at master 60 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Based on arch/arm/mm/mmu.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9#include <linux/cache.h> 10#include <linux/export.h> 11#include <linux/kernel.h> 12#include <linux/errno.h> 13#include <linux/init.h> 14#include <linux/ioport.h> 15#include <linux/kexec.h> 16#include <linux/libfdt.h> 17#include <linux/mman.h> 18#include <linux/nodemask.h> 19#include <linux/memblock.h> 20#include <linux/memremap.h> 21#include <linux/memory.h> 22#include <linux/fs.h> 23#include <linux/io.h> 24#include <linux/mm.h> 25#include <linux/vmalloc.h> 26#include <linux/set_memory.h> 27#include <linux/kfence.h> 28#include <linux/pkeys.h> 29#include <linux/mm_inline.h> 30#include <linux/pagewalk.h> 31#include <linux/stop_machine.h> 32 33#include <asm/barrier.h> 34#include <asm/cputype.h> 35#include <asm/fixmap.h> 36#include <asm/kasan.h> 37#include <asm/kernel-pgtable.h> 38#include <asm/sections.h> 39#include <asm/setup.h> 40#include <linux/sizes.h> 41#include <asm/tlb.h> 42#include <asm/mmu_context.h> 43#include <asm/ptdump.h> 44#include <asm/tlbflush.h> 45#include <asm/pgalloc.h> 46#include <asm/kfence.h> 47 48#define NO_BLOCK_MAPPINGS BIT(0) 49#define NO_CONT_MAPPINGS BIT(1) 50#define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */ 51 52DEFINE_STATIC_KEY_FALSE(arm64_ptdump_lock_key); 53 54u64 kimage_voffset __ro_after_init; 55EXPORT_SYMBOL(kimage_voffset); 56 57u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 }; 58 59static bool rodata_is_rw __ro_after_init = true; 60 61/* 62 * The booting CPU updates the failed status @__early_cpu_boot_status, 63 * with MMU turned off. 64 */ 65long __section(".mmuoff.data.write") __early_cpu_boot_status; 66 67/* 68 * Empty_zero_page is a special page that is used for zero-initialized data 69 * and COW. 70 */ 71unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss; 72EXPORT_SYMBOL(empty_zero_page); 73 74static DEFINE_SPINLOCK(swapper_pgdir_lock); 75static DEFINE_MUTEX(fixmap_lock); 76 77void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd) 78{ 79 pgd_t *fixmap_pgdp; 80 81 /* 82 * Don't bother with the fixmap if swapper_pg_dir is still mapped 83 * writable in the kernel mapping. 84 */ 85 if (rodata_is_rw) { 86 WRITE_ONCE(*pgdp, pgd); 87 dsb(ishst); 88 isb(); 89 return; 90 } 91 92 spin_lock(&swapper_pgdir_lock); 93 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp)); 94 WRITE_ONCE(*fixmap_pgdp, pgd); 95 /* 96 * We need dsb(ishst) here to ensure the page-table-walker sees 97 * our new entry before set_p?d() returns. The fixmap's 98 * flush_tlb_kernel_range() via clear_fixmap() does this for us. 99 */ 100 pgd_clear_fixmap(); 101 spin_unlock(&swapper_pgdir_lock); 102} 103 104pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 105 unsigned long size, pgprot_t vma_prot) 106{ 107 if (!pfn_is_map_memory(pfn)) 108 return pgprot_noncached(vma_prot); 109 else if (file->f_flags & O_SYNC) 110 return pgprot_writecombine(vma_prot); 111 return vma_prot; 112} 113EXPORT_SYMBOL(phys_mem_access_prot); 114 115static phys_addr_t __init early_pgtable_alloc(enum pgtable_type pgtable_type) 116{ 117 phys_addr_t phys; 118 119 phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 120 MEMBLOCK_ALLOC_NOLEAKTRACE); 121 if (!phys) 122 panic("Failed to allocate page table page\n"); 123 124 return phys; 125} 126 127bool pgattr_change_is_safe(pteval_t old, pteval_t new) 128{ 129 /* 130 * The following mapping attributes may be updated in live 131 * kernel mappings without the need for break-before-make. 132 */ 133 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG | 134 PTE_SWBITS_MASK; 135 136 /* creating or taking down mappings is always safe */ 137 if (!pte_valid(__pte(old)) || !pte_valid(__pte(new))) 138 return true; 139 140 /* A live entry's pfn should not change */ 141 if (pte_pfn(__pte(old)) != pte_pfn(__pte(new))) 142 return false; 143 144 /* live contiguous mappings may not be manipulated at all */ 145 if ((old | new) & PTE_CONT) 146 return false; 147 148 /* Transitioning from Non-Global to Global is unsafe */ 149 if (old & ~new & PTE_NG) 150 return false; 151 152 /* 153 * Changing the memory type between Normal and Normal-Tagged is safe 154 * since Tagged is considered a permission attribute from the 155 * mismatched attribute aliases perspective. 156 */ 157 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) || 158 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) && 159 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) || 160 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED))) 161 mask |= PTE_ATTRINDX_MASK; 162 163 return ((old ^ new) & ~mask) == 0; 164} 165 166static void init_clear_pgtable(void *table) 167{ 168 clear_page(table); 169 170 /* Ensure the zeroing is observed by page table walks. */ 171 dsb(ishst); 172} 173 174static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end, 175 phys_addr_t phys, pgprot_t prot) 176{ 177 do { 178 pte_t old_pte = __ptep_get(ptep); 179 180 /* 181 * Required barriers to make this visible to the table walker 182 * are deferred to the end of alloc_init_cont_pte(). 183 */ 184 __set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot)); 185 186 /* 187 * After the PTE entry has been populated once, we 188 * only allow updates to the permission attributes. 189 */ 190 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte), 191 pte_val(__ptep_get(ptep)))); 192 193 phys += PAGE_SIZE; 194 } while (ptep++, addr += PAGE_SIZE, addr != end); 195} 196 197static int alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr, 198 unsigned long end, phys_addr_t phys, 199 pgprot_t prot, 200 phys_addr_t (*pgtable_alloc)(enum pgtable_type), 201 int flags) 202{ 203 unsigned long next; 204 pmd_t pmd = READ_ONCE(*pmdp); 205 pte_t *ptep; 206 207 BUG_ON(pmd_sect(pmd)); 208 if (pmd_none(pmd)) { 209 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF; 210 phys_addr_t pte_phys; 211 212 if (flags & NO_EXEC_MAPPINGS) 213 pmdval |= PMD_TABLE_PXN; 214 BUG_ON(!pgtable_alloc); 215 pte_phys = pgtable_alloc(TABLE_PTE); 216 if (pte_phys == INVALID_PHYS_ADDR) 217 return -ENOMEM; 218 ptep = pte_set_fixmap(pte_phys); 219 init_clear_pgtable(ptep); 220 ptep += pte_index(addr); 221 __pmd_populate(pmdp, pte_phys, pmdval); 222 } else { 223 BUG_ON(pmd_bad(pmd)); 224 ptep = pte_set_fixmap_offset(pmdp, addr); 225 } 226 227 do { 228 pgprot_t __prot = prot; 229 230 next = pte_cont_addr_end(addr, end); 231 232 /* use a contiguous mapping if the range is suitably aligned */ 233 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) && 234 (flags & NO_CONT_MAPPINGS) == 0) 235 __prot = __pgprot(pgprot_val(prot) | PTE_CONT); 236 237 init_pte(ptep, addr, next, phys, __prot); 238 239 ptep += pte_index(next) - pte_index(addr); 240 phys += next - addr; 241 } while (addr = next, addr != end); 242 243 /* 244 * Note: barriers and maintenance necessary to clear the fixmap slot 245 * ensure that all previous pgtable writes are visible to the table 246 * walker. 247 */ 248 pte_clear_fixmap(); 249 250 return 0; 251} 252 253static int init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end, 254 phys_addr_t phys, pgprot_t prot, 255 phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags) 256{ 257 unsigned long next; 258 259 do { 260 pmd_t old_pmd = READ_ONCE(*pmdp); 261 262 next = pmd_addr_end(addr, end); 263 264 /* try section mapping first */ 265 if (((addr | next | phys) & ~PMD_MASK) == 0 && 266 (flags & NO_BLOCK_MAPPINGS) == 0) { 267 pmd_set_huge(pmdp, phys, prot); 268 269 /* 270 * After the PMD entry has been populated once, we 271 * only allow updates to the permission attributes. 272 */ 273 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd), 274 READ_ONCE(pmd_val(*pmdp)))); 275 } else { 276 int ret; 277 278 ret = alloc_init_cont_pte(pmdp, addr, next, phys, prot, 279 pgtable_alloc, flags); 280 if (ret) 281 return ret; 282 283 BUG_ON(pmd_val(old_pmd) != 0 && 284 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp))); 285 } 286 phys += next - addr; 287 } while (pmdp++, addr = next, addr != end); 288 289 return 0; 290} 291 292static int alloc_init_cont_pmd(pud_t *pudp, unsigned long addr, 293 unsigned long end, phys_addr_t phys, 294 pgprot_t prot, 295 phys_addr_t (*pgtable_alloc)(enum pgtable_type), 296 int flags) 297{ 298 int ret; 299 unsigned long next; 300 pud_t pud = READ_ONCE(*pudp); 301 pmd_t *pmdp; 302 303 /* 304 * Check for initial section mappings in the pgd/pud. 305 */ 306 BUG_ON(pud_sect(pud)); 307 if (pud_none(pud)) { 308 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF; 309 phys_addr_t pmd_phys; 310 311 if (flags & NO_EXEC_MAPPINGS) 312 pudval |= PUD_TABLE_PXN; 313 BUG_ON(!pgtable_alloc); 314 pmd_phys = pgtable_alloc(TABLE_PMD); 315 if (pmd_phys == INVALID_PHYS_ADDR) 316 return -ENOMEM; 317 pmdp = pmd_set_fixmap(pmd_phys); 318 init_clear_pgtable(pmdp); 319 pmdp += pmd_index(addr); 320 __pud_populate(pudp, pmd_phys, pudval); 321 } else { 322 BUG_ON(pud_bad(pud)); 323 pmdp = pmd_set_fixmap_offset(pudp, addr); 324 } 325 326 do { 327 pgprot_t __prot = prot; 328 329 next = pmd_cont_addr_end(addr, end); 330 331 /* use a contiguous mapping if the range is suitably aligned */ 332 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) && 333 (flags & NO_CONT_MAPPINGS) == 0) 334 __prot = __pgprot(pgprot_val(prot) | PTE_CONT); 335 336 ret = init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags); 337 if (ret) 338 goto out; 339 340 pmdp += pmd_index(next) - pmd_index(addr); 341 phys += next - addr; 342 } while (addr = next, addr != end); 343 344out: 345 pmd_clear_fixmap(); 346 347 return ret; 348} 349 350static int alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end, 351 phys_addr_t phys, pgprot_t prot, 352 phys_addr_t (*pgtable_alloc)(enum pgtable_type), 353 int flags) 354{ 355 int ret = 0; 356 unsigned long next; 357 p4d_t p4d = READ_ONCE(*p4dp); 358 pud_t *pudp; 359 360 if (p4d_none(p4d)) { 361 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN | P4D_TABLE_AF; 362 phys_addr_t pud_phys; 363 364 if (flags & NO_EXEC_MAPPINGS) 365 p4dval |= P4D_TABLE_PXN; 366 BUG_ON(!pgtable_alloc); 367 pud_phys = pgtable_alloc(TABLE_PUD); 368 if (pud_phys == INVALID_PHYS_ADDR) 369 return -ENOMEM; 370 pudp = pud_set_fixmap(pud_phys); 371 init_clear_pgtable(pudp); 372 pudp += pud_index(addr); 373 __p4d_populate(p4dp, pud_phys, p4dval); 374 } else { 375 BUG_ON(p4d_bad(p4d)); 376 pudp = pud_set_fixmap_offset(p4dp, addr); 377 } 378 379 do { 380 pud_t old_pud = READ_ONCE(*pudp); 381 382 next = pud_addr_end(addr, end); 383 384 /* 385 * For 4K granule only, attempt to put down a 1GB block 386 */ 387 if (pud_sect_supported() && 388 ((addr | next | phys) & ~PUD_MASK) == 0 && 389 (flags & NO_BLOCK_MAPPINGS) == 0) { 390 pud_set_huge(pudp, phys, prot); 391 392 /* 393 * After the PUD entry has been populated once, we 394 * only allow updates to the permission attributes. 395 */ 396 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud), 397 READ_ONCE(pud_val(*pudp)))); 398 } else { 399 ret = alloc_init_cont_pmd(pudp, addr, next, phys, prot, 400 pgtable_alloc, flags); 401 if (ret) 402 goto out; 403 404 BUG_ON(pud_val(old_pud) != 0 && 405 pud_val(old_pud) != READ_ONCE(pud_val(*pudp))); 406 } 407 phys += next - addr; 408 } while (pudp++, addr = next, addr != end); 409 410out: 411 pud_clear_fixmap(); 412 413 return ret; 414} 415 416static int alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end, 417 phys_addr_t phys, pgprot_t prot, 418 phys_addr_t (*pgtable_alloc)(enum pgtable_type), 419 int flags) 420{ 421 int ret; 422 unsigned long next; 423 pgd_t pgd = READ_ONCE(*pgdp); 424 p4d_t *p4dp; 425 426 if (pgd_none(pgd)) { 427 pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN | PGD_TABLE_AF; 428 phys_addr_t p4d_phys; 429 430 if (flags & NO_EXEC_MAPPINGS) 431 pgdval |= PGD_TABLE_PXN; 432 BUG_ON(!pgtable_alloc); 433 p4d_phys = pgtable_alloc(TABLE_P4D); 434 if (p4d_phys == INVALID_PHYS_ADDR) 435 return -ENOMEM; 436 p4dp = p4d_set_fixmap(p4d_phys); 437 init_clear_pgtable(p4dp); 438 p4dp += p4d_index(addr); 439 __pgd_populate(pgdp, p4d_phys, pgdval); 440 } else { 441 BUG_ON(pgd_bad(pgd)); 442 p4dp = p4d_set_fixmap_offset(pgdp, addr); 443 } 444 445 do { 446 p4d_t old_p4d = READ_ONCE(*p4dp); 447 448 next = p4d_addr_end(addr, end); 449 450 ret = alloc_init_pud(p4dp, addr, next, phys, prot, 451 pgtable_alloc, flags); 452 if (ret) 453 goto out; 454 455 BUG_ON(p4d_val(old_p4d) != 0 && 456 p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp))); 457 458 phys += next - addr; 459 } while (p4dp++, addr = next, addr != end); 460 461out: 462 p4d_clear_fixmap(); 463 464 return ret; 465} 466 467static int __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys, 468 unsigned long virt, phys_addr_t size, 469 pgprot_t prot, 470 phys_addr_t (*pgtable_alloc)(enum pgtable_type), 471 int flags) 472{ 473 int ret; 474 unsigned long addr, end, next; 475 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt); 476 477 /* 478 * If the virtual and physical address don't have the same offset 479 * within a page, we cannot map the region as the caller expects. 480 */ 481 if (WARN_ON((phys ^ virt) & ~PAGE_MASK)) 482 return -EINVAL; 483 484 phys &= PAGE_MASK; 485 addr = virt & PAGE_MASK; 486 end = PAGE_ALIGN(virt + size); 487 488 do { 489 next = pgd_addr_end(addr, end); 490 ret = alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc, 491 flags); 492 if (ret) 493 return ret; 494 phys += next - addr; 495 } while (pgdp++, addr = next, addr != end); 496 497 return 0; 498} 499 500static int __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys, 501 unsigned long virt, phys_addr_t size, 502 pgprot_t prot, 503 phys_addr_t (*pgtable_alloc)(enum pgtable_type), 504 int flags) 505{ 506 int ret; 507 508 mutex_lock(&fixmap_lock); 509 ret = __create_pgd_mapping_locked(pgdir, phys, virt, size, prot, 510 pgtable_alloc, flags); 511 mutex_unlock(&fixmap_lock); 512 513 return ret; 514} 515 516static void early_create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys, 517 unsigned long virt, phys_addr_t size, 518 pgprot_t prot, 519 phys_addr_t (*pgtable_alloc)(enum pgtable_type), 520 int flags) 521{ 522 int ret; 523 524 ret = __create_pgd_mapping(pgdir, phys, virt, size, prot, pgtable_alloc, 525 flags); 526 if (ret) 527 panic("Failed to create page tables\n"); 528} 529 530static phys_addr_t __pgd_pgtable_alloc(struct mm_struct *mm, gfp_t gfp, 531 enum pgtable_type pgtable_type) 532{ 533 /* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */ 534 struct ptdesc *ptdesc = pagetable_alloc(gfp & ~__GFP_ZERO, 0); 535 phys_addr_t pa; 536 537 if (!ptdesc) 538 return INVALID_PHYS_ADDR; 539 540 pa = page_to_phys(ptdesc_page(ptdesc)); 541 542 switch (pgtable_type) { 543 case TABLE_PTE: 544 BUG_ON(!pagetable_pte_ctor(mm, ptdesc)); 545 break; 546 case TABLE_PMD: 547 BUG_ON(!pagetable_pmd_ctor(mm, ptdesc)); 548 break; 549 case TABLE_PUD: 550 pagetable_pud_ctor(ptdesc); 551 break; 552 case TABLE_P4D: 553 pagetable_p4d_ctor(ptdesc); 554 break; 555 } 556 557 return pa; 558} 559 560static phys_addr_t 561pgd_pgtable_alloc_init_mm_gfp(enum pgtable_type pgtable_type, gfp_t gfp) 562{ 563 return __pgd_pgtable_alloc(&init_mm, gfp, pgtable_type); 564} 565 566static phys_addr_t __maybe_unused 567pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type) 568{ 569 return pgd_pgtable_alloc_init_mm_gfp(pgtable_type, GFP_PGTABLE_KERNEL); 570} 571 572static phys_addr_t 573pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type) 574{ 575 return __pgd_pgtable_alloc(NULL, GFP_PGTABLE_KERNEL, pgtable_type); 576} 577 578static void split_contpte(pte_t *ptep) 579{ 580 int i; 581 582 ptep = PTR_ALIGN_DOWN(ptep, sizeof(*ptep) * CONT_PTES); 583 for (i = 0; i < CONT_PTES; i++, ptep++) 584 __set_pte(ptep, pte_mknoncont(__ptep_get(ptep))); 585} 586 587static int split_pmd(pmd_t *pmdp, pmd_t pmd, gfp_t gfp, bool to_cont) 588{ 589 pmdval_t tableprot = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF; 590 unsigned long pfn = pmd_pfn(pmd); 591 pgprot_t prot = pmd_pgprot(pmd); 592 phys_addr_t pte_phys; 593 pte_t *ptep; 594 int i; 595 596 pte_phys = pgd_pgtable_alloc_init_mm_gfp(TABLE_PTE, gfp); 597 if (pte_phys == INVALID_PHYS_ADDR) 598 return -ENOMEM; 599 ptep = (pte_t *)phys_to_virt(pte_phys); 600 601 if (pgprot_val(prot) & PMD_SECT_PXN) 602 tableprot |= PMD_TABLE_PXN; 603 604 prot = __pgprot((pgprot_val(prot) & ~PTE_TYPE_MASK) | PTE_TYPE_PAGE); 605 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT); 606 if (to_cont) 607 prot = __pgprot(pgprot_val(prot) | PTE_CONT); 608 609 for (i = 0; i < PTRS_PER_PTE; i++, ptep++, pfn++) 610 __set_pte(ptep, pfn_pte(pfn, prot)); 611 612 /* 613 * Ensure the pte entries are visible to the table walker by the time 614 * the pmd entry that points to the ptes is visible. 615 */ 616 dsb(ishst); 617 __pmd_populate(pmdp, pte_phys, tableprot); 618 619 return 0; 620} 621 622static void split_contpmd(pmd_t *pmdp) 623{ 624 int i; 625 626 pmdp = PTR_ALIGN_DOWN(pmdp, sizeof(*pmdp) * CONT_PMDS); 627 for (i = 0; i < CONT_PMDS; i++, pmdp++) 628 set_pmd(pmdp, pmd_mknoncont(pmdp_get(pmdp))); 629} 630 631static int split_pud(pud_t *pudp, pud_t pud, gfp_t gfp, bool to_cont) 632{ 633 pudval_t tableprot = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF; 634 unsigned int step = PMD_SIZE >> PAGE_SHIFT; 635 unsigned long pfn = pud_pfn(pud); 636 pgprot_t prot = pud_pgprot(pud); 637 phys_addr_t pmd_phys; 638 pmd_t *pmdp; 639 int i; 640 641 pmd_phys = pgd_pgtable_alloc_init_mm_gfp(TABLE_PMD, gfp); 642 if (pmd_phys == INVALID_PHYS_ADDR) 643 return -ENOMEM; 644 pmdp = (pmd_t *)phys_to_virt(pmd_phys); 645 646 if (pgprot_val(prot) & PMD_SECT_PXN) 647 tableprot |= PUD_TABLE_PXN; 648 649 prot = __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT); 650 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT); 651 if (to_cont) 652 prot = __pgprot(pgprot_val(prot) | PTE_CONT); 653 654 for (i = 0; i < PTRS_PER_PMD; i++, pmdp++, pfn += step) 655 set_pmd(pmdp, pfn_pmd(pfn, prot)); 656 657 /* 658 * Ensure the pmd entries are visible to the table walker by the time 659 * the pud entry that points to the pmds is visible. 660 */ 661 dsb(ishst); 662 __pud_populate(pudp, pmd_phys, tableprot); 663 664 return 0; 665} 666 667static int split_kernel_leaf_mapping_locked(unsigned long addr) 668{ 669 pgd_t *pgdp, pgd; 670 p4d_t *p4dp, p4d; 671 pud_t *pudp, pud; 672 pmd_t *pmdp, pmd; 673 pte_t *ptep, pte; 674 int ret = 0; 675 676 /* 677 * PGD: If addr is PGD aligned then addr already describes a leaf 678 * boundary. If not present then there is nothing to split. 679 */ 680 if (ALIGN_DOWN(addr, PGDIR_SIZE) == addr) 681 goto out; 682 pgdp = pgd_offset_k(addr); 683 pgd = pgdp_get(pgdp); 684 if (!pgd_present(pgd)) 685 goto out; 686 687 /* 688 * P4D: If addr is P4D aligned then addr already describes a leaf 689 * boundary. If not present then there is nothing to split. 690 */ 691 if (ALIGN_DOWN(addr, P4D_SIZE) == addr) 692 goto out; 693 p4dp = p4d_offset(pgdp, addr); 694 p4d = p4dp_get(p4dp); 695 if (!p4d_present(p4d)) 696 goto out; 697 698 /* 699 * PUD: If addr is PUD aligned then addr already describes a leaf 700 * boundary. If not present then there is nothing to split. Otherwise, 701 * if we have a pud leaf, split to contpmd. 702 */ 703 if (ALIGN_DOWN(addr, PUD_SIZE) == addr) 704 goto out; 705 pudp = pud_offset(p4dp, addr); 706 pud = pudp_get(pudp); 707 if (!pud_present(pud)) 708 goto out; 709 if (pud_leaf(pud)) { 710 ret = split_pud(pudp, pud, GFP_PGTABLE_KERNEL, true); 711 if (ret) 712 goto out; 713 } 714 715 /* 716 * CONTPMD: If addr is CONTPMD aligned then addr already describes a 717 * leaf boundary. If not present then there is nothing to split. 718 * Otherwise, if we have a contpmd leaf, split to pmd. 719 */ 720 if (ALIGN_DOWN(addr, CONT_PMD_SIZE) == addr) 721 goto out; 722 pmdp = pmd_offset(pudp, addr); 723 pmd = pmdp_get(pmdp); 724 if (!pmd_present(pmd)) 725 goto out; 726 if (pmd_leaf(pmd)) { 727 if (pmd_cont(pmd)) 728 split_contpmd(pmdp); 729 /* 730 * PMD: If addr is PMD aligned then addr already describes a 731 * leaf boundary. Otherwise, split to contpte. 732 */ 733 if (ALIGN_DOWN(addr, PMD_SIZE) == addr) 734 goto out; 735 ret = split_pmd(pmdp, pmd, GFP_PGTABLE_KERNEL, true); 736 if (ret) 737 goto out; 738 } 739 740 /* 741 * CONTPTE: If addr is CONTPTE aligned then addr already describes a 742 * leaf boundary. If not present then there is nothing to split. 743 * Otherwise, if we have a contpte leaf, split to pte. 744 */ 745 if (ALIGN_DOWN(addr, CONT_PTE_SIZE) == addr) 746 goto out; 747 ptep = pte_offset_kernel(pmdp, addr); 748 pte = __ptep_get(ptep); 749 if (!pte_present(pte)) 750 goto out; 751 if (pte_cont(pte)) 752 split_contpte(ptep); 753 754out: 755 return ret; 756} 757 758static inline bool force_pte_mapping(void) 759{ 760 const bool bbml2 = system_capabilities_finalized() ? 761 system_supports_bbml2_noabort() : cpu_supports_bbml2_noabort(); 762 763 if (debug_pagealloc_enabled()) 764 return true; 765 if (bbml2) 766 return false; 767 return rodata_full || arm64_kfence_can_set_direct_map() || is_realm_world(); 768} 769 770static DEFINE_MUTEX(pgtable_split_lock); 771 772int split_kernel_leaf_mapping(unsigned long start, unsigned long end) 773{ 774 int ret; 775 776 /* 777 * !BBML2_NOABORT systems should not be trying to change permissions on 778 * anything that is not pte-mapped in the first place. Just return early 779 * and let the permission change code raise a warning if not already 780 * pte-mapped. 781 */ 782 if (!system_supports_bbml2_noabort()) 783 return 0; 784 785 /* 786 * If the region is within a pte-mapped area, there is no need to try to 787 * split. Additionally, CONFIG_DEBUG_PAGEALLOC and CONFIG_KFENCE may 788 * change permissions from atomic context so for those cases (which are 789 * always pte-mapped), we must not go any further because taking the 790 * mutex below may sleep. 791 */ 792 if (force_pte_mapping() || is_kfence_address((void *)start)) 793 return 0; 794 795 /* 796 * Ensure start and end are at least page-aligned since this is the 797 * finest granularity we can split to. 798 */ 799 if (start != PAGE_ALIGN(start) || end != PAGE_ALIGN(end)) 800 return -EINVAL; 801 802 mutex_lock(&pgtable_split_lock); 803 arch_enter_lazy_mmu_mode(); 804 805 /* 806 * The split_kernel_leaf_mapping_locked() may sleep, it is not a 807 * problem for ARM64 since ARM64's lazy MMU implementation allows 808 * sleeping. 809 * 810 * Optimize for the common case of splitting out a single page from a 811 * larger mapping. Here we can just split on the "least aligned" of 812 * start and end and this will guarantee that there must also be a split 813 * on the more aligned address since the both addresses must be in the 814 * same contpte block and it must have been split to ptes. 815 */ 816 if (end - start == PAGE_SIZE) { 817 start = __ffs(start) < __ffs(end) ? start : end; 818 ret = split_kernel_leaf_mapping_locked(start); 819 } else { 820 ret = split_kernel_leaf_mapping_locked(start); 821 if (!ret) 822 ret = split_kernel_leaf_mapping_locked(end); 823 } 824 825 arch_leave_lazy_mmu_mode(); 826 mutex_unlock(&pgtable_split_lock); 827 return ret; 828} 829 830static int split_to_ptes_pud_entry(pud_t *pudp, unsigned long addr, 831 unsigned long next, struct mm_walk *walk) 832{ 833 gfp_t gfp = *(gfp_t *)walk->private; 834 pud_t pud = pudp_get(pudp); 835 int ret = 0; 836 837 if (pud_leaf(pud)) 838 ret = split_pud(pudp, pud, gfp, false); 839 840 return ret; 841} 842 843static int split_to_ptes_pmd_entry(pmd_t *pmdp, unsigned long addr, 844 unsigned long next, struct mm_walk *walk) 845{ 846 gfp_t gfp = *(gfp_t *)walk->private; 847 pmd_t pmd = pmdp_get(pmdp); 848 int ret = 0; 849 850 if (pmd_leaf(pmd)) { 851 if (pmd_cont(pmd)) 852 split_contpmd(pmdp); 853 ret = split_pmd(pmdp, pmd, gfp, false); 854 855 /* 856 * We have split the pmd directly to ptes so there is no need to 857 * visit each pte to check if they are contpte. 858 */ 859 walk->action = ACTION_CONTINUE; 860 } 861 862 return ret; 863} 864 865static int split_to_ptes_pte_entry(pte_t *ptep, unsigned long addr, 866 unsigned long next, struct mm_walk *walk) 867{ 868 pte_t pte = __ptep_get(ptep); 869 870 if (pte_cont(pte)) 871 split_contpte(ptep); 872 873 return 0; 874} 875 876static const struct mm_walk_ops split_to_ptes_ops = { 877 .pud_entry = split_to_ptes_pud_entry, 878 .pmd_entry = split_to_ptes_pmd_entry, 879 .pte_entry = split_to_ptes_pte_entry, 880}; 881 882static int range_split_to_ptes(unsigned long start, unsigned long end, gfp_t gfp) 883{ 884 int ret; 885 886 arch_enter_lazy_mmu_mode(); 887 ret = walk_kernel_page_table_range_lockless(start, end, 888 &split_to_ptes_ops, NULL, &gfp); 889 arch_leave_lazy_mmu_mode(); 890 891 return ret; 892} 893 894static bool linear_map_requires_bbml2 __initdata; 895 896u32 idmap_kpti_bbml2_flag; 897 898static void __init init_idmap_kpti_bbml2_flag(void) 899{ 900 WRITE_ONCE(idmap_kpti_bbml2_flag, 1); 901 /* Must be visible to other CPUs before stop_machine() is called. */ 902 smp_mb(); 903} 904 905static int __init linear_map_split_to_ptes(void *__unused) 906{ 907 /* 908 * Repainting the linear map must be done by CPU0 (the boot CPU) because 909 * that's the only CPU that we know supports BBML2. The other CPUs will 910 * be held in a waiting area with the idmap active. 911 */ 912 if (!smp_processor_id()) { 913 unsigned long lstart = _PAGE_OFFSET(vabits_actual); 914 unsigned long lend = PAGE_END; 915 unsigned long kstart = (unsigned long)lm_alias(_stext); 916 unsigned long kend = (unsigned long)lm_alias(__init_begin); 917 int ret; 918 919 /* 920 * Wait for all secondary CPUs to be put into the waiting area. 921 */ 922 smp_cond_load_acquire(&idmap_kpti_bbml2_flag, VAL == num_online_cpus()); 923 924 /* 925 * Walk all of the linear map [lstart, lend), except the kernel 926 * linear map alias [kstart, kend), and split all mappings to 927 * PTE. The kernel alias remains static throughout runtime so 928 * can continue to be safely mapped with large mappings. 929 */ 930 ret = range_split_to_ptes(lstart, kstart, GFP_ATOMIC); 931 if (!ret) 932 ret = range_split_to_ptes(kend, lend, GFP_ATOMIC); 933 if (ret) 934 panic("Failed to split linear map\n"); 935 flush_tlb_kernel_range(lstart, lend); 936 937 /* 938 * Relies on dsb in flush_tlb_kernel_range() to avoid reordering 939 * before any page table split operations. 940 */ 941 WRITE_ONCE(idmap_kpti_bbml2_flag, 0); 942 } else { 943 typedef void (wait_split_fn)(void); 944 extern wait_split_fn wait_linear_map_split_to_ptes; 945 wait_split_fn *wait_fn; 946 947 wait_fn = (void *)__pa_symbol(wait_linear_map_split_to_ptes); 948 949 /* 950 * At least one secondary CPU doesn't support BBML2 so cannot 951 * tolerate the size of the live mappings changing. So have the 952 * secondary CPUs wait for the boot CPU to make the changes 953 * with the idmap active and init_mm inactive. 954 */ 955 cpu_install_idmap(); 956 wait_fn(); 957 cpu_uninstall_idmap(); 958 } 959 960 return 0; 961} 962 963void __init linear_map_maybe_split_to_ptes(void) 964{ 965 if (linear_map_requires_bbml2 && !system_supports_bbml2_noabort()) { 966 init_idmap_kpti_bbml2_flag(); 967 stop_machine(linear_map_split_to_ptes, NULL, cpu_online_mask); 968 } 969} 970 971/* 972 * This function can only be used to modify existing table entries, 973 * without allocating new levels of table. Note that this permits the 974 * creation of new section or page entries. 975 */ 976void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt, 977 phys_addr_t size, pgprot_t prot) 978{ 979 if (virt < PAGE_OFFSET) { 980 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n", 981 &phys, virt); 982 return; 983 } 984 early_create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL, 985 NO_CONT_MAPPINGS); 986} 987 988void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys, 989 unsigned long virt, phys_addr_t size, 990 pgprot_t prot, bool page_mappings_only) 991{ 992 int flags = 0; 993 994 BUG_ON(mm == &init_mm); 995 996 if (page_mappings_only) 997 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS; 998 999 early_create_pgd_mapping(mm->pgd, phys, virt, size, prot, 1000 pgd_pgtable_alloc_special_mm, flags); 1001} 1002 1003static void update_mapping_prot(phys_addr_t phys, unsigned long virt, 1004 phys_addr_t size, pgprot_t prot) 1005{ 1006 if (virt < PAGE_OFFSET) { 1007 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n", 1008 &phys, virt); 1009 return; 1010 } 1011 1012 early_create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL, 1013 NO_CONT_MAPPINGS); 1014 1015 /* flush the TLBs after updating live kernel mappings */ 1016 flush_tlb_kernel_range(virt, virt + size); 1017} 1018 1019static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start, 1020 phys_addr_t end, pgprot_t prot, int flags) 1021{ 1022 early_create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start, 1023 prot, early_pgtable_alloc, flags); 1024} 1025 1026void __init mark_linear_text_alias_ro(void) 1027{ 1028 /* 1029 * Remove the write permissions from the linear alias of .text/.rodata 1030 */ 1031 update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text), 1032 (unsigned long)__init_begin - (unsigned long)_text, 1033 PAGE_KERNEL_RO); 1034} 1035 1036#ifdef CONFIG_KFENCE 1037 1038bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL; 1039 1040/* early_param() will be parsed before map_mem() below. */ 1041static int __init parse_kfence_early_init(char *arg) 1042{ 1043 int val; 1044 1045 if (get_option(&arg, &val)) 1046 kfence_early_init = !!val; 1047 return 0; 1048} 1049early_param("kfence.sample_interval", parse_kfence_early_init); 1050 1051static phys_addr_t __init arm64_kfence_alloc_pool(void) 1052{ 1053 phys_addr_t kfence_pool; 1054 1055 if (!kfence_early_init) 1056 return 0; 1057 1058 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 1059 if (!kfence_pool) { 1060 pr_err("failed to allocate kfence pool\n"); 1061 kfence_early_init = false; 1062 return 0; 1063 } 1064 1065 /* Temporarily mark as NOMAP. */ 1066 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); 1067 1068 return kfence_pool; 1069} 1070 1071static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) 1072{ 1073 if (!kfence_pool) 1074 return; 1075 1076 /* KFENCE pool needs page-level mapping. */ 1077 __map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE, 1078 pgprot_tagged(PAGE_KERNEL), 1079 NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS); 1080 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); 1081 __kfence_pool = phys_to_virt(kfence_pool); 1082} 1083 1084bool arch_kfence_init_pool(void) 1085{ 1086 unsigned long start = (unsigned long)__kfence_pool; 1087 unsigned long end = start + KFENCE_POOL_SIZE; 1088 int ret; 1089 1090 /* Exit early if we know the linear map is already pte-mapped. */ 1091 if (force_pte_mapping()) 1092 return true; 1093 1094 /* Kfence pool is already pte-mapped for the early init case. */ 1095 if (kfence_early_init) 1096 return true; 1097 1098 mutex_lock(&pgtable_split_lock); 1099 ret = range_split_to_ptes(start, end, GFP_PGTABLE_KERNEL); 1100 mutex_unlock(&pgtable_split_lock); 1101 1102 /* 1103 * Since the system supports bbml2_noabort, tlb invalidation is not 1104 * required here; the pgtable mappings have been split to pte but larger 1105 * entries may safely linger in the TLB. 1106 */ 1107 1108 return !ret; 1109} 1110#else /* CONFIG_KFENCE */ 1111 1112static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; } 1113static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { } 1114 1115#endif /* CONFIG_KFENCE */ 1116 1117static void __init map_mem(pgd_t *pgdp) 1118{ 1119 static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN); 1120 phys_addr_t kernel_start = __pa_symbol(_text); 1121 phys_addr_t kernel_end = __pa_symbol(__init_begin); 1122 phys_addr_t start, end; 1123 phys_addr_t early_kfence_pool; 1124 int flags = NO_EXEC_MAPPINGS; 1125 u64 i; 1126 1127 /* 1128 * Setting hierarchical PXNTable attributes on table entries covering 1129 * the linear region is only possible if it is guaranteed that no table 1130 * entries at any level are being shared between the linear region and 1131 * the vmalloc region. Check whether this is true for the PGD level, in 1132 * which case it is guaranteed to be true for all other levels as well. 1133 * (Unless we are running with support for LPA2, in which case the 1134 * entire reduced VA space is covered by a single pgd_t which will have 1135 * been populated without the PXNTable attribute by the time we get here.) 1136 */ 1137 BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) && 1138 pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1); 1139 1140 early_kfence_pool = arm64_kfence_alloc_pool(); 1141 1142 linear_map_requires_bbml2 = !force_pte_mapping() && can_set_direct_map(); 1143 1144 if (force_pte_mapping()) 1145 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS; 1146 1147 /* 1148 * Take care not to create a writable alias for the 1149 * read-only text and rodata sections of the kernel image. 1150 * So temporarily mark them as NOMAP to skip mappings in 1151 * the following for-loop 1152 */ 1153 memblock_mark_nomap(kernel_start, kernel_end - kernel_start); 1154 1155 /* map all the memory banks */ 1156 for_each_mem_range(i, &start, &end) { 1157 if (start >= end) 1158 break; 1159 /* 1160 * The linear map must allow allocation tags reading/writing 1161 * if MTE is present. Otherwise, it has the same attributes as 1162 * PAGE_KERNEL. 1163 */ 1164 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL), 1165 flags); 1166 } 1167 1168 /* 1169 * Map the linear alias of the [_text, __init_begin) interval 1170 * as non-executable now, and remove the write permission in 1171 * mark_linear_text_alias_ro() below (which will be called after 1172 * alternative patching has completed). This makes the contents 1173 * of the region accessible to subsystems such as hibernate, 1174 * but protects it from inadvertent modification or execution. 1175 * Note that contiguous mappings cannot be remapped in this way, 1176 * so we should avoid them here. 1177 */ 1178 __map_memblock(pgdp, kernel_start, kernel_end, 1179 PAGE_KERNEL, NO_CONT_MAPPINGS); 1180 memblock_clear_nomap(kernel_start, kernel_end - kernel_start); 1181 arm64_kfence_map_pool(early_kfence_pool, pgdp); 1182} 1183 1184void mark_rodata_ro(void) 1185{ 1186 unsigned long section_size; 1187 1188 /* 1189 * mark .rodata as read only. Use __init_begin rather than __end_rodata 1190 * to cover NOTES and EXCEPTION_TABLE. 1191 */ 1192 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata; 1193 WRITE_ONCE(rodata_is_rw, false); 1194 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata, 1195 section_size, PAGE_KERNEL_RO); 1196 /* mark the range between _text and _stext as read only. */ 1197 update_mapping_prot(__pa_symbol(_text), (unsigned long)_text, 1198 (unsigned long)_stext - (unsigned long)_text, 1199 PAGE_KERNEL_RO); 1200} 1201 1202static void __init declare_vma(struct vm_struct *vma, 1203 void *va_start, void *va_end, 1204 unsigned long vm_flags) 1205{ 1206 phys_addr_t pa_start = __pa_symbol(va_start); 1207 unsigned long size = va_end - va_start; 1208 1209 BUG_ON(!PAGE_ALIGNED(pa_start)); 1210 BUG_ON(!PAGE_ALIGNED(size)); 1211 1212 if (!(vm_flags & VM_NO_GUARD)) 1213 size += PAGE_SIZE; 1214 1215 vma->addr = va_start; 1216 vma->phys_addr = pa_start; 1217 vma->size = size; 1218 vma->flags = VM_MAP | vm_flags; 1219 vma->caller = __builtin_return_address(0); 1220 1221 vm_area_add_early(vma); 1222} 1223 1224#ifdef CONFIG_UNMAP_KERNEL_AT_EL0 1225#define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT)) 1226 1227static phys_addr_t kpti_ng_temp_alloc __initdata; 1228 1229static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type) 1230{ 1231 kpti_ng_temp_alloc -= PAGE_SIZE; 1232 return kpti_ng_temp_alloc; 1233} 1234 1235static int __init __kpti_install_ng_mappings(void *__unused) 1236{ 1237 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long); 1238 extern kpti_remap_fn idmap_kpti_install_ng_mappings; 1239 kpti_remap_fn *remap_fn; 1240 1241 int cpu = smp_processor_id(); 1242 int levels = CONFIG_PGTABLE_LEVELS; 1243 int order = order_base_2(levels); 1244 u64 kpti_ng_temp_pgd_pa = 0; 1245 pgd_t *kpti_ng_temp_pgd; 1246 u64 alloc = 0; 1247 1248 if (levels == 5 && !pgtable_l5_enabled()) 1249 levels = 4; 1250 else if (levels == 4 && !pgtable_l4_enabled()) 1251 levels = 3; 1252 1253 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings); 1254 1255 if (!cpu) { 1256 int ret; 1257 1258 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); 1259 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE); 1260 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd); 1261 1262 // 1263 // Create a minimal page table hierarchy that permits us to map 1264 // the swapper page tables temporarily as we traverse them. 1265 // 1266 // The physical pages are laid out as follows: 1267 // 1268 // +--------+-/-------+-/------ +-/------ +-\\\--------+ 1269 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] : 1270 // +--------+-\-------+-\------ +-\------ +-///--------+ 1271 // ^ 1272 // The first page is mapped into this hierarchy at a PMD_SHIFT 1273 // aligned virtual address, so that we can manipulate the PTE 1274 // level entries while the mapping is active. The first entry 1275 // covers the PTE[] page itself, the remaining entries are free 1276 // to be used as a ad-hoc fixmap. 1277 // 1278 ret = __create_pgd_mapping_locked(kpti_ng_temp_pgd, __pa(alloc), 1279 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL, 1280 kpti_ng_pgd_alloc, 0); 1281 if (ret) 1282 panic("Failed to create page tables\n"); 1283 } 1284 1285 cpu_install_idmap(); 1286 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA); 1287 cpu_uninstall_idmap(); 1288 1289 if (!cpu) { 1290 free_pages(alloc, order); 1291 arm64_use_ng_mappings = true; 1292 } 1293 1294 return 0; 1295} 1296 1297void __init kpti_install_ng_mappings(void) 1298{ 1299 /* Check whether KPTI is going to be used */ 1300 if (!arm64_kernel_unmapped_at_el0()) 1301 return; 1302 1303 /* 1304 * We don't need to rewrite the page-tables if either we've done 1305 * it already or we have KASLR enabled and therefore have not 1306 * created any global mappings at all. 1307 */ 1308 if (arm64_use_ng_mappings) 1309 return; 1310 1311 init_idmap_kpti_bbml2_flag(); 1312 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask); 1313} 1314 1315static pgprot_t __init kernel_exec_prot(void) 1316{ 1317 return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC; 1318} 1319 1320static int __init map_entry_trampoline(void) 1321{ 1322 int i; 1323 1324 if (!arm64_kernel_unmapped_at_el0()) 1325 return 0; 1326 1327 pgprot_t prot = kernel_exec_prot(); 1328 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start); 1329 1330 /* The trampoline is always mapped and can therefore be global */ 1331 pgprot_val(prot) &= ~PTE_NG; 1332 1333 /* Map only the text into the trampoline page table */ 1334 memset(tramp_pg_dir, 0, PGD_SIZE); 1335 early_create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS, 1336 entry_tramp_text_size(), prot, 1337 pgd_pgtable_alloc_init_mm, NO_BLOCK_MAPPINGS); 1338 1339 /* Map both the text and data into the kernel page table */ 1340 for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++) 1341 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i, 1342 pa_start + i * PAGE_SIZE, prot); 1343 1344 if (IS_ENABLED(CONFIG_RELOCATABLE)) 1345 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i, 1346 pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO); 1347 1348 return 0; 1349} 1350core_initcall(map_entry_trampoline); 1351#endif 1352 1353/* 1354 * Declare the VMA areas for the kernel 1355 */ 1356static void __init declare_kernel_vmas(void) 1357{ 1358 static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT]; 1359 1360 declare_vma(&vmlinux_seg[0], _text, _etext, VM_NO_GUARD); 1361 declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD); 1362 declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD); 1363 declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD); 1364 declare_vma(&vmlinux_seg[4], _data, _end, 0); 1365} 1366 1367void __pi_map_range(phys_addr_t *pte, u64 start, u64 end, phys_addr_t pa, 1368 pgprot_t prot, int level, pte_t *tbl, bool may_use_cont, 1369 u64 va_offset); 1370 1371static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init, 1372 kpti_bbml2_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init; 1373 1374static void __init create_idmap(void) 1375{ 1376 phys_addr_t start = __pa_symbol(__idmap_text_start); 1377 phys_addr_t end = __pa_symbol(__idmap_text_end); 1378 phys_addr_t ptep = __pa_symbol(idmap_ptes); 1379 1380 __pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX, 1381 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false, 1382 __phys_to_virt(ptep) - ptep); 1383 1384 if (linear_map_requires_bbml2 || 1385 (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings)) { 1386 phys_addr_t pa = __pa_symbol(&idmap_kpti_bbml2_flag); 1387 1388 /* 1389 * The KPTI G-to-nG conversion code needs a read-write mapping 1390 * of its synchronization flag in the ID map. This is also used 1391 * when splitting the linear map to ptes if a secondary CPU 1392 * doesn't support bbml2. 1393 */ 1394 ptep = __pa_symbol(kpti_bbml2_ptes); 1395 __pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL, 1396 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false, 1397 __phys_to_virt(ptep) - ptep); 1398 } 1399} 1400 1401void __init paging_init(void) 1402{ 1403 map_mem(swapper_pg_dir); 1404 1405 memblock_allow_resize(); 1406 1407 create_idmap(); 1408 declare_kernel_vmas(); 1409} 1410 1411#ifdef CONFIG_MEMORY_HOTPLUG 1412static void free_hotplug_page_range(struct page *page, size_t size, 1413 struct vmem_altmap *altmap) 1414{ 1415 if (altmap) { 1416 vmem_altmap_free(altmap, size >> PAGE_SHIFT); 1417 } else { 1418 WARN_ON(PageReserved(page)); 1419 __free_pages(page, get_order(size)); 1420 } 1421} 1422 1423static void free_hotplug_pgtable_page(struct page *page) 1424{ 1425 free_hotplug_page_range(page, PAGE_SIZE, NULL); 1426} 1427 1428static bool pgtable_range_aligned(unsigned long start, unsigned long end, 1429 unsigned long floor, unsigned long ceiling, 1430 unsigned long mask) 1431{ 1432 start &= mask; 1433 if (start < floor) 1434 return false; 1435 1436 if (ceiling) { 1437 ceiling &= mask; 1438 if (!ceiling) 1439 return false; 1440 } 1441 1442 if (end - 1 > ceiling - 1) 1443 return false; 1444 return true; 1445} 1446 1447static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr, 1448 unsigned long end, bool free_mapped, 1449 struct vmem_altmap *altmap) 1450{ 1451 pte_t *ptep, pte; 1452 1453 do { 1454 ptep = pte_offset_kernel(pmdp, addr); 1455 pte = __ptep_get(ptep); 1456 if (pte_none(pte)) 1457 continue; 1458 1459 WARN_ON(!pte_present(pte)); 1460 __pte_clear(&init_mm, addr, ptep); 1461 flush_tlb_kernel_range(addr, addr + PAGE_SIZE); 1462 if (free_mapped) 1463 free_hotplug_page_range(pte_page(pte), 1464 PAGE_SIZE, altmap); 1465 } while (addr += PAGE_SIZE, addr < end); 1466} 1467 1468static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr, 1469 unsigned long end, bool free_mapped, 1470 struct vmem_altmap *altmap) 1471{ 1472 unsigned long next; 1473 pmd_t *pmdp, pmd; 1474 1475 do { 1476 next = pmd_addr_end(addr, end); 1477 pmdp = pmd_offset(pudp, addr); 1478 pmd = READ_ONCE(*pmdp); 1479 if (pmd_none(pmd)) 1480 continue; 1481 1482 WARN_ON(!pmd_present(pmd)); 1483 if (pmd_sect(pmd)) { 1484 pmd_clear(pmdp); 1485 1486 /* 1487 * One TLBI should be sufficient here as the PMD_SIZE 1488 * range is mapped with a single block entry. 1489 */ 1490 flush_tlb_kernel_range(addr, addr + PAGE_SIZE); 1491 if (free_mapped) 1492 free_hotplug_page_range(pmd_page(pmd), 1493 PMD_SIZE, altmap); 1494 continue; 1495 } 1496 WARN_ON(!pmd_table(pmd)); 1497 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap); 1498 } while (addr = next, addr < end); 1499} 1500 1501static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr, 1502 unsigned long end, bool free_mapped, 1503 struct vmem_altmap *altmap) 1504{ 1505 unsigned long next; 1506 pud_t *pudp, pud; 1507 1508 do { 1509 next = pud_addr_end(addr, end); 1510 pudp = pud_offset(p4dp, addr); 1511 pud = READ_ONCE(*pudp); 1512 if (pud_none(pud)) 1513 continue; 1514 1515 WARN_ON(!pud_present(pud)); 1516 if (pud_sect(pud)) { 1517 pud_clear(pudp); 1518 1519 /* 1520 * One TLBI should be sufficient here as the PUD_SIZE 1521 * range is mapped with a single block entry. 1522 */ 1523 flush_tlb_kernel_range(addr, addr + PAGE_SIZE); 1524 if (free_mapped) 1525 free_hotplug_page_range(pud_page(pud), 1526 PUD_SIZE, altmap); 1527 continue; 1528 } 1529 WARN_ON(!pud_table(pud)); 1530 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap); 1531 } while (addr = next, addr < end); 1532} 1533 1534static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr, 1535 unsigned long end, bool free_mapped, 1536 struct vmem_altmap *altmap) 1537{ 1538 unsigned long next; 1539 p4d_t *p4dp, p4d; 1540 1541 do { 1542 next = p4d_addr_end(addr, end); 1543 p4dp = p4d_offset(pgdp, addr); 1544 p4d = READ_ONCE(*p4dp); 1545 if (p4d_none(p4d)) 1546 continue; 1547 1548 WARN_ON(!p4d_present(p4d)); 1549 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap); 1550 } while (addr = next, addr < end); 1551} 1552 1553static void unmap_hotplug_range(unsigned long addr, unsigned long end, 1554 bool free_mapped, struct vmem_altmap *altmap) 1555{ 1556 unsigned long next; 1557 pgd_t *pgdp, pgd; 1558 1559 /* 1560 * altmap can only be used as vmemmap mapping backing memory. 1561 * In case the backing memory itself is not being freed, then 1562 * altmap is irrelevant. Warn about this inconsistency when 1563 * encountered. 1564 */ 1565 WARN_ON(!free_mapped && altmap); 1566 1567 do { 1568 next = pgd_addr_end(addr, end); 1569 pgdp = pgd_offset_k(addr); 1570 pgd = READ_ONCE(*pgdp); 1571 if (pgd_none(pgd)) 1572 continue; 1573 1574 WARN_ON(!pgd_present(pgd)); 1575 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap); 1576 } while (addr = next, addr < end); 1577} 1578 1579static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr, 1580 unsigned long end, unsigned long floor, 1581 unsigned long ceiling) 1582{ 1583 pte_t *ptep, pte; 1584 unsigned long i, start = addr; 1585 1586 do { 1587 ptep = pte_offset_kernel(pmdp, addr); 1588 pte = __ptep_get(ptep); 1589 1590 /* 1591 * This is just a sanity check here which verifies that 1592 * pte clearing has been done by earlier unmap loops. 1593 */ 1594 WARN_ON(!pte_none(pte)); 1595 } while (addr += PAGE_SIZE, addr < end); 1596 1597 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK)) 1598 return; 1599 1600 /* 1601 * Check whether we can free the pte page if the rest of the 1602 * entries are empty. Overlap with other regions have been 1603 * handled by the floor/ceiling check. 1604 */ 1605 ptep = pte_offset_kernel(pmdp, 0UL); 1606 for (i = 0; i < PTRS_PER_PTE; i++) { 1607 if (!pte_none(__ptep_get(&ptep[i]))) 1608 return; 1609 } 1610 1611 pmd_clear(pmdp); 1612 __flush_tlb_kernel_pgtable(start); 1613 free_hotplug_pgtable_page(virt_to_page(ptep)); 1614} 1615 1616static void free_empty_pmd_table(pud_t *pudp, unsigned long addr, 1617 unsigned long end, unsigned long floor, 1618 unsigned long ceiling) 1619{ 1620 pmd_t *pmdp, pmd; 1621 unsigned long i, next, start = addr; 1622 1623 do { 1624 next = pmd_addr_end(addr, end); 1625 pmdp = pmd_offset(pudp, addr); 1626 pmd = READ_ONCE(*pmdp); 1627 if (pmd_none(pmd)) 1628 continue; 1629 1630 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd)); 1631 free_empty_pte_table(pmdp, addr, next, floor, ceiling); 1632 } while (addr = next, addr < end); 1633 1634 if (CONFIG_PGTABLE_LEVELS <= 2) 1635 return; 1636 1637 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK)) 1638 return; 1639 1640 /* 1641 * Check whether we can free the pmd page if the rest of the 1642 * entries are empty. Overlap with other regions have been 1643 * handled by the floor/ceiling check. 1644 */ 1645 pmdp = pmd_offset(pudp, 0UL); 1646 for (i = 0; i < PTRS_PER_PMD; i++) { 1647 if (!pmd_none(READ_ONCE(pmdp[i]))) 1648 return; 1649 } 1650 1651 pud_clear(pudp); 1652 __flush_tlb_kernel_pgtable(start); 1653 free_hotplug_pgtable_page(virt_to_page(pmdp)); 1654} 1655 1656static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr, 1657 unsigned long end, unsigned long floor, 1658 unsigned long ceiling) 1659{ 1660 pud_t *pudp, pud; 1661 unsigned long i, next, start = addr; 1662 1663 do { 1664 next = pud_addr_end(addr, end); 1665 pudp = pud_offset(p4dp, addr); 1666 pud = READ_ONCE(*pudp); 1667 if (pud_none(pud)) 1668 continue; 1669 1670 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud)); 1671 free_empty_pmd_table(pudp, addr, next, floor, ceiling); 1672 } while (addr = next, addr < end); 1673 1674 if (!pgtable_l4_enabled()) 1675 return; 1676 1677 if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK)) 1678 return; 1679 1680 /* 1681 * Check whether we can free the pud page if the rest of the 1682 * entries are empty. Overlap with other regions have been 1683 * handled by the floor/ceiling check. 1684 */ 1685 pudp = pud_offset(p4dp, 0UL); 1686 for (i = 0; i < PTRS_PER_PUD; i++) { 1687 if (!pud_none(READ_ONCE(pudp[i]))) 1688 return; 1689 } 1690 1691 p4d_clear(p4dp); 1692 __flush_tlb_kernel_pgtable(start); 1693 free_hotplug_pgtable_page(virt_to_page(pudp)); 1694} 1695 1696static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr, 1697 unsigned long end, unsigned long floor, 1698 unsigned long ceiling) 1699{ 1700 p4d_t *p4dp, p4d; 1701 unsigned long i, next, start = addr; 1702 1703 do { 1704 next = p4d_addr_end(addr, end); 1705 p4dp = p4d_offset(pgdp, addr); 1706 p4d = READ_ONCE(*p4dp); 1707 if (p4d_none(p4d)) 1708 continue; 1709 1710 WARN_ON(!p4d_present(p4d)); 1711 free_empty_pud_table(p4dp, addr, next, floor, ceiling); 1712 } while (addr = next, addr < end); 1713 1714 if (!pgtable_l5_enabled()) 1715 return; 1716 1717 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK)) 1718 return; 1719 1720 /* 1721 * Check whether we can free the p4d page if the rest of the 1722 * entries are empty. Overlap with other regions have been 1723 * handled by the floor/ceiling check. 1724 */ 1725 p4dp = p4d_offset(pgdp, 0UL); 1726 for (i = 0; i < PTRS_PER_P4D; i++) { 1727 if (!p4d_none(READ_ONCE(p4dp[i]))) 1728 return; 1729 } 1730 1731 pgd_clear(pgdp); 1732 __flush_tlb_kernel_pgtable(start); 1733 free_hotplug_pgtable_page(virt_to_page(p4dp)); 1734} 1735 1736static void free_empty_tables(unsigned long addr, unsigned long end, 1737 unsigned long floor, unsigned long ceiling) 1738{ 1739 unsigned long next; 1740 pgd_t *pgdp, pgd; 1741 1742 do { 1743 next = pgd_addr_end(addr, end); 1744 pgdp = pgd_offset_k(addr); 1745 pgd = READ_ONCE(*pgdp); 1746 if (pgd_none(pgd)) 1747 continue; 1748 1749 WARN_ON(!pgd_present(pgd)); 1750 free_empty_p4d_table(pgdp, addr, next, floor, ceiling); 1751 } while (addr = next, addr < end); 1752} 1753#endif 1754 1755void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node, 1756 unsigned long addr, unsigned long next) 1757{ 1758 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL)); 1759} 1760 1761int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, 1762 unsigned long addr, unsigned long next) 1763{ 1764 vmemmap_verify((pte_t *)pmdp, node, addr, next); 1765 1766 return pmd_sect(READ_ONCE(*pmdp)); 1767} 1768 1769int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 1770 struct vmem_altmap *altmap) 1771{ 1772 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END)); 1773 /* [start, end] should be within one section */ 1774 WARN_ON_ONCE(end - start > PAGES_PER_SECTION * sizeof(struct page)); 1775 1776 if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES) || 1777 (end - start < PAGES_PER_SECTION * sizeof(struct page))) 1778 return vmemmap_populate_basepages(start, end, node, altmap); 1779 else 1780 return vmemmap_populate_hugepages(start, end, node, altmap); 1781} 1782 1783#ifdef CONFIG_MEMORY_HOTPLUG 1784void vmemmap_free(unsigned long start, unsigned long end, 1785 struct vmem_altmap *altmap) 1786{ 1787 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END)); 1788 1789 unmap_hotplug_range(start, end, true, altmap); 1790 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END); 1791} 1792#endif /* CONFIG_MEMORY_HOTPLUG */ 1793 1794int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot) 1795{ 1796 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot)); 1797 1798 /* Only allow permission changes for now */ 1799 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)), 1800 pud_val(new_pud))) 1801 return 0; 1802 1803 VM_BUG_ON(phys & ~PUD_MASK); 1804 set_pud(pudp, new_pud); 1805 return 1; 1806} 1807 1808int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot) 1809{ 1810 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot)); 1811 1812 /* Only allow permission changes for now */ 1813 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)), 1814 pmd_val(new_pmd))) 1815 return 0; 1816 1817 VM_BUG_ON(phys & ~PMD_MASK); 1818 set_pmd(pmdp, new_pmd); 1819 return 1; 1820} 1821 1822#ifndef __PAGETABLE_P4D_FOLDED 1823void p4d_clear_huge(p4d_t *p4dp) 1824{ 1825} 1826#endif 1827 1828int pud_clear_huge(pud_t *pudp) 1829{ 1830 if (!pud_sect(READ_ONCE(*pudp))) 1831 return 0; 1832 pud_clear(pudp); 1833 return 1; 1834} 1835 1836int pmd_clear_huge(pmd_t *pmdp) 1837{ 1838 if (!pmd_sect(READ_ONCE(*pmdp))) 1839 return 0; 1840 pmd_clear(pmdp); 1841 return 1; 1842} 1843 1844static int __pmd_free_pte_page(pmd_t *pmdp, unsigned long addr, 1845 bool acquire_mmap_lock) 1846{ 1847 pte_t *table; 1848 pmd_t pmd; 1849 1850 pmd = READ_ONCE(*pmdp); 1851 1852 if (!pmd_table(pmd)) { 1853 VM_WARN_ON(1); 1854 return 1; 1855 } 1856 1857 /* See comment in pud_free_pmd_page for static key logic */ 1858 table = pte_offset_kernel(pmdp, addr); 1859 pmd_clear(pmdp); 1860 __flush_tlb_kernel_pgtable(addr); 1861 if (static_branch_unlikely(&arm64_ptdump_lock_key) && acquire_mmap_lock) { 1862 mmap_read_lock(&init_mm); 1863 mmap_read_unlock(&init_mm); 1864 } 1865 1866 pte_free_kernel(NULL, table); 1867 return 1; 1868} 1869 1870int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr) 1871{ 1872 /* If ptdump is walking the pagetables, acquire init_mm.mmap_lock */ 1873 return __pmd_free_pte_page(pmdp, addr, /* acquire_mmap_lock = */ true); 1874} 1875 1876int pud_free_pmd_page(pud_t *pudp, unsigned long addr) 1877{ 1878 pmd_t *table; 1879 pmd_t *pmdp; 1880 pud_t pud; 1881 unsigned long next, end; 1882 1883 pud = READ_ONCE(*pudp); 1884 1885 if (!pud_table(pud)) { 1886 VM_WARN_ON(1); 1887 return 1; 1888 } 1889 1890 table = pmd_offset(pudp, addr); 1891 1892 /* 1893 * Our objective is to prevent ptdump from reading a PMD table which has 1894 * been freed. In this race, if pud_free_pmd_page observes the key on 1895 * (which got flipped by ptdump) then the mmap lock sequence here will, 1896 * as a result of the mmap write lock/unlock sequence in ptdump, give 1897 * us the correct synchronization. If not, this means that ptdump has 1898 * yet not started walking the pagetables - the sequence of barriers 1899 * issued by __flush_tlb_kernel_pgtable() guarantees that ptdump will 1900 * observe an empty PUD. 1901 */ 1902 pud_clear(pudp); 1903 __flush_tlb_kernel_pgtable(addr); 1904 if (static_branch_unlikely(&arm64_ptdump_lock_key)) { 1905 mmap_read_lock(&init_mm); 1906 mmap_read_unlock(&init_mm); 1907 } 1908 1909 pmdp = table; 1910 next = addr; 1911 end = addr + PUD_SIZE; 1912 do { 1913 if (pmd_present(pmdp_get(pmdp))) 1914 /* 1915 * PMD has been isolated, so ptdump won't see it. No 1916 * need to acquire init_mm.mmap_lock. 1917 */ 1918 __pmd_free_pte_page(pmdp, next, /* acquire_mmap_lock = */ false); 1919 } while (pmdp++, next += PMD_SIZE, next != end); 1920 1921 pmd_free(NULL, table); 1922 return 1; 1923} 1924 1925#ifdef CONFIG_MEMORY_HOTPLUG 1926static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size) 1927{ 1928 unsigned long end = start + size; 1929 1930 WARN_ON(pgdir != init_mm.pgd); 1931 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END)); 1932 1933 unmap_hotplug_range(start, end, false, NULL); 1934 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END); 1935} 1936 1937struct range arch_get_mappable_range(void) 1938{ 1939 struct range mhp_range; 1940 phys_addr_t start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual)); 1941 phys_addr_t end_linear_pa = __pa(PAGE_END - 1); 1942 1943 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 1944 /* 1945 * Check for a wrap, it is possible because of randomized linear 1946 * mapping the start physical address is actually bigger than 1947 * the end physical address. In this case set start to zero 1948 * because [0, end_linear_pa] range must still be able to cover 1949 * all addressable physical addresses. 1950 */ 1951 if (start_linear_pa > end_linear_pa) 1952 start_linear_pa = 0; 1953 } 1954 1955 WARN_ON(start_linear_pa > end_linear_pa); 1956 1957 /* 1958 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)] 1959 * accommodating both its ends but excluding PAGE_END. Max physical 1960 * range which can be mapped inside this linear mapping range, must 1961 * also be derived from its end points. 1962 */ 1963 mhp_range.start = start_linear_pa; 1964 mhp_range.end = end_linear_pa; 1965 1966 return mhp_range; 1967} 1968 1969int arch_add_memory(int nid, u64 start, u64 size, 1970 struct mhp_params *params) 1971{ 1972 int ret, flags = NO_EXEC_MAPPINGS; 1973 1974 VM_BUG_ON(!mhp_range_allowed(start, size, true)); 1975 1976 if (force_pte_mapping()) 1977 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS; 1978 1979 ret = __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start), 1980 size, params->pgprot, pgd_pgtable_alloc_init_mm, 1981 flags); 1982 if (ret) 1983 goto err; 1984 1985 memblock_clear_nomap(start, size); 1986 1987 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, 1988 params); 1989 if (ret) 1990 goto err; 1991 1992 /* Address of hotplugged memory can be smaller */ 1993 max_pfn = max(max_pfn, PFN_UP(start + size)); 1994 max_low_pfn = max_pfn; 1995 1996 return 0; 1997 1998err: 1999 __remove_pgd_mapping(swapper_pg_dir, 2000 __phys_to_virt(start), size); 2001 return ret; 2002} 2003 2004void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) 2005{ 2006 unsigned long start_pfn = start >> PAGE_SHIFT; 2007 unsigned long nr_pages = size >> PAGE_SHIFT; 2008 2009 __remove_pages(start_pfn, nr_pages, altmap); 2010 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size); 2011} 2012 2013/* 2014 * This memory hotplug notifier helps prevent boot memory from being 2015 * inadvertently removed as it blocks pfn range offlining process in 2016 * __offline_pages(). Hence this prevents both offlining as well as 2017 * removal process for boot memory which is initially always online. 2018 * In future if and when boot memory could be removed, this notifier 2019 * should be dropped and free_hotplug_page_range() should handle any 2020 * reserved pages allocated during boot. 2021 */ 2022static int prevent_bootmem_remove_notifier(struct notifier_block *nb, 2023 unsigned long action, void *data) 2024{ 2025 struct mem_section *ms; 2026 struct memory_notify *arg = data; 2027 unsigned long end_pfn = arg->start_pfn + arg->nr_pages; 2028 unsigned long pfn = arg->start_pfn; 2029 2030 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE)) 2031 return NOTIFY_OK; 2032 2033 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 2034 unsigned long start = PFN_PHYS(pfn); 2035 unsigned long end = start + (1UL << PA_SECTION_SHIFT); 2036 2037 ms = __pfn_to_section(pfn); 2038 if (!early_section(ms)) 2039 continue; 2040 2041 if (action == MEM_GOING_OFFLINE) { 2042 /* 2043 * Boot memory removal is not supported. Prevent 2044 * it via blocking any attempted offline request 2045 * for the boot memory and just report it. 2046 */ 2047 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end); 2048 return NOTIFY_BAD; 2049 } else if (action == MEM_OFFLINE) { 2050 /* 2051 * This should have never happened. Boot memory 2052 * offlining should have been prevented by this 2053 * very notifier. Probably some memory removal 2054 * procedure might have changed which would then 2055 * require further debug. 2056 */ 2057 pr_err("Boot memory [%lx %lx] offlined\n", start, end); 2058 2059 /* 2060 * Core memory hotplug does not process a return 2061 * code from the notifier for MEM_OFFLINE events. 2062 * The error condition has been reported. Return 2063 * from here as if ignored. 2064 */ 2065 return NOTIFY_DONE; 2066 } 2067 } 2068 return NOTIFY_OK; 2069} 2070 2071static struct notifier_block prevent_bootmem_remove_nb = { 2072 .notifier_call = prevent_bootmem_remove_notifier, 2073}; 2074 2075/* 2076 * This ensures that boot memory sections on the platform are online 2077 * from early boot. Memory sections could not be prevented from being 2078 * offlined, unless for some reason they are not online to begin with. 2079 * This helps validate the basic assumption on which the above memory 2080 * event notifier works to prevent boot memory section offlining and 2081 * its possible removal. 2082 */ 2083static void validate_bootmem_online(void) 2084{ 2085 phys_addr_t start, end, addr; 2086 struct mem_section *ms; 2087 u64 i; 2088 2089 /* 2090 * Scanning across all memblock might be expensive 2091 * on some big memory systems. Hence enable this 2092 * validation only with DEBUG_VM. 2093 */ 2094 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 2095 return; 2096 2097 for_each_mem_range(i, &start, &end) { 2098 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) { 2099 ms = __pfn_to_section(PHYS_PFN(addr)); 2100 2101 /* 2102 * All memory ranges in the system at this point 2103 * should have been marked as early sections. 2104 */ 2105 WARN_ON(!early_section(ms)); 2106 2107 /* 2108 * Memory notifier mechanism here to prevent boot 2109 * memory offlining depends on the fact that each 2110 * early section memory on the system is initially 2111 * online. Otherwise a given memory section which 2112 * is already offline will be overlooked and can 2113 * be removed completely. Call out such sections. 2114 */ 2115 if (!online_section(ms)) 2116 pr_err("Boot memory [%llx %llx] is offline, can be removed\n", 2117 addr, addr + (1UL << PA_SECTION_SHIFT)); 2118 } 2119 } 2120} 2121 2122static int __init prevent_bootmem_remove_init(void) 2123{ 2124 int ret = 0; 2125 2126 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 2127 return ret; 2128 2129 validate_bootmem_online(); 2130 ret = register_memory_notifier(&prevent_bootmem_remove_nb); 2131 if (ret) 2132 pr_err("%s: Notifier registration failed %d\n", __func__, ret); 2133 2134 return ret; 2135} 2136early_initcall(prevent_bootmem_remove_init); 2137#endif 2138 2139pte_t modify_prot_start_ptes(struct vm_area_struct *vma, unsigned long addr, 2140 pte_t *ptep, unsigned int nr) 2141{ 2142 pte_t pte = get_and_clear_ptes(vma->vm_mm, addr, ptep, nr); 2143 2144 if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) { 2145 /* 2146 * Break-before-make (BBM) is required for all user space mappings 2147 * when the permission changes from executable to non-executable 2148 * in cases where cpu is affected with errata #2645198. 2149 */ 2150 if (pte_accessible(vma->vm_mm, pte) && pte_user_exec(pte)) 2151 __flush_tlb_range(vma, addr, nr * PAGE_SIZE, 2152 PAGE_SIZE, true, 3); 2153 } 2154 2155 return pte; 2156} 2157 2158pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 2159{ 2160 return modify_prot_start_ptes(vma, addr, ptep, 1); 2161} 2162 2163void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr, 2164 pte_t *ptep, pte_t old_pte, pte_t pte, 2165 unsigned int nr) 2166{ 2167 set_ptes(vma->vm_mm, addr, ptep, pte, nr); 2168} 2169 2170void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, 2171 pte_t old_pte, pte_t pte) 2172{ 2173 modify_prot_commit_ptes(vma, addr, ptep, old_pte, pte, 1); 2174} 2175 2176/* 2177 * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD, 2178 * avoiding the possibility of conflicting TLB entries being allocated. 2179 */ 2180void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp) 2181{ 2182 typedef void (ttbr_replace_func)(phys_addr_t); 2183 extern ttbr_replace_func idmap_cpu_replace_ttbr1; 2184 ttbr_replace_func *replace_phys; 2185 unsigned long daif; 2186 2187 /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */ 2188 phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp)); 2189 2190 if (cnp) 2191 ttbr1 |= TTBR_CNP_BIT; 2192 2193 replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1); 2194 2195 cpu_install_idmap(); 2196 2197 /* 2198 * We really don't want to take *any* exceptions while TTBR1 is 2199 * in the process of being replaced so mask everything. 2200 */ 2201 daif = local_daif_save(); 2202 replace_phys(ttbr1); 2203 local_daif_restore(daif); 2204 2205 cpu_uninstall_idmap(); 2206} 2207 2208#ifdef CONFIG_ARCH_HAS_PKEYS 2209int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val) 2210{ 2211 u64 new_por; 2212 u64 old_por; 2213 2214 if (!system_supports_poe()) 2215 return -ENOSPC; 2216 2217 /* 2218 * This code should only be called with valid 'pkey' 2219 * values originating from in-kernel users. Complain 2220 * if a bad value is observed. 2221 */ 2222 if (WARN_ON_ONCE(pkey >= arch_max_pkey())) 2223 return -EINVAL; 2224 2225 /* Set the bits we need in POR: */ 2226 new_por = POE_RWX; 2227 if (init_val & PKEY_DISABLE_WRITE) 2228 new_por &= ~POE_W; 2229 if (init_val & PKEY_DISABLE_ACCESS) 2230 new_por &= ~POE_RW; 2231 if (init_val & PKEY_DISABLE_READ) 2232 new_por &= ~POE_R; 2233 if (init_val & PKEY_DISABLE_EXECUTE) 2234 new_por &= ~POE_X; 2235 2236 /* Shift the bits in to the correct place in POR for pkey: */ 2237 new_por = POR_ELx_PERM_PREP(pkey, new_por); 2238 2239 /* Get old POR and mask off any old bits in place: */ 2240 old_por = read_sysreg_s(SYS_POR_EL0); 2241 old_por &= ~(POE_MASK << POR_ELx_PERM_SHIFT(pkey)); 2242 2243 /* Write old part along with new part: */ 2244 write_sysreg_s(old_por | new_por, SYS_POR_EL0); 2245 2246 return 0; 2247} 2248#endif