Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9#include <linux/cache.h>
10#include <linux/export.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/kexec.h>
16#include <linux/libfdt.h>
17#include <linux/mman.h>
18#include <linux/nodemask.h>
19#include <linux/memblock.h>
20#include <linux/memremap.h>
21#include <linux/memory.h>
22#include <linux/fs.h>
23#include <linux/io.h>
24#include <linux/mm.h>
25#include <linux/vmalloc.h>
26#include <linux/set_memory.h>
27#include <linux/kfence.h>
28#include <linux/pkeys.h>
29#include <linux/mm_inline.h>
30#include <linux/pagewalk.h>
31#include <linux/stop_machine.h>
32
33#include <asm/barrier.h>
34#include <asm/cputype.h>
35#include <asm/fixmap.h>
36#include <asm/kasan.h>
37#include <asm/kernel-pgtable.h>
38#include <asm/sections.h>
39#include <asm/setup.h>
40#include <linux/sizes.h>
41#include <asm/tlb.h>
42#include <asm/mmu_context.h>
43#include <asm/ptdump.h>
44#include <asm/tlbflush.h>
45#include <asm/pgalloc.h>
46#include <asm/kfence.h>
47
48#define NO_BLOCK_MAPPINGS BIT(0)
49#define NO_CONT_MAPPINGS BIT(1)
50#define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
51
52DEFINE_STATIC_KEY_FALSE(arm64_ptdump_lock_key);
53
54u64 kimage_voffset __ro_after_init;
55EXPORT_SYMBOL(kimage_voffset);
56
57u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
58
59static bool rodata_is_rw __ro_after_init = true;
60
61/*
62 * The booting CPU updates the failed status @__early_cpu_boot_status,
63 * with MMU turned off.
64 */
65long __section(".mmuoff.data.write") __early_cpu_boot_status;
66
67/*
68 * Empty_zero_page is a special page that is used for zero-initialized data
69 * and COW.
70 */
71unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
72EXPORT_SYMBOL(empty_zero_page);
73
74static DEFINE_SPINLOCK(swapper_pgdir_lock);
75static DEFINE_MUTEX(fixmap_lock);
76
77void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
78{
79 pgd_t *fixmap_pgdp;
80
81 /*
82 * Don't bother with the fixmap if swapper_pg_dir is still mapped
83 * writable in the kernel mapping.
84 */
85 if (rodata_is_rw) {
86 WRITE_ONCE(*pgdp, pgd);
87 dsb(ishst);
88 isb();
89 return;
90 }
91
92 spin_lock(&swapper_pgdir_lock);
93 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
94 WRITE_ONCE(*fixmap_pgdp, pgd);
95 /*
96 * We need dsb(ishst) here to ensure the page-table-walker sees
97 * our new entry before set_p?d() returns. The fixmap's
98 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
99 */
100 pgd_clear_fixmap();
101 spin_unlock(&swapper_pgdir_lock);
102}
103
104pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
105 unsigned long size, pgprot_t vma_prot)
106{
107 if (!pfn_is_map_memory(pfn))
108 return pgprot_noncached(vma_prot);
109 else if (file->f_flags & O_SYNC)
110 return pgprot_writecombine(vma_prot);
111 return vma_prot;
112}
113EXPORT_SYMBOL(phys_mem_access_prot);
114
115static phys_addr_t __init early_pgtable_alloc(enum pgtable_type pgtable_type)
116{
117 phys_addr_t phys;
118
119 phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
120 MEMBLOCK_ALLOC_NOLEAKTRACE);
121 if (!phys)
122 panic("Failed to allocate page table page\n");
123
124 return phys;
125}
126
127bool pgattr_change_is_safe(pteval_t old, pteval_t new)
128{
129 /*
130 * The following mapping attributes may be updated in live
131 * kernel mappings without the need for break-before-make.
132 */
133 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG |
134 PTE_SWBITS_MASK;
135
136 /* creating or taking down mappings is always safe */
137 if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
138 return true;
139
140 /* A live entry's pfn should not change */
141 if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
142 return false;
143
144 /* live contiguous mappings may not be manipulated at all */
145 if ((old | new) & PTE_CONT)
146 return false;
147
148 /* Transitioning from Non-Global to Global is unsafe */
149 if (old & ~new & PTE_NG)
150 return false;
151
152 /*
153 * Changing the memory type between Normal and Normal-Tagged is safe
154 * since Tagged is considered a permission attribute from the
155 * mismatched attribute aliases perspective.
156 */
157 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
158 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
159 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
160 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
161 mask |= PTE_ATTRINDX_MASK;
162
163 return ((old ^ new) & ~mask) == 0;
164}
165
166static void init_clear_pgtable(void *table)
167{
168 clear_page(table);
169
170 /* Ensure the zeroing is observed by page table walks. */
171 dsb(ishst);
172}
173
174static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end,
175 phys_addr_t phys, pgprot_t prot)
176{
177 do {
178 pte_t old_pte = __ptep_get(ptep);
179
180 /*
181 * Required barriers to make this visible to the table walker
182 * are deferred to the end of alloc_init_cont_pte().
183 */
184 __set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot));
185
186 /*
187 * After the PTE entry has been populated once, we
188 * only allow updates to the permission attributes.
189 */
190 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
191 pte_val(__ptep_get(ptep))));
192
193 phys += PAGE_SIZE;
194 } while (ptep++, addr += PAGE_SIZE, addr != end);
195}
196
197static int alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
198 unsigned long end, phys_addr_t phys,
199 pgprot_t prot,
200 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
201 int flags)
202{
203 unsigned long next;
204 pmd_t pmd = READ_ONCE(*pmdp);
205 pte_t *ptep;
206
207 BUG_ON(pmd_sect(pmd));
208 if (pmd_none(pmd)) {
209 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
210 phys_addr_t pte_phys;
211
212 if (flags & NO_EXEC_MAPPINGS)
213 pmdval |= PMD_TABLE_PXN;
214 BUG_ON(!pgtable_alloc);
215 pte_phys = pgtable_alloc(TABLE_PTE);
216 if (pte_phys == INVALID_PHYS_ADDR)
217 return -ENOMEM;
218 ptep = pte_set_fixmap(pte_phys);
219 init_clear_pgtable(ptep);
220 ptep += pte_index(addr);
221 __pmd_populate(pmdp, pte_phys, pmdval);
222 } else {
223 BUG_ON(pmd_bad(pmd));
224 ptep = pte_set_fixmap_offset(pmdp, addr);
225 }
226
227 do {
228 pgprot_t __prot = prot;
229
230 next = pte_cont_addr_end(addr, end);
231
232 /* use a contiguous mapping if the range is suitably aligned */
233 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
234 (flags & NO_CONT_MAPPINGS) == 0)
235 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
236
237 init_pte(ptep, addr, next, phys, __prot);
238
239 ptep += pte_index(next) - pte_index(addr);
240 phys += next - addr;
241 } while (addr = next, addr != end);
242
243 /*
244 * Note: barriers and maintenance necessary to clear the fixmap slot
245 * ensure that all previous pgtable writes are visible to the table
246 * walker.
247 */
248 pte_clear_fixmap();
249
250 return 0;
251}
252
253static int init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end,
254 phys_addr_t phys, pgprot_t prot,
255 phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags)
256{
257 unsigned long next;
258
259 do {
260 pmd_t old_pmd = READ_ONCE(*pmdp);
261
262 next = pmd_addr_end(addr, end);
263
264 /* try section mapping first */
265 if (((addr | next | phys) & ~PMD_MASK) == 0 &&
266 (flags & NO_BLOCK_MAPPINGS) == 0) {
267 pmd_set_huge(pmdp, phys, prot);
268
269 /*
270 * After the PMD entry has been populated once, we
271 * only allow updates to the permission attributes.
272 */
273 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
274 READ_ONCE(pmd_val(*pmdp))));
275 } else {
276 int ret;
277
278 ret = alloc_init_cont_pte(pmdp, addr, next, phys, prot,
279 pgtable_alloc, flags);
280 if (ret)
281 return ret;
282
283 BUG_ON(pmd_val(old_pmd) != 0 &&
284 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
285 }
286 phys += next - addr;
287 } while (pmdp++, addr = next, addr != end);
288
289 return 0;
290}
291
292static int alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
293 unsigned long end, phys_addr_t phys,
294 pgprot_t prot,
295 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
296 int flags)
297{
298 int ret;
299 unsigned long next;
300 pud_t pud = READ_ONCE(*pudp);
301 pmd_t *pmdp;
302
303 /*
304 * Check for initial section mappings in the pgd/pud.
305 */
306 BUG_ON(pud_sect(pud));
307 if (pud_none(pud)) {
308 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
309 phys_addr_t pmd_phys;
310
311 if (flags & NO_EXEC_MAPPINGS)
312 pudval |= PUD_TABLE_PXN;
313 BUG_ON(!pgtable_alloc);
314 pmd_phys = pgtable_alloc(TABLE_PMD);
315 if (pmd_phys == INVALID_PHYS_ADDR)
316 return -ENOMEM;
317 pmdp = pmd_set_fixmap(pmd_phys);
318 init_clear_pgtable(pmdp);
319 pmdp += pmd_index(addr);
320 __pud_populate(pudp, pmd_phys, pudval);
321 } else {
322 BUG_ON(pud_bad(pud));
323 pmdp = pmd_set_fixmap_offset(pudp, addr);
324 }
325
326 do {
327 pgprot_t __prot = prot;
328
329 next = pmd_cont_addr_end(addr, end);
330
331 /* use a contiguous mapping if the range is suitably aligned */
332 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
333 (flags & NO_CONT_MAPPINGS) == 0)
334 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
335
336 ret = init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags);
337 if (ret)
338 goto out;
339
340 pmdp += pmd_index(next) - pmd_index(addr);
341 phys += next - addr;
342 } while (addr = next, addr != end);
343
344out:
345 pmd_clear_fixmap();
346
347 return ret;
348}
349
350static int alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
351 phys_addr_t phys, pgprot_t prot,
352 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
353 int flags)
354{
355 int ret = 0;
356 unsigned long next;
357 p4d_t p4d = READ_ONCE(*p4dp);
358 pud_t *pudp;
359
360 if (p4d_none(p4d)) {
361 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN | P4D_TABLE_AF;
362 phys_addr_t pud_phys;
363
364 if (flags & NO_EXEC_MAPPINGS)
365 p4dval |= P4D_TABLE_PXN;
366 BUG_ON(!pgtable_alloc);
367 pud_phys = pgtable_alloc(TABLE_PUD);
368 if (pud_phys == INVALID_PHYS_ADDR)
369 return -ENOMEM;
370 pudp = pud_set_fixmap(pud_phys);
371 init_clear_pgtable(pudp);
372 pudp += pud_index(addr);
373 __p4d_populate(p4dp, pud_phys, p4dval);
374 } else {
375 BUG_ON(p4d_bad(p4d));
376 pudp = pud_set_fixmap_offset(p4dp, addr);
377 }
378
379 do {
380 pud_t old_pud = READ_ONCE(*pudp);
381
382 next = pud_addr_end(addr, end);
383
384 /*
385 * For 4K granule only, attempt to put down a 1GB block
386 */
387 if (pud_sect_supported() &&
388 ((addr | next | phys) & ~PUD_MASK) == 0 &&
389 (flags & NO_BLOCK_MAPPINGS) == 0) {
390 pud_set_huge(pudp, phys, prot);
391
392 /*
393 * After the PUD entry has been populated once, we
394 * only allow updates to the permission attributes.
395 */
396 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
397 READ_ONCE(pud_val(*pudp))));
398 } else {
399 ret = alloc_init_cont_pmd(pudp, addr, next, phys, prot,
400 pgtable_alloc, flags);
401 if (ret)
402 goto out;
403
404 BUG_ON(pud_val(old_pud) != 0 &&
405 pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
406 }
407 phys += next - addr;
408 } while (pudp++, addr = next, addr != end);
409
410out:
411 pud_clear_fixmap();
412
413 return ret;
414}
415
416static int alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
417 phys_addr_t phys, pgprot_t prot,
418 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
419 int flags)
420{
421 int ret;
422 unsigned long next;
423 pgd_t pgd = READ_ONCE(*pgdp);
424 p4d_t *p4dp;
425
426 if (pgd_none(pgd)) {
427 pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN | PGD_TABLE_AF;
428 phys_addr_t p4d_phys;
429
430 if (flags & NO_EXEC_MAPPINGS)
431 pgdval |= PGD_TABLE_PXN;
432 BUG_ON(!pgtable_alloc);
433 p4d_phys = pgtable_alloc(TABLE_P4D);
434 if (p4d_phys == INVALID_PHYS_ADDR)
435 return -ENOMEM;
436 p4dp = p4d_set_fixmap(p4d_phys);
437 init_clear_pgtable(p4dp);
438 p4dp += p4d_index(addr);
439 __pgd_populate(pgdp, p4d_phys, pgdval);
440 } else {
441 BUG_ON(pgd_bad(pgd));
442 p4dp = p4d_set_fixmap_offset(pgdp, addr);
443 }
444
445 do {
446 p4d_t old_p4d = READ_ONCE(*p4dp);
447
448 next = p4d_addr_end(addr, end);
449
450 ret = alloc_init_pud(p4dp, addr, next, phys, prot,
451 pgtable_alloc, flags);
452 if (ret)
453 goto out;
454
455 BUG_ON(p4d_val(old_p4d) != 0 &&
456 p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
457
458 phys += next - addr;
459 } while (p4dp++, addr = next, addr != end);
460
461out:
462 p4d_clear_fixmap();
463
464 return ret;
465}
466
467static int __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
468 unsigned long virt, phys_addr_t size,
469 pgprot_t prot,
470 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
471 int flags)
472{
473 int ret;
474 unsigned long addr, end, next;
475 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
476
477 /*
478 * If the virtual and physical address don't have the same offset
479 * within a page, we cannot map the region as the caller expects.
480 */
481 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
482 return -EINVAL;
483
484 phys &= PAGE_MASK;
485 addr = virt & PAGE_MASK;
486 end = PAGE_ALIGN(virt + size);
487
488 do {
489 next = pgd_addr_end(addr, end);
490 ret = alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
491 flags);
492 if (ret)
493 return ret;
494 phys += next - addr;
495 } while (pgdp++, addr = next, addr != end);
496
497 return 0;
498}
499
500static int __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
501 unsigned long virt, phys_addr_t size,
502 pgprot_t prot,
503 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
504 int flags)
505{
506 int ret;
507
508 mutex_lock(&fixmap_lock);
509 ret = __create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
510 pgtable_alloc, flags);
511 mutex_unlock(&fixmap_lock);
512
513 return ret;
514}
515
516static void early_create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
517 unsigned long virt, phys_addr_t size,
518 pgprot_t prot,
519 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
520 int flags)
521{
522 int ret;
523
524 ret = __create_pgd_mapping(pgdir, phys, virt, size, prot, pgtable_alloc,
525 flags);
526 if (ret)
527 panic("Failed to create page tables\n");
528}
529
530static phys_addr_t __pgd_pgtable_alloc(struct mm_struct *mm, gfp_t gfp,
531 enum pgtable_type pgtable_type)
532{
533 /* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */
534 struct ptdesc *ptdesc = pagetable_alloc(gfp & ~__GFP_ZERO, 0);
535 phys_addr_t pa;
536
537 if (!ptdesc)
538 return INVALID_PHYS_ADDR;
539
540 pa = page_to_phys(ptdesc_page(ptdesc));
541
542 switch (pgtable_type) {
543 case TABLE_PTE:
544 BUG_ON(!pagetable_pte_ctor(mm, ptdesc));
545 break;
546 case TABLE_PMD:
547 BUG_ON(!pagetable_pmd_ctor(mm, ptdesc));
548 break;
549 case TABLE_PUD:
550 pagetable_pud_ctor(ptdesc);
551 break;
552 case TABLE_P4D:
553 pagetable_p4d_ctor(ptdesc);
554 break;
555 }
556
557 return pa;
558}
559
560static phys_addr_t
561pgd_pgtable_alloc_init_mm_gfp(enum pgtable_type pgtable_type, gfp_t gfp)
562{
563 return __pgd_pgtable_alloc(&init_mm, gfp, pgtable_type);
564}
565
566static phys_addr_t __maybe_unused
567pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)
568{
569 return pgd_pgtable_alloc_init_mm_gfp(pgtable_type, GFP_PGTABLE_KERNEL);
570}
571
572static phys_addr_t
573pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)
574{
575 return __pgd_pgtable_alloc(NULL, GFP_PGTABLE_KERNEL, pgtable_type);
576}
577
578static void split_contpte(pte_t *ptep)
579{
580 int i;
581
582 ptep = PTR_ALIGN_DOWN(ptep, sizeof(*ptep) * CONT_PTES);
583 for (i = 0; i < CONT_PTES; i++, ptep++)
584 __set_pte(ptep, pte_mknoncont(__ptep_get(ptep)));
585}
586
587static int split_pmd(pmd_t *pmdp, pmd_t pmd, gfp_t gfp, bool to_cont)
588{
589 pmdval_t tableprot = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
590 unsigned long pfn = pmd_pfn(pmd);
591 pgprot_t prot = pmd_pgprot(pmd);
592 phys_addr_t pte_phys;
593 pte_t *ptep;
594 int i;
595
596 pte_phys = pgd_pgtable_alloc_init_mm_gfp(TABLE_PTE, gfp);
597 if (pte_phys == INVALID_PHYS_ADDR)
598 return -ENOMEM;
599 ptep = (pte_t *)phys_to_virt(pte_phys);
600
601 if (pgprot_val(prot) & PMD_SECT_PXN)
602 tableprot |= PMD_TABLE_PXN;
603
604 prot = __pgprot((pgprot_val(prot) & ~PTE_TYPE_MASK) | PTE_TYPE_PAGE);
605 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
606 if (to_cont)
607 prot = __pgprot(pgprot_val(prot) | PTE_CONT);
608
609 for (i = 0; i < PTRS_PER_PTE; i++, ptep++, pfn++)
610 __set_pte(ptep, pfn_pte(pfn, prot));
611
612 /*
613 * Ensure the pte entries are visible to the table walker by the time
614 * the pmd entry that points to the ptes is visible.
615 */
616 dsb(ishst);
617 __pmd_populate(pmdp, pte_phys, tableprot);
618
619 return 0;
620}
621
622static void split_contpmd(pmd_t *pmdp)
623{
624 int i;
625
626 pmdp = PTR_ALIGN_DOWN(pmdp, sizeof(*pmdp) * CONT_PMDS);
627 for (i = 0; i < CONT_PMDS; i++, pmdp++)
628 set_pmd(pmdp, pmd_mknoncont(pmdp_get(pmdp)));
629}
630
631static int split_pud(pud_t *pudp, pud_t pud, gfp_t gfp, bool to_cont)
632{
633 pudval_t tableprot = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
634 unsigned int step = PMD_SIZE >> PAGE_SHIFT;
635 unsigned long pfn = pud_pfn(pud);
636 pgprot_t prot = pud_pgprot(pud);
637 phys_addr_t pmd_phys;
638 pmd_t *pmdp;
639 int i;
640
641 pmd_phys = pgd_pgtable_alloc_init_mm_gfp(TABLE_PMD, gfp);
642 if (pmd_phys == INVALID_PHYS_ADDR)
643 return -ENOMEM;
644 pmdp = (pmd_t *)phys_to_virt(pmd_phys);
645
646 if (pgprot_val(prot) & PMD_SECT_PXN)
647 tableprot |= PUD_TABLE_PXN;
648
649 prot = __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
650 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
651 if (to_cont)
652 prot = __pgprot(pgprot_val(prot) | PTE_CONT);
653
654 for (i = 0; i < PTRS_PER_PMD; i++, pmdp++, pfn += step)
655 set_pmd(pmdp, pfn_pmd(pfn, prot));
656
657 /*
658 * Ensure the pmd entries are visible to the table walker by the time
659 * the pud entry that points to the pmds is visible.
660 */
661 dsb(ishst);
662 __pud_populate(pudp, pmd_phys, tableprot);
663
664 return 0;
665}
666
667static int split_kernel_leaf_mapping_locked(unsigned long addr)
668{
669 pgd_t *pgdp, pgd;
670 p4d_t *p4dp, p4d;
671 pud_t *pudp, pud;
672 pmd_t *pmdp, pmd;
673 pte_t *ptep, pte;
674 int ret = 0;
675
676 /*
677 * PGD: If addr is PGD aligned then addr already describes a leaf
678 * boundary. If not present then there is nothing to split.
679 */
680 if (ALIGN_DOWN(addr, PGDIR_SIZE) == addr)
681 goto out;
682 pgdp = pgd_offset_k(addr);
683 pgd = pgdp_get(pgdp);
684 if (!pgd_present(pgd))
685 goto out;
686
687 /*
688 * P4D: If addr is P4D aligned then addr already describes a leaf
689 * boundary. If not present then there is nothing to split.
690 */
691 if (ALIGN_DOWN(addr, P4D_SIZE) == addr)
692 goto out;
693 p4dp = p4d_offset(pgdp, addr);
694 p4d = p4dp_get(p4dp);
695 if (!p4d_present(p4d))
696 goto out;
697
698 /*
699 * PUD: If addr is PUD aligned then addr already describes a leaf
700 * boundary. If not present then there is nothing to split. Otherwise,
701 * if we have a pud leaf, split to contpmd.
702 */
703 if (ALIGN_DOWN(addr, PUD_SIZE) == addr)
704 goto out;
705 pudp = pud_offset(p4dp, addr);
706 pud = pudp_get(pudp);
707 if (!pud_present(pud))
708 goto out;
709 if (pud_leaf(pud)) {
710 ret = split_pud(pudp, pud, GFP_PGTABLE_KERNEL, true);
711 if (ret)
712 goto out;
713 }
714
715 /*
716 * CONTPMD: If addr is CONTPMD aligned then addr already describes a
717 * leaf boundary. If not present then there is nothing to split.
718 * Otherwise, if we have a contpmd leaf, split to pmd.
719 */
720 if (ALIGN_DOWN(addr, CONT_PMD_SIZE) == addr)
721 goto out;
722 pmdp = pmd_offset(pudp, addr);
723 pmd = pmdp_get(pmdp);
724 if (!pmd_present(pmd))
725 goto out;
726 if (pmd_leaf(pmd)) {
727 if (pmd_cont(pmd))
728 split_contpmd(pmdp);
729 /*
730 * PMD: If addr is PMD aligned then addr already describes a
731 * leaf boundary. Otherwise, split to contpte.
732 */
733 if (ALIGN_DOWN(addr, PMD_SIZE) == addr)
734 goto out;
735 ret = split_pmd(pmdp, pmd, GFP_PGTABLE_KERNEL, true);
736 if (ret)
737 goto out;
738 }
739
740 /*
741 * CONTPTE: If addr is CONTPTE aligned then addr already describes a
742 * leaf boundary. If not present then there is nothing to split.
743 * Otherwise, if we have a contpte leaf, split to pte.
744 */
745 if (ALIGN_DOWN(addr, CONT_PTE_SIZE) == addr)
746 goto out;
747 ptep = pte_offset_kernel(pmdp, addr);
748 pte = __ptep_get(ptep);
749 if (!pte_present(pte))
750 goto out;
751 if (pte_cont(pte))
752 split_contpte(ptep);
753
754out:
755 return ret;
756}
757
758static inline bool force_pte_mapping(void)
759{
760 const bool bbml2 = system_capabilities_finalized() ?
761 system_supports_bbml2_noabort() : cpu_supports_bbml2_noabort();
762
763 if (debug_pagealloc_enabled())
764 return true;
765 if (bbml2)
766 return false;
767 return rodata_full || arm64_kfence_can_set_direct_map() || is_realm_world();
768}
769
770static DEFINE_MUTEX(pgtable_split_lock);
771
772int split_kernel_leaf_mapping(unsigned long start, unsigned long end)
773{
774 int ret;
775
776 /*
777 * !BBML2_NOABORT systems should not be trying to change permissions on
778 * anything that is not pte-mapped in the first place. Just return early
779 * and let the permission change code raise a warning if not already
780 * pte-mapped.
781 */
782 if (!system_supports_bbml2_noabort())
783 return 0;
784
785 /*
786 * If the region is within a pte-mapped area, there is no need to try to
787 * split. Additionally, CONFIG_DEBUG_PAGEALLOC and CONFIG_KFENCE may
788 * change permissions from atomic context so for those cases (which are
789 * always pte-mapped), we must not go any further because taking the
790 * mutex below may sleep.
791 */
792 if (force_pte_mapping() || is_kfence_address((void *)start))
793 return 0;
794
795 /*
796 * Ensure start and end are at least page-aligned since this is the
797 * finest granularity we can split to.
798 */
799 if (start != PAGE_ALIGN(start) || end != PAGE_ALIGN(end))
800 return -EINVAL;
801
802 mutex_lock(&pgtable_split_lock);
803 arch_enter_lazy_mmu_mode();
804
805 /*
806 * The split_kernel_leaf_mapping_locked() may sleep, it is not a
807 * problem for ARM64 since ARM64's lazy MMU implementation allows
808 * sleeping.
809 *
810 * Optimize for the common case of splitting out a single page from a
811 * larger mapping. Here we can just split on the "least aligned" of
812 * start and end and this will guarantee that there must also be a split
813 * on the more aligned address since the both addresses must be in the
814 * same contpte block and it must have been split to ptes.
815 */
816 if (end - start == PAGE_SIZE) {
817 start = __ffs(start) < __ffs(end) ? start : end;
818 ret = split_kernel_leaf_mapping_locked(start);
819 } else {
820 ret = split_kernel_leaf_mapping_locked(start);
821 if (!ret)
822 ret = split_kernel_leaf_mapping_locked(end);
823 }
824
825 arch_leave_lazy_mmu_mode();
826 mutex_unlock(&pgtable_split_lock);
827 return ret;
828}
829
830static int split_to_ptes_pud_entry(pud_t *pudp, unsigned long addr,
831 unsigned long next, struct mm_walk *walk)
832{
833 gfp_t gfp = *(gfp_t *)walk->private;
834 pud_t pud = pudp_get(pudp);
835 int ret = 0;
836
837 if (pud_leaf(pud))
838 ret = split_pud(pudp, pud, gfp, false);
839
840 return ret;
841}
842
843static int split_to_ptes_pmd_entry(pmd_t *pmdp, unsigned long addr,
844 unsigned long next, struct mm_walk *walk)
845{
846 gfp_t gfp = *(gfp_t *)walk->private;
847 pmd_t pmd = pmdp_get(pmdp);
848 int ret = 0;
849
850 if (pmd_leaf(pmd)) {
851 if (pmd_cont(pmd))
852 split_contpmd(pmdp);
853 ret = split_pmd(pmdp, pmd, gfp, false);
854
855 /*
856 * We have split the pmd directly to ptes so there is no need to
857 * visit each pte to check if they are contpte.
858 */
859 walk->action = ACTION_CONTINUE;
860 }
861
862 return ret;
863}
864
865static int split_to_ptes_pte_entry(pte_t *ptep, unsigned long addr,
866 unsigned long next, struct mm_walk *walk)
867{
868 pte_t pte = __ptep_get(ptep);
869
870 if (pte_cont(pte))
871 split_contpte(ptep);
872
873 return 0;
874}
875
876static const struct mm_walk_ops split_to_ptes_ops = {
877 .pud_entry = split_to_ptes_pud_entry,
878 .pmd_entry = split_to_ptes_pmd_entry,
879 .pte_entry = split_to_ptes_pte_entry,
880};
881
882static int range_split_to_ptes(unsigned long start, unsigned long end, gfp_t gfp)
883{
884 int ret;
885
886 arch_enter_lazy_mmu_mode();
887 ret = walk_kernel_page_table_range_lockless(start, end,
888 &split_to_ptes_ops, NULL, &gfp);
889 arch_leave_lazy_mmu_mode();
890
891 return ret;
892}
893
894static bool linear_map_requires_bbml2 __initdata;
895
896u32 idmap_kpti_bbml2_flag;
897
898static void __init init_idmap_kpti_bbml2_flag(void)
899{
900 WRITE_ONCE(idmap_kpti_bbml2_flag, 1);
901 /* Must be visible to other CPUs before stop_machine() is called. */
902 smp_mb();
903}
904
905static int __init linear_map_split_to_ptes(void *__unused)
906{
907 /*
908 * Repainting the linear map must be done by CPU0 (the boot CPU) because
909 * that's the only CPU that we know supports BBML2. The other CPUs will
910 * be held in a waiting area with the idmap active.
911 */
912 if (!smp_processor_id()) {
913 unsigned long lstart = _PAGE_OFFSET(vabits_actual);
914 unsigned long lend = PAGE_END;
915 unsigned long kstart = (unsigned long)lm_alias(_stext);
916 unsigned long kend = (unsigned long)lm_alias(__init_begin);
917 int ret;
918
919 /*
920 * Wait for all secondary CPUs to be put into the waiting area.
921 */
922 smp_cond_load_acquire(&idmap_kpti_bbml2_flag, VAL == num_online_cpus());
923
924 /*
925 * Walk all of the linear map [lstart, lend), except the kernel
926 * linear map alias [kstart, kend), and split all mappings to
927 * PTE. The kernel alias remains static throughout runtime so
928 * can continue to be safely mapped with large mappings.
929 */
930 ret = range_split_to_ptes(lstart, kstart, GFP_ATOMIC);
931 if (!ret)
932 ret = range_split_to_ptes(kend, lend, GFP_ATOMIC);
933 if (ret)
934 panic("Failed to split linear map\n");
935 flush_tlb_kernel_range(lstart, lend);
936
937 /*
938 * Relies on dsb in flush_tlb_kernel_range() to avoid reordering
939 * before any page table split operations.
940 */
941 WRITE_ONCE(idmap_kpti_bbml2_flag, 0);
942 } else {
943 typedef void (wait_split_fn)(void);
944 extern wait_split_fn wait_linear_map_split_to_ptes;
945 wait_split_fn *wait_fn;
946
947 wait_fn = (void *)__pa_symbol(wait_linear_map_split_to_ptes);
948
949 /*
950 * At least one secondary CPU doesn't support BBML2 so cannot
951 * tolerate the size of the live mappings changing. So have the
952 * secondary CPUs wait for the boot CPU to make the changes
953 * with the idmap active and init_mm inactive.
954 */
955 cpu_install_idmap();
956 wait_fn();
957 cpu_uninstall_idmap();
958 }
959
960 return 0;
961}
962
963void __init linear_map_maybe_split_to_ptes(void)
964{
965 if (linear_map_requires_bbml2 && !system_supports_bbml2_noabort()) {
966 init_idmap_kpti_bbml2_flag();
967 stop_machine(linear_map_split_to_ptes, NULL, cpu_online_mask);
968 }
969}
970
971/*
972 * This function can only be used to modify existing table entries,
973 * without allocating new levels of table. Note that this permits the
974 * creation of new section or page entries.
975 */
976void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
977 phys_addr_t size, pgprot_t prot)
978{
979 if (virt < PAGE_OFFSET) {
980 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
981 &phys, virt);
982 return;
983 }
984 early_create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
985 NO_CONT_MAPPINGS);
986}
987
988void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
989 unsigned long virt, phys_addr_t size,
990 pgprot_t prot, bool page_mappings_only)
991{
992 int flags = 0;
993
994 BUG_ON(mm == &init_mm);
995
996 if (page_mappings_only)
997 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
998
999 early_create_pgd_mapping(mm->pgd, phys, virt, size, prot,
1000 pgd_pgtable_alloc_special_mm, flags);
1001}
1002
1003static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
1004 phys_addr_t size, pgprot_t prot)
1005{
1006 if (virt < PAGE_OFFSET) {
1007 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
1008 &phys, virt);
1009 return;
1010 }
1011
1012 early_create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
1013 NO_CONT_MAPPINGS);
1014
1015 /* flush the TLBs after updating live kernel mappings */
1016 flush_tlb_kernel_range(virt, virt + size);
1017}
1018
1019static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
1020 phys_addr_t end, pgprot_t prot, int flags)
1021{
1022 early_create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
1023 prot, early_pgtable_alloc, flags);
1024}
1025
1026void __init mark_linear_text_alias_ro(void)
1027{
1028 /*
1029 * Remove the write permissions from the linear alias of .text/.rodata
1030 */
1031 update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text),
1032 (unsigned long)__init_begin - (unsigned long)_text,
1033 PAGE_KERNEL_RO);
1034}
1035
1036#ifdef CONFIG_KFENCE
1037
1038bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
1039
1040/* early_param() will be parsed before map_mem() below. */
1041static int __init parse_kfence_early_init(char *arg)
1042{
1043 int val;
1044
1045 if (get_option(&arg, &val))
1046 kfence_early_init = !!val;
1047 return 0;
1048}
1049early_param("kfence.sample_interval", parse_kfence_early_init);
1050
1051static phys_addr_t __init arm64_kfence_alloc_pool(void)
1052{
1053 phys_addr_t kfence_pool;
1054
1055 if (!kfence_early_init)
1056 return 0;
1057
1058 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1059 if (!kfence_pool) {
1060 pr_err("failed to allocate kfence pool\n");
1061 kfence_early_init = false;
1062 return 0;
1063 }
1064
1065 /* Temporarily mark as NOMAP. */
1066 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1067
1068 return kfence_pool;
1069}
1070
1071static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
1072{
1073 if (!kfence_pool)
1074 return;
1075
1076 /* KFENCE pool needs page-level mapping. */
1077 __map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
1078 pgprot_tagged(PAGE_KERNEL),
1079 NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
1080 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1081 __kfence_pool = phys_to_virt(kfence_pool);
1082}
1083
1084bool arch_kfence_init_pool(void)
1085{
1086 unsigned long start = (unsigned long)__kfence_pool;
1087 unsigned long end = start + KFENCE_POOL_SIZE;
1088 int ret;
1089
1090 /* Exit early if we know the linear map is already pte-mapped. */
1091 if (force_pte_mapping())
1092 return true;
1093
1094 /* Kfence pool is already pte-mapped for the early init case. */
1095 if (kfence_early_init)
1096 return true;
1097
1098 mutex_lock(&pgtable_split_lock);
1099 ret = range_split_to_ptes(start, end, GFP_PGTABLE_KERNEL);
1100 mutex_unlock(&pgtable_split_lock);
1101
1102 /*
1103 * Since the system supports bbml2_noabort, tlb invalidation is not
1104 * required here; the pgtable mappings have been split to pte but larger
1105 * entries may safely linger in the TLB.
1106 */
1107
1108 return !ret;
1109}
1110#else /* CONFIG_KFENCE */
1111
1112static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
1113static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
1114
1115#endif /* CONFIG_KFENCE */
1116
1117static void __init map_mem(pgd_t *pgdp)
1118{
1119 static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
1120 phys_addr_t kernel_start = __pa_symbol(_text);
1121 phys_addr_t kernel_end = __pa_symbol(__init_begin);
1122 phys_addr_t start, end;
1123 phys_addr_t early_kfence_pool;
1124 int flags = NO_EXEC_MAPPINGS;
1125 u64 i;
1126
1127 /*
1128 * Setting hierarchical PXNTable attributes on table entries covering
1129 * the linear region is only possible if it is guaranteed that no table
1130 * entries at any level are being shared between the linear region and
1131 * the vmalloc region. Check whether this is true for the PGD level, in
1132 * which case it is guaranteed to be true for all other levels as well.
1133 * (Unless we are running with support for LPA2, in which case the
1134 * entire reduced VA space is covered by a single pgd_t which will have
1135 * been populated without the PXNTable attribute by the time we get here.)
1136 */
1137 BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
1138 pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
1139
1140 early_kfence_pool = arm64_kfence_alloc_pool();
1141
1142 linear_map_requires_bbml2 = !force_pte_mapping() && can_set_direct_map();
1143
1144 if (force_pte_mapping())
1145 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1146
1147 /*
1148 * Take care not to create a writable alias for the
1149 * read-only text and rodata sections of the kernel image.
1150 * So temporarily mark them as NOMAP to skip mappings in
1151 * the following for-loop
1152 */
1153 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
1154
1155 /* map all the memory banks */
1156 for_each_mem_range(i, &start, &end) {
1157 if (start >= end)
1158 break;
1159 /*
1160 * The linear map must allow allocation tags reading/writing
1161 * if MTE is present. Otherwise, it has the same attributes as
1162 * PAGE_KERNEL.
1163 */
1164 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
1165 flags);
1166 }
1167
1168 /*
1169 * Map the linear alias of the [_text, __init_begin) interval
1170 * as non-executable now, and remove the write permission in
1171 * mark_linear_text_alias_ro() below (which will be called after
1172 * alternative patching has completed). This makes the contents
1173 * of the region accessible to subsystems such as hibernate,
1174 * but protects it from inadvertent modification or execution.
1175 * Note that contiguous mappings cannot be remapped in this way,
1176 * so we should avoid them here.
1177 */
1178 __map_memblock(pgdp, kernel_start, kernel_end,
1179 PAGE_KERNEL, NO_CONT_MAPPINGS);
1180 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
1181 arm64_kfence_map_pool(early_kfence_pool, pgdp);
1182}
1183
1184void mark_rodata_ro(void)
1185{
1186 unsigned long section_size;
1187
1188 /*
1189 * mark .rodata as read only. Use __init_begin rather than __end_rodata
1190 * to cover NOTES and EXCEPTION_TABLE.
1191 */
1192 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
1193 WRITE_ONCE(rodata_is_rw, false);
1194 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
1195 section_size, PAGE_KERNEL_RO);
1196 /* mark the range between _text and _stext as read only. */
1197 update_mapping_prot(__pa_symbol(_text), (unsigned long)_text,
1198 (unsigned long)_stext - (unsigned long)_text,
1199 PAGE_KERNEL_RO);
1200}
1201
1202static void __init declare_vma(struct vm_struct *vma,
1203 void *va_start, void *va_end,
1204 unsigned long vm_flags)
1205{
1206 phys_addr_t pa_start = __pa_symbol(va_start);
1207 unsigned long size = va_end - va_start;
1208
1209 BUG_ON(!PAGE_ALIGNED(pa_start));
1210 BUG_ON(!PAGE_ALIGNED(size));
1211
1212 if (!(vm_flags & VM_NO_GUARD))
1213 size += PAGE_SIZE;
1214
1215 vma->addr = va_start;
1216 vma->phys_addr = pa_start;
1217 vma->size = size;
1218 vma->flags = VM_MAP | vm_flags;
1219 vma->caller = __builtin_return_address(0);
1220
1221 vm_area_add_early(vma);
1222}
1223
1224#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1225#define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1226
1227static phys_addr_t kpti_ng_temp_alloc __initdata;
1228
1229static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type)
1230{
1231 kpti_ng_temp_alloc -= PAGE_SIZE;
1232 return kpti_ng_temp_alloc;
1233}
1234
1235static int __init __kpti_install_ng_mappings(void *__unused)
1236{
1237 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1238 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1239 kpti_remap_fn *remap_fn;
1240
1241 int cpu = smp_processor_id();
1242 int levels = CONFIG_PGTABLE_LEVELS;
1243 int order = order_base_2(levels);
1244 u64 kpti_ng_temp_pgd_pa = 0;
1245 pgd_t *kpti_ng_temp_pgd;
1246 u64 alloc = 0;
1247
1248 if (levels == 5 && !pgtable_l5_enabled())
1249 levels = 4;
1250 else if (levels == 4 && !pgtable_l4_enabled())
1251 levels = 3;
1252
1253 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1254
1255 if (!cpu) {
1256 int ret;
1257
1258 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1259 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1260 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1261
1262 //
1263 // Create a minimal page table hierarchy that permits us to map
1264 // the swapper page tables temporarily as we traverse them.
1265 //
1266 // The physical pages are laid out as follows:
1267 //
1268 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1269 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1270 // +--------+-\-------+-\------ +-\------ +-///--------+
1271 // ^
1272 // The first page is mapped into this hierarchy at a PMD_SHIFT
1273 // aligned virtual address, so that we can manipulate the PTE
1274 // level entries while the mapping is active. The first entry
1275 // covers the PTE[] page itself, the remaining entries are free
1276 // to be used as a ad-hoc fixmap.
1277 //
1278 ret = __create_pgd_mapping_locked(kpti_ng_temp_pgd, __pa(alloc),
1279 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1280 kpti_ng_pgd_alloc, 0);
1281 if (ret)
1282 panic("Failed to create page tables\n");
1283 }
1284
1285 cpu_install_idmap();
1286 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1287 cpu_uninstall_idmap();
1288
1289 if (!cpu) {
1290 free_pages(alloc, order);
1291 arm64_use_ng_mappings = true;
1292 }
1293
1294 return 0;
1295}
1296
1297void __init kpti_install_ng_mappings(void)
1298{
1299 /* Check whether KPTI is going to be used */
1300 if (!arm64_kernel_unmapped_at_el0())
1301 return;
1302
1303 /*
1304 * We don't need to rewrite the page-tables if either we've done
1305 * it already or we have KASLR enabled and therefore have not
1306 * created any global mappings at all.
1307 */
1308 if (arm64_use_ng_mappings)
1309 return;
1310
1311 init_idmap_kpti_bbml2_flag();
1312 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1313}
1314
1315static pgprot_t __init kernel_exec_prot(void)
1316{
1317 return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
1318}
1319
1320static int __init map_entry_trampoline(void)
1321{
1322 int i;
1323
1324 if (!arm64_kernel_unmapped_at_el0())
1325 return 0;
1326
1327 pgprot_t prot = kernel_exec_prot();
1328 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
1329
1330 /* The trampoline is always mapped and can therefore be global */
1331 pgprot_val(prot) &= ~PTE_NG;
1332
1333 /* Map only the text into the trampoline page table */
1334 memset(tramp_pg_dir, 0, PGD_SIZE);
1335 early_create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
1336 entry_tramp_text_size(), prot,
1337 pgd_pgtable_alloc_init_mm, NO_BLOCK_MAPPINGS);
1338
1339 /* Map both the text and data into the kernel page table */
1340 for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
1341 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1342 pa_start + i * PAGE_SIZE, prot);
1343
1344 if (IS_ENABLED(CONFIG_RELOCATABLE))
1345 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1346 pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
1347
1348 return 0;
1349}
1350core_initcall(map_entry_trampoline);
1351#endif
1352
1353/*
1354 * Declare the VMA areas for the kernel
1355 */
1356static void __init declare_kernel_vmas(void)
1357{
1358 static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
1359
1360 declare_vma(&vmlinux_seg[0], _text, _etext, VM_NO_GUARD);
1361 declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
1362 declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
1363 declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
1364 declare_vma(&vmlinux_seg[4], _data, _end, 0);
1365}
1366
1367void __pi_map_range(phys_addr_t *pte, u64 start, u64 end, phys_addr_t pa,
1368 pgprot_t prot, int level, pte_t *tbl, bool may_use_cont,
1369 u64 va_offset);
1370
1371static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
1372 kpti_bbml2_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
1373
1374static void __init create_idmap(void)
1375{
1376 phys_addr_t start = __pa_symbol(__idmap_text_start);
1377 phys_addr_t end = __pa_symbol(__idmap_text_end);
1378 phys_addr_t ptep = __pa_symbol(idmap_ptes);
1379
1380 __pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
1381 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1382 __phys_to_virt(ptep) - ptep);
1383
1384 if (linear_map_requires_bbml2 ||
1385 (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings)) {
1386 phys_addr_t pa = __pa_symbol(&idmap_kpti_bbml2_flag);
1387
1388 /*
1389 * The KPTI G-to-nG conversion code needs a read-write mapping
1390 * of its synchronization flag in the ID map. This is also used
1391 * when splitting the linear map to ptes if a secondary CPU
1392 * doesn't support bbml2.
1393 */
1394 ptep = __pa_symbol(kpti_bbml2_ptes);
1395 __pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
1396 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1397 __phys_to_virt(ptep) - ptep);
1398 }
1399}
1400
1401void __init paging_init(void)
1402{
1403 map_mem(swapper_pg_dir);
1404
1405 memblock_allow_resize();
1406
1407 create_idmap();
1408 declare_kernel_vmas();
1409}
1410
1411#ifdef CONFIG_MEMORY_HOTPLUG
1412static void free_hotplug_page_range(struct page *page, size_t size,
1413 struct vmem_altmap *altmap)
1414{
1415 if (altmap) {
1416 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1417 } else {
1418 WARN_ON(PageReserved(page));
1419 __free_pages(page, get_order(size));
1420 }
1421}
1422
1423static void free_hotplug_pgtable_page(struct page *page)
1424{
1425 free_hotplug_page_range(page, PAGE_SIZE, NULL);
1426}
1427
1428static bool pgtable_range_aligned(unsigned long start, unsigned long end,
1429 unsigned long floor, unsigned long ceiling,
1430 unsigned long mask)
1431{
1432 start &= mask;
1433 if (start < floor)
1434 return false;
1435
1436 if (ceiling) {
1437 ceiling &= mask;
1438 if (!ceiling)
1439 return false;
1440 }
1441
1442 if (end - 1 > ceiling - 1)
1443 return false;
1444 return true;
1445}
1446
1447static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
1448 unsigned long end, bool free_mapped,
1449 struct vmem_altmap *altmap)
1450{
1451 pte_t *ptep, pte;
1452
1453 do {
1454 ptep = pte_offset_kernel(pmdp, addr);
1455 pte = __ptep_get(ptep);
1456 if (pte_none(pte))
1457 continue;
1458
1459 WARN_ON(!pte_present(pte));
1460 __pte_clear(&init_mm, addr, ptep);
1461 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1462 if (free_mapped)
1463 free_hotplug_page_range(pte_page(pte),
1464 PAGE_SIZE, altmap);
1465 } while (addr += PAGE_SIZE, addr < end);
1466}
1467
1468static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
1469 unsigned long end, bool free_mapped,
1470 struct vmem_altmap *altmap)
1471{
1472 unsigned long next;
1473 pmd_t *pmdp, pmd;
1474
1475 do {
1476 next = pmd_addr_end(addr, end);
1477 pmdp = pmd_offset(pudp, addr);
1478 pmd = READ_ONCE(*pmdp);
1479 if (pmd_none(pmd))
1480 continue;
1481
1482 WARN_ON(!pmd_present(pmd));
1483 if (pmd_sect(pmd)) {
1484 pmd_clear(pmdp);
1485
1486 /*
1487 * One TLBI should be sufficient here as the PMD_SIZE
1488 * range is mapped with a single block entry.
1489 */
1490 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1491 if (free_mapped)
1492 free_hotplug_page_range(pmd_page(pmd),
1493 PMD_SIZE, altmap);
1494 continue;
1495 }
1496 WARN_ON(!pmd_table(pmd));
1497 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
1498 } while (addr = next, addr < end);
1499}
1500
1501static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
1502 unsigned long end, bool free_mapped,
1503 struct vmem_altmap *altmap)
1504{
1505 unsigned long next;
1506 pud_t *pudp, pud;
1507
1508 do {
1509 next = pud_addr_end(addr, end);
1510 pudp = pud_offset(p4dp, addr);
1511 pud = READ_ONCE(*pudp);
1512 if (pud_none(pud))
1513 continue;
1514
1515 WARN_ON(!pud_present(pud));
1516 if (pud_sect(pud)) {
1517 pud_clear(pudp);
1518
1519 /*
1520 * One TLBI should be sufficient here as the PUD_SIZE
1521 * range is mapped with a single block entry.
1522 */
1523 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1524 if (free_mapped)
1525 free_hotplug_page_range(pud_page(pud),
1526 PUD_SIZE, altmap);
1527 continue;
1528 }
1529 WARN_ON(!pud_table(pud));
1530 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
1531 } while (addr = next, addr < end);
1532}
1533
1534static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
1535 unsigned long end, bool free_mapped,
1536 struct vmem_altmap *altmap)
1537{
1538 unsigned long next;
1539 p4d_t *p4dp, p4d;
1540
1541 do {
1542 next = p4d_addr_end(addr, end);
1543 p4dp = p4d_offset(pgdp, addr);
1544 p4d = READ_ONCE(*p4dp);
1545 if (p4d_none(p4d))
1546 continue;
1547
1548 WARN_ON(!p4d_present(p4d));
1549 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
1550 } while (addr = next, addr < end);
1551}
1552
1553static void unmap_hotplug_range(unsigned long addr, unsigned long end,
1554 bool free_mapped, struct vmem_altmap *altmap)
1555{
1556 unsigned long next;
1557 pgd_t *pgdp, pgd;
1558
1559 /*
1560 * altmap can only be used as vmemmap mapping backing memory.
1561 * In case the backing memory itself is not being freed, then
1562 * altmap is irrelevant. Warn about this inconsistency when
1563 * encountered.
1564 */
1565 WARN_ON(!free_mapped && altmap);
1566
1567 do {
1568 next = pgd_addr_end(addr, end);
1569 pgdp = pgd_offset_k(addr);
1570 pgd = READ_ONCE(*pgdp);
1571 if (pgd_none(pgd))
1572 continue;
1573
1574 WARN_ON(!pgd_present(pgd));
1575 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1576 } while (addr = next, addr < end);
1577}
1578
1579static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1580 unsigned long end, unsigned long floor,
1581 unsigned long ceiling)
1582{
1583 pte_t *ptep, pte;
1584 unsigned long i, start = addr;
1585
1586 do {
1587 ptep = pte_offset_kernel(pmdp, addr);
1588 pte = __ptep_get(ptep);
1589
1590 /*
1591 * This is just a sanity check here which verifies that
1592 * pte clearing has been done by earlier unmap loops.
1593 */
1594 WARN_ON(!pte_none(pte));
1595 } while (addr += PAGE_SIZE, addr < end);
1596
1597 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1598 return;
1599
1600 /*
1601 * Check whether we can free the pte page if the rest of the
1602 * entries are empty. Overlap with other regions have been
1603 * handled by the floor/ceiling check.
1604 */
1605 ptep = pte_offset_kernel(pmdp, 0UL);
1606 for (i = 0; i < PTRS_PER_PTE; i++) {
1607 if (!pte_none(__ptep_get(&ptep[i])))
1608 return;
1609 }
1610
1611 pmd_clear(pmdp);
1612 __flush_tlb_kernel_pgtable(start);
1613 free_hotplug_pgtable_page(virt_to_page(ptep));
1614}
1615
1616static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1617 unsigned long end, unsigned long floor,
1618 unsigned long ceiling)
1619{
1620 pmd_t *pmdp, pmd;
1621 unsigned long i, next, start = addr;
1622
1623 do {
1624 next = pmd_addr_end(addr, end);
1625 pmdp = pmd_offset(pudp, addr);
1626 pmd = READ_ONCE(*pmdp);
1627 if (pmd_none(pmd))
1628 continue;
1629
1630 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1631 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1632 } while (addr = next, addr < end);
1633
1634 if (CONFIG_PGTABLE_LEVELS <= 2)
1635 return;
1636
1637 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1638 return;
1639
1640 /*
1641 * Check whether we can free the pmd page if the rest of the
1642 * entries are empty. Overlap with other regions have been
1643 * handled by the floor/ceiling check.
1644 */
1645 pmdp = pmd_offset(pudp, 0UL);
1646 for (i = 0; i < PTRS_PER_PMD; i++) {
1647 if (!pmd_none(READ_ONCE(pmdp[i])))
1648 return;
1649 }
1650
1651 pud_clear(pudp);
1652 __flush_tlb_kernel_pgtable(start);
1653 free_hotplug_pgtable_page(virt_to_page(pmdp));
1654}
1655
1656static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1657 unsigned long end, unsigned long floor,
1658 unsigned long ceiling)
1659{
1660 pud_t *pudp, pud;
1661 unsigned long i, next, start = addr;
1662
1663 do {
1664 next = pud_addr_end(addr, end);
1665 pudp = pud_offset(p4dp, addr);
1666 pud = READ_ONCE(*pudp);
1667 if (pud_none(pud))
1668 continue;
1669
1670 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1671 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1672 } while (addr = next, addr < end);
1673
1674 if (!pgtable_l4_enabled())
1675 return;
1676
1677 if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1678 return;
1679
1680 /*
1681 * Check whether we can free the pud page if the rest of the
1682 * entries are empty. Overlap with other regions have been
1683 * handled by the floor/ceiling check.
1684 */
1685 pudp = pud_offset(p4dp, 0UL);
1686 for (i = 0; i < PTRS_PER_PUD; i++) {
1687 if (!pud_none(READ_ONCE(pudp[i])))
1688 return;
1689 }
1690
1691 p4d_clear(p4dp);
1692 __flush_tlb_kernel_pgtable(start);
1693 free_hotplug_pgtable_page(virt_to_page(pudp));
1694}
1695
1696static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1697 unsigned long end, unsigned long floor,
1698 unsigned long ceiling)
1699{
1700 p4d_t *p4dp, p4d;
1701 unsigned long i, next, start = addr;
1702
1703 do {
1704 next = p4d_addr_end(addr, end);
1705 p4dp = p4d_offset(pgdp, addr);
1706 p4d = READ_ONCE(*p4dp);
1707 if (p4d_none(p4d))
1708 continue;
1709
1710 WARN_ON(!p4d_present(p4d));
1711 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1712 } while (addr = next, addr < end);
1713
1714 if (!pgtable_l5_enabled())
1715 return;
1716
1717 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1718 return;
1719
1720 /*
1721 * Check whether we can free the p4d page if the rest of the
1722 * entries are empty. Overlap with other regions have been
1723 * handled by the floor/ceiling check.
1724 */
1725 p4dp = p4d_offset(pgdp, 0UL);
1726 for (i = 0; i < PTRS_PER_P4D; i++) {
1727 if (!p4d_none(READ_ONCE(p4dp[i])))
1728 return;
1729 }
1730
1731 pgd_clear(pgdp);
1732 __flush_tlb_kernel_pgtable(start);
1733 free_hotplug_pgtable_page(virt_to_page(p4dp));
1734}
1735
1736static void free_empty_tables(unsigned long addr, unsigned long end,
1737 unsigned long floor, unsigned long ceiling)
1738{
1739 unsigned long next;
1740 pgd_t *pgdp, pgd;
1741
1742 do {
1743 next = pgd_addr_end(addr, end);
1744 pgdp = pgd_offset_k(addr);
1745 pgd = READ_ONCE(*pgdp);
1746 if (pgd_none(pgd))
1747 continue;
1748
1749 WARN_ON(!pgd_present(pgd));
1750 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1751 } while (addr = next, addr < end);
1752}
1753#endif
1754
1755void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1756 unsigned long addr, unsigned long next)
1757{
1758 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1759}
1760
1761int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1762 unsigned long addr, unsigned long next)
1763{
1764 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1765
1766 return pmd_sect(READ_ONCE(*pmdp));
1767}
1768
1769int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1770 struct vmem_altmap *altmap)
1771{
1772 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1773 /* [start, end] should be within one section */
1774 WARN_ON_ONCE(end - start > PAGES_PER_SECTION * sizeof(struct page));
1775
1776 if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES) ||
1777 (end - start < PAGES_PER_SECTION * sizeof(struct page)))
1778 return vmemmap_populate_basepages(start, end, node, altmap);
1779 else
1780 return vmemmap_populate_hugepages(start, end, node, altmap);
1781}
1782
1783#ifdef CONFIG_MEMORY_HOTPLUG
1784void vmemmap_free(unsigned long start, unsigned long end,
1785 struct vmem_altmap *altmap)
1786{
1787 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1788
1789 unmap_hotplug_range(start, end, true, altmap);
1790 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1791}
1792#endif /* CONFIG_MEMORY_HOTPLUG */
1793
1794int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1795{
1796 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1797
1798 /* Only allow permission changes for now */
1799 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1800 pud_val(new_pud)))
1801 return 0;
1802
1803 VM_BUG_ON(phys & ~PUD_MASK);
1804 set_pud(pudp, new_pud);
1805 return 1;
1806}
1807
1808int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1809{
1810 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1811
1812 /* Only allow permission changes for now */
1813 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1814 pmd_val(new_pmd)))
1815 return 0;
1816
1817 VM_BUG_ON(phys & ~PMD_MASK);
1818 set_pmd(pmdp, new_pmd);
1819 return 1;
1820}
1821
1822#ifndef __PAGETABLE_P4D_FOLDED
1823void p4d_clear_huge(p4d_t *p4dp)
1824{
1825}
1826#endif
1827
1828int pud_clear_huge(pud_t *pudp)
1829{
1830 if (!pud_sect(READ_ONCE(*pudp)))
1831 return 0;
1832 pud_clear(pudp);
1833 return 1;
1834}
1835
1836int pmd_clear_huge(pmd_t *pmdp)
1837{
1838 if (!pmd_sect(READ_ONCE(*pmdp)))
1839 return 0;
1840 pmd_clear(pmdp);
1841 return 1;
1842}
1843
1844static int __pmd_free_pte_page(pmd_t *pmdp, unsigned long addr,
1845 bool acquire_mmap_lock)
1846{
1847 pte_t *table;
1848 pmd_t pmd;
1849
1850 pmd = READ_ONCE(*pmdp);
1851
1852 if (!pmd_table(pmd)) {
1853 VM_WARN_ON(1);
1854 return 1;
1855 }
1856
1857 /* See comment in pud_free_pmd_page for static key logic */
1858 table = pte_offset_kernel(pmdp, addr);
1859 pmd_clear(pmdp);
1860 __flush_tlb_kernel_pgtable(addr);
1861 if (static_branch_unlikely(&arm64_ptdump_lock_key) && acquire_mmap_lock) {
1862 mmap_read_lock(&init_mm);
1863 mmap_read_unlock(&init_mm);
1864 }
1865
1866 pte_free_kernel(NULL, table);
1867 return 1;
1868}
1869
1870int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1871{
1872 /* If ptdump is walking the pagetables, acquire init_mm.mmap_lock */
1873 return __pmd_free_pte_page(pmdp, addr, /* acquire_mmap_lock = */ true);
1874}
1875
1876int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1877{
1878 pmd_t *table;
1879 pmd_t *pmdp;
1880 pud_t pud;
1881 unsigned long next, end;
1882
1883 pud = READ_ONCE(*pudp);
1884
1885 if (!pud_table(pud)) {
1886 VM_WARN_ON(1);
1887 return 1;
1888 }
1889
1890 table = pmd_offset(pudp, addr);
1891
1892 /*
1893 * Our objective is to prevent ptdump from reading a PMD table which has
1894 * been freed. In this race, if pud_free_pmd_page observes the key on
1895 * (which got flipped by ptdump) then the mmap lock sequence here will,
1896 * as a result of the mmap write lock/unlock sequence in ptdump, give
1897 * us the correct synchronization. If not, this means that ptdump has
1898 * yet not started walking the pagetables - the sequence of barriers
1899 * issued by __flush_tlb_kernel_pgtable() guarantees that ptdump will
1900 * observe an empty PUD.
1901 */
1902 pud_clear(pudp);
1903 __flush_tlb_kernel_pgtable(addr);
1904 if (static_branch_unlikely(&arm64_ptdump_lock_key)) {
1905 mmap_read_lock(&init_mm);
1906 mmap_read_unlock(&init_mm);
1907 }
1908
1909 pmdp = table;
1910 next = addr;
1911 end = addr + PUD_SIZE;
1912 do {
1913 if (pmd_present(pmdp_get(pmdp)))
1914 /*
1915 * PMD has been isolated, so ptdump won't see it. No
1916 * need to acquire init_mm.mmap_lock.
1917 */
1918 __pmd_free_pte_page(pmdp, next, /* acquire_mmap_lock = */ false);
1919 } while (pmdp++, next += PMD_SIZE, next != end);
1920
1921 pmd_free(NULL, table);
1922 return 1;
1923}
1924
1925#ifdef CONFIG_MEMORY_HOTPLUG
1926static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1927{
1928 unsigned long end = start + size;
1929
1930 WARN_ON(pgdir != init_mm.pgd);
1931 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1932
1933 unmap_hotplug_range(start, end, false, NULL);
1934 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1935}
1936
1937struct range arch_get_mappable_range(void)
1938{
1939 struct range mhp_range;
1940 phys_addr_t start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1941 phys_addr_t end_linear_pa = __pa(PAGE_END - 1);
1942
1943 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1944 /*
1945 * Check for a wrap, it is possible because of randomized linear
1946 * mapping the start physical address is actually bigger than
1947 * the end physical address. In this case set start to zero
1948 * because [0, end_linear_pa] range must still be able to cover
1949 * all addressable physical addresses.
1950 */
1951 if (start_linear_pa > end_linear_pa)
1952 start_linear_pa = 0;
1953 }
1954
1955 WARN_ON(start_linear_pa > end_linear_pa);
1956
1957 /*
1958 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1959 * accommodating both its ends but excluding PAGE_END. Max physical
1960 * range which can be mapped inside this linear mapping range, must
1961 * also be derived from its end points.
1962 */
1963 mhp_range.start = start_linear_pa;
1964 mhp_range.end = end_linear_pa;
1965
1966 return mhp_range;
1967}
1968
1969int arch_add_memory(int nid, u64 start, u64 size,
1970 struct mhp_params *params)
1971{
1972 int ret, flags = NO_EXEC_MAPPINGS;
1973
1974 VM_BUG_ON(!mhp_range_allowed(start, size, true));
1975
1976 if (force_pte_mapping())
1977 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1978
1979 ret = __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1980 size, params->pgprot, pgd_pgtable_alloc_init_mm,
1981 flags);
1982 if (ret)
1983 goto err;
1984
1985 memblock_clear_nomap(start, size);
1986
1987 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1988 params);
1989 if (ret)
1990 goto err;
1991
1992 /* Address of hotplugged memory can be smaller */
1993 max_pfn = max(max_pfn, PFN_UP(start + size));
1994 max_low_pfn = max_pfn;
1995
1996 return 0;
1997
1998err:
1999 __remove_pgd_mapping(swapper_pg_dir,
2000 __phys_to_virt(start), size);
2001 return ret;
2002}
2003
2004void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
2005{
2006 unsigned long start_pfn = start >> PAGE_SHIFT;
2007 unsigned long nr_pages = size >> PAGE_SHIFT;
2008
2009 __remove_pages(start_pfn, nr_pages, altmap);
2010 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
2011}
2012
2013/*
2014 * This memory hotplug notifier helps prevent boot memory from being
2015 * inadvertently removed as it blocks pfn range offlining process in
2016 * __offline_pages(). Hence this prevents both offlining as well as
2017 * removal process for boot memory which is initially always online.
2018 * In future if and when boot memory could be removed, this notifier
2019 * should be dropped and free_hotplug_page_range() should handle any
2020 * reserved pages allocated during boot.
2021 */
2022static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
2023 unsigned long action, void *data)
2024{
2025 struct mem_section *ms;
2026 struct memory_notify *arg = data;
2027 unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
2028 unsigned long pfn = arg->start_pfn;
2029
2030 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
2031 return NOTIFY_OK;
2032
2033 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2034 unsigned long start = PFN_PHYS(pfn);
2035 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
2036
2037 ms = __pfn_to_section(pfn);
2038 if (!early_section(ms))
2039 continue;
2040
2041 if (action == MEM_GOING_OFFLINE) {
2042 /*
2043 * Boot memory removal is not supported. Prevent
2044 * it via blocking any attempted offline request
2045 * for the boot memory and just report it.
2046 */
2047 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
2048 return NOTIFY_BAD;
2049 } else if (action == MEM_OFFLINE) {
2050 /*
2051 * This should have never happened. Boot memory
2052 * offlining should have been prevented by this
2053 * very notifier. Probably some memory removal
2054 * procedure might have changed which would then
2055 * require further debug.
2056 */
2057 pr_err("Boot memory [%lx %lx] offlined\n", start, end);
2058
2059 /*
2060 * Core memory hotplug does not process a return
2061 * code from the notifier for MEM_OFFLINE events.
2062 * The error condition has been reported. Return
2063 * from here as if ignored.
2064 */
2065 return NOTIFY_DONE;
2066 }
2067 }
2068 return NOTIFY_OK;
2069}
2070
2071static struct notifier_block prevent_bootmem_remove_nb = {
2072 .notifier_call = prevent_bootmem_remove_notifier,
2073};
2074
2075/*
2076 * This ensures that boot memory sections on the platform are online
2077 * from early boot. Memory sections could not be prevented from being
2078 * offlined, unless for some reason they are not online to begin with.
2079 * This helps validate the basic assumption on which the above memory
2080 * event notifier works to prevent boot memory section offlining and
2081 * its possible removal.
2082 */
2083static void validate_bootmem_online(void)
2084{
2085 phys_addr_t start, end, addr;
2086 struct mem_section *ms;
2087 u64 i;
2088
2089 /*
2090 * Scanning across all memblock might be expensive
2091 * on some big memory systems. Hence enable this
2092 * validation only with DEBUG_VM.
2093 */
2094 if (!IS_ENABLED(CONFIG_DEBUG_VM))
2095 return;
2096
2097 for_each_mem_range(i, &start, &end) {
2098 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
2099 ms = __pfn_to_section(PHYS_PFN(addr));
2100
2101 /*
2102 * All memory ranges in the system at this point
2103 * should have been marked as early sections.
2104 */
2105 WARN_ON(!early_section(ms));
2106
2107 /*
2108 * Memory notifier mechanism here to prevent boot
2109 * memory offlining depends on the fact that each
2110 * early section memory on the system is initially
2111 * online. Otherwise a given memory section which
2112 * is already offline will be overlooked and can
2113 * be removed completely. Call out such sections.
2114 */
2115 if (!online_section(ms))
2116 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
2117 addr, addr + (1UL << PA_SECTION_SHIFT));
2118 }
2119 }
2120}
2121
2122static int __init prevent_bootmem_remove_init(void)
2123{
2124 int ret = 0;
2125
2126 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
2127 return ret;
2128
2129 validate_bootmem_online();
2130 ret = register_memory_notifier(&prevent_bootmem_remove_nb);
2131 if (ret)
2132 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
2133
2134 return ret;
2135}
2136early_initcall(prevent_bootmem_remove_init);
2137#endif
2138
2139pte_t modify_prot_start_ptes(struct vm_area_struct *vma, unsigned long addr,
2140 pte_t *ptep, unsigned int nr)
2141{
2142 pte_t pte = get_and_clear_ptes(vma->vm_mm, addr, ptep, nr);
2143
2144 if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
2145 /*
2146 * Break-before-make (BBM) is required for all user space mappings
2147 * when the permission changes from executable to non-executable
2148 * in cases where cpu is affected with errata #2645198.
2149 */
2150 if (pte_accessible(vma->vm_mm, pte) && pte_user_exec(pte))
2151 __flush_tlb_range(vma, addr, nr * PAGE_SIZE,
2152 PAGE_SIZE, true, 3);
2153 }
2154
2155 return pte;
2156}
2157
2158pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
2159{
2160 return modify_prot_start_ptes(vma, addr, ptep, 1);
2161}
2162
2163void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
2164 pte_t *ptep, pte_t old_pte, pte_t pte,
2165 unsigned int nr)
2166{
2167 set_ptes(vma->vm_mm, addr, ptep, pte, nr);
2168}
2169
2170void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
2171 pte_t old_pte, pte_t pte)
2172{
2173 modify_prot_commit_ptes(vma, addr, ptep, old_pte, pte, 1);
2174}
2175
2176/*
2177 * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
2178 * avoiding the possibility of conflicting TLB entries being allocated.
2179 */
2180void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
2181{
2182 typedef void (ttbr_replace_func)(phys_addr_t);
2183 extern ttbr_replace_func idmap_cpu_replace_ttbr1;
2184 ttbr_replace_func *replace_phys;
2185 unsigned long daif;
2186
2187 /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
2188 phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
2189
2190 if (cnp)
2191 ttbr1 |= TTBR_CNP_BIT;
2192
2193 replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
2194
2195 cpu_install_idmap();
2196
2197 /*
2198 * We really don't want to take *any* exceptions while TTBR1 is
2199 * in the process of being replaced so mask everything.
2200 */
2201 daif = local_daif_save();
2202 replace_phys(ttbr1);
2203 local_daif_restore(daif);
2204
2205 cpu_uninstall_idmap();
2206}
2207
2208#ifdef CONFIG_ARCH_HAS_PKEYS
2209int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val)
2210{
2211 u64 new_por;
2212 u64 old_por;
2213
2214 if (!system_supports_poe())
2215 return -ENOSPC;
2216
2217 /*
2218 * This code should only be called with valid 'pkey'
2219 * values originating from in-kernel users. Complain
2220 * if a bad value is observed.
2221 */
2222 if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
2223 return -EINVAL;
2224
2225 /* Set the bits we need in POR: */
2226 new_por = POE_RWX;
2227 if (init_val & PKEY_DISABLE_WRITE)
2228 new_por &= ~POE_W;
2229 if (init_val & PKEY_DISABLE_ACCESS)
2230 new_por &= ~POE_RW;
2231 if (init_val & PKEY_DISABLE_READ)
2232 new_por &= ~POE_R;
2233 if (init_val & PKEY_DISABLE_EXECUTE)
2234 new_por &= ~POE_X;
2235
2236 /* Shift the bits in to the correct place in POR for pkey: */
2237 new_por = POR_ELx_PERM_PREP(pkey, new_por);
2238
2239 /* Get old POR and mask off any old bits in place: */
2240 old_por = read_sysreg_s(SYS_POR_EL0);
2241 old_por &= ~(POE_MASK << POR_ELx_PERM_SHIFT(pkey));
2242
2243 /* Write old part along with new part: */
2244 write_sysreg_s(old_por | new_por, SYS_POR_EL0);
2245
2246 return 0;
2247}
2248#endif