Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Based on arch/arm/include/asm/memory.h
4 *
5 * Copyright (C) 2000-2002 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * Note: this file should not be included by non-asm/.h files
9 */
10#ifndef __ASM_MEMORY_H
11#define __ASM_MEMORY_H
12
13#include <linux/const.h>
14#include <linux/sizes.h>
15#include <asm/page-def.h>
16
17/*
18 * Size of the PCI I/O space. This must remain a power of two so that
19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
20 */
21#define PCI_IO_SIZE SZ_16M
22
23/*
24 * VMEMMAP_SIZE - allows the whole linear region to be covered by
25 * a struct page array
26 *
27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
28 * needs to cover the memory region from the beginning of the 52-bit
29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end
31 * of the VMEMMAP where 52-bit support is not available in hardware.
32 */
33#define VMEMMAP_RANGE (_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET)
34#define VMEMMAP_SIZE ((VMEMMAP_RANGE >> PAGE_SHIFT) * sizeof(struct page))
35
36/*
37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the
38 * start of the TTBR1 address space.
39 * PAGE_END - the end of the linear map, where all other kernel mappings begin.
40 * KIMAGE_VADDR - the virtual address of the start of the kernel image.
41 * VA_BITS - the maximum number of bits for virtual addresses.
42 */
43#define VA_BITS (CONFIG_ARM64_VA_BITS)
44#define _PAGE_OFFSET(va) (-(UL(1) << (va)))
45#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS))
46#define KIMAGE_VADDR (MODULES_END)
47#define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
48#define MODULES_VADDR (_PAGE_END(VA_BITS_MIN))
49#define MODULES_VSIZE (SZ_2G)
50#define VMEMMAP_START (VMEMMAP_END - VMEMMAP_SIZE)
51#define VMEMMAP_END (-UL(SZ_1G))
52#define PCI_IO_START (VMEMMAP_END + SZ_8M)
53#define PCI_IO_END (PCI_IO_START + PCI_IO_SIZE)
54#define FIXADDR_TOP (-UL(SZ_8M))
55
56#if VA_BITS > 48
57#ifdef CONFIG_ARM64_16K_PAGES
58#define VA_BITS_MIN (47)
59#else
60#define VA_BITS_MIN (48)
61#endif
62#else
63#define VA_BITS_MIN (VA_BITS)
64#endif
65
66#define _PAGE_END(va) (-(UL(1) << ((va) - 1)))
67
68#define KERNEL_START _text
69#define KERNEL_END _end
70
71/*
72 * Generic and Software Tag-Based KASAN modes require 1/8th and 1/16th of the
73 * kernel virtual address space for storing the shadow memory respectively.
74 *
75 * The mapping between a virtual memory address and its corresponding shadow
76 * memory address is defined based on the formula:
77 *
78 * shadow_addr = (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET
79 *
80 * where KASAN_SHADOW_SCALE_SHIFT is the order of the number of bits that map
81 * to a single shadow byte and KASAN_SHADOW_OFFSET is a constant that offsets
82 * the mapping. Note that KASAN_SHADOW_OFFSET does not point to the start of
83 * the shadow memory region.
84 *
85 * Based on this mapping, we define two constants:
86 *
87 * KASAN_SHADOW_START: the start of the shadow memory region;
88 * KASAN_SHADOW_END: the end of the shadow memory region.
89 *
90 * KASAN_SHADOW_END is defined first as the shadow address that corresponds to
91 * the upper bound of possible virtual kernel memory addresses UL(1) << 64
92 * according to the mapping formula.
93 *
94 * KASAN_SHADOW_START is defined second based on KASAN_SHADOW_END. The shadow
95 * memory start must map to the lowest possible kernel virtual memory address
96 * and thus it depends on the actual bitness of the address space.
97 *
98 * As KASAN inserts redzones between stack variables, this increases the stack
99 * memory usage significantly. Thus, we double the (minimum) stack size.
100 */
101#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
102#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
103#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) + KASAN_SHADOW_OFFSET)
104#define _KASAN_SHADOW_START(va) (KASAN_SHADOW_END - (UL(1) << ((va) - KASAN_SHADOW_SCALE_SHIFT)))
105#define KASAN_SHADOW_START _KASAN_SHADOW_START(vabits_actual)
106#define PAGE_END KASAN_SHADOW_START
107#define KASAN_THREAD_SHIFT 1
108#else
109#define KASAN_THREAD_SHIFT 0
110#define PAGE_END (_PAGE_END(VA_BITS_MIN))
111#endif /* CONFIG_KASAN */
112
113#define DIRECT_MAP_PHYSMEM_END __pa(PAGE_END - 1)
114
115#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
116
117/*
118 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
119 * stacks are a multiple of page size.
120 */
121#if (MIN_THREAD_SHIFT < PAGE_SHIFT)
122#define THREAD_SHIFT PAGE_SHIFT
123#else
124#define THREAD_SHIFT MIN_THREAD_SHIFT
125#endif
126
127#if THREAD_SHIFT >= PAGE_SHIFT
128#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
129#endif
130
131#define THREAD_SIZE (UL(1) << THREAD_SHIFT)
132
133/*
134 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
135 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
136 * assembly.
137 */
138#define THREAD_ALIGN (2 * THREAD_SIZE)
139
140#define IRQ_STACK_SIZE THREAD_SIZE
141
142#define OVERFLOW_STACK_SIZE SZ_4K
143
144#define NVHE_STACK_SHIFT PAGE_SHIFT
145#define NVHE_STACK_SIZE (UL(1) << NVHE_STACK_SHIFT)
146
147/*
148 * With the minimum frame size of [x29, x30], exactly half the combined
149 * sizes of the hyp and overflow stacks is the maximum size needed to
150 * save the unwinded stacktrace; plus an additional entry to delimit the
151 * end.
152 */
153#define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + NVHE_STACK_SIZE) / 2 + sizeof(long))
154
155/*
156 * Alignment of kernel segments (e.g. .text, .data).
157 *
158 * 4 KB granule: 16 level 3 entries, with contiguous bit
159 * 16 KB granule: 4 level 3 entries, without contiguous bit
160 * 64 KB granule: 1 level 3 entry
161 */
162#define SEGMENT_ALIGN SZ_64K
163
164/*
165 * Memory types available.
166 *
167 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in
168 * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note
169 * that protection_map[] only contains MT_NORMAL attributes.
170 */
171#define MT_NORMAL 0
172#define MT_NORMAL_TAGGED 1
173#define MT_NORMAL_NC 2
174#define MT_DEVICE_nGnRnE 3
175#define MT_DEVICE_nGnRE 4
176
177/*
178 * Memory types for Stage-2 translation
179 */
180#define MT_S2_NORMAL 0xf
181#define MT_S2_NORMAL_NC 0x5
182#define MT_S2_DEVICE_nGnRE 0x1
183
184/*
185 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
186 * Stage-2 enforces Normal-WB and Device-nGnRE
187 */
188#define MT_S2_FWB_NORMAL 6
189#define MT_S2_FWB_NORMAL_NC 5
190#define MT_S2_FWB_DEVICE_nGnRE 1
191
192#ifdef CONFIG_ARM64_4K_PAGES
193#define IOREMAP_MAX_ORDER (PUD_SHIFT)
194#else
195#define IOREMAP_MAX_ORDER (PMD_SHIFT)
196#endif
197
198/*
199 * Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated
200 * until link time.
201 */
202#define RESERVED_SWAPPER_OFFSET (PAGE_SIZE)
203
204/*
205 * Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated
206 * until link time.
207 */
208#define TRAMP_SWAPPER_OFFSET (2 * PAGE_SIZE)
209
210#ifndef __ASSEMBLER__
211
212#include <linux/bitops.h>
213#include <linux/compiler.h>
214#include <linux/mmdebug.h>
215#include <linux/types.h>
216#include <asm/boot.h>
217#include <asm/bug.h>
218#include <asm/sections.h>
219#include <asm/sysreg.h>
220
221static inline u64 __pure read_tcr(void)
222{
223 u64 tcr;
224
225 // read_sysreg() uses asm volatile, so avoid it here
226 asm("mrs %0, tcr_el1" : "=r"(tcr));
227 return tcr;
228}
229
230#if VA_BITS > 48
231// For reasons of #include hell, we can't use TCR_T1SZ_OFFSET/TCR_T1SZ_MASK here
232#define vabits_actual (64 - ((read_tcr() >> 16) & 63))
233#else
234#define vabits_actual ((u64)VA_BITS)
235#endif
236
237extern s64 memstart_addr;
238/* PHYS_OFFSET - the physical address of the start of memory. */
239#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
240
241/* the offset between the kernel virtual and physical mappings */
242extern u64 kimage_voffset;
243
244static inline unsigned long kaslr_offset(void)
245{
246 return (u64)&_text - KIMAGE_VADDR;
247}
248
249#ifdef CONFIG_RANDOMIZE_BASE
250void kaslr_init(void);
251static inline bool kaslr_enabled(void)
252{
253 extern bool __kaslr_is_enabled;
254 return __kaslr_is_enabled;
255}
256#else
257static inline void kaslr_init(void) { }
258static inline bool kaslr_enabled(void) { return false; }
259#endif
260
261/*
262 * Allow all memory at the discovery stage. We will clip it later.
263 */
264#define MIN_MEMBLOCK_ADDR 0
265#define MAX_MEMBLOCK_ADDR U64_MAX
266
267/*
268 * PFNs are used to describe any physical page; this means
269 * PFN 0 == physical address 0.
270 *
271 * This is the PFN of the first RAM page in the kernel
272 * direct-mapped view. We assume this is the first page
273 * of RAM in the mem_map as well.
274 */
275#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
276
277/*
278 * When dealing with data aborts, watchpoints, or instruction traps we may end
279 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
280 * pass on to access_ok(), for instance.
281 */
282#define __untagged_addr(addr) \
283 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
284
285#define untagged_addr(addr) ({ \
286 u64 __addr = (__force u64)(addr); \
287 __addr &= __untagged_addr(__addr); \
288 (__force __typeof__(addr))__addr; \
289})
290
291#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
292#define __tag_shifted(tag) ((u64)(tag) << 56)
293#define __tag_reset(addr) __untagged_addr(addr)
294#define __tag_get(addr) (__u8)((u64)(addr) >> 56)
295#else
296#define __tag_shifted(tag) 0UL
297#define __tag_reset(addr) (addr)
298#define __tag_get(addr) 0
299#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
300
301static inline const void *__tag_set(const void *addr, u8 tag)
302{
303 u64 __addr = (u64)addr & ~__tag_shifted(0xff);
304 return (const void *)(__addr | __tag_shifted(tag));
305}
306
307#ifdef CONFIG_KASAN_HW_TAGS
308#define arch_enable_tag_checks_sync() mte_enable_kernel_sync()
309#define arch_enable_tag_checks_async() mte_enable_kernel_async()
310#define arch_enable_tag_checks_asymm() mte_enable_kernel_asymm()
311#define arch_enable_tag_checks_write_only() mte_enable_kernel_store_only()
312#define arch_suppress_tag_checks_start() mte_enable_tco()
313#define arch_suppress_tag_checks_stop() mte_disable_tco()
314#define arch_force_async_tag_fault() mte_check_tfsr_exit()
315#define arch_get_random_tag() mte_get_random_tag()
316#define arch_get_mem_tag(addr) mte_get_mem_tag(addr)
317#define arch_set_mem_tag_range(addr, size, tag, init) \
318 mte_set_mem_tag_range((addr), (size), (tag), (init))
319#endif /* CONFIG_KASAN_HW_TAGS */
320
321/*
322 * Physical vs virtual RAM address space conversion. These are
323 * private definitions which should NOT be used outside memory.h
324 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
325 */
326
327
328/*
329 * Check whether an arbitrary address is within the linear map, which
330 * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the
331 * kernel's TTBR1 address range.
332 */
333#define __is_lm_address(addr) (((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET))
334
335#define __lm_to_phys(addr) (((addr) - PAGE_OFFSET) + PHYS_OFFSET)
336#define __kimg_to_phys(addr) ((addr) - kimage_voffset)
337
338#define __virt_to_phys_nodebug(x) ({ \
339 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \
340 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \
341})
342
343#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
344
345#ifdef CONFIG_DEBUG_VIRTUAL
346extern phys_addr_t __virt_to_phys(unsigned long x);
347extern phys_addr_t __phys_addr_symbol(unsigned long x);
348#else
349#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
350#define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
351#endif /* CONFIG_DEBUG_VIRTUAL */
352
353#define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
354#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
355
356/*
357 * Note: Drivers should NOT use these. They are the wrong
358 * translation for translating DMA addresses. Use the driver
359 * DMA support - see dma-mapping.h.
360 */
361#define virt_to_phys virt_to_phys
362static inline phys_addr_t virt_to_phys(const volatile void *x)
363{
364 return __virt_to_phys((unsigned long)(x));
365}
366
367#define phys_to_virt phys_to_virt
368static inline void *phys_to_virt(phys_addr_t x)
369{
370 return (void *)(__phys_to_virt(x));
371}
372
373/* Needed already here for resolving __phys_to_pfn() in virt_to_pfn() */
374#include <asm-generic/memory_model.h>
375
376static inline unsigned long virt_to_pfn(const void *kaddr)
377{
378 return __phys_to_pfn(virt_to_phys(kaddr));
379}
380
381/*
382 * Drivers should NOT use these either.
383 */
384#define __pa(x) __virt_to_phys((unsigned long)(x))
385#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
386#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
387#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
388#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
389#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
390
391/*
392 * virt_to_page(x) convert a _valid_ virtual address to struct page *
393 * virt_addr_valid(x) indicates whether a virtual address is valid
394 */
395
396#if defined(CONFIG_DEBUG_VIRTUAL)
397#define page_to_virt(x) ({ \
398 __typeof__(x) __page = x; \
399 void *__addr = __va(page_to_phys(__page)); \
400 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
401})
402#define virt_to_page(x) pfn_to_page(virt_to_pfn(x))
403#else
404#define page_to_virt(x) ({ \
405 __typeof__(x) __page = x; \
406 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
407 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \
408 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
409})
410
411#define virt_to_page(x) ({ \
412 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \
413 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \
414 (struct page *)__addr; \
415})
416#endif /* CONFIG_DEBUG_VIRTUAL */
417
418#define virt_addr_valid(addr) ({ \
419 __typeof__(addr) __addr = __tag_reset(addr); \
420 __is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr)); \
421})
422
423void dump_mem_limit(void);
424#endif /* !__ASSEMBLER__ */
425
426/*
427 * Given that the GIC architecture permits ITS implementations that can only be
428 * configured with a LPI table address once, GICv3 systems with many CPUs may
429 * end up reserving a lot of different regions after a kexec for their LPI
430 * tables (one per CPU), as we are forced to reuse the same memory after kexec
431 * (and thus reserve it persistently with EFI beforehand)
432 */
433#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
434# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
435#endif
436
437/*
438 * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory
439 * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into
440 * multiple parts. As a result, the number of memory regions is large.
441 */
442#ifdef CONFIG_EFI
443#define INIT_MEMBLOCK_MEMORY_REGIONS (INIT_MEMBLOCK_REGIONS * 8)
444#endif
445
446
447#endif /* __ASM_MEMORY_H */