at e42e4ba07bc72c0eb7c7ab3bf9e5076db90d0f37 1712 lines 42 kB view raw
1/* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34#include <linux/cpu.h> 35#include <linux/module.h> 36#include <linux/percpu.h> 37#include <linux/hrtimer.h> 38#include <linux/notifier.h> 39#include <linux/syscalls.h> 40#include <linux/kallsyms.h> 41#include <linux/interrupt.h> 42#include <linux/tick.h> 43#include <linux/seq_file.h> 44#include <linux/err.h> 45#include <linux/debugobjects.h> 46 47#include <asm/uaccess.h> 48 49/** 50 * ktime_get - get the monotonic time in ktime_t format 51 * 52 * returns the time in ktime_t format 53 */ 54ktime_t ktime_get(void) 55{ 56 struct timespec now; 57 58 ktime_get_ts(&now); 59 60 return timespec_to_ktime(now); 61} 62EXPORT_SYMBOL_GPL(ktime_get); 63 64/** 65 * ktime_get_real - get the real (wall-) time in ktime_t format 66 * 67 * returns the time in ktime_t format 68 */ 69ktime_t ktime_get_real(void) 70{ 71 struct timespec now; 72 73 getnstimeofday(&now); 74 75 return timespec_to_ktime(now); 76} 77 78EXPORT_SYMBOL_GPL(ktime_get_real); 79 80/* 81 * The timer bases: 82 * 83 * Note: If we want to add new timer bases, we have to skip the two 84 * clock ids captured by the cpu-timers. We do this by holding empty 85 * entries rather than doing math adjustment of the clock ids. 86 * This ensures that we capture erroneous accesses to these clock ids 87 * rather than moving them into the range of valid clock id's. 88 */ 89DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 90{ 91 92 .clock_base = 93 { 94 { 95 .index = CLOCK_REALTIME, 96 .get_time = &ktime_get_real, 97 .resolution = KTIME_LOW_RES, 98 }, 99 { 100 .index = CLOCK_MONOTONIC, 101 .get_time = &ktime_get, 102 .resolution = KTIME_LOW_RES, 103 }, 104 } 105}; 106 107/** 108 * ktime_get_ts - get the monotonic clock in timespec format 109 * @ts: pointer to timespec variable 110 * 111 * The function calculates the monotonic clock from the realtime 112 * clock and the wall_to_monotonic offset and stores the result 113 * in normalized timespec format in the variable pointed to by @ts. 114 */ 115void ktime_get_ts(struct timespec *ts) 116{ 117 struct timespec tomono; 118 unsigned long seq; 119 120 do { 121 seq = read_seqbegin(&xtime_lock); 122 getnstimeofday(ts); 123 tomono = wall_to_monotonic; 124 125 } while (read_seqretry(&xtime_lock, seq)); 126 127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 128 ts->tv_nsec + tomono.tv_nsec); 129} 130EXPORT_SYMBOL_GPL(ktime_get_ts); 131 132/* 133 * Get the coarse grained time at the softirq based on xtime and 134 * wall_to_monotonic. 135 */ 136static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) 137{ 138 ktime_t xtim, tomono; 139 struct timespec xts, tom; 140 unsigned long seq; 141 142 do { 143 seq = read_seqbegin(&xtime_lock); 144 xts = current_kernel_time(); 145 tom = wall_to_monotonic; 146 } while (read_seqretry(&xtime_lock, seq)); 147 148 xtim = timespec_to_ktime(xts); 149 tomono = timespec_to_ktime(tom); 150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim; 151 base->clock_base[CLOCK_MONOTONIC].softirq_time = 152 ktime_add(xtim, tomono); 153} 154 155/* 156 * Functions and macros which are different for UP/SMP systems are kept in a 157 * single place 158 */ 159#ifdef CONFIG_SMP 160 161/* 162 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 163 * means that all timers which are tied to this base via timer->base are 164 * locked, and the base itself is locked too. 165 * 166 * So __run_timers/migrate_timers can safely modify all timers which could 167 * be found on the lists/queues. 168 * 169 * When the timer's base is locked, and the timer removed from list, it is 170 * possible to set timer->base = NULL and drop the lock: the timer remains 171 * locked. 172 */ 173static 174struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 175 unsigned long *flags) 176{ 177 struct hrtimer_clock_base *base; 178 179 for (;;) { 180 base = timer->base; 181 if (likely(base != NULL)) { 182 spin_lock_irqsave(&base->cpu_base->lock, *flags); 183 if (likely(base == timer->base)) 184 return base; 185 /* The timer has migrated to another CPU: */ 186 spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 187 } 188 cpu_relax(); 189 } 190} 191 192/* 193 * Switch the timer base to the current CPU when possible. 194 */ 195static inline struct hrtimer_clock_base * 196switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base) 197{ 198 struct hrtimer_clock_base *new_base; 199 struct hrtimer_cpu_base *new_cpu_base; 200 201 new_cpu_base = &__get_cpu_var(hrtimer_bases); 202 new_base = &new_cpu_base->clock_base[base->index]; 203 204 if (base != new_base) { 205 /* 206 * We are trying to schedule the timer on the local CPU. 207 * However we can't change timer's base while it is running, 208 * so we keep it on the same CPU. No hassle vs. reprogramming 209 * the event source in the high resolution case. The softirq 210 * code will take care of this when the timer function has 211 * completed. There is no conflict as we hold the lock until 212 * the timer is enqueued. 213 */ 214 if (unlikely(hrtimer_callback_running(timer))) 215 return base; 216 217 /* See the comment in lock_timer_base() */ 218 timer->base = NULL; 219 spin_unlock(&base->cpu_base->lock); 220 spin_lock(&new_base->cpu_base->lock); 221 timer->base = new_base; 222 } 223 return new_base; 224} 225 226#else /* CONFIG_SMP */ 227 228static inline struct hrtimer_clock_base * 229lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 230{ 231 struct hrtimer_clock_base *base = timer->base; 232 233 spin_lock_irqsave(&base->cpu_base->lock, *flags); 234 235 return base; 236} 237 238# define switch_hrtimer_base(t, b) (b) 239 240#endif /* !CONFIG_SMP */ 241 242/* 243 * Functions for the union type storage format of ktime_t which are 244 * too large for inlining: 245 */ 246#if BITS_PER_LONG < 64 247# ifndef CONFIG_KTIME_SCALAR 248/** 249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable 250 * @kt: addend 251 * @nsec: the scalar nsec value to add 252 * 253 * Returns the sum of kt and nsec in ktime_t format 254 */ 255ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) 256{ 257 ktime_t tmp; 258 259 if (likely(nsec < NSEC_PER_SEC)) { 260 tmp.tv64 = nsec; 261 } else { 262 unsigned long rem = do_div(nsec, NSEC_PER_SEC); 263 264 tmp = ktime_set((long)nsec, rem); 265 } 266 267 return ktime_add(kt, tmp); 268} 269 270EXPORT_SYMBOL_GPL(ktime_add_ns); 271 272/** 273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable 274 * @kt: minuend 275 * @nsec: the scalar nsec value to subtract 276 * 277 * Returns the subtraction of @nsec from @kt in ktime_t format 278 */ 279ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) 280{ 281 ktime_t tmp; 282 283 if (likely(nsec < NSEC_PER_SEC)) { 284 tmp.tv64 = nsec; 285 } else { 286 unsigned long rem = do_div(nsec, NSEC_PER_SEC); 287 288 tmp = ktime_set((long)nsec, rem); 289 } 290 291 return ktime_sub(kt, tmp); 292} 293 294EXPORT_SYMBOL_GPL(ktime_sub_ns); 295# endif /* !CONFIG_KTIME_SCALAR */ 296 297/* 298 * Divide a ktime value by a nanosecond value 299 */ 300u64 ktime_divns(const ktime_t kt, s64 div) 301{ 302 u64 dclc; 303 int sft = 0; 304 305 dclc = ktime_to_ns(kt); 306 /* Make sure the divisor is less than 2^32: */ 307 while (div >> 32) { 308 sft++; 309 div >>= 1; 310 } 311 dclc >>= sft; 312 do_div(dclc, (unsigned long) div); 313 314 return dclc; 315} 316#endif /* BITS_PER_LONG >= 64 */ 317 318/* 319 * Add two ktime values and do a safety check for overflow: 320 */ 321ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 322{ 323 ktime_t res = ktime_add(lhs, rhs); 324 325 /* 326 * We use KTIME_SEC_MAX here, the maximum timeout which we can 327 * return to user space in a timespec: 328 */ 329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) 330 res = ktime_set(KTIME_SEC_MAX, 0); 331 332 return res; 333} 334 335#ifdef CONFIG_DEBUG_OBJECTS_TIMERS 336 337static struct debug_obj_descr hrtimer_debug_descr; 338 339/* 340 * fixup_init is called when: 341 * - an active object is initialized 342 */ 343static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) 344{ 345 struct hrtimer *timer = addr; 346 347 switch (state) { 348 case ODEBUG_STATE_ACTIVE: 349 hrtimer_cancel(timer); 350 debug_object_init(timer, &hrtimer_debug_descr); 351 return 1; 352 default: 353 return 0; 354 } 355} 356 357/* 358 * fixup_activate is called when: 359 * - an active object is activated 360 * - an unknown object is activated (might be a statically initialized object) 361 */ 362static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 363{ 364 switch (state) { 365 366 case ODEBUG_STATE_NOTAVAILABLE: 367 WARN_ON_ONCE(1); 368 return 0; 369 370 case ODEBUG_STATE_ACTIVE: 371 WARN_ON(1); 372 373 default: 374 return 0; 375 } 376} 377 378/* 379 * fixup_free is called when: 380 * - an active object is freed 381 */ 382static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) 383{ 384 struct hrtimer *timer = addr; 385 386 switch (state) { 387 case ODEBUG_STATE_ACTIVE: 388 hrtimer_cancel(timer); 389 debug_object_free(timer, &hrtimer_debug_descr); 390 return 1; 391 default: 392 return 0; 393 } 394} 395 396static struct debug_obj_descr hrtimer_debug_descr = { 397 .name = "hrtimer", 398 .fixup_init = hrtimer_fixup_init, 399 .fixup_activate = hrtimer_fixup_activate, 400 .fixup_free = hrtimer_fixup_free, 401}; 402 403static inline void debug_hrtimer_init(struct hrtimer *timer) 404{ 405 debug_object_init(timer, &hrtimer_debug_descr); 406} 407 408static inline void debug_hrtimer_activate(struct hrtimer *timer) 409{ 410 debug_object_activate(timer, &hrtimer_debug_descr); 411} 412 413static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 414{ 415 debug_object_deactivate(timer, &hrtimer_debug_descr); 416} 417 418static inline void debug_hrtimer_free(struct hrtimer *timer) 419{ 420 debug_object_free(timer, &hrtimer_debug_descr); 421} 422 423static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 424 enum hrtimer_mode mode); 425 426void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 427 enum hrtimer_mode mode) 428{ 429 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 430 __hrtimer_init(timer, clock_id, mode); 431} 432 433void destroy_hrtimer_on_stack(struct hrtimer *timer) 434{ 435 debug_object_free(timer, &hrtimer_debug_descr); 436} 437 438#else 439static inline void debug_hrtimer_init(struct hrtimer *timer) { } 440static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 441static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 442#endif 443 444/* High resolution timer related functions */ 445#ifdef CONFIG_HIGH_RES_TIMERS 446 447/* 448 * High resolution timer enabled ? 449 */ 450static int hrtimer_hres_enabled __read_mostly = 1; 451 452/* 453 * Enable / Disable high resolution mode 454 */ 455static int __init setup_hrtimer_hres(char *str) 456{ 457 if (!strcmp(str, "off")) 458 hrtimer_hres_enabled = 0; 459 else if (!strcmp(str, "on")) 460 hrtimer_hres_enabled = 1; 461 else 462 return 0; 463 return 1; 464} 465 466__setup("highres=", setup_hrtimer_hres); 467 468/* 469 * hrtimer_high_res_enabled - query, if the highres mode is enabled 470 */ 471static inline int hrtimer_is_hres_enabled(void) 472{ 473 return hrtimer_hres_enabled; 474} 475 476/* 477 * Is the high resolution mode active ? 478 */ 479static inline int hrtimer_hres_active(void) 480{ 481 return __get_cpu_var(hrtimer_bases).hres_active; 482} 483 484/* 485 * Reprogram the event source with checking both queues for the 486 * next event 487 * Called with interrupts disabled and base->lock held 488 */ 489static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) 490{ 491 int i; 492 struct hrtimer_clock_base *base = cpu_base->clock_base; 493 ktime_t expires; 494 495 cpu_base->expires_next.tv64 = KTIME_MAX; 496 497 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 498 struct hrtimer *timer; 499 500 if (!base->first) 501 continue; 502 timer = rb_entry(base->first, struct hrtimer, node); 503 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 504 if (expires.tv64 < cpu_base->expires_next.tv64) 505 cpu_base->expires_next = expires; 506 } 507 508 if (cpu_base->expires_next.tv64 != KTIME_MAX) 509 tick_program_event(cpu_base->expires_next, 1); 510} 511 512/* 513 * Shared reprogramming for clock_realtime and clock_monotonic 514 * 515 * When a timer is enqueued and expires earlier than the already enqueued 516 * timers, we have to check, whether it expires earlier than the timer for 517 * which the clock event device was armed. 518 * 519 * Called with interrupts disabled and base->cpu_base.lock held 520 */ 521static int hrtimer_reprogram(struct hrtimer *timer, 522 struct hrtimer_clock_base *base) 523{ 524 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next; 525 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 526 int res; 527 528 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 529 530 /* 531 * When the callback is running, we do not reprogram the clock event 532 * device. The timer callback is either running on a different CPU or 533 * the callback is executed in the hrtimer_interrupt context. The 534 * reprogramming is handled either by the softirq, which called the 535 * callback or at the end of the hrtimer_interrupt. 536 */ 537 if (hrtimer_callback_running(timer)) 538 return 0; 539 540 /* 541 * CLOCK_REALTIME timer might be requested with an absolute 542 * expiry time which is less than base->offset. Nothing wrong 543 * about that, just avoid to call into the tick code, which 544 * has now objections against negative expiry values. 545 */ 546 if (expires.tv64 < 0) 547 return -ETIME; 548 549 if (expires.tv64 >= expires_next->tv64) 550 return 0; 551 552 /* 553 * Clockevents returns -ETIME, when the event was in the past. 554 */ 555 res = tick_program_event(expires, 0); 556 if (!IS_ERR_VALUE(res)) 557 *expires_next = expires; 558 return res; 559} 560 561 562/* 563 * Retrigger next event is called after clock was set 564 * 565 * Called with interrupts disabled via on_each_cpu() 566 */ 567static void retrigger_next_event(void *arg) 568{ 569 struct hrtimer_cpu_base *base; 570 struct timespec realtime_offset; 571 unsigned long seq; 572 573 if (!hrtimer_hres_active()) 574 return; 575 576 do { 577 seq = read_seqbegin(&xtime_lock); 578 set_normalized_timespec(&realtime_offset, 579 -wall_to_monotonic.tv_sec, 580 -wall_to_monotonic.tv_nsec); 581 } while (read_seqretry(&xtime_lock, seq)); 582 583 base = &__get_cpu_var(hrtimer_bases); 584 585 /* Adjust CLOCK_REALTIME offset */ 586 spin_lock(&base->lock); 587 base->clock_base[CLOCK_REALTIME].offset = 588 timespec_to_ktime(realtime_offset); 589 590 hrtimer_force_reprogram(base); 591 spin_unlock(&base->lock); 592} 593 594/* 595 * Clock realtime was set 596 * 597 * Change the offset of the realtime clock vs. the monotonic 598 * clock. 599 * 600 * We might have to reprogram the high resolution timer interrupt. On 601 * SMP we call the architecture specific code to retrigger _all_ high 602 * resolution timer interrupts. On UP we just disable interrupts and 603 * call the high resolution interrupt code. 604 */ 605void clock_was_set(void) 606{ 607 /* Retrigger the CPU local events everywhere */ 608 on_each_cpu(retrigger_next_event, NULL, 1); 609} 610 611/* 612 * During resume we might have to reprogram the high resolution timer 613 * interrupt (on the local CPU): 614 */ 615void hres_timers_resume(void) 616{ 617 /* Retrigger the CPU local events: */ 618 retrigger_next_event(NULL); 619} 620 621/* 622 * Initialize the high resolution related parts of cpu_base 623 */ 624static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 625{ 626 base->expires_next.tv64 = KTIME_MAX; 627 base->hres_active = 0; 628} 629 630/* 631 * Initialize the high resolution related parts of a hrtimer 632 */ 633static inline void hrtimer_init_timer_hres(struct hrtimer *timer) 634{ 635} 636 637static void __run_hrtimer(struct hrtimer *timer); 638 639/* 640 * When High resolution timers are active, try to reprogram. Note, that in case 641 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry 642 * check happens. The timer gets enqueued into the rbtree. The reprogramming 643 * and expiry check is done in the hrtimer_interrupt or in the softirq. 644 */ 645static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, 646 struct hrtimer_clock_base *base) 647{ 648 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { 649 /* 650 * XXX: recursion check? 651 * hrtimer_forward() should round up with timer granularity 652 * so that we never get into inf recursion here, 653 * it doesn't do that though 654 */ 655 __run_hrtimer(timer); 656 return 1; 657 } 658 return 0; 659} 660 661/* 662 * Switch to high resolution mode 663 */ 664static int hrtimer_switch_to_hres(void) 665{ 666 int cpu = smp_processor_id(); 667 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); 668 unsigned long flags; 669 670 if (base->hres_active) 671 return 1; 672 673 local_irq_save(flags); 674 675 if (tick_init_highres()) { 676 local_irq_restore(flags); 677 printk(KERN_WARNING "Could not switch to high resolution " 678 "mode on CPU %d\n", cpu); 679 return 0; 680 } 681 base->hres_active = 1; 682 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; 683 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; 684 685 tick_setup_sched_timer(); 686 687 /* "Retrigger" the interrupt to get things going */ 688 retrigger_next_event(NULL); 689 local_irq_restore(flags); 690 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n", 691 smp_processor_id()); 692 return 1; 693} 694 695#else 696 697static inline int hrtimer_hres_active(void) { return 0; } 698static inline int hrtimer_is_hres_enabled(void) { return 0; } 699static inline int hrtimer_switch_to_hres(void) { return 0; } 700static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } 701static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, 702 struct hrtimer_clock_base *base) 703{ 704 return 0; 705} 706static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 707static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } 708static inline int hrtimer_reprogram(struct hrtimer *timer, 709 struct hrtimer_clock_base *base) 710{ 711 return 0; 712} 713 714#endif /* CONFIG_HIGH_RES_TIMERS */ 715 716#ifdef CONFIG_TIMER_STATS 717void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr) 718{ 719 if (timer->start_site) 720 return; 721 722 timer->start_site = addr; 723 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 724 timer->start_pid = current->pid; 725} 726#endif 727 728/* 729 * Counterpart to lock_hrtimer_base above: 730 */ 731static inline 732void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 733{ 734 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 735} 736 737/** 738 * hrtimer_forward - forward the timer expiry 739 * @timer: hrtimer to forward 740 * @now: forward past this time 741 * @interval: the interval to forward 742 * 743 * Forward the timer expiry so it will expire in the future. 744 * Returns the number of overruns. 745 */ 746u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 747{ 748 u64 orun = 1; 749 ktime_t delta; 750 751 delta = ktime_sub(now, hrtimer_get_expires(timer)); 752 753 if (delta.tv64 < 0) 754 return 0; 755 756 if (interval.tv64 < timer->base->resolution.tv64) 757 interval.tv64 = timer->base->resolution.tv64; 758 759 if (unlikely(delta.tv64 >= interval.tv64)) { 760 s64 incr = ktime_to_ns(interval); 761 762 orun = ktime_divns(delta, incr); 763 hrtimer_add_expires_ns(timer, incr * orun); 764 if (hrtimer_get_expires_tv64(timer) > now.tv64) 765 return orun; 766 /* 767 * This (and the ktime_add() below) is the 768 * correction for exact: 769 */ 770 orun++; 771 } 772 hrtimer_add_expires(timer, interval); 773 774 return orun; 775} 776EXPORT_SYMBOL_GPL(hrtimer_forward); 777 778/* 779 * enqueue_hrtimer - internal function to (re)start a timer 780 * 781 * The timer is inserted in expiry order. Insertion into the 782 * red black tree is O(log(n)). Must hold the base lock. 783 */ 784static void enqueue_hrtimer(struct hrtimer *timer, 785 struct hrtimer_clock_base *base, int reprogram) 786{ 787 struct rb_node **link = &base->active.rb_node; 788 struct rb_node *parent = NULL; 789 struct hrtimer *entry; 790 int leftmost = 1; 791 792 debug_hrtimer_activate(timer); 793 794 /* 795 * Find the right place in the rbtree: 796 */ 797 while (*link) { 798 parent = *link; 799 entry = rb_entry(parent, struct hrtimer, node); 800 /* 801 * We dont care about collisions. Nodes with 802 * the same expiry time stay together. 803 */ 804 if (hrtimer_get_expires_tv64(timer) < 805 hrtimer_get_expires_tv64(entry)) { 806 link = &(*link)->rb_left; 807 } else { 808 link = &(*link)->rb_right; 809 leftmost = 0; 810 } 811 } 812 813 /* 814 * Insert the timer to the rbtree and check whether it 815 * replaces the first pending timer 816 */ 817 if (leftmost) { 818 /* 819 * Reprogram the clock event device. When the timer is already 820 * expired hrtimer_enqueue_reprogram has either called the 821 * callback or added it to the pending list and raised the 822 * softirq. 823 * 824 * This is a NOP for !HIGHRES 825 */ 826 if (reprogram && hrtimer_enqueue_reprogram(timer, base)) 827 return; 828 829 base->first = &timer->node; 830 } 831 832 rb_link_node(&timer->node, parent, link); 833 rb_insert_color(&timer->node, &base->active); 834 /* 835 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the 836 * state of a possibly running callback. 837 */ 838 timer->state |= HRTIMER_STATE_ENQUEUED; 839} 840 841/* 842 * __remove_hrtimer - internal function to remove a timer 843 * 844 * Caller must hold the base lock. 845 * 846 * High resolution timer mode reprograms the clock event device when the 847 * timer is the one which expires next. The caller can disable this by setting 848 * reprogram to zero. This is useful, when the context does a reprogramming 849 * anyway (e.g. timer interrupt) 850 */ 851static void __remove_hrtimer(struct hrtimer *timer, 852 struct hrtimer_clock_base *base, 853 unsigned long newstate, int reprogram) 854{ 855 if (timer->state & HRTIMER_STATE_ENQUEUED) { 856 /* 857 * Remove the timer from the rbtree and replace the 858 * first entry pointer if necessary. 859 */ 860 if (base->first == &timer->node) { 861 base->first = rb_next(&timer->node); 862 /* Reprogram the clock event device. if enabled */ 863 if (reprogram && hrtimer_hres_active()) 864 hrtimer_force_reprogram(base->cpu_base); 865 } 866 rb_erase(&timer->node, &base->active); 867 } 868 timer->state = newstate; 869} 870 871/* 872 * remove hrtimer, called with base lock held 873 */ 874static inline int 875remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) 876{ 877 if (hrtimer_is_queued(timer)) { 878 int reprogram; 879 880 /* 881 * Remove the timer and force reprogramming when high 882 * resolution mode is active and the timer is on the current 883 * CPU. If we remove a timer on another CPU, reprogramming is 884 * skipped. The interrupt event on this CPU is fired and 885 * reprogramming happens in the interrupt handler. This is a 886 * rare case and less expensive than a smp call. 887 */ 888 debug_hrtimer_deactivate(timer); 889 timer_stats_hrtimer_clear_start_info(timer); 890 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); 891 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 892 reprogram); 893 return 1; 894 } 895 return 0; 896} 897 898/** 899 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 900 * @timer: the timer to be added 901 * @tim: expiry time 902 * @delta_ns: "slack" range for the timer 903 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) 904 * 905 * Returns: 906 * 0 on success 907 * 1 when the timer was active 908 */ 909int 910hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns, 911 const enum hrtimer_mode mode) 912{ 913 struct hrtimer_clock_base *base, *new_base; 914 unsigned long flags; 915 int ret; 916 917 base = lock_hrtimer_base(timer, &flags); 918 919 /* Remove an active timer from the queue: */ 920 ret = remove_hrtimer(timer, base); 921 922 /* Switch the timer base, if necessary: */ 923 new_base = switch_hrtimer_base(timer, base); 924 925 if (mode == HRTIMER_MODE_REL) { 926 tim = ktime_add_safe(tim, new_base->get_time()); 927 /* 928 * CONFIG_TIME_LOW_RES is a temporary way for architectures 929 * to signal that they simply return xtime in 930 * do_gettimeoffset(). In this case we want to round up by 931 * resolution when starting a relative timer, to avoid short 932 * timeouts. This will go away with the GTOD framework. 933 */ 934#ifdef CONFIG_TIME_LOW_RES 935 tim = ktime_add_safe(tim, base->resolution); 936#endif 937 } 938 939 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 940 941 timer_stats_hrtimer_set_start_info(timer); 942 943 /* 944 * Only allow reprogramming if the new base is on this CPU. 945 * (it might still be on another CPU if the timer was pending) 946 */ 947 enqueue_hrtimer(timer, new_base, 948 new_base->cpu_base == &__get_cpu_var(hrtimer_bases)); 949 950 unlock_hrtimer_base(timer, &flags); 951 952 return ret; 953} 954EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 955 956/** 957 * hrtimer_start - (re)start an hrtimer on the current CPU 958 * @timer: the timer to be added 959 * @tim: expiry time 960 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) 961 * 962 * Returns: 963 * 0 on success 964 * 1 when the timer was active 965 */ 966int 967hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) 968{ 969 return hrtimer_start_range_ns(timer, tim, 0, mode); 970} 971EXPORT_SYMBOL_GPL(hrtimer_start); 972 973 974/** 975 * hrtimer_try_to_cancel - try to deactivate a timer 976 * @timer: hrtimer to stop 977 * 978 * Returns: 979 * 0 when the timer was not active 980 * 1 when the timer was active 981 * -1 when the timer is currently excuting the callback function and 982 * cannot be stopped 983 */ 984int hrtimer_try_to_cancel(struct hrtimer *timer) 985{ 986 struct hrtimer_clock_base *base; 987 unsigned long flags; 988 int ret = -1; 989 990 base = lock_hrtimer_base(timer, &flags); 991 992 if (!hrtimer_callback_running(timer)) 993 ret = remove_hrtimer(timer, base); 994 995 unlock_hrtimer_base(timer, &flags); 996 997 return ret; 998 999} 1000EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1001 1002/** 1003 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1004 * @timer: the timer to be cancelled 1005 * 1006 * Returns: 1007 * 0 when the timer was not active 1008 * 1 when the timer was active 1009 */ 1010int hrtimer_cancel(struct hrtimer *timer) 1011{ 1012 for (;;) { 1013 int ret = hrtimer_try_to_cancel(timer); 1014 1015 if (ret >= 0) 1016 return ret; 1017 cpu_relax(); 1018 } 1019} 1020EXPORT_SYMBOL_GPL(hrtimer_cancel); 1021 1022/** 1023 * hrtimer_get_remaining - get remaining time for the timer 1024 * @timer: the timer to read 1025 */ 1026ktime_t hrtimer_get_remaining(const struct hrtimer *timer) 1027{ 1028 struct hrtimer_clock_base *base; 1029 unsigned long flags; 1030 ktime_t rem; 1031 1032 base = lock_hrtimer_base(timer, &flags); 1033 rem = hrtimer_expires_remaining(timer); 1034 unlock_hrtimer_base(timer, &flags); 1035 1036 return rem; 1037} 1038EXPORT_SYMBOL_GPL(hrtimer_get_remaining); 1039 1040#ifdef CONFIG_NO_HZ 1041/** 1042 * hrtimer_get_next_event - get the time until next expiry event 1043 * 1044 * Returns the delta to the next expiry event or KTIME_MAX if no timer 1045 * is pending. 1046 */ 1047ktime_t hrtimer_get_next_event(void) 1048{ 1049 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1050 struct hrtimer_clock_base *base = cpu_base->clock_base; 1051 ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; 1052 unsigned long flags; 1053 int i; 1054 1055 spin_lock_irqsave(&cpu_base->lock, flags); 1056 1057 if (!hrtimer_hres_active()) { 1058 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 1059 struct hrtimer *timer; 1060 1061 if (!base->first) 1062 continue; 1063 1064 timer = rb_entry(base->first, struct hrtimer, node); 1065 delta.tv64 = hrtimer_get_expires_tv64(timer); 1066 delta = ktime_sub(delta, base->get_time()); 1067 if (delta.tv64 < mindelta.tv64) 1068 mindelta.tv64 = delta.tv64; 1069 } 1070 } 1071 1072 spin_unlock_irqrestore(&cpu_base->lock, flags); 1073 1074 if (mindelta.tv64 < 0) 1075 mindelta.tv64 = 0; 1076 return mindelta; 1077} 1078#endif 1079 1080static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1081 enum hrtimer_mode mode) 1082{ 1083 struct hrtimer_cpu_base *cpu_base; 1084 1085 memset(timer, 0, sizeof(struct hrtimer)); 1086 1087 cpu_base = &__raw_get_cpu_var(hrtimer_bases); 1088 1089 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1090 clock_id = CLOCK_MONOTONIC; 1091 1092 timer->base = &cpu_base->clock_base[clock_id]; 1093 INIT_LIST_HEAD(&timer->cb_entry); 1094 hrtimer_init_timer_hres(timer); 1095 1096#ifdef CONFIG_TIMER_STATS 1097 timer->start_site = NULL; 1098 timer->start_pid = -1; 1099 memset(timer->start_comm, 0, TASK_COMM_LEN); 1100#endif 1101} 1102 1103/** 1104 * hrtimer_init - initialize a timer to the given clock 1105 * @timer: the timer to be initialized 1106 * @clock_id: the clock to be used 1107 * @mode: timer mode abs/rel 1108 */ 1109void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1110 enum hrtimer_mode mode) 1111{ 1112 debug_hrtimer_init(timer); 1113 __hrtimer_init(timer, clock_id, mode); 1114} 1115EXPORT_SYMBOL_GPL(hrtimer_init); 1116 1117/** 1118 * hrtimer_get_res - get the timer resolution for a clock 1119 * @which_clock: which clock to query 1120 * @tp: pointer to timespec variable to store the resolution 1121 * 1122 * Store the resolution of the clock selected by @which_clock in the 1123 * variable pointed to by @tp. 1124 */ 1125int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) 1126{ 1127 struct hrtimer_cpu_base *cpu_base; 1128 1129 cpu_base = &__raw_get_cpu_var(hrtimer_bases); 1130 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution); 1131 1132 return 0; 1133} 1134EXPORT_SYMBOL_GPL(hrtimer_get_res); 1135 1136static void __run_hrtimer(struct hrtimer *timer) 1137{ 1138 struct hrtimer_clock_base *base = timer->base; 1139 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1140 enum hrtimer_restart (*fn)(struct hrtimer *); 1141 int restart; 1142 1143 WARN_ON(!irqs_disabled()); 1144 1145 debug_hrtimer_deactivate(timer); 1146 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); 1147 timer_stats_account_hrtimer(timer); 1148 fn = timer->function; 1149 1150 /* 1151 * Because we run timers from hardirq context, there is no chance 1152 * they get migrated to another cpu, therefore its safe to unlock 1153 * the timer base. 1154 */ 1155 spin_unlock(&cpu_base->lock); 1156 restart = fn(timer); 1157 spin_lock(&cpu_base->lock); 1158 1159 /* 1160 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid 1161 * reprogramming of the event hardware. This happens at the end of this 1162 * function anyway. 1163 */ 1164 if (restart != HRTIMER_NORESTART) { 1165 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 1166 enqueue_hrtimer(timer, base, 0); 1167 } 1168 timer->state &= ~HRTIMER_STATE_CALLBACK; 1169} 1170 1171#ifdef CONFIG_HIGH_RES_TIMERS 1172 1173/* 1174 * High resolution timer interrupt 1175 * Called with interrupts disabled 1176 */ 1177void hrtimer_interrupt(struct clock_event_device *dev) 1178{ 1179 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1180 struct hrtimer_clock_base *base; 1181 ktime_t expires_next, now; 1182 int i; 1183 1184 BUG_ON(!cpu_base->hres_active); 1185 cpu_base->nr_events++; 1186 dev->next_event.tv64 = KTIME_MAX; 1187 1188 retry: 1189 now = ktime_get(); 1190 1191 expires_next.tv64 = KTIME_MAX; 1192 1193 base = cpu_base->clock_base; 1194 1195 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1196 ktime_t basenow; 1197 struct rb_node *node; 1198 1199 spin_lock(&cpu_base->lock); 1200 1201 basenow = ktime_add(now, base->offset); 1202 1203 while ((node = base->first)) { 1204 struct hrtimer *timer; 1205 1206 timer = rb_entry(node, struct hrtimer, node); 1207 1208 /* 1209 * The immediate goal for using the softexpires is 1210 * minimizing wakeups, not running timers at the 1211 * earliest interrupt after their soft expiration. 1212 * This allows us to avoid using a Priority Search 1213 * Tree, which can answer a stabbing querry for 1214 * overlapping intervals and instead use the simple 1215 * BST we already have. 1216 * We don't add extra wakeups by delaying timers that 1217 * are right-of a not yet expired timer, because that 1218 * timer will have to trigger a wakeup anyway. 1219 */ 1220 1221 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { 1222 ktime_t expires; 1223 1224 expires = ktime_sub(hrtimer_get_expires(timer), 1225 base->offset); 1226 if (expires.tv64 < expires_next.tv64) 1227 expires_next = expires; 1228 break; 1229 } 1230 1231 __run_hrtimer(timer); 1232 } 1233 spin_unlock(&cpu_base->lock); 1234 base++; 1235 } 1236 1237 cpu_base->expires_next = expires_next; 1238 1239 /* Reprogramming necessary ? */ 1240 if (expires_next.tv64 != KTIME_MAX) { 1241 if (tick_program_event(expires_next, 0)) 1242 goto retry; 1243 } 1244} 1245 1246/** 1247 * hrtimer_peek_ahead_timers -- run soft-expired timers now 1248 * 1249 * hrtimer_peek_ahead_timers will peek at the timer queue of 1250 * the current cpu and check if there are any timers for which 1251 * the soft expires time has passed. If any such timers exist, 1252 * they are run immediately and then removed from the timer queue. 1253 * 1254 */ 1255void hrtimer_peek_ahead_timers(void) 1256{ 1257 struct tick_device *td; 1258 unsigned long flags; 1259 1260 if (!hrtimer_hres_active()) 1261 return; 1262 1263 local_irq_save(flags); 1264 td = &__get_cpu_var(tick_cpu_device); 1265 if (td && td->evtdev) 1266 hrtimer_interrupt(td->evtdev); 1267 local_irq_restore(flags); 1268} 1269 1270#endif /* CONFIG_HIGH_RES_TIMERS */ 1271 1272/* 1273 * Called from timer softirq every jiffy, expire hrtimers: 1274 * 1275 * For HRT its the fall back code to run the softirq in the timer 1276 * softirq context in case the hrtimer initialization failed or has 1277 * not been done yet. 1278 */ 1279void hrtimer_run_pending(void) 1280{ 1281 if (hrtimer_hres_active()) 1282 return; 1283 1284 /* 1285 * This _is_ ugly: We have to check in the softirq context, 1286 * whether we can switch to highres and / or nohz mode. The 1287 * clocksource switch happens in the timer interrupt with 1288 * xtime_lock held. Notification from there only sets the 1289 * check bit in the tick_oneshot code, otherwise we might 1290 * deadlock vs. xtime_lock. 1291 */ 1292 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) 1293 hrtimer_switch_to_hres(); 1294} 1295 1296/* 1297 * Called from hardirq context every jiffy 1298 */ 1299void hrtimer_run_queues(void) 1300{ 1301 struct rb_node *node; 1302 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1303 struct hrtimer_clock_base *base; 1304 int index, gettime = 1; 1305 1306 if (hrtimer_hres_active()) 1307 return; 1308 1309 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { 1310 base = &cpu_base->clock_base[index]; 1311 1312 if (!base->first) 1313 continue; 1314 1315 if (gettime) { 1316 hrtimer_get_softirq_time(cpu_base); 1317 gettime = 0; 1318 } 1319 1320 spin_lock(&cpu_base->lock); 1321 1322 while ((node = base->first)) { 1323 struct hrtimer *timer; 1324 1325 timer = rb_entry(node, struct hrtimer, node); 1326 if (base->softirq_time.tv64 <= 1327 hrtimer_get_expires_tv64(timer)) 1328 break; 1329 1330 __run_hrtimer(timer); 1331 } 1332 spin_unlock(&cpu_base->lock); 1333 } 1334} 1335 1336/* 1337 * Sleep related functions: 1338 */ 1339static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1340{ 1341 struct hrtimer_sleeper *t = 1342 container_of(timer, struct hrtimer_sleeper, timer); 1343 struct task_struct *task = t->task; 1344 1345 t->task = NULL; 1346 if (task) 1347 wake_up_process(task); 1348 1349 return HRTIMER_NORESTART; 1350} 1351 1352void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1353{ 1354 sl->timer.function = hrtimer_wakeup; 1355 sl->task = task; 1356} 1357 1358static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1359{ 1360 hrtimer_init_sleeper(t, current); 1361 1362 do { 1363 set_current_state(TASK_INTERRUPTIBLE); 1364 hrtimer_start_expires(&t->timer, mode); 1365 if (!hrtimer_active(&t->timer)) 1366 t->task = NULL; 1367 1368 if (likely(t->task)) 1369 schedule(); 1370 1371 hrtimer_cancel(&t->timer); 1372 mode = HRTIMER_MODE_ABS; 1373 1374 } while (t->task && !signal_pending(current)); 1375 1376 __set_current_state(TASK_RUNNING); 1377 1378 return t->task == NULL; 1379} 1380 1381static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1382{ 1383 struct timespec rmt; 1384 ktime_t rem; 1385 1386 rem = hrtimer_expires_remaining(timer); 1387 if (rem.tv64 <= 0) 1388 return 0; 1389 rmt = ktime_to_timespec(rem); 1390 1391 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1392 return -EFAULT; 1393 1394 return 1; 1395} 1396 1397long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1398{ 1399 struct hrtimer_sleeper t; 1400 struct timespec __user *rmtp; 1401 int ret = 0; 1402 1403 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index, 1404 HRTIMER_MODE_ABS); 1405 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1406 1407 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1408 goto out; 1409 1410 rmtp = restart->nanosleep.rmtp; 1411 if (rmtp) { 1412 ret = update_rmtp(&t.timer, rmtp); 1413 if (ret <= 0) 1414 goto out; 1415 } 1416 1417 /* The other values in restart are already filled in */ 1418 ret = -ERESTART_RESTARTBLOCK; 1419out: 1420 destroy_hrtimer_on_stack(&t.timer); 1421 return ret; 1422} 1423 1424long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1425 const enum hrtimer_mode mode, const clockid_t clockid) 1426{ 1427 struct restart_block *restart; 1428 struct hrtimer_sleeper t; 1429 int ret = 0; 1430 unsigned long slack; 1431 1432 slack = current->timer_slack_ns; 1433 if (rt_task(current)) 1434 slack = 0; 1435 1436 hrtimer_init_on_stack(&t.timer, clockid, mode); 1437 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1438 if (do_nanosleep(&t, mode)) 1439 goto out; 1440 1441 /* Absolute timers do not update the rmtp value and restart: */ 1442 if (mode == HRTIMER_MODE_ABS) { 1443 ret = -ERESTARTNOHAND; 1444 goto out; 1445 } 1446 1447 if (rmtp) { 1448 ret = update_rmtp(&t.timer, rmtp); 1449 if (ret <= 0) 1450 goto out; 1451 } 1452 1453 restart = &current_thread_info()->restart_block; 1454 restart->fn = hrtimer_nanosleep_restart; 1455 restart->nanosleep.index = t.timer.base->index; 1456 restart->nanosleep.rmtp = rmtp; 1457 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1458 1459 ret = -ERESTART_RESTARTBLOCK; 1460out: 1461 destroy_hrtimer_on_stack(&t.timer); 1462 return ret; 1463} 1464 1465asmlinkage long 1466sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) 1467{ 1468 struct timespec tu; 1469 1470 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1471 return -EFAULT; 1472 1473 if (!timespec_valid(&tu)) 1474 return -EINVAL; 1475 1476 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1477} 1478 1479/* 1480 * Functions related to boot-time initialization: 1481 */ 1482static void __cpuinit init_hrtimers_cpu(int cpu) 1483{ 1484 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1485 int i; 1486 1487 spin_lock_init(&cpu_base->lock); 1488 1489 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) 1490 cpu_base->clock_base[i].cpu_base = cpu_base; 1491 1492 hrtimer_init_hres(cpu_base); 1493} 1494 1495#ifdef CONFIG_HOTPLUG_CPU 1496 1497static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1498 struct hrtimer_clock_base *new_base) 1499{ 1500 struct hrtimer *timer; 1501 struct rb_node *node; 1502 1503 while ((node = rb_first(&old_base->active))) { 1504 timer = rb_entry(node, struct hrtimer, node); 1505 BUG_ON(hrtimer_callback_running(timer)); 1506 debug_hrtimer_deactivate(timer); 1507 1508 /* 1509 * Mark it as STATE_MIGRATE not INACTIVE otherwise the 1510 * timer could be seen as !active and just vanish away 1511 * under us on another CPU 1512 */ 1513 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); 1514 timer->base = new_base; 1515 /* 1516 * Enqueue the timers on the new cpu, but do not reprogram 1517 * the timer as that would enable a deadlock between 1518 * hrtimer_enqueue_reprogramm() running the timer and us still 1519 * holding a nested base lock. 1520 * 1521 * Instead we tickle the hrtimer interrupt after the migration 1522 * is done, which will run all expired timers and re-programm 1523 * the timer device. 1524 */ 1525 enqueue_hrtimer(timer, new_base, 0); 1526 1527 /* Clear the migration state bit */ 1528 timer->state &= ~HRTIMER_STATE_MIGRATE; 1529 } 1530} 1531 1532static int migrate_hrtimers(int scpu) 1533{ 1534 struct hrtimer_cpu_base *old_base, *new_base; 1535 int dcpu, i; 1536 1537 BUG_ON(cpu_online(scpu)); 1538 old_base = &per_cpu(hrtimer_bases, scpu); 1539 new_base = &get_cpu_var(hrtimer_bases); 1540 1541 dcpu = smp_processor_id(); 1542 1543 tick_cancel_sched_timer(scpu); 1544 /* 1545 * The caller is globally serialized and nobody else 1546 * takes two locks at once, deadlock is not possible. 1547 */ 1548 spin_lock_irq(&new_base->lock); 1549 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1550 1551 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1552 migrate_hrtimer_list(&old_base->clock_base[i], 1553 &new_base->clock_base[i]); 1554 } 1555 1556 spin_unlock(&old_base->lock); 1557 spin_unlock_irq(&new_base->lock); 1558 put_cpu_var(hrtimer_bases); 1559 1560 return dcpu; 1561} 1562 1563static void tickle_timers(void *arg) 1564{ 1565 hrtimer_peek_ahead_timers(); 1566} 1567 1568#endif /* CONFIG_HOTPLUG_CPU */ 1569 1570static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, 1571 unsigned long action, void *hcpu) 1572{ 1573 int scpu = (long)hcpu; 1574 1575 switch (action) { 1576 1577 case CPU_UP_PREPARE: 1578 case CPU_UP_PREPARE_FROZEN: 1579 init_hrtimers_cpu(scpu); 1580 break; 1581 1582#ifdef CONFIG_HOTPLUG_CPU 1583 case CPU_DEAD: 1584 case CPU_DEAD_FROZEN: 1585 { 1586 int dcpu; 1587 1588 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); 1589 dcpu = migrate_hrtimers(scpu); 1590 smp_call_function_single(dcpu, tickle_timers, NULL, 0); 1591 break; 1592 } 1593#endif 1594 1595 default: 1596 break; 1597 } 1598 1599 return NOTIFY_OK; 1600} 1601 1602static struct notifier_block __cpuinitdata hrtimers_nb = { 1603 .notifier_call = hrtimer_cpu_notify, 1604}; 1605 1606void __init hrtimers_init(void) 1607{ 1608 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1609 (void *)(long)smp_processor_id()); 1610 register_cpu_notifier(&hrtimers_nb); 1611} 1612 1613/** 1614 * schedule_hrtimeout_range - sleep until timeout 1615 * @expires: timeout value (ktime_t) 1616 * @delta: slack in expires timeout (ktime_t) 1617 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1618 * 1619 * Make the current task sleep until the given expiry time has 1620 * elapsed. The routine will return immediately unless 1621 * the current task state has been set (see set_current_state()). 1622 * 1623 * The @delta argument gives the kernel the freedom to schedule the 1624 * actual wakeup to a time that is both power and performance friendly. 1625 * The kernel give the normal best effort behavior for "@expires+@delta", 1626 * but may decide to fire the timer earlier, but no earlier than @expires. 1627 * 1628 * You can set the task state as follows - 1629 * 1630 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1631 * pass before the routine returns. 1632 * 1633 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1634 * delivered to the current task. 1635 * 1636 * The current task state is guaranteed to be TASK_RUNNING when this 1637 * routine returns. 1638 * 1639 * Returns 0 when the timer has expired otherwise -EINTR 1640 */ 1641int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, 1642 const enum hrtimer_mode mode) 1643{ 1644 struct hrtimer_sleeper t; 1645 1646 /* 1647 * Optimize when a zero timeout value is given. It does not 1648 * matter whether this is an absolute or a relative time. 1649 */ 1650 if (expires && !expires->tv64) { 1651 __set_current_state(TASK_RUNNING); 1652 return 0; 1653 } 1654 1655 /* 1656 * A NULL parameter means "inifinte" 1657 */ 1658 if (!expires) { 1659 schedule(); 1660 __set_current_state(TASK_RUNNING); 1661 return -EINTR; 1662 } 1663 1664 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode); 1665 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1666 1667 hrtimer_init_sleeper(&t, current); 1668 1669 hrtimer_start_expires(&t.timer, mode); 1670 if (!hrtimer_active(&t.timer)) 1671 t.task = NULL; 1672 1673 if (likely(t.task)) 1674 schedule(); 1675 1676 hrtimer_cancel(&t.timer); 1677 destroy_hrtimer_on_stack(&t.timer); 1678 1679 __set_current_state(TASK_RUNNING); 1680 1681 return !t.task ? 0 : -EINTR; 1682} 1683EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1684 1685/** 1686 * schedule_hrtimeout - sleep until timeout 1687 * @expires: timeout value (ktime_t) 1688 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1689 * 1690 * Make the current task sleep until the given expiry time has 1691 * elapsed. The routine will return immediately unless 1692 * the current task state has been set (see set_current_state()). 1693 * 1694 * You can set the task state as follows - 1695 * 1696 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1697 * pass before the routine returns. 1698 * 1699 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1700 * delivered to the current task. 1701 * 1702 * The current task state is guaranteed to be TASK_RUNNING when this 1703 * routine returns. 1704 * 1705 * Returns 0 when the timer has expired otherwise -EINTR 1706 */ 1707int __sched schedule_hrtimeout(ktime_t *expires, 1708 const enum hrtimer_mode mode) 1709{ 1710 return schedule_hrtimeout_range(expires, 0, mode); 1711} 1712EXPORT_SYMBOL_GPL(schedule_hrtimeout);