 } 257 258 um_tlb_mark_sync(mm, addr, addr + length); 259} 260 261#define __HAVE_ARCH_PTE_SAME 262static inline int pte_same(pte_t pte_a, pte_t pte_b) 263{ 264 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEEDSYNC); 265} 266 267#define __virt_to_page(virt) phys_to_page(__pa(virt)) 268#define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 269 270static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 271{ 272 pte_t pte; 273 274 pte_set_val(pte, pfn_to_phys(pfn), pgprot); 275 276 return pte; 277} 278 279static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 280{ 281 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 282 return pte; 283} 284 285/* 286 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 287 * 288 * this macro returns the index of the entry in the pmd page which would 289 * control the given virtual address 290 */ 291#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 292 293struct mm_struct; 294extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 295 296#define update_mmu_cache(vma,address,ptep) do {} while (0) 297#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0) 298 299/* 300 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 301 * are !pte_none() && !pte_present(). 302 * 303 * Format of swap PTEs: 304 * 305 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 306 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 307 * <--------------- offset ----------------> E < type -> 0 0 0 1 0 308 * 309 * E is the exclusive marker that is not stored in swap entries. 310 * _PAGE_NEEDSYNC (bit 1) is always set to 1 in set_pte(). 311 */ 312#define __swp_type(x) (((x).val >> 5) & 0x1f) 313#define __swp_offset(x) ((x).val >> 11) 314 315#define __swp_entry(type, offset) \ 316 ((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) }) 317#define __pte_to_swp_entry(pte) \ 318 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 319#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 320 321static inline bool pte_swp_exclusive(pte_t pte) 322{ 323 return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE); 324} 325 326static inline pte_t pte_swp_mkexclusive(pte_t pte) 327{ 328 pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE); 329 return pte; 330} 331 332static inline pte_t pte_swp_clear_exclusive(pte_t pte) 333{ 334 pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE); 335 return pte; 336} 337 338#endif