1/* 2 * Ultra Wide Band 3 * UWB API 4 * 5 * Copyright (C) 2005-2006 Intel Corporation 6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License version 10 * 2 as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 20 * 02110-1301, USA. 21 * 22 * 23 * FIXME: doc: overview of the API, different parts and pointers 24 */ 25 26#ifndef __LINUX__UWB_H__ 27#define __LINUX__UWB_H__ 28 29#include <linux/limits.h> 30#include <linux/device.h> 31#include <linux/mutex.h> 32#include <linux/timer.h> 33#include <linux/workqueue.h> 34#include <linux/uwb/spec.h> 35 36struct uwb_dev; 37struct uwb_beca_e; 38struct uwb_rc; 39struct uwb_rsv; 40struct uwb_dbg; 41 42/** 43 * struct uwb_dev - a UWB Device 44 * @rc: UWB Radio Controller that discovered the device (kind of its 45 * parent). 46 * @bce: a beacon cache entry for this device; or NULL if the device 47 * is a local radio controller. 48 * @mac_addr: the EUI-48 address of this device. 49 * @dev_addr: the current DevAddr used by this device. 50 * @beacon_slot: the slot number the beacon is using. 51 * @streams: bitmap of streams allocated to reservations targeted at 52 * this device. For an RC, this is the streams allocated for 53 * reservations targeted at DevAddrs. 54 * 55 * A UWB device may either by a neighbor or part of a local radio 56 * controller. 57 */ 58struct uwb_dev { 59 struct mutex mutex; 60 struct list_head list_node; 61 struct device dev; 62 struct uwb_rc *rc; /* radio controller */ 63 struct uwb_beca_e *bce; /* Beacon Cache Entry */ 64 65 struct uwb_mac_addr mac_addr; 66 struct uwb_dev_addr dev_addr; 67 int beacon_slot; 68 DECLARE_BITMAP(streams, UWB_NUM_STREAMS); 69}; 70#define to_uwb_dev(d) container_of(d, struct uwb_dev, dev) 71 72/** 73 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs 74 * 75 * RC[CE]Bs have a 'context ID' field that matches the command with 76 * the event received to confirm it. 77 * 78 * Maximum number of context IDs 79 */ 80enum { UWB_RC_CTX_MAX = 256 }; 81 82 83/** Notification chain head for UWB generated events to listeners */ 84struct uwb_notifs_chain { 85 struct list_head list; 86 struct mutex mutex; 87}; 88 89/** 90 * struct uwb_mas_bm - a bitmap of all MAS in a superframe 91 * @bm: a bitmap of length #UWB_NUM_MAS 92 */ 93struct uwb_mas_bm { 94 DECLARE_BITMAP(bm, UWB_NUM_MAS); 95}; 96 97/** 98 * uwb_rsv_state - UWB Reservation state. 99 * 100 * NONE - reservation is not active (no DRP IE being transmitted). 101 * 102 * Owner reservation states: 103 * 104 * INITIATED - owner has sent an initial DRP request. 105 * PENDING - target responded with pending Reason Code. 106 * MODIFIED - reservation manager is modifying an established 107 * reservation with a different MAS allocation. 108 * ESTABLISHED - the reservation has been successfully negotiated. 109 * 110 * Target reservation states: 111 * 112 * DENIED - request is denied. 113 * ACCEPTED - request is accepted. 114 * PENDING - PAL has yet to make a decision to whether to accept or 115 * deny. 116 * 117 * FIXME: further target states TBD. 118 */ 119enum uwb_rsv_state { 120 UWB_RSV_STATE_NONE, 121 UWB_RSV_STATE_O_INITIATED, 122 UWB_RSV_STATE_O_PENDING, 123 UWB_RSV_STATE_O_MODIFIED, 124 UWB_RSV_STATE_O_ESTABLISHED, 125 UWB_RSV_STATE_T_ACCEPTED, 126 UWB_RSV_STATE_T_DENIED, 127 UWB_RSV_STATE_T_PENDING, 128 129 UWB_RSV_STATE_LAST, 130}; 131 132enum uwb_rsv_target_type { 133 UWB_RSV_TARGET_DEV, 134 UWB_RSV_TARGET_DEVADDR, 135}; 136 137/** 138 * struct uwb_rsv_target - the target of a reservation. 139 * 140 * Reservations unicast and targeted at a single device 141 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a 142 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR). 143 */ 144struct uwb_rsv_target { 145 enum uwb_rsv_target_type type; 146 union { 147 struct uwb_dev *dev; 148 struct uwb_dev_addr devaddr; 149 }; 150}; 151 152/* 153 * Number of streams reserved for reservations targeted at DevAddrs. 154 */ 155#define UWB_NUM_GLOBAL_STREAMS 1 156 157typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv); 158 159/** 160 * struct uwb_rsv - a DRP reservation 161 * 162 * Data structure management: 163 * 164 * @rc: the radio controller this reservation is for 165 * (as target or owner) 166 * @rc_node: a list node for the RC 167 * @pal_node: a list node for the PAL 168 * 169 * Owner and target parameters: 170 * 171 * @owner: the UWB device owning this reservation 172 * @target: the target UWB device 173 * @type: reservation type 174 * 175 * Owner parameters: 176 * 177 * @max_mas: maxiumum number of MAS 178 * @min_mas: minimum number of MAS 179 * @sparsity: owner selected sparsity 180 * @is_multicast: true iff multicast 181 * 182 * @callback: callback function when the reservation completes 183 * @pal_priv: private data for the PAL making the reservation 184 * 185 * Reservation status: 186 * 187 * @status: negotiation status 188 * @stream: stream index allocated for this reservation 189 * @mas: reserved MAS 190 * @drp_ie: the DRP IE 191 * @ie_valid: true iff the DRP IE matches the reservation parameters 192 * 193 * DRP reservations are uniquely identified by the owner, target and 194 * stream index. However, when using a DevAddr as a target (e.g., for 195 * a WUSB cluster reservation) the responses may be received from 196 * devices with different DevAddrs. In this case, reservations are 197 * uniquely identified by just the stream index. A number of stream 198 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this. 199 */ 200struct uwb_rsv { 201 struct uwb_rc *rc; 202 struct list_head rc_node; 203 struct list_head pal_node; 204 205 struct uwb_dev *owner; 206 struct uwb_rsv_target target; 207 enum uwb_drp_type type; 208 int max_mas; 209 int min_mas; 210 int sparsity; 211 bool is_multicast; 212 213 uwb_rsv_cb_f callback; 214 void *pal_priv; 215 216 enum uwb_rsv_state state; 217 u8 stream; 218 struct uwb_mas_bm mas; 219 struct uwb_ie_drp *drp_ie; 220 bool ie_valid; 221 struct timer_list timer; 222 bool expired; 223}; 224 225static const 226struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } }; 227 228static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas) 229{ 230 bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS); 231} 232 233/** 234 * struct uwb_drp_avail - a radio controller's view of MAS usage 235 * @global: MAS unused by neighbors (excluding reservations targetted 236 * or owned by the local radio controller) or the beaon period 237 * @local: MAS unused by local established reservations 238 * @pending: MAS unused by local pending reservations 239 * @ie: DRP Availability IE to be included in the beacon 240 * @ie_valid: true iff @ie is valid and does not need to regenerated from 241 * @global and @local 242 * 243 * Each radio controller maintains a view of MAS usage or 244 * availability. MAS available for a new reservation are determined 245 * from the intersection of @global, @local, and @pending. 246 * 247 * The radio controller must transmit a DRP Availability IE that's the 248 * intersection of @global and @local. 249 * 250 * A set bit indicates the MAS is unused and available. 251 * 252 * rc->rsvs_mutex should be held before accessing this data structure. 253 * 254 * [ECMA-368] section 17.4.3. 255 */ 256struct uwb_drp_avail { 257 DECLARE_BITMAP(global, UWB_NUM_MAS); 258 DECLARE_BITMAP(local, UWB_NUM_MAS); 259 DECLARE_BITMAP(pending, UWB_NUM_MAS); 260 struct uwb_ie_drp_avail ie; 261 bool ie_valid; 262}; 263 264 265const char *uwb_rsv_state_str(enum uwb_rsv_state state); 266const char *uwb_rsv_type_str(enum uwb_drp_type type); 267 268struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb, 269 void *pal_priv); 270void uwb_rsv_destroy(struct uwb_rsv *rsv); 271 272int uwb_rsv_establish(struct uwb_rsv *rsv); 273int uwb_rsv_modify(struct uwb_rsv *rsv, 274 int max_mas, int min_mas, int sparsity); 275void uwb_rsv_terminate(struct uwb_rsv *rsv); 276 277void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv); 278 279/** 280 * Radio Control Interface instance 281 * 282 * 283 * Life cycle rules: those of the UWB Device. 284 * 285 * @index: an index number for this radio controller, as used in the 286 * device name. 287 * @version: version of protocol supported by this device 288 * @priv: Backend implementation; rw with uwb_dev.dev.sem taken. 289 * @cmd: Backend implementation to execute commands; rw and call 290 * only with uwb_dev.dev.sem taken. 291 * @reset: Hardware reset of radio controller and any PAL controllers. 292 * @filter: Backend implementation to manipulate data to and from device 293 * to be compliant to specification assumed by driver (WHCI 294 * 0.95). 295 * 296 * uwb_dev.dev.mutex is used to execute commands and update 297 * the corresponding structures; can't use a spinlock 298 * because rc->cmd() can sleep. 299 * @ies: This is a dynamically allocated array cacheing the 300 * IEs (settable by the host) that the beacon of this 301 * radio controller is currently sending. 302 * 303 * In reality, we store here the full command we set to 304 * the radio controller (which is basically a command 305 * prefix followed by all the IEs the beacon currently 306 * contains). This way we don't have to realloc and 307 * memcpy when setting it. 308 * 309 * We set this up in uwb_rc_ie_setup(), where we alloc 310 * this struct, call get_ie() [so we know which IEs are 311 * currently being sent, if any]. 312 * 313 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The 314 * amount used is given by sizeof(*ies) plus ies->wIELength 315 * (which is a little endian quantity all the time). 316 * @ies_mutex: protect the IE cache 317 * @dbg: information for the debug interface 318 */ 319struct uwb_rc { 320 struct uwb_dev uwb_dev; 321 int index; 322 u16 version; 323 324 struct module *owner; 325 void *priv; 326 int (*start)(struct uwb_rc *rc); 327 void (*stop)(struct uwb_rc *rc); 328 int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t); 329 int (*reset)(struct uwb_rc *rc); 330 int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *); 331 int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t, 332 size_t *, size_t *); 333 334 spinlock_t neh_lock; /* protects neh_* and ctx_* */ 335 struct list_head neh_list; /* Open NE handles */ 336 unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)]; 337 u8 ctx_roll; 338 339 int beaconing; /* Beaconing state [channel number] */ 340 int scanning; 341 enum uwb_scan_type scan_type:3; 342 unsigned ready:1; 343 struct uwb_notifs_chain notifs_chain; 344 345 struct uwb_drp_avail drp_avail; 346 struct list_head reservations; 347 struct mutex rsvs_mutex; 348 struct workqueue_struct *rsv_workq; 349 struct work_struct rsv_update_work; 350 351 struct mutex ies_mutex; 352 struct uwb_rc_cmd_set_ie *ies; 353 size_t ies_capacity; 354 355 spinlock_t pal_lock; 356 struct list_head pals; 357 358 struct uwb_dbg *dbg; 359}; 360 361 362/** 363 * struct uwb_pal - a UWB PAL 364 * @name: descriptive name for this PAL (wushc, wlp, etc.). 365 * @device: a device for the PAL. Used to link the PAL and the radio 366 * controller in sysfs. 367 * @new_rsv: called when a peer requests a reservation (may be NULL if 368 * the PAL cannot accept reservation requests). 369 * 370 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB 371 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP). 372 * 373 * The PALs using a radio controller must register themselves to 374 * permit the UWB stack to coordinate usage of the radio between the 375 * various PALs or to allow PALs to response to certain requests from 376 * peers. 377 * 378 * A struct uwb_pal should be embedded in a containing structure 379 * belonging to the PAL and initialized with uwb_pal_init()). Fields 380 * should be set appropriately by the PAL before registering the PAL 381 * with uwb_pal_register(). 382 */ 383struct uwb_pal { 384 struct list_head node; 385 const char *name; 386 struct device *device; 387 void (*new_rsv)(struct uwb_rsv *rsv); 388}; 389 390void uwb_pal_init(struct uwb_pal *pal); 391int uwb_pal_register(struct uwb_rc *rc, struct uwb_pal *pal); 392void uwb_pal_unregister(struct uwb_rc *rc, struct uwb_pal *pal); 393 394/* 395 * General public API 396 * 397 * This API can be used by UWB device drivers or by those implementing 398 * UWB Radio Controllers 399 */ 400struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc, 401 const struct uwb_dev_addr *devaddr); 402struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *); 403static inline void uwb_dev_get(struct uwb_dev *uwb_dev) 404{ 405 get_device(&uwb_dev->dev); 406} 407static inline void uwb_dev_put(struct uwb_dev *uwb_dev) 408{ 409 put_device(&uwb_dev->dev); 410} 411struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev); 412 413/** 414 * Callback function for 'uwb_{dev,rc}_foreach()'. 415 * 416 * @dev: Linux device instance 417 * 'uwb_dev = container_of(dev, struct uwb_dev, dev)' 418 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'. 419 * 420 * @returns: 0 to continue the iterations, any other val to stop 421 * iterating and return the value to the caller of 422 * _foreach(). 423 */ 424typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv); 425int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv); 426 427struct uwb_rc *uwb_rc_alloc(void); 428struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *); 429struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *); 430void uwb_rc_put(struct uwb_rc *rc); 431 432typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg, 433 struct uwb_rceb *reply, ssize_t reply_size); 434 435int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name, 436 struct uwb_rccb *cmd, size_t cmd_size, 437 u8 expected_type, u16 expected_event, 438 uwb_rc_cmd_cb_f cb, void *arg); 439ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name, 440 struct uwb_rccb *cmd, size_t cmd_size, 441 struct uwb_rceb *reply, size_t reply_size); 442ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name, 443 struct uwb_rccb *cmd, size_t cmd_size, 444 u8 expected_type, u16 expected_event, 445 struct uwb_rceb **preply); 446ssize_t uwb_rc_get_ie(struct uwb_rc *, struct uwb_rc_evt_get_ie **); 447int uwb_bg_joined(struct uwb_rc *rc); 448 449size_t __uwb_addr_print(char *, size_t, const unsigned char *, int); 450 451int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *); 452int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *); 453int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *); 454int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *); 455int __uwb_mac_addr_assigned_check(struct device *, void *); 456int __uwb_dev_addr_assigned_check(struct device *, void *); 457 458/* Print in @buf a pretty repr of @addr */ 459static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size, 460 const struct uwb_dev_addr *addr) 461{ 462 return __uwb_addr_print(buf, buf_size, addr->data, 0); 463} 464 465/* Print in @buf a pretty repr of @addr */ 466static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size, 467 const struct uwb_mac_addr *addr) 468{ 469 return __uwb_addr_print(buf, buf_size, addr->data, 1); 470} 471 472/* @returns 0 if device addresses @addr2 and @addr1 are equal */ 473static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1, 474 const struct uwb_dev_addr *addr2) 475{ 476 return memcmp(addr1, addr2, sizeof(*addr1)); 477} 478 479/* @returns 0 if MAC addresses @addr2 and @addr1 are equal */ 480static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1, 481 const struct uwb_mac_addr *addr2) 482{ 483 return memcmp(addr1, addr2, sizeof(*addr1)); 484} 485 486/* @returns !0 if a MAC @addr is a broadcast address */ 487static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr) 488{ 489 struct uwb_mac_addr bcast = { 490 .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } 491 }; 492 return !uwb_mac_addr_cmp(addr, &bcast); 493} 494 495/* @returns !0 if a MAC @addr is all zeroes*/ 496static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr) 497{ 498 struct uwb_mac_addr unset = { 499 .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } 500 }; 501 return !uwb_mac_addr_cmp(addr, &unset); 502} 503 504/* @returns !0 if the address is in use. */ 505static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc, 506 struct uwb_dev_addr *addr) 507{ 508 return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr); 509} 510 511/* 512 * UWB Radio Controller API 513 * 514 * This API is used (in addition to the general API) to implement UWB 515 * Radio Controllers. 516 */ 517void uwb_rc_init(struct uwb_rc *); 518int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv); 519void uwb_rc_rm(struct uwb_rc *); 520void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t); 521void uwb_rc_neh_error(struct uwb_rc *, int); 522void uwb_rc_reset_all(struct uwb_rc *rc); 523 524/** 525 * uwb_rsv_is_owner - is the owner of this reservation the RC? 526 * @rsv: the reservation 527 */ 528static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv) 529{ 530 return rsv->owner == &rsv->rc->uwb_dev; 531} 532 533/** 534 * Events generated by UWB that can be passed to any listeners 535 * 536 * Higher layers can register callback functions with the radio 537 * controller using uwb_notifs_register(). The radio controller 538 * maintains a list of all registered handlers and will notify all 539 * nodes when an event occurs. 540 */ 541enum uwb_notifs { 542 UWB_NOTIF_BG_JOIN = 0, /* radio controller joined a beacon group */ 543 UWB_NOTIF_BG_LEAVE = 1, /* radio controller left a beacon group */ 544 UWB_NOTIF_ONAIR, 545 UWB_NOTIF_OFFAIR, 546}; 547 548/* Callback function registered with UWB */ 549struct uwb_notifs_handler { 550 struct list_head list_node; 551 void (*cb)(void *, struct uwb_dev *, enum uwb_notifs); 552 void *data; 553}; 554 555int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *); 556int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *); 557 558 559/** 560 * UWB radio controller Event Size Entry (for creating entry tables) 561 * 562 * WUSB and WHCI define events and notifications, and they might have 563 * fixed or variable size. 564 * 565 * Each event/notification has a size which is not necessarily known 566 * in advance based on the event code. As well, vendor specific 567 * events/notifications will have a size impossible to determine 568 * unless we know about the device's specific details. 569 * 570 * It was way too smart of the spec writers not to think that it would 571 * be impossible for a generic driver to skip over vendor specific 572 * events/notifications if there are no LENGTH fields in the HEADER of 573 * each message...the transaction size cannot be counted on as the 574 * spec does not forbid to pack more than one event in a single 575 * transaction. 576 * 577 * Thus, we guess sizes with tables (or for events, when you know the 578 * size ahead of time you can use uwb_rc_neh_extra_size*()). We 579 * register tables with the known events and their sizes, and then we 580 * traverse those tables. For those with variable length, we provide a 581 * way to lookup the size inside the event/notification's 582 * payload. This allows device-specific event size tables to be 583 * registered. 584 * 585 * @size: Size of the payload 586 * 587 * @offset: if != 0, at offset @offset-1 starts a field with a length 588 * that has to be added to @size. The format of the field is 589 * given by @type. 590 * 591 * @type: Type and length of the offset field. Most common is LE 16 592 * bits (that's why that is zero); others are there mostly to 593 * cover for bugs and weirdos. 594 */ 595struct uwb_est_entry { 596 size_t size; 597 unsigned offset; 598 enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type; 599}; 600 601int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product, 602 const struct uwb_est_entry *, size_t entries); 603int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product, 604 const struct uwb_est_entry *, size_t entries); 605ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb, 606 size_t len); 607 608/* -- Misc */ 609 610enum { 611 EDC_MAX_ERRORS = 10, 612 EDC_ERROR_TIMEFRAME = HZ, 613}; 614 615/* error density counter */ 616struct edc { 617 unsigned long timestart; 618 u16 errorcount; 619}; 620 621static inline 622void edc_init(struct edc *edc) 623{ 624 edc->timestart = jiffies; 625} 626 627/* Called when an error occured. 628 * This is way to determine if the number of acceptable errors per time 629 * period has been exceeded. It is not accurate as there are cases in which 630 * this scheme will not work, for example if there are periodic occurences 631 * of errors that straddle updates to the start time. This scheme is 632 * sufficient for our usage. 633 * 634 * @returns 1 if maximum acceptable errors per timeframe has been exceeded. 635 */ 636static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe) 637{ 638 unsigned long now; 639 640 now = jiffies; 641 if (now - err_hist->timestart > timeframe) { 642 err_hist->errorcount = 1; 643 err_hist->timestart = now; 644 } else if (++err_hist->errorcount > max_err) { 645 err_hist->errorcount = 0; 646 err_hist->timestart = now; 647 return 1; 648 } 649 return 0; 650} 651 652 653/* Information Element handling */ 654 655/* For representing the state of writing to a buffer when iterating */ 656struct uwb_buf_ctx { 657 char *buf; 658 size_t bytes, size; 659}; 660 661typedef int (*uwb_ie_f)(struct uwb_dev *, const struct uwb_ie_hdr *, 662 size_t, void *); 663struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len); 664ssize_t uwb_ie_for_each(struct uwb_dev *uwb_dev, uwb_ie_f fn, void *data, 665 const void *buf, size_t size); 666int uwb_ie_dump_hex(struct uwb_dev *, const struct uwb_ie_hdr *, 667 size_t, void *); 668int uwb_rc_set_ie(struct uwb_rc *, struct uwb_rc_cmd_set_ie *); 669struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len); 670 671 672/* 673 * Transmission statistics 674 * 675 * UWB uses LQI and RSSI (one byte values) for reporting radio signal 676 * strength and line quality indication. We do quick and dirty 677 * averages of those. They are signed values, btw. 678 * 679 * For 8 bit quantities, we keep the min, the max, an accumulator 680 * (@sigma) and a # of samples. When @samples gets to 255, we compute 681 * the average (@sigma / @samples), place it in @sigma and reset 682 * @samples to 1 (so we use it as the first sample). 683 * 684 * Now, statistically speaking, probably I am kicking the kidneys of 685 * some books I have in my shelves collecting dust, but I just want to 686 * get an approx, not the Nobel. 687 * 688 * LOCKING: there is no locking per se, but we try to keep a lockless 689 * schema. Only _add_samples() modifies the values--as long as you 690 * have other locking on top that makes sure that no two calls of 691 * _add_sample() happen at the same time, then we are fine. Now, for 692 * resetting the values we just set @samples to 0 and that makes the 693 * next _add_sample() to start with defaults. Reading the values in 694 * _show() currently can race, so you need to make sure the calls are 695 * under the same lock that protects calls to _add_sample(). FIXME: 696 * currently unlocked (It is not ultraprecise but does the trick. Bite 697 * me). 698 */ 699struct stats { 700 s8 min, max; 701 s16 sigma; 702 atomic_t samples; 703}; 704 705static inline 706void stats_init(struct stats *stats) 707{ 708 atomic_set(&stats->samples, 0); 709 wmb(); 710} 711 712static inline 713void stats_add_sample(struct stats *stats, s8 sample) 714{ 715 s8 min, max; 716 s16 sigma; 717 unsigned samples = atomic_read(&stats->samples); 718 if (samples == 0) { /* it was zero before, so we initialize */ 719 min = 127; 720 max = -128; 721 sigma = 0; 722 } else { 723 min = stats->min; 724 max = stats->max; 725 sigma = stats->sigma; 726 } 727 728 if (sample < min) /* compute new values */ 729 min = sample; 730 else if (sample > max) 731 max = sample; 732 sigma += sample; 733 734 stats->min = min; /* commit */ 735 stats->max = max; 736 stats->sigma = sigma; 737 if (atomic_add_return(1, &stats->samples) > 255) { 738 /* wrapped around! reset */ 739 stats->sigma = sigma / 256; 740 atomic_set(&stats->samples, 1); 741 } 742} 743 744static inline ssize_t stats_show(struct stats *stats, char *buf) 745{ 746 int min, max, avg; 747 int samples = atomic_read(&stats->samples); 748 if (samples == 0) 749 min = max = avg = 0; 750 else { 751 min = stats->min; 752 max = stats->max; 753 avg = stats->sigma / samples; 754 } 755 return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg); 756} 757 758static inline ssize_t stats_store(struct stats *stats, const char *buf, 759 size_t size) 760{ 761 stats_init(stats); 762 return size; 763} 764 765#endif /* #ifndef __LINUX__UWB_H__ */