Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5#ifndef __ASM_PGTABLE_H
6#define __ASM_PGTABLE_H
7
8#include <asm/bug.h>
9#include <asm/proc-fns.h>
10
11#include <asm/memory.h>
12#include <asm/mte.h>
13#include <asm/pgtable-hwdef.h>
14#include <asm/pgtable-prot.h>
15#include <asm/tlbflush.h>
16
17/*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap
22 */
23#define VMALLOC_START (MODULES_END)
24#if VA_BITS == VA_BITS_MIN
25#define VMALLOC_END (VMEMMAP_START - SZ_8M)
26#else
27#define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28#define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29#endif
30
31#define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32
33#ifndef __ASSEMBLER__
34
35#include <asm/cmpxchg.h>
36#include <asm/fixmap.h>
37#include <asm/por.h>
38#include <linux/mmdebug.h>
39#include <linux/mm_types.h>
40#include <linux/sched.h>
41#include <linux/page_table_check.h>
42
43static inline void emit_pte_barriers(void)
44{
45 /*
46 * These barriers are emitted under certain conditions after a pte entry
47 * was modified (see e.g. __set_pte_complete()). The dsb makes the store
48 * visible to the table walker. The isb ensures that any previous
49 * speculative "invalid translation" marker that is in the CPU's
50 * pipeline gets cleared, so that any access to that address after
51 * setting the pte to valid won't cause a spurious fault. If the thread
52 * gets preempted after storing to the pgtable but before emitting these
53 * barriers, __switch_to() emits a dsb which ensure the walker gets to
54 * see the store. There is no guarantee of an isb being issued though.
55 * This is safe because it will still get issued (albeit on a
56 * potentially different CPU) when the thread starts running again,
57 * before any access to the address.
58 */
59 dsb(ishst);
60 isb();
61}
62
63static inline void queue_pte_barriers(void)
64{
65 if (is_lazy_mmu_mode_active()) {
66 /* Avoid the atomic op if already set. */
67 if (!test_thread_flag(TIF_LAZY_MMU_PENDING))
68 set_thread_flag(TIF_LAZY_MMU_PENDING);
69 } else {
70 emit_pte_barriers();
71 }
72}
73
74static inline void arch_enter_lazy_mmu_mode(void) {}
75
76static inline void arch_flush_lazy_mmu_mode(void)
77{
78 if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING))
79 emit_pte_barriers();
80}
81
82static inline void arch_leave_lazy_mmu_mode(void)
83{
84 arch_flush_lazy_mmu_mode();
85}
86
87#ifdef CONFIG_TRANSPARENT_HUGEPAGE
88#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
89
90/* Set stride and tlb_level in flush_*_tlb_range */
91#define flush_pmd_tlb_range(vma, addr, end) \
92 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
93#define flush_pud_tlb_range(vma, addr, end) \
94 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
95#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
96
97/*
98 * We use local TLB invalidation instruction when reusing page in
99 * write protection fault handler to avoid TLBI broadcast in the hot
100 * path. This will cause spurious page faults if stale read-only TLB
101 * entries exist.
102 */
103#define flush_tlb_fix_spurious_fault(vma, address, ptep) \
104 local_flush_tlb_page_nonotify(vma, address)
105
106#define flush_tlb_fix_spurious_fault_pmd(vma, address, pmdp) \
107 local_flush_tlb_page_nonotify(vma, address)
108
109/*
110 * ZERO_PAGE is a global shared page that is always zero: used
111 * for zero-mapped memory areas etc..
112 */
113extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
114#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
115
116#define pte_ERROR(e) \
117 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
118
119#ifdef CONFIG_ARM64_PA_BITS_52
120static inline phys_addr_t __pte_to_phys(pte_t pte)
121{
122 pte_val(pte) &= ~PTE_MAYBE_SHARED;
123 return (pte_val(pte) & PTE_ADDR_LOW) |
124 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
125}
126static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
127{
128 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
129}
130#else
131static inline phys_addr_t __pte_to_phys(pte_t pte)
132{
133 return pte_val(pte) & PTE_ADDR_LOW;
134}
135
136static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
137{
138 return phys;
139}
140#endif
141
142#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
143#define pfn_pte(pfn,prot) \
144 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
145
146#define pte_none(pte) (!pte_val(pte))
147#define __pte_clear(mm, addr, ptep) \
148 __set_pte(ptep, __pte(0))
149#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
150
151/*
152 * The following only work if pte_present(). Undefined behaviour otherwise.
153 */
154#define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte))
155#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
156#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
157#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
158#define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
159#define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
160#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
161#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
162#define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
163 PTE_ATTRINDX(MT_NORMAL_TAGGED))
164
165#define pte_cont_addr_end(addr, end) \
166({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
167 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
168})
169
170#define pmd_cont_addr_end(addr, end) \
171({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
172 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
173})
174
175#define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
176#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
177#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
178
179#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
180#define pte_present_invalid(pte) \
181 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
182/*
183 * Execute-only user mappings do not have the PTE_USER bit set. All valid
184 * kernel mappings have the PTE_UXN bit set.
185 */
186#define pte_valid_not_user(pte) \
187 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
188/*
189 * Returns true if the pte is valid and has the contiguous bit set.
190 */
191#define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
192/*
193 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
194 * so that we don't erroneously return false for pages that have been
195 * remapped as PROT_NONE but are yet to be flushed from the TLB.
196 * Note that we can't make any assumptions based on the state of the access
197 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
198 * TLB.
199 */
200#define pte_accessible(mm, pte) \
201 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
202
203static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
204{
205 u64 por;
206
207 if (!system_supports_poe())
208 return true;
209
210 por = read_sysreg_s(SYS_POR_EL0);
211
212 if (write)
213 return por_elx_allows_write(por, pkey);
214
215 if (execute)
216 return por_elx_allows_exec(por, pkey);
217
218 return por_elx_allows_read(por, pkey);
219}
220
221/*
222 * p??_access_permitted() is true for valid user mappings (PTE_USER
223 * bit set, subject to the write permission check). For execute-only
224 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
225 * not set) must return false. PROT_NONE mappings do not have the
226 * PTE_VALID bit set.
227 */
228#define pte_access_permitted_no_overlay(pte, write) \
229 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
230#define pte_access_permitted(pte, write) \
231 (pte_access_permitted_no_overlay(pte, write) && \
232 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
233#define pmd_access_permitted(pmd, write) \
234 (pte_access_permitted(pmd_pte(pmd), (write)))
235#define pud_access_permitted(pud, write) \
236 (pte_access_permitted(pud_pte(pud), (write)))
237
238static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
239{
240 pte_val(pte) &= ~pgprot_val(prot);
241 return pte;
242}
243
244static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
245{
246 pte_val(pte) |= pgprot_val(prot);
247 return pte;
248}
249
250static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
251{
252 pmd_val(pmd) &= ~pgprot_val(prot);
253 return pmd;
254}
255
256static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
257{
258 pmd_val(pmd) |= pgprot_val(prot);
259 return pmd;
260}
261
262static inline pte_t pte_mkwrite_novma(pte_t pte)
263{
264 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
265 if (pte_sw_dirty(pte))
266 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
267 return pte;
268}
269
270static inline pte_t pte_mkclean(pte_t pte)
271{
272 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
273 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
274
275 return pte;
276}
277
278static inline pte_t pte_mkdirty(pte_t pte)
279{
280 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
281
282 if (pte_write(pte))
283 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
284
285 return pte;
286}
287
288static inline pte_t pte_wrprotect(pte_t pte)
289{
290 /*
291 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
292 * clear), set the PTE_DIRTY bit.
293 */
294 if (pte_hw_dirty(pte))
295 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
296
297 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
298 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
299 return pte;
300}
301
302static inline pte_t pte_mkold(pte_t pte)
303{
304 return clear_pte_bit(pte, __pgprot(PTE_AF));
305}
306
307static inline pte_t pte_mkyoung(pte_t pte)
308{
309 return set_pte_bit(pte, __pgprot(PTE_AF));
310}
311
312static inline pte_t pte_mkspecial(pte_t pte)
313{
314 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
315}
316
317static inline pte_t pte_mkcont(pte_t pte)
318{
319 return set_pte_bit(pte, __pgprot(PTE_CONT));
320}
321
322static inline pte_t pte_mknoncont(pte_t pte)
323{
324 return clear_pte_bit(pte, __pgprot(PTE_CONT));
325}
326
327static inline pte_t pte_mkvalid(pte_t pte)
328{
329 return set_pte_bit(pte, __pgprot(PTE_VALID));
330}
331
332static inline pte_t pte_mkinvalid(pte_t pte)
333{
334 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
335 pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
336 return pte;
337}
338
339static inline pmd_t pmd_mkcont(pmd_t pmd)
340{
341 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
342}
343
344static inline pmd_t pmd_mknoncont(pmd_t pmd)
345{
346 return __pmd(pmd_val(pmd) & ~PMD_SECT_CONT);
347}
348
349#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
350static inline int pte_uffd_wp(pte_t pte)
351{
352 return !!(pte_val(pte) & PTE_UFFD_WP);
353}
354
355static inline pte_t pte_mkuffd_wp(pte_t pte)
356{
357 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
358}
359
360static inline pte_t pte_clear_uffd_wp(pte_t pte)
361{
362 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
363}
364#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
365
366static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
367{
368 WRITE_ONCE(*ptep, pte);
369}
370
371static inline void __set_pte_complete(pte_t pte)
372{
373 /*
374 * Only if the new pte is valid and kernel, otherwise TLB maintenance
375 * has the necessary barriers.
376 */
377 if (pte_valid_not_user(pte))
378 queue_pte_barriers();
379}
380
381static inline void __set_pte(pte_t *ptep, pte_t pte)
382{
383 __set_pte_nosync(ptep, pte);
384 __set_pte_complete(pte);
385}
386
387static inline pte_t __ptep_get(pte_t *ptep)
388{
389 return READ_ONCE(*ptep);
390}
391
392extern void __sync_icache_dcache(pte_t pteval);
393bool pgattr_change_is_safe(pteval_t old, pteval_t new);
394
395/*
396 * PTE bits configuration in the presence of hardware Dirty Bit Management
397 * (PTE_WRITE == PTE_DBM):
398 *
399 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
400 * 0 0 | 1 0 0
401 * 0 1 | 1 1 0
402 * 1 0 | 1 0 1
403 * 1 1 | 0 1 x
404 *
405 * When hardware DBM is not present, the software PTE_DIRTY bit is updated via
406 * the page fault mechanism. Checking the dirty status of a pte becomes:
407 *
408 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
409 */
410
411static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
412 pte_t pte)
413{
414 pte_t old_pte;
415
416 if (!IS_ENABLED(CONFIG_DEBUG_VM))
417 return;
418
419 old_pte = __ptep_get(ptep);
420
421 if (!pte_valid(old_pte) || !pte_valid(pte))
422 return;
423 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
424 return;
425
426 /*
427 * Check for potential race with hardware updates of the pte
428 * (__ptep_set_access_flags safely changes valid ptes without going
429 * through an invalid entry).
430 */
431 VM_WARN_ONCE(!pte_young(pte),
432 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
433 __func__, pte_val(old_pte), pte_val(pte));
434 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
435 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
436 __func__, pte_val(old_pte), pte_val(pte));
437 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
438 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
439 __func__, pte_val(old_pte), pte_val(pte));
440}
441
442static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
443{
444 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
445 __sync_icache_dcache(pte);
446
447 /*
448 * If the PTE would provide user space access to the tags associated
449 * with it then ensure that the MTE tags are synchronised. Although
450 * pte_access_permitted_no_overlay() returns false for exec only
451 * mappings, they don't expose tags (instruction fetches don't check
452 * tags).
453 */
454 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
455 !pte_special(pte) && pte_tagged(pte))
456 mte_sync_tags(pte, nr_pages);
457}
458
459/*
460 * Select all bits except the pfn
461 */
462#define pte_pgprot pte_pgprot
463static inline pgprot_t pte_pgprot(pte_t pte)
464{
465 unsigned long pfn = pte_pfn(pte);
466
467 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
468}
469
470#define pte_advance_pfn pte_advance_pfn
471static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
472{
473 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
474}
475
476/*
477 * Hugetlb definitions.
478 */
479#define HUGE_MAX_HSTATE 4
480#define HPAGE_SHIFT PMD_SHIFT
481#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
482#define HPAGE_MASK (~(HPAGE_SIZE - 1))
483#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
484
485static inline pte_t pgd_pte(pgd_t pgd)
486{
487 return __pte(pgd_val(pgd));
488}
489
490static inline pte_t p4d_pte(p4d_t p4d)
491{
492 return __pte(p4d_val(p4d));
493}
494
495static inline pte_t pud_pte(pud_t pud)
496{
497 return __pte(pud_val(pud));
498}
499
500static inline pud_t pte_pud(pte_t pte)
501{
502 return __pud(pte_val(pte));
503}
504
505static inline pmd_t pud_pmd(pud_t pud)
506{
507 return __pmd(pud_val(pud));
508}
509
510static inline pte_t pmd_pte(pmd_t pmd)
511{
512 return __pte(pmd_val(pmd));
513}
514
515static inline pmd_t pte_pmd(pte_t pte)
516{
517 return __pmd(pte_val(pte));
518}
519
520static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
521{
522 return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
523}
524
525static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
526{
527 return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
528}
529
530static inline pte_t pte_swp_mkexclusive(pte_t pte)
531{
532 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
533}
534
535static inline bool pte_swp_exclusive(pte_t pte)
536{
537 return pte_val(pte) & PTE_SWP_EXCLUSIVE;
538}
539
540static inline pte_t pte_swp_clear_exclusive(pte_t pte)
541{
542 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
543}
544
545#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
546static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
547{
548 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
549}
550
551static inline int pte_swp_uffd_wp(pte_t pte)
552{
553 return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
554}
555
556static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
557{
558 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
559}
560#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
561
562#ifdef CONFIG_NUMA_BALANCING
563/*
564 * See the comment in include/linux/pgtable.h
565 */
566static inline int pte_protnone(pte_t pte)
567{
568 /*
569 * pte_present_invalid() tells us that the pte is invalid from HW
570 * perspective but present from SW perspective, so the fields are to be
571 * interpreted as per the HW layout. The second 2 checks are the unique
572 * encoding that we use for PROT_NONE. It is insufficient to only use
573 * the first check because we share the same encoding scheme with pmds
574 * which support pmd_mkinvalid(), so can be present-invalid without
575 * being PROT_NONE.
576 */
577 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
578}
579
580static inline int pmd_protnone(pmd_t pmd)
581{
582 return pte_protnone(pmd_pte(pmd));
583}
584#endif
585
586#define pmd_present(pmd) pte_present(pmd_pte(pmd))
587#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
588#define pmd_young(pmd) pte_young(pmd_pte(pmd))
589#define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
590#define pmd_user(pmd) pte_user(pmd_pte(pmd))
591#define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
592#define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
593#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
594#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
595#define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
596#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
597#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
598#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
599#define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
600#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
601#define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd))
602#define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
603#define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
604#define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd))
605#define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
606#define pmd_swp_clear_uffd_wp(pmd) \
607 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
608#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
609
610#define pmd_write(pmd) pte_write(pmd_pte(pmd))
611
612static inline pmd_t pmd_mkhuge(pmd_t pmd)
613{
614 /*
615 * It's possible that the pmd is present-invalid on entry
616 * and in that case it needs to remain present-invalid on
617 * exit. So ensure the VALID bit does not get modified.
618 */
619 pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
620 pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
621
622 return __pmd((pmd_val(pmd) & ~mask) | val);
623}
624
625#ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
626#define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL)))
627static inline pmd_t pmd_mkspecial(pmd_t pmd)
628{
629 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
630}
631#endif
632
633#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
634#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
635#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
636#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
637
638#define pud_young(pud) pte_young(pud_pte(pud))
639#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
640#define pud_write(pud) pte_write(pud_pte(pud))
641
642static inline pud_t pud_mkhuge(pud_t pud)
643{
644 /*
645 * It's possible that the pud is present-invalid on entry
646 * and in that case it needs to remain present-invalid on
647 * exit. So ensure the VALID bit does not get modified.
648 */
649 pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
650 pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
651
652 return __pud((pud_val(pud) & ~mask) | val);
653}
654
655#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
656#define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
657#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
658#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
659
660#define pmd_pgprot pmd_pgprot
661static inline pgprot_t pmd_pgprot(pmd_t pmd)
662{
663 unsigned long pfn = pmd_pfn(pmd);
664
665 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
666}
667
668#define pud_pgprot pud_pgprot
669static inline pgprot_t pud_pgprot(pud_t pud)
670{
671 unsigned long pfn = pud_pfn(pud);
672
673 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
674}
675
676static inline void __set_ptes_anysz(struct mm_struct *mm, unsigned long addr,
677 pte_t *ptep, pte_t pte, unsigned int nr,
678 unsigned long pgsize)
679{
680 unsigned long stride = pgsize >> PAGE_SHIFT;
681
682 switch (pgsize) {
683 case PAGE_SIZE:
684 page_table_check_ptes_set(mm, addr, ptep, pte, nr);
685 break;
686 case PMD_SIZE:
687 page_table_check_pmds_set(mm, addr, (pmd_t *)ptep,
688 pte_pmd(pte), nr);
689 break;
690#ifndef __PAGETABLE_PMD_FOLDED
691 case PUD_SIZE:
692 page_table_check_puds_set(mm, addr, (pud_t *)ptep,
693 pte_pud(pte), nr);
694 break;
695#endif
696 default:
697 VM_WARN_ON(1);
698 }
699
700 __sync_cache_and_tags(pte, nr * stride);
701
702 for (;;) {
703 __check_safe_pte_update(mm, ptep, pte);
704 __set_pte_nosync(ptep, pte);
705 if (--nr == 0)
706 break;
707 ptep++;
708 pte = pte_advance_pfn(pte, stride);
709 }
710
711 __set_pte_complete(pte);
712}
713
714static inline void __set_ptes(struct mm_struct *mm, unsigned long addr,
715 pte_t *ptep, pte_t pte, unsigned int nr)
716{
717 __set_ptes_anysz(mm, addr, ptep, pte, nr, PAGE_SIZE);
718}
719
720static inline void __set_pmds(struct mm_struct *mm, unsigned long addr,
721 pmd_t *pmdp, pmd_t pmd, unsigned int nr)
722{
723 __set_ptes_anysz(mm, addr, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE);
724}
725#define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1)
726
727static inline void __set_puds(struct mm_struct *mm, unsigned long addr,
728 pud_t *pudp, pud_t pud, unsigned int nr)
729{
730 __set_ptes_anysz(mm, addr, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE);
731}
732#define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1)
733
734#define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
735#define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
736
737#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
738#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
739
740#define __pgprot_modify(prot,mask,bits) \
741 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
742
743#define pgprot_nx(prot) \
744 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
745
746#define pgprot_decrypted(prot) \
747 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
748#define pgprot_encrypted(prot) \
749 __pgprot_modify(prot, PROT_NS_SHARED, 0)
750
751/*
752 * Mark the prot value as uncacheable and unbufferable.
753 */
754#define pgprot_noncached(prot) \
755 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
756#define pgprot_writecombine(prot) \
757 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
758#define pgprot_device(prot) \
759 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
760#define pgprot_tagged(prot) \
761 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
762#define pgprot_mhp pgprot_tagged
763/*
764 * DMA allocations for non-coherent devices use what the Arm architecture calls
765 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
766 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
767 * is intended for MMIO and thus forbids speculation, preserves access size,
768 * requires strict alignment and can also force write responses to come from the
769 * endpoint.
770 */
771#define pgprot_dmacoherent(prot) \
772 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
773 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
774
775#define __HAVE_PHYS_MEM_ACCESS_PROT
776struct file;
777extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
778 unsigned long size, pgprot_t vma_prot);
779
780#define pmd_none(pmd) (!pmd_val(pmd))
781
782#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
783 PMD_TYPE_TABLE)
784#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
785 PMD_TYPE_SECT)
786#define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
787#define pmd_bad(pmd) (!pmd_table(pmd))
788
789#define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
790#define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
791
792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
793static inline int pmd_trans_huge(pmd_t pmd)
794{
795 /*
796 * If pmd is present-invalid, pmd_table() won't detect it
797 * as a table, so force the valid bit for the comparison.
798 */
799 return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
800}
801#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
802
803#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
804static inline bool pud_sect(pud_t pud) { return false; }
805static inline bool pud_table(pud_t pud) { return true; }
806#else
807#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
808 PUD_TYPE_SECT)
809#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
810 PUD_TYPE_TABLE)
811#endif
812
813extern pgd_t swapper_pg_dir[];
814extern pgd_t idmap_pg_dir[];
815extern pgd_t tramp_pg_dir[];
816extern pgd_t reserved_pg_dir[];
817
818extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
819
820static inline bool in_swapper_pgdir(void *addr)
821{
822 return ((unsigned long)addr & PAGE_MASK) ==
823 ((unsigned long)swapper_pg_dir & PAGE_MASK);
824}
825
826static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
827{
828#ifdef __PAGETABLE_PMD_FOLDED
829 if (in_swapper_pgdir(pmdp)) {
830 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
831 return;
832 }
833#endif /* __PAGETABLE_PMD_FOLDED */
834
835 WRITE_ONCE(*pmdp, pmd);
836
837 if (pmd_valid(pmd))
838 queue_pte_barriers();
839}
840
841static inline void pmd_clear(pmd_t *pmdp)
842{
843 set_pmd(pmdp, __pmd(0));
844}
845
846static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
847{
848 return __pmd_to_phys(pmd);
849}
850
851static inline unsigned long pmd_page_vaddr(pmd_t pmd)
852{
853 return (unsigned long)__va(pmd_page_paddr(pmd));
854}
855
856/* Find an entry in the third-level page table. */
857#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
858
859#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
860#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
861#define pte_clear_fixmap() clear_fixmap(FIX_PTE)
862
863#define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
864
865/* use ONLY for statically allocated translation tables */
866#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
867
868#if CONFIG_PGTABLE_LEVELS > 2
869
870#define pmd_ERROR(e) \
871 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
872
873#define pud_none(pud) (!pud_val(pud))
874#define pud_bad(pud) ((pud_val(pud) & PUD_TYPE_MASK) != \
875 PUD_TYPE_TABLE)
876#define pud_present(pud) pte_present(pud_pte(pud))
877#ifndef __PAGETABLE_PMD_FOLDED
878#define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
879#else
880#define pud_leaf(pud) false
881#endif
882#define pud_valid(pud) pte_valid(pud_pte(pud))
883#define pud_user(pud) pte_user(pud_pte(pud))
884#define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
885
886static inline bool pgtable_l4_enabled(void);
887
888static inline void set_pud(pud_t *pudp, pud_t pud)
889{
890 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
891 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
892 return;
893 }
894
895 WRITE_ONCE(*pudp, pud);
896
897 if (pud_valid(pud))
898 queue_pte_barriers();
899}
900
901static inline void pud_clear(pud_t *pudp)
902{
903 set_pud(pudp, __pud(0));
904}
905
906static inline phys_addr_t pud_page_paddr(pud_t pud)
907{
908 return __pud_to_phys(pud);
909}
910
911static inline pmd_t *pud_pgtable(pud_t pud)
912{
913 return (pmd_t *)__va(pud_page_paddr(pud));
914}
915
916/* Find an entry in the second-level page table. */
917#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
918
919#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
920#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
921#define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
922
923#define pud_page(pud) phys_to_page(__pud_to_phys(pud))
924
925/* use ONLY for statically allocated translation tables */
926#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
927
928#else
929
930#define pud_valid(pud) false
931#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
932#define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
933
934/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
935#define pmd_set_fixmap(addr) NULL
936#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
937#define pmd_clear_fixmap()
938
939#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
940
941#endif /* CONFIG_PGTABLE_LEVELS > 2 */
942
943#if CONFIG_PGTABLE_LEVELS > 3
944
945static __always_inline bool pgtable_l4_enabled(void)
946{
947 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
948 return true;
949 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
950 return vabits_actual == VA_BITS;
951 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
952}
953
954static inline bool mm_pud_folded(const struct mm_struct *mm)
955{
956 return !pgtable_l4_enabled();
957}
958#define mm_pud_folded mm_pud_folded
959
960#define pud_ERROR(e) \
961 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
962
963#define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
964#define p4d_bad(p4d) (pgtable_l4_enabled() && \
965 ((p4d_val(p4d) & P4D_TYPE_MASK) != \
966 P4D_TYPE_TABLE))
967#define p4d_present(p4d) (!p4d_none(p4d))
968
969static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
970{
971 if (in_swapper_pgdir(p4dp)) {
972 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
973 return;
974 }
975
976 WRITE_ONCE(*p4dp, p4d);
977 queue_pte_barriers();
978}
979
980static inline void p4d_clear(p4d_t *p4dp)
981{
982 if (pgtable_l4_enabled())
983 set_p4d(p4dp, __p4d(0));
984}
985
986static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
987{
988 return __p4d_to_phys(p4d);
989}
990
991#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
992
993static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
994{
995 /* Ensure that 'p4dp' indexes a page table according to 'addr' */
996 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
997
998 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
999}
1000
1001static inline pud_t *p4d_pgtable(p4d_t p4d)
1002{
1003 return (pud_t *)__va(p4d_page_paddr(p4d));
1004}
1005
1006static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
1007{
1008 BUG_ON(!pgtable_l4_enabled());
1009
1010 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
1011}
1012
1013static inline
1014pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
1015{
1016 if (!pgtable_l4_enabled())
1017 return p4d_to_folded_pud(p4dp, addr);
1018 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
1019}
1020#define pud_offset_lockless pud_offset_lockless
1021
1022static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
1023{
1024 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
1025}
1026#define pud_offset pud_offset
1027
1028static inline pud_t *pud_set_fixmap(unsigned long addr)
1029{
1030 if (!pgtable_l4_enabled())
1031 return NULL;
1032 return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
1033}
1034
1035static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
1036{
1037 if (!pgtable_l4_enabled())
1038 return p4d_to_folded_pud(p4dp, addr);
1039 return pud_set_fixmap(pud_offset_phys(p4dp, addr));
1040}
1041
1042static inline void pud_clear_fixmap(void)
1043{
1044 if (pgtable_l4_enabled())
1045 clear_fixmap(FIX_PUD);
1046}
1047
1048/* use ONLY for statically allocated translation tables */
1049static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1050{
1051 if (!pgtable_l4_enabled())
1052 return p4d_to_folded_pud(p4dp, addr);
1053 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1054}
1055
1056#define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1057
1058#else
1059
1060static inline bool pgtable_l4_enabled(void) { return false; }
1061
1062#define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
1063
1064/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1065#define pud_set_fixmap(addr) NULL
1066#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
1067#define pud_clear_fixmap()
1068
1069#define pud_offset_kimg(dir,addr) ((pud_t *)dir)
1070
1071#endif /* CONFIG_PGTABLE_LEVELS > 3 */
1072
1073#if CONFIG_PGTABLE_LEVELS > 4
1074
1075static __always_inline bool pgtable_l5_enabled(void)
1076{
1077 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1078 return vabits_actual == VA_BITS;
1079 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1080}
1081
1082static inline bool mm_p4d_folded(const struct mm_struct *mm)
1083{
1084 return !pgtable_l5_enabled();
1085}
1086#define mm_p4d_folded mm_p4d_folded
1087
1088#define p4d_ERROR(e) \
1089 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1090
1091#define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
1092#define pgd_bad(pgd) (pgtable_l5_enabled() && \
1093 ((pgd_val(pgd) & PGD_TYPE_MASK) != \
1094 PGD_TYPE_TABLE))
1095#define pgd_present(pgd) (!pgd_none(pgd))
1096
1097static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1098{
1099 if (in_swapper_pgdir(pgdp)) {
1100 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1101 return;
1102 }
1103
1104 WRITE_ONCE(*pgdp, pgd);
1105 queue_pte_barriers();
1106}
1107
1108static inline void pgd_clear(pgd_t *pgdp)
1109{
1110 if (pgtable_l5_enabled())
1111 set_pgd(pgdp, __pgd(0));
1112}
1113
1114static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1115{
1116 return __pgd_to_phys(pgd);
1117}
1118
1119#define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1120
1121static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1122{
1123 /* Ensure that 'pgdp' indexes a page table according to 'addr' */
1124 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1125
1126 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1127}
1128
1129static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1130{
1131 BUG_ON(!pgtable_l5_enabled());
1132
1133 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1134}
1135
1136static inline
1137p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1138{
1139 if (!pgtable_l5_enabled())
1140 return pgd_to_folded_p4d(pgdp, addr);
1141 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1142}
1143#define p4d_offset_lockless p4d_offset_lockless
1144
1145static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1146{
1147 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1148}
1149
1150static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1151{
1152 if (!pgtable_l5_enabled())
1153 return NULL;
1154 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1155}
1156
1157static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1158{
1159 if (!pgtable_l5_enabled())
1160 return pgd_to_folded_p4d(pgdp, addr);
1161 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1162}
1163
1164static inline void p4d_clear_fixmap(void)
1165{
1166 if (pgtable_l5_enabled())
1167 clear_fixmap(FIX_P4D);
1168}
1169
1170/* use ONLY for statically allocated translation tables */
1171static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1172{
1173 if (!pgtable_l5_enabled())
1174 return pgd_to_folded_p4d(pgdp, addr);
1175 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1176}
1177
1178#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1179
1180#else
1181
1182static inline bool pgtable_l5_enabled(void) { return false; }
1183
1184#define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1185
1186/* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1187#define p4d_set_fixmap(addr) NULL
1188#define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
1189#define p4d_clear_fixmap()
1190
1191#define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
1192
1193static inline
1194p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1195{
1196 /*
1197 * With runtime folding of the pud, pud_offset_lockless() passes
1198 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1199 * will offset the pointer assuming that it points into
1200 * a page-table page. However, the fast GUP path passes us a
1201 * pgd_t allocated on the stack and so we must use the original
1202 * pointer in 'pgdp' to construct the p4d pointer instead of
1203 * using the generic p4d_offset_lockless() implementation.
1204 *
1205 * Note: reusing the original pointer means that we may
1206 * dereference the same (live) page-table entry multiple times.
1207 * This is safe because it is still only loaded once in the
1208 * context of each level and the CPU guarantees same-address
1209 * read-after-read ordering.
1210 */
1211 return p4d_offset(pgdp, addr);
1212}
1213#define p4d_offset_lockless p4d_offset_lockless_folded
1214
1215#endif /* CONFIG_PGTABLE_LEVELS > 4 */
1216
1217#define pgd_ERROR(e) \
1218 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1219
1220#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1221#define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
1222
1223static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1224{
1225 /*
1226 * Normal and Normal-Tagged are two different memory types and indices
1227 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1228 */
1229 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1230 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1231 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1232
1233 /* preserve the hardware dirty information */
1234 if (pte_hw_dirty(pte))
1235 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1236
1237 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1238 /*
1239 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1240 * dirtiness again.
1241 */
1242 if (pte_sw_dirty(pte))
1243 pte = pte_mkdirty(pte);
1244 return pte;
1245}
1246
1247static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1248{
1249 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1250}
1251
1252extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1253 unsigned long address, pte_t *ptep,
1254 pte_t entry, int dirty);
1255
1256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1257#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1258static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1259 unsigned long address, pmd_t *pmdp,
1260 pmd_t entry, int dirty)
1261{
1262 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1263 pmd_pte(entry), dirty);
1264}
1265#endif
1266
1267#ifdef CONFIG_PAGE_TABLE_CHECK
1268static inline bool pte_user_accessible_page(pte_t pte, unsigned long addr)
1269{
1270 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1271}
1272
1273static inline bool pmd_user_accessible_page(pmd_t pmd, unsigned long addr)
1274{
1275 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1276}
1277
1278static inline bool pud_user_accessible_page(pud_t pud, unsigned long addr)
1279{
1280 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1281}
1282#endif
1283
1284/*
1285 * Atomic pte/pmd modifications.
1286 */
1287static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1288 unsigned long address,
1289 pte_t *ptep)
1290{
1291 pte_t old_pte, pte;
1292
1293 pte = __ptep_get(ptep);
1294 do {
1295 old_pte = pte;
1296 pte = pte_mkold(pte);
1297 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1298 pte_val(old_pte), pte_val(pte));
1299 } while (pte_val(pte) != pte_val(old_pte));
1300
1301 return pte_young(pte);
1302}
1303
1304static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1305 unsigned long address, pte_t *ptep)
1306{
1307 int young = __ptep_test_and_clear_young(vma, address, ptep);
1308
1309 if (young) {
1310 /*
1311 * We can elide the trailing DSB here since the worst that can
1312 * happen is that a CPU continues to use the young entry in its
1313 * TLB and we mistakenly reclaim the associated page. The
1314 * window for such an event is bounded by the next
1315 * context-switch, which provides a DSB to complete the TLB
1316 * invalidation.
1317 */
1318 flush_tlb_page_nosync(vma, address);
1319 }
1320
1321 return young;
1322}
1323
1324#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1325#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1326static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1327 unsigned long address,
1328 pmd_t *pmdp)
1329{
1330 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1331 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1332 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1333}
1334#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1335
1336static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm,
1337 unsigned long address,
1338 pte_t *ptep,
1339 unsigned long pgsize)
1340{
1341 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1342
1343 switch (pgsize) {
1344 case PAGE_SIZE:
1345 page_table_check_pte_clear(mm, address, pte);
1346 break;
1347 case PMD_SIZE:
1348 page_table_check_pmd_clear(mm, address, pte_pmd(pte));
1349 break;
1350#ifndef __PAGETABLE_PMD_FOLDED
1351 case PUD_SIZE:
1352 page_table_check_pud_clear(mm, address, pte_pud(pte));
1353 break;
1354#endif
1355 default:
1356 VM_WARN_ON(1);
1357 }
1358
1359 return pte;
1360}
1361
1362static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1363 unsigned long address, pte_t *ptep)
1364{
1365 return __ptep_get_and_clear_anysz(mm, address, ptep, PAGE_SIZE);
1366}
1367
1368static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1369 pte_t *ptep, unsigned int nr, int full)
1370{
1371 for (;;) {
1372 __ptep_get_and_clear(mm, addr, ptep);
1373 if (--nr == 0)
1374 break;
1375 ptep++;
1376 addr += PAGE_SIZE;
1377 }
1378}
1379
1380static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1381 unsigned long addr, pte_t *ptep,
1382 unsigned int nr, int full)
1383{
1384 pte_t pte, tmp_pte;
1385
1386 pte = __ptep_get_and_clear(mm, addr, ptep);
1387 while (--nr) {
1388 ptep++;
1389 addr += PAGE_SIZE;
1390 tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1391 if (pte_dirty(tmp_pte))
1392 pte = pte_mkdirty(pte);
1393 if (pte_young(tmp_pte))
1394 pte = pte_mkyoung(pte);
1395 }
1396 return pte;
1397}
1398
1399#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1400#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1401static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1402 unsigned long address, pmd_t *pmdp)
1403{
1404 return pte_pmd(__ptep_get_and_clear_anysz(mm, address, (pte_t *)pmdp, PMD_SIZE));
1405}
1406#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1407
1408static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1409 unsigned long address, pte_t *ptep,
1410 pte_t pte)
1411{
1412 pte_t old_pte;
1413
1414 do {
1415 old_pte = pte;
1416 pte = pte_wrprotect(pte);
1417 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1418 pte_val(old_pte), pte_val(pte));
1419 } while (pte_val(pte) != pte_val(old_pte));
1420}
1421
1422/*
1423 * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1424 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1425 */
1426static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1427 unsigned long address, pte_t *ptep)
1428{
1429 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1430}
1431
1432static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1433 pte_t *ptep, unsigned int nr)
1434{
1435 unsigned int i;
1436
1437 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1438 __ptep_set_wrprotect(mm, address, ptep);
1439}
1440
1441static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1442 unsigned long addr, pte_t *ptep,
1443 pte_t pte, cydp_t flags)
1444{
1445 pte_t old_pte;
1446
1447 do {
1448 old_pte = pte;
1449
1450 if (flags & CYDP_CLEAR_YOUNG)
1451 pte = pte_mkold(pte);
1452 if (flags & CYDP_CLEAR_DIRTY)
1453 pte = pte_mkclean(pte);
1454
1455 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1456 pte_val(old_pte), pte_val(pte));
1457 } while (pte_val(pte) != pte_val(old_pte));
1458}
1459
1460static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1461 unsigned long addr, pte_t *ptep,
1462 unsigned int nr, cydp_t flags)
1463{
1464 pte_t pte;
1465
1466 for (;;) {
1467 pte = __ptep_get(ptep);
1468
1469 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1470 __set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1471 else
1472 __clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1473
1474 if (--nr == 0)
1475 break;
1476 ptep++;
1477 addr += PAGE_SIZE;
1478 }
1479}
1480
1481#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1482#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1483static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1484 unsigned long address, pmd_t *pmdp)
1485{
1486 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1487}
1488
1489#define pmdp_establish pmdp_establish
1490static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1491 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1492{
1493 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
1494 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1495}
1496#endif
1497
1498/*
1499 * Encode and decode a swap entry:
1500 * bits 0-1: present (must be zero)
1501 * bits 2: remember PG_anon_exclusive
1502 * bit 3: remember uffd-wp state
1503 * bits 6-10: swap type
1504 * bit 11: PTE_PRESENT_INVALID (must be zero)
1505 * bits 12-61: swap offset
1506 */
1507#define __SWP_TYPE_SHIFT 6
1508#define __SWP_TYPE_BITS 5
1509#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
1510#define __SWP_OFFSET_SHIFT 12
1511#define __SWP_OFFSET_BITS 50
1512#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
1513
1514#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1515#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1516#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1517
1518#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1519#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
1520
1521#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1522#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1523#define __swp_entry_to_pmd(swp) __pmd((swp).val)
1524#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1525
1526/*
1527 * Ensure that there are not more swap files than can be encoded in the kernel
1528 * PTEs.
1529 */
1530#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1531
1532#ifdef CONFIG_ARM64_MTE
1533
1534#define __HAVE_ARCH_PREPARE_TO_SWAP
1535extern int arch_prepare_to_swap(struct folio *folio);
1536
1537#define __HAVE_ARCH_SWAP_INVALIDATE
1538static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1539{
1540 if (system_supports_mte())
1541 mte_invalidate_tags(type, offset);
1542}
1543
1544static inline void arch_swap_invalidate_area(int type)
1545{
1546 if (system_supports_mte())
1547 mte_invalidate_tags_area(type);
1548}
1549
1550#define __HAVE_ARCH_SWAP_RESTORE
1551extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1552
1553#endif /* CONFIG_ARM64_MTE */
1554
1555/*
1556 * On AArch64, the cache coherency is handled via the __set_ptes() function.
1557 */
1558static inline void update_mmu_cache_range(struct vm_fault *vmf,
1559 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1560 unsigned int nr)
1561{
1562 /*
1563 * We don't do anything here, so there's a very small chance of
1564 * us retaking a user fault which we just fixed up. The alternative
1565 * is doing a dsb(ishst), but that penalises the fastpath.
1566 */
1567}
1568
1569#define update_mmu_cache(vma, addr, ptep) \
1570 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1571#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1572
1573#ifdef CONFIG_ARM64_PA_BITS_52
1574#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1575#else
1576#define phys_to_ttbr(addr) (addr)
1577#endif
1578
1579/*
1580 * On arm64 without hardware Access Flag, copying from user will fail because
1581 * the pte is old and cannot be marked young. So we always end up with zeroed
1582 * page after fork() + CoW for pfn mappings. We don't always have a
1583 * hardware-managed access flag on arm64.
1584 */
1585#define arch_has_hw_pte_young cpu_has_hw_af
1586
1587#ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1588#define arch_has_hw_nonleaf_pmd_young system_supports_haft
1589#endif
1590
1591/*
1592 * Experimentally, it's cheap to set the access flag in hardware and we
1593 * benefit from prefaulting mappings as 'old' to start with.
1594 */
1595#define arch_wants_old_prefaulted_pte cpu_has_hw_af
1596
1597/*
1598 * Request exec memory is read into pagecache in at least 64K folios. This size
1599 * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB
1600 * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base
1601 * pages are in use.
1602 */
1603#define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT)
1604
1605static inline bool pud_sect_supported(void)
1606{
1607 return PAGE_SIZE == SZ_4K;
1608}
1609
1610
1611#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1612#define ptep_modify_prot_start ptep_modify_prot_start
1613extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1614 unsigned long addr, pte_t *ptep);
1615
1616#define ptep_modify_prot_commit ptep_modify_prot_commit
1617extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1618 unsigned long addr, pte_t *ptep,
1619 pte_t old_pte, pte_t new_pte);
1620
1621#define modify_prot_start_ptes modify_prot_start_ptes
1622extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma,
1623 unsigned long addr, pte_t *ptep,
1624 unsigned int nr);
1625
1626#define modify_prot_commit_ptes modify_prot_commit_ptes
1627extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1628 pte_t *ptep, pte_t old_pte, pte_t pte,
1629 unsigned int nr);
1630
1631#ifdef CONFIG_ARM64_CONTPTE
1632
1633/*
1634 * The contpte APIs are used to transparently manage the contiguous bit in ptes
1635 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1636 * a private implementation detail of the public ptep API (see below).
1637 */
1638extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1639 pte_t *ptep, pte_t pte);
1640extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1641 pte_t *ptep, pte_t pte);
1642extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1643extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1644extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1645 pte_t *ptep, pte_t pte, unsigned int nr);
1646extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1647 pte_t *ptep, unsigned int nr, int full);
1648extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1649 unsigned long addr, pte_t *ptep,
1650 unsigned int nr, int full);
1651extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1652 unsigned long addr, pte_t *ptep);
1653extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1654 unsigned long addr, pte_t *ptep);
1655extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1656 pte_t *ptep, unsigned int nr);
1657extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1658 unsigned long addr, pte_t *ptep,
1659 pte_t entry, int dirty);
1660extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1661 unsigned long addr, pte_t *ptep,
1662 unsigned int nr, cydp_t flags);
1663
1664static __always_inline void contpte_try_fold(struct mm_struct *mm,
1665 unsigned long addr, pte_t *ptep, pte_t pte)
1666{
1667 /*
1668 * Only bother trying if both the virtual and physical addresses are
1669 * aligned and correspond to the last entry in a contig range. The core
1670 * code mostly modifies ranges from low to high, so this is the likely
1671 * the last modification in the contig range, so a good time to fold.
1672 * We can't fold special mappings, because there is no associated folio.
1673 */
1674
1675 const unsigned long contmask = CONT_PTES - 1;
1676 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1677
1678 if (unlikely(valign)) {
1679 bool palign = (pte_pfn(pte) & contmask) == contmask;
1680
1681 if (unlikely(palign &&
1682 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1683 __contpte_try_fold(mm, addr, ptep, pte);
1684 }
1685}
1686
1687static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1688 unsigned long addr, pte_t *ptep, pte_t pte)
1689{
1690 if (unlikely(pte_valid_cont(pte)))
1691 __contpte_try_unfold(mm, addr, ptep, pte);
1692}
1693
1694#define pte_batch_hint pte_batch_hint
1695static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1696{
1697 if (!pte_valid_cont(pte))
1698 return 1;
1699
1700 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1701}
1702
1703/*
1704 * The below functions constitute the public API that arm64 presents to the
1705 * core-mm to manipulate PTE entries within their page tables (or at least this
1706 * is the subset of the API that arm64 needs to implement). These public
1707 * versions will automatically and transparently apply the contiguous bit where
1708 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1709 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1710 * private versions, which are prefixed with double underscore. All of these
1711 * APIs except for ptep_get_lockless() are expected to be called with the PTL
1712 * held. Although the contiguous bit is considered private to the
1713 * implementation, it is deliberately allowed to leak through the getters (e.g.
1714 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1715 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1716 * its possible a pte will be passed to a setter with the contiguous bit set, so
1717 * we explicitly clear the contiguous bit in those cases to prevent accidentally
1718 * setting it in the pgtable.
1719 */
1720
1721#define ptep_get ptep_get
1722static inline pte_t ptep_get(pte_t *ptep)
1723{
1724 pte_t pte = __ptep_get(ptep);
1725
1726 if (likely(!pte_valid_cont(pte)))
1727 return pte;
1728
1729 return contpte_ptep_get(ptep, pte);
1730}
1731
1732#define ptep_get_lockless ptep_get_lockless
1733static inline pte_t ptep_get_lockless(pte_t *ptep)
1734{
1735 pte_t pte = __ptep_get(ptep);
1736
1737 if (likely(!pte_valid_cont(pte)))
1738 return pte;
1739
1740 return contpte_ptep_get_lockless(ptep);
1741}
1742
1743static inline void set_pte(pte_t *ptep, pte_t pte)
1744{
1745 /*
1746 * We don't have the mm or vaddr so cannot unfold contig entries (since
1747 * it requires tlb maintenance). set_pte() is not used in core code, so
1748 * this should never even be called. Regardless do our best to service
1749 * any call and emit a warning if there is any attempt to set a pte on
1750 * top of an existing contig range.
1751 */
1752 pte_t orig_pte = __ptep_get(ptep);
1753
1754 WARN_ON_ONCE(pte_valid_cont(orig_pte));
1755 __set_pte(ptep, pte_mknoncont(pte));
1756}
1757
1758#define set_ptes set_ptes
1759static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1760 pte_t *ptep, pte_t pte, unsigned int nr)
1761{
1762 pte = pte_mknoncont(pte);
1763
1764 if (likely(nr == 1)) {
1765 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1766 __set_ptes(mm, addr, ptep, pte, 1);
1767 contpte_try_fold(mm, addr, ptep, pte);
1768 } else {
1769 contpte_set_ptes(mm, addr, ptep, pte, nr);
1770 }
1771}
1772
1773static inline void pte_clear(struct mm_struct *mm,
1774 unsigned long addr, pte_t *ptep)
1775{
1776 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1777 __pte_clear(mm, addr, ptep);
1778}
1779
1780#define clear_full_ptes clear_full_ptes
1781static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1782 pte_t *ptep, unsigned int nr, int full)
1783{
1784 if (likely(nr == 1)) {
1785 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1786 __clear_full_ptes(mm, addr, ptep, nr, full);
1787 } else {
1788 contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1789 }
1790}
1791
1792#define get_and_clear_full_ptes get_and_clear_full_ptes
1793static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1794 unsigned long addr, pte_t *ptep,
1795 unsigned int nr, int full)
1796{
1797 pte_t pte;
1798
1799 if (likely(nr == 1)) {
1800 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1801 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1802 } else {
1803 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1804 }
1805
1806 return pte;
1807}
1808
1809#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1810static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1811 unsigned long addr, pte_t *ptep)
1812{
1813 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1814 return __ptep_get_and_clear(mm, addr, ptep);
1815}
1816
1817#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1818static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1819 unsigned long addr, pte_t *ptep)
1820{
1821 pte_t orig_pte = __ptep_get(ptep);
1822
1823 if (likely(!pte_valid_cont(orig_pte)))
1824 return __ptep_test_and_clear_young(vma, addr, ptep);
1825
1826 return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1827}
1828
1829#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1830static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1831 unsigned long addr, pte_t *ptep)
1832{
1833 pte_t orig_pte = __ptep_get(ptep);
1834
1835 if (likely(!pte_valid_cont(orig_pte)))
1836 return __ptep_clear_flush_young(vma, addr, ptep);
1837
1838 return contpte_ptep_clear_flush_young(vma, addr, ptep);
1839}
1840
1841#define wrprotect_ptes wrprotect_ptes
1842static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1843 unsigned long addr, pte_t *ptep, unsigned int nr)
1844{
1845 if (likely(nr == 1)) {
1846 /*
1847 * Optimization: wrprotect_ptes() can only be called for present
1848 * ptes so we only need to check contig bit as condition for
1849 * unfold, and we can remove the contig bit from the pte we read
1850 * to avoid re-reading. This speeds up fork() which is sensitive
1851 * for order-0 folios. Equivalent to contpte_try_unfold().
1852 */
1853 pte_t orig_pte = __ptep_get(ptep);
1854
1855 if (unlikely(pte_cont(orig_pte))) {
1856 __contpte_try_unfold(mm, addr, ptep, orig_pte);
1857 orig_pte = pte_mknoncont(orig_pte);
1858 }
1859 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1860 } else {
1861 contpte_wrprotect_ptes(mm, addr, ptep, nr);
1862 }
1863}
1864
1865#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1866static inline void ptep_set_wrprotect(struct mm_struct *mm,
1867 unsigned long addr, pte_t *ptep)
1868{
1869 wrprotect_ptes(mm, addr, ptep, 1);
1870}
1871
1872#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1873static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1874 unsigned long addr, pte_t *ptep,
1875 pte_t entry, int dirty)
1876{
1877 pte_t orig_pte = __ptep_get(ptep);
1878
1879 entry = pte_mknoncont(entry);
1880
1881 if (likely(!pte_valid_cont(orig_pte)))
1882 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1883
1884 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1885}
1886
1887#define clear_young_dirty_ptes clear_young_dirty_ptes
1888static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1889 unsigned long addr, pte_t *ptep,
1890 unsigned int nr, cydp_t flags)
1891{
1892 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1893 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1894 else
1895 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1896}
1897
1898#else /* CONFIG_ARM64_CONTPTE */
1899
1900#define ptep_get __ptep_get
1901#define set_pte __set_pte
1902#define set_ptes __set_ptes
1903#define pte_clear __pte_clear
1904#define clear_full_ptes __clear_full_ptes
1905#define get_and_clear_full_ptes __get_and_clear_full_ptes
1906#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1907#define ptep_get_and_clear __ptep_get_and_clear
1908#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1909#define ptep_test_and_clear_young __ptep_test_and_clear_young
1910#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1911#define ptep_clear_flush_young __ptep_clear_flush_young
1912#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1913#define ptep_set_wrprotect __ptep_set_wrprotect
1914#define wrprotect_ptes __wrprotect_ptes
1915#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1916#define ptep_set_access_flags __ptep_set_access_flags
1917#define clear_young_dirty_ptes __clear_young_dirty_ptes
1918
1919#endif /* CONFIG_ARM64_CONTPTE */
1920
1921#endif /* !__ASSEMBLER__ */
1922
1923#endif /* __ASM_PGTABLE_H */