at master 447 lines 14 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10#ifndef __ASM_MEMORY_H 11#define __ASM_MEMORY_H 12 13#include <linux/const.h> 14#include <linux/sizes.h> 15#include <asm/page-def.h> 16 17/* 18 * Size of the PCI I/O space. This must remain a power of two so that 19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 20 */ 21#define PCI_IO_SIZE SZ_16M 22 23/* 24 * VMEMMAP_SIZE - allows the whole linear region to be covered by 25 * a struct page array 26 * 27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 28 * needs to cover the memory region from the beginning of the 52-bit 29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 31 * of the VMEMMAP where 52-bit support is not available in hardware. 32 */ 33#define VMEMMAP_RANGE (_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) 34#define VMEMMAP_SIZE ((VMEMMAP_RANGE >> PAGE_SHIFT) * sizeof(struct page)) 35 36/* 37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 38 * start of the TTBR1 address space. 39 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 40 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 41 * VA_BITS - the maximum number of bits for virtual addresses. 42 */ 43#define VA_BITS (CONFIG_ARM64_VA_BITS) 44#define _PAGE_OFFSET(va) (-(UL(1) << (va))) 45#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 46#define KIMAGE_VADDR (MODULES_END) 47#define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 48#define MODULES_VADDR (_PAGE_END(VA_BITS_MIN)) 49#define MODULES_VSIZE (SZ_2G) 50#define VMEMMAP_START (VMEMMAP_END - VMEMMAP_SIZE) 51#define VMEMMAP_END (-UL(SZ_1G)) 52#define PCI_IO_START (VMEMMAP_END + SZ_8M) 53#define PCI_IO_END (PCI_IO_START + PCI_IO_SIZE) 54#define FIXADDR_TOP (-UL(SZ_8M)) 55 56#if VA_BITS > 48 57#ifdef CONFIG_ARM64_16K_PAGES 58#define VA_BITS_MIN (47) 59#else 60#define VA_BITS_MIN (48) 61#endif 62#else 63#define VA_BITS_MIN (VA_BITS) 64#endif 65 66#define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 67 68#define KERNEL_START _text 69#define KERNEL_END _end 70 71/* 72 * Generic and Software Tag-Based KASAN modes require 1/8th and 1/16th of the 73 * kernel virtual address space for storing the shadow memory respectively. 74 * 75 * The mapping between a virtual memory address and its corresponding shadow 76 * memory address is defined based on the formula: 77 * 78 * shadow_addr = (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET 79 * 80 * where KASAN_SHADOW_SCALE_SHIFT is the order of the number of bits that map 81 * to a single shadow byte and KASAN_SHADOW_OFFSET is a constant that offsets 82 * the mapping. Note that KASAN_SHADOW_OFFSET does not point to the start of 83 * the shadow memory region. 84 * 85 * Based on this mapping, we define two constants: 86 * 87 * KASAN_SHADOW_START: the start of the shadow memory region; 88 * KASAN_SHADOW_END: the end of the shadow memory region. 89 * 90 * KASAN_SHADOW_END is defined first as the shadow address that corresponds to 91 * the upper bound of possible virtual kernel memory addresses UL(1) << 64 92 * according to the mapping formula. 93 * 94 * KASAN_SHADOW_START is defined second based on KASAN_SHADOW_END. The shadow 95 * memory start must map to the lowest possible kernel virtual memory address 96 * and thus it depends on the actual bitness of the address space. 97 * 98 * As KASAN inserts redzones between stack variables, this increases the stack 99 * memory usage significantly. Thus, we double the (minimum) stack size. 100 */ 101#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 102#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 103#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) + KASAN_SHADOW_OFFSET) 104#define _KASAN_SHADOW_START(va) (KASAN_SHADOW_END - (UL(1) << ((va) - KASAN_SHADOW_SCALE_SHIFT))) 105#define KASAN_SHADOW_START _KASAN_SHADOW_START(vabits_actual) 106#define PAGE_END KASAN_SHADOW_START 107#define KASAN_THREAD_SHIFT 1 108#else 109#define KASAN_THREAD_SHIFT 0 110#define PAGE_END (_PAGE_END(VA_BITS_MIN)) 111#endif /* CONFIG_KASAN */ 112 113#define DIRECT_MAP_PHYSMEM_END __pa(PAGE_END - 1) 114 115#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 116 117/* 118 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 119 * stacks are a multiple of page size. 120 */ 121#if (MIN_THREAD_SHIFT < PAGE_SHIFT) 122#define THREAD_SHIFT PAGE_SHIFT 123#else 124#define THREAD_SHIFT MIN_THREAD_SHIFT 125#endif 126 127#if THREAD_SHIFT >= PAGE_SHIFT 128#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 129#endif 130 131#define THREAD_SIZE (UL(1) << THREAD_SHIFT) 132 133/* 134 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 135 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 136 * assembly. 137 */ 138#define THREAD_ALIGN (2 * THREAD_SIZE) 139 140#define IRQ_STACK_SIZE THREAD_SIZE 141 142#define OVERFLOW_STACK_SIZE SZ_4K 143 144#define NVHE_STACK_SHIFT PAGE_SHIFT 145#define NVHE_STACK_SIZE (UL(1) << NVHE_STACK_SHIFT) 146 147/* 148 * With the minimum frame size of [x29, x30], exactly half the combined 149 * sizes of the hyp and overflow stacks is the maximum size needed to 150 * save the unwinded stacktrace; plus an additional entry to delimit the 151 * end. 152 */ 153#define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + NVHE_STACK_SIZE) / 2 + sizeof(long)) 154 155/* 156 * Alignment of kernel segments (e.g. .text, .data). 157 * 158 * 4 KB granule: 16 level 3 entries, with contiguous bit 159 * 16 KB granule: 4 level 3 entries, without contiguous bit 160 * 64 KB granule: 1 level 3 entry 161 */ 162#define SEGMENT_ALIGN SZ_64K 163 164/* 165 * Memory types available. 166 * 167 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in 168 * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note 169 * that protection_map[] only contains MT_NORMAL attributes. 170 */ 171#define MT_NORMAL 0 172#define MT_NORMAL_TAGGED 1 173#define MT_NORMAL_NC 2 174#define MT_DEVICE_nGnRnE 3 175#define MT_DEVICE_nGnRE 4 176 177/* 178 * Memory types for Stage-2 translation 179 */ 180#define MT_S2_NORMAL 0xf 181#define MT_S2_NORMAL_NC 0x5 182#define MT_S2_DEVICE_nGnRE 0x1 183 184/* 185 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 186 * Stage-2 enforces Normal-WB and Device-nGnRE 187 */ 188#define MT_S2_FWB_NORMAL 6 189#define MT_S2_FWB_NORMAL_NC 5 190#define MT_S2_FWB_DEVICE_nGnRE 1 191 192#ifdef CONFIG_ARM64_4K_PAGES 193#define IOREMAP_MAX_ORDER (PUD_SHIFT) 194#else 195#define IOREMAP_MAX_ORDER (PMD_SHIFT) 196#endif 197 198/* 199 * Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated 200 * until link time. 201 */ 202#define RESERVED_SWAPPER_OFFSET (PAGE_SIZE) 203 204/* 205 * Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated 206 * until link time. 207 */ 208#define TRAMP_SWAPPER_OFFSET (2 * PAGE_SIZE) 209 210#ifndef __ASSEMBLER__ 211 212#include <linux/bitops.h> 213#include <linux/compiler.h> 214#include <linux/mmdebug.h> 215#include <linux/types.h> 216#include <asm/boot.h> 217#include <asm/bug.h> 218#include <asm/sections.h> 219#include <asm/sysreg.h> 220 221static inline u64 __pure read_tcr(void) 222{ 223 u64 tcr; 224 225 // read_sysreg() uses asm volatile, so avoid it here 226 asm("mrs %0, tcr_el1" : "=r"(tcr)); 227 return tcr; 228} 229 230#if VA_BITS > 48 231// For reasons of #include hell, we can't use TCR_T1SZ_OFFSET/TCR_T1SZ_MASK here 232#define vabits_actual (64 - ((read_tcr() >> 16) & 63)) 233#else 234#define vabits_actual ((u64)VA_BITS) 235#endif 236 237extern s64 memstart_addr; 238/* PHYS_OFFSET - the physical address of the start of memory. */ 239#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 240 241/* the offset between the kernel virtual and physical mappings */ 242extern u64 kimage_voffset; 243 244static inline unsigned long kaslr_offset(void) 245{ 246 return (u64)&_text - KIMAGE_VADDR; 247} 248 249#ifdef CONFIG_RANDOMIZE_BASE 250void kaslr_init(void); 251static inline bool kaslr_enabled(void) 252{ 253 extern bool __kaslr_is_enabled; 254 return __kaslr_is_enabled; 255} 256#else 257static inline void kaslr_init(void) { } 258static inline bool kaslr_enabled(void) { return false; } 259#endif 260 261/* 262 * Allow all memory at the discovery stage. We will clip it later. 263 */ 264#define MIN_MEMBLOCK_ADDR 0 265#define MAX_MEMBLOCK_ADDR U64_MAX 266 267/* 268 * PFNs are used to describe any physical page; this means 269 * PFN 0 == physical address 0. 270 * 271 * This is the PFN of the first RAM page in the kernel 272 * direct-mapped view. We assume this is the first page 273 * of RAM in the mem_map as well. 274 */ 275#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 276 277/* 278 * When dealing with data aborts, watchpoints, or instruction traps we may end 279 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 280 * pass on to access_ok(), for instance. 281 */ 282#define __untagged_addr(addr) \ 283 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 284 285#define untagged_addr(addr) ({ \ 286 u64 __addr = (__force u64)(addr); \ 287 __addr &= __untagged_addr(__addr); \ 288 (__force __typeof__(addr))__addr; \ 289}) 290 291#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 292#define __tag_shifted(tag) ((u64)(tag) << 56) 293#define __tag_reset(addr) __untagged_addr(addr) 294#define __tag_get(addr) (__u8)((u64)(addr) >> 56) 295#else 296#define __tag_shifted(tag) 0UL 297#define __tag_reset(addr) (addr) 298#define __tag_get(addr) 0 299#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 300 301static inline const void *__tag_set(const void *addr, u8 tag) 302{ 303 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 304 return (const void *)(__addr | __tag_shifted(tag)); 305} 306 307#ifdef CONFIG_KASAN_HW_TAGS 308#define arch_enable_tag_checks_sync() mte_enable_kernel_sync() 309#define arch_enable_tag_checks_async() mte_enable_kernel_async() 310#define arch_enable_tag_checks_asymm() mte_enable_kernel_asymm() 311#define arch_enable_tag_checks_write_only() mte_enable_kernel_store_only() 312#define arch_suppress_tag_checks_start() mte_enable_tco() 313#define arch_suppress_tag_checks_stop() mte_disable_tco() 314#define arch_force_async_tag_fault() mte_check_tfsr_exit() 315#define arch_get_random_tag() mte_get_random_tag() 316#define arch_get_mem_tag(addr) mte_get_mem_tag(addr) 317#define arch_set_mem_tag_range(addr, size, tag, init) \ 318 mte_set_mem_tag_range((addr), (size), (tag), (init)) 319#endif /* CONFIG_KASAN_HW_TAGS */ 320 321/* 322 * Physical vs virtual RAM address space conversion. These are 323 * private definitions which should NOT be used outside memory.h 324 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 325 */ 326 327 328/* 329 * Check whether an arbitrary address is within the linear map, which 330 * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the 331 * kernel's TTBR1 address range. 332 */ 333#define __is_lm_address(addr) (((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET)) 334 335#define __lm_to_phys(addr) (((addr) - PAGE_OFFSET) + PHYS_OFFSET) 336#define __kimg_to_phys(addr) ((addr) - kimage_voffset) 337 338#define __virt_to_phys_nodebug(x) ({ \ 339 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 340 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 341}) 342 343#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 344 345#ifdef CONFIG_DEBUG_VIRTUAL 346extern phys_addr_t __virt_to_phys(unsigned long x); 347extern phys_addr_t __phys_addr_symbol(unsigned long x); 348#else 349#define __virt_to_phys(x) __virt_to_phys_nodebug(x) 350#define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 351#endif /* CONFIG_DEBUG_VIRTUAL */ 352 353#define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET) 354#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 355 356/* 357 * Note: Drivers should NOT use these. They are the wrong 358 * translation for translating DMA addresses. Use the driver 359 * DMA support - see dma-mapping.h. 360 */ 361#define virt_to_phys virt_to_phys 362static inline phys_addr_t virt_to_phys(const volatile void *x) 363{ 364 return __virt_to_phys((unsigned long)(x)); 365} 366 367#define phys_to_virt phys_to_virt 368static inline void *phys_to_virt(phys_addr_t x) 369{ 370 return (void *)(__phys_to_virt(x)); 371} 372 373/* Needed already here for resolving __phys_to_pfn() in virt_to_pfn() */ 374#include <asm-generic/memory_model.h> 375 376static inline unsigned long virt_to_pfn(const void *kaddr) 377{ 378 return __phys_to_pfn(virt_to_phys(kaddr)); 379} 380 381/* 382 * Drivers should NOT use these either. 383 */ 384#define __pa(x) __virt_to_phys((unsigned long)(x)) 385#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 386#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 387#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 388#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 389#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 390 391/* 392 * virt_to_page(x) convert a _valid_ virtual address to struct page * 393 * virt_addr_valid(x) indicates whether a virtual address is valid 394 */ 395 396#if defined(CONFIG_DEBUG_VIRTUAL) 397#define page_to_virt(x) ({ \ 398 __typeof__(x) __page = x; \ 399 void *__addr = __va(page_to_phys(__page)); \ 400 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 401}) 402#define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 403#else 404#define page_to_virt(x) ({ \ 405 __typeof__(x) __page = x; \ 406 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 407 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 408 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 409}) 410 411#define virt_to_page(x) ({ \ 412 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 413 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 414 (struct page *)__addr; \ 415}) 416#endif /* CONFIG_DEBUG_VIRTUAL */ 417 418#define virt_addr_valid(addr) ({ \ 419 __typeof__(addr) __addr = __tag_reset(addr); \ 420 __is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr)); \ 421}) 422 423void dump_mem_limit(void); 424#endif /* !__ASSEMBLER__ */ 425 426/* 427 * Given that the GIC architecture permits ITS implementations that can only be 428 * configured with a LPI table address once, GICv3 systems with many CPUs may 429 * end up reserving a lot of different regions after a kexec for their LPI 430 * tables (one per CPU), as we are forced to reuse the same memory after kexec 431 * (and thus reserve it persistently with EFI beforehand) 432 */ 433#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 434# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 435#endif 436 437/* 438 * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory 439 * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into 440 * multiple parts. As a result, the number of memory regions is large. 441 */ 442#ifdef CONFIG_EFI 443#define INIT_MEMBLOCK_MEMORY_REGIONS (INIT_MEMBLOCK_REGIONS * 8) 444#endif 445 446 447#endif /* __ASM_MEMORY_H */