Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8#define CLONE_VM 0x00000100 /* set if VM shared between processes */
9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD 0x00010000 /* Same thread group? */
16#define CLONE_NEWNS 0x00020000 /* New namespace group? */
17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26#define CLONE_NEWIPC 0x08000000 /* New ipcs */
27#define CLONE_NEWUSER 0x10000000 /* New user namespace */
28#define CLONE_NEWPID 0x20000000 /* New pid namespace */
29#define CLONE_NEWNET 0x40000000 /* New network namespace */
30#define CLONE_IO 0x80000000 /* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL 0
36#define SCHED_FIFO 1
37#define SCHED_RR 2
38#define SCHED_BATCH 3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE 5
41
42#ifdef __KERNEL__
43
44struct sched_param {
45 int sched_priority;
46};
47
48#include <asm/param.h> /* for HZ */
49
50#include <linux/capability.h>
51#include <linux/threads.h>
52#include <linux/kernel.h>
53#include <linux/types.h>
54#include <linux/timex.h>
55#include <linux/jiffies.h>
56#include <linux/rbtree.h>
57#include <linux/thread_info.h>
58#include <linux/cpumask.h>
59#include <linux/errno.h>
60#include <linux/nodemask.h>
61#include <linux/mm_types.h>
62
63#include <asm/system.h>
64#include <asm/semaphore.h>
65#include <asm/page.h>
66#include <asm/ptrace.h>
67#include <asm/cputime.h>
68
69#include <linux/smp.h>
70#include <linux/sem.h>
71#include <linux/signal.h>
72#include <linux/securebits.h>
73#include <linux/fs_struct.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rtmutex.h>
83
84#include <linux/time.h>
85#include <linux/param.h>
86#include <linux/resource.h>
87#include <linux/timer.h>
88#include <linux/hrtimer.h>
89#include <linux/task_io_accounting.h>
90#include <linux/kobject.h>
91#include <linux/latencytop.h>
92
93#include <asm/processor.h>
94
95struct mem_cgroup;
96struct exec_domain;
97struct futex_pi_state;
98struct robust_list_head;
99struct bio;
100
101/*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107/*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117extern unsigned long avenrun[]; /* Load averages */
118
119#define FSHIFT 11 /* nr of bits of precision */
120#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123#define EXP_5 2014 /* 1/exp(5sec/5min) */
124#define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126#define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131extern unsigned long total_forks;
132extern int nr_threads;
133DECLARE_PER_CPU(unsigned long, process_counts);
134extern int nr_processes(void);
135extern unsigned long nr_running(void);
136extern unsigned long nr_uninterruptible(void);
137extern unsigned long nr_active(void);
138extern unsigned long nr_iowait(void);
139extern unsigned long weighted_cpuload(const int cpu);
140
141struct seq_file;
142struct cfs_rq;
143struct task_group;
144#ifdef CONFIG_SCHED_DEBUG
145extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
146extern void proc_sched_set_task(struct task_struct *p);
147extern void
148print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
149#else
150static inline void
151proc_sched_show_task(struct task_struct *p, struct seq_file *m)
152{
153}
154static inline void proc_sched_set_task(struct task_struct *p)
155{
156}
157static inline void
158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
159{
160}
161#endif
162
163/*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173#define TASK_RUNNING 0
174#define TASK_INTERRUPTIBLE 1
175#define TASK_UNINTERRUPTIBLE 2
176#define __TASK_STOPPED 4
177#define __TASK_TRACED 8
178/* in tsk->exit_state */
179#define EXIT_ZOMBIE 16
180#define EXIT_DEAD 32
181/* in tsk->state again */
182#define TASK_DEAD 64
183#define TASK_WAKEKILL 128
184
185/* Convenience macros for the sake of set_task_state */
186#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190/* Convenience macros for the sake of wake_up */
191#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194/* get_task_state() */
195#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201#define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203#define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206#define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208#define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211/*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222#define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224#define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227/* Task command name length */
228#define TASK_COMM_LEN 16
229
230#include <linux/spinlock.h>
231
232/*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238extern rwlock_t tasklist_lock;
239extern spinlock_t mmlist_lock;
240
241struct task_struct;
242
243extern void sched_init(void);
244extern void sched_init_smp(void);
245extern asmlinkage void schedule_tail(struct task_struct *prev);
246extern void init_idle(struct task_struct *idle, int cpu);
247extern void init_idle_bootup_task(struct task_struct *idle);
248
249extern cpumask_t nohz_cpu_mask;
250#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
251extern int select_nohz_load_balancer(int cpu);
252#else
253static inline int select_nohz_load_balancer(int cpu)
254{
255 return 0;
256}
257#endif
258
259extern unsigned long rt_needs_cpu(int cpu);
260
261/*
262 * Only dump TASK_* tasks. (0 for all tasks)
263 */
264extern void show_state_filter(unsigned long state_filter);
265
266static inline void show_state(void)
267{
268 show_state_filter(0);
269}
270
271extern void show_regs(struct pt_regs *);
272
273/*
274 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
275 * task), SP is the stack pointer of the first frame that should be shown in the back
276 * trace (or NULL if the entire call-chain of the task should be shown).
277 */
278extern void show_stack(struct task_struct *task, unsigned long *sp);
279
280void io_schedule(void);
281long io_schedule_timeout(long timeout);
282
283extern void cpu_init (void);
284extern void trap_init(void);
285extern void account_process_tick(struct task_struct *task, int user);
286extern void update_process_times(int user);
287extern void scheduler_tick(void);
288extern void hrtick_resched(void);
289
290extern void sched_show_task(struct task_struct *p);
291
292#ifdef CONFIG_DETECT_SOFTLOCKUP
293extern void softlockup_tick(void);
294extern void spawn_softlockup_task(void);
295extern void touch_softlockup_watchdog(void);
296extern void touch_all_softlockup_watchdogs(void);
297extern unsigned long softlockup_thresh;
298extern unsigned long sysctl_hung_task_check_count;
299extern unsigned long sysctl_hung_task_timeout_secs;
300extern unsigned long sysctl_hung_task_warnings;
301#else
302static inline void softlockup_tick(void)
303{
304}
305static inline void spawn_softlockup_task(void)
306{
307}
308static inline void touch_softlockup_watchdog(void)
309{
310}
311static inline void touch_all_softlockup_watchdogs(void)
312{
313}
314#endif
315
316
317/* Attach to any functions which should be ignored in wchan output. */
318#define __sched __attribute__((__section__(".sched.text")))
319
320/* Linker adds these: start and end of __sched functions */
321extern char __sched_text_start[], __sched_text_end[];
322
323/* Is this address in the __sched functions? */
324extern int in_sched_functions(unsigned long addr);
325
326#define MAX_SCHEDULE_TIMEOUT LONG_MAX
327extern signed long schedule_timeout(signed long timeout);
328extern signed long schedule_timeout_interruptible(signed long timeout);
329extern signed long schedule_timeout_killable(signed long timeout);
330extern signed long schedule_timeout_uninterruptible(signed long timeout);
331asmlinkage void schedule(void);
332
333struct nsproxy;
334struct user_namespace;
335
336/* Maximum number of active map areas.. This is a random (large) number */
337#define DEFAULT_MAX_MAP_COUNT 65536
338
339extern int sysctl_max_map_count;
340
341#include <linux/aio.h>
342
343extern unsigned long
344arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
345 unsigned long, unsigned long);
346extern unsigned long
347arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
348 unsigned long len, unsigned long pgoff,
349 unsigned long flags);
350extern void arch_unmap_area(struct mm_struct *, unsigned long);
351extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
352
353#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
354/*
355 * The mm counters are not protected by its page_table_lock,
356 * so must be incremented atomically.
357 */
358#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
359#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
360#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
361#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
362#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
363
364#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
365/*
366 * The mm counters are protected by its page_table_lock,
367 * so can be incremented directly.
368 */
369#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
370#define get_mm_counter(mm, member) ((mm)->_##member)
371#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
372#define inc_mm_counter(mm, member) (mm)->_##member++
373#define dec_mm_counter(mm, member) (mm)->_##member--
374
375#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
376
377#define get_mm_rss(mm) \
378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
379#define update_hiwater_rss(mm) do { \
380 unsigned long _rss = get_mm_rss(mm); \
381 if ((mm)->hiwater_rss < _rss) \
382 (mm)->hiwater_rss = _rss; \
383} while (0)
384#define update_hiwater_vm(mm) do { \
385 if ((mm)->hiwater_vm < (mm)->total_vm) \
386 (mm)->hiwater_vm = (mm)->total_vm; \
387} while (0)
388
389extern void set_dumpable(struct mm_struct *mm, int value);
390extern int get_dumpable(struct mm_struct *mm);
391
392/* mm flags */
393/* dumpable bits */
394#define MMF_DUMPABLE 0 /* core dump is permitted */
395#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
396#define MMF_DUMPABLE_BITS 2
397
398/* coredump filter bits */
399#define MMF_DUMP_ANON_PRIVATE 2
400#define MMF_DUMP_ANON_SHARED 3
401#define MMF_DUMP_MAPPED_PRIVATE 4
402#define MMF_DUMP_MAPPED_SHARED 5
403#define MMF_DUMP_ELF_HEADERS 6
404#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
405#define MMF_DUMP_FILTER_BITS 5
406#define MMF_DUMP_FILTER_MASK \
407 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
408#define MMF_DUMP_FILTER_DEFAULT \
409 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
410
411struct sighand_struct {
412 atomic_t count;
413 struct k_sigaction action[_NSIG];
414 spinlock_t siglock;
415 wait_queue_head_t signalfd_wqh;
416};
417
418struct pacct_struct {
419 int ac_flag;
420 long ac_exitcode;
421 unsigned long ac_mem;
422 cputime_t ac_utime, ac_stime;
423 unsigned long ac_minflt, ac_majflt;
424};
425
426/*
427 * NOTE! "signal_struct" does not have it's own
428 * locking, because a shared signal_struct always
429 * implies a shared sighand_struct, so locking
430 * sighand_struct is always a proper superset of
431 * the locking of signal_struct.
432 */
433struct signal_struct {
434 atomic_t count;
435 atomic_t live;
436
437 wait_queue_head_t wait_chldexit; /* for wait4() */
438
439 /* current thread group signal load-balancing target: */
440 struct task_struct *curr_target;
441
442 /* shared signal handling: */
443 struct sigpending shared_pending;
444
445 /* thread group exit support */
446 int group_exit_code;
447 /* overloaded:
448 * - notify group_exit_task when ->count is equal to notify_count
449 * - everyone except group_exit_task is stopped during signal delivery
450 * of fatal signals, group_exit_task processes the signal.
451 */
452 struct task_struct *group_exit_task;
453 int notify_count;
454
455 /* thread group stop support, overloads group_exit_code too */
456 int group_stop_count;
457 unsigned int flags; /* see SIGNAL_* flags below */
458
459 /* POSIX.1b Interval Timers */
460 struct list_head posix_timers;
461
462 /* ITIMER_REAL timer for the process */
463 struct hrtimer real_timer;
464 struct pid *leader_pid;
465 ktime_t it_real_incr;
466
467 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
468 cputime_t it_prof_expires, it_virt_expires;
469 cputime_t it_prof_incr, it_virt_incr;
470
471 /* job control IDs */
472
473 /*
474 * pgrp and session fields are deprecated.
475 * use the task_session_Xnr and task_pgrp_Xnr routines below
476 */
477
478 union {
479 pid_t pgrp __deprecated;
480 pid_t __pgrp;
481 };
482
483 struct pid *tty_old_pgrp;
484
485 union {
486 pid_t session __deprecated;
487 pid_t __session;
488 };
489
490 /* boolean value for session group leader */
491 int leader;
492
493 struct tty_struct *tty; /* NULL if no tty */
494
495 /*
496 * Cumulative resource counters for dead threads in the group,
497 * and for reaped dead child processes forked by this group.
498 * Live threads maintain their own counters and add to these
499 * in __exit_signal, except for the group leader.
500 */
501 cputime_t utime, stime, cutime, cstime;
502 cputime_t gtime;
503 cputime_t cgtime;
504 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
505 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
506 unsigned long inblock, oublock, cinblock, coublock;
507
508 /*
509 * Cumulative ns of scheduled CPU time for dead threads in the
510 * group, not including a zombie group leader. (This only differs
511 * from jiffies_to_ns(utime + stime) if sched_clock uses something
512 * other than jiffies.)
513 */
514 unsigned long long sum_sched_runtime;
515
516 /*
517 * We don't bother to synchronize most readers of this at all,
518 * because there is no reader checking a limit that actually needs
519 * to get both rlim_cur and rlim_max atomically, and either one
520 * alone is a single word that can safely be read normally.
521 * getrlimit/setrlimit use task_lock(current->group_leader) to
522 * protect this instead of the siglock, because they really
523 * have no need to disable irqs.
524 */
525 struct rlimit rlim[RLIM_NLIMITS];
526
527 struct list_head cpu_timers[3];
528
529 /* keep the process-shared keyrings here so that they do the right
530 * thing in threads created with CLONE_THREAD */
531#ifdef CONFIG_KEYS
532 struct key *session_keyring; /* keyring inherited over fork */
533 struct key *process_keyring; /* keyring private to this process */
534#endif
535#ifdef CONFIG_BSD_PROCESS_ACCT
536 struct pacct_struct pacct; /* per-process accounting information */
537#endif
538#ifdef CONFIG_TASKSTATS
539 struct taskstats *stats;
540#endif
541#ifdef CONFIG_AUDIT
542 unsigned audit_tty;
543 struct tty_audit_buf *tty_audit_buf;
544#endif
545};
546
547/* Context switch must be unlocked if interrupts are to be enabled */
548#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
549# define __ARCH_WANT_UNLOCKED_CTXSW
550#endif
551
552/*
553 * Bits in flags field of signal_struct.
554 */
555#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
556#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
557#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
558#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
559
560/* If true, all threads except ->group_exit_task have pending SIGKILL */
561static inline int signal_group_exit(const struct signal_struct *sig)
562{
563 return (sig->flags & SIGNAL_GROUP_EXIT) ||
564 (sig->group_exit_task != NULL);
565}
566
567/*
568 * Some day this will be a full-fledged user tracking system..
569 */
570struct user_struct {
571 atomic_t __count; /* reference count */
572 atomic_t processes; /* How many processes does this user have? */
573 atomic_t files; /* How many open files does this user have? */
574 atomic_t sigpending; /* How many pending signals does this user have? */
575#ifdef CONFIG_INOTIFY_USER
576 atomic_t inotify_watches; /* How many inotify watches does this user have? */
577 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
578#endif
579#ifdef CONFIG_POSIX_MQUEUE
580 /* protected by mq_lock */
581 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
582#endif
583 unsigned long locked_shm; /* How many pages of mlocked shm ? */
584
585#ifdef CONFIG_KEYS
586 struct key *uid_keyring; /* UID specific keyring */
587 struct key *session_keyring; /* UID's default session keyring */
588#endif
589
590 /* Hash table maintenance information */
591 struct hlist_node uidhash_node;
592 uid_t uid;
593
594#ifdef CONFIG_USER_SCHED
595 struct task_group *tg;
596#ifdef CONFIG_SYSFS
597 struct kobject kobj;
598 struct work_struct work;
599#endif
600#endif
601};
602
603extern int uids_sysfs_init(void);
604
605extern struct user_struct *find_user(uid_t);
606
607extern struct user_struct root_user;
608#define INIT_USER (&root_user)
609
610struct backing_dev_info;
611struct reclaim_state;
612
613#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
614struct sched_info {
615 /* cumulative counters */
616 unsigned long pcount; /* # of times run on this cpu */
617 unsigned long long cpu_time, /* time spent on the cpu */
618 run_delay; /* time spent waiting on a runqueue */
619
620 /* timestamps */
621 unsigned long long last_arrival,/* when we last ran on a cpu */
622 last_queued; /* when we were last queued to run */
623#ifdef CONFIG_SCHEDSTATS
624 /* BKL stats */
625 unsigned int bkl_count;
626#endif
627};
628#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
629
630#ifdef CONFIG_SCHEDSTATS
631extern const struct file_operations proc_schedstat_operations;
632#endif /* CONFIG_SCHEDSTATS */
633
634#ifdef CONFIG_TASK_DELAY_ACCT
635struct task_delay_info {
636 spinlock_t lock;
637 unsigned int flags; /* Private per-task flags */
638
639 /* For each stat XXX, add following, aligned appropriately
640 *
641 * struct timespec XXX_start, XXX_end;
642 * u64 XXX_delay;
643 * u32 XXX_count;
644 *
645 * Atomicity of updates to XXX_delay, XXX_count protected by
646 * single lock above (split into XXX_lock if contention is an issue).
647 */
648
649 /*
650 * XXX_count is incremented on every XXX operation, the delay
651 * associated with the operation is added to XXX_delay.
652 * XXX_delay contains the accumulated delay time in nanoseconds.
653 */
654 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
655 u64 blkio_delay; /* wait for sync block io completion */
656 u64 swapin_delay; /* wait for swapin block io completion */
657 u32 blkio_count; /* total count of the number of sync block */
658 /* io operations performed */
659 u32 swapin_count; /* total count of the number of swapin block */
660 /* io operations performed */
661};
662#endif /* CONFIG_TASK_DELAY_ACCT */
663
664static inline int sched_info_on(void)
665{
666#ifdef CONFIG_SCHEDSTATS
667 return 1;
668#elif defined(CONFIG_TASK_DELAY_ACCT)
669 extern int delayacct_on;
670 return delayacct_on;
671#else
672 return 0;
673#endif
674}
675
676enum cpu_idle_type {
677 CPU_IDLE,
678 CPU_NOT_IDLE,
679 CPU_NEWLY_IDLE,
680 CPU_MAX_IDLE_TYPES
681};
682
683/*
684 * sched-domains (multiprocessor balancing) declarations:
685 */
686
687/*
688 * Increase resolution of nice-level calculations:
689 */
690#define SCHED_LOAD_SHIFT 10
691#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
692
693#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
694
695#ifdef CONFIG_SMP
696#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
697#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
698#define SD_BALANCE_EXEC 4 /* Balance on exec */
699#define SD_BALANCE_FORK 8 /* Balance on fork, clone */
700#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
701#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
702#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
703#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
704#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
705#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
706#define SD_SERIALIZE 1024 /* Only a single load balancing instance */
707
708#define BALANCE_FOR_MC_POWER \
709 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
710
711#define BALANCE_FOR_PKG_POWER \
712 ((sched_mc_power_savings || sched_smt_power_savings) ? \
713 SD_POWERSAVINGS_BALANCE : 0)
714
715#define test_sd_parent(sd, flag) ((sd->parent && \
716 (sd->parent->flags & flag)) ? 1 : 0)
717
718
719struct sched_group {
720 struct sched_group *next; /* Must be a circular list */
721 cpumask_t cpumask;
722
723 /*
724 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
725 * single CPU. This is read only (except for setup, hotplug CPU).
726 * Note : Never change cpu_power without recompute its reciprocal
727 */
728 unsigned int __cpu_power;
729 /*
730 * reciprocal value of cpu_power to avoid expensive divides
731 * (see include/linux/reciprocal_div.h)
732 */
733 u32 reciprocal_cpu_power;
734};
735
736struct sched_domain {
737 /* These fields must be setup */
738 struct sched_domain *parent; /* top domain must be null terminated */
739 struct sched_domain *child; /* bottom domain must be null terminated */
740 struct sched_group *groups; /* the balancing groups of the domain */
741 cpumask_t span; /* span of all CPUs in this domain */
742 unsigned long min_interval; /* Minimum balance interval ms */
743 unsigned long max_interval; /* Maximum balance interval ms */
744 unsigned int busy_factor; /* less balancing by factor if busy */
745 unsigned int imbalance_pct; /* No balance until over watermark */
746 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
747 unsigned int busy_idx;
748 unsigned int idle_idx;
749 unsigned int newidle_idx;
750 unsigned int wake_idx;
751 unsigned int forkexec_idx;
752 int flags; /* See SD_* */
753
754 /* Runtime fields. */
755 unsigned long last_balance; /* init to jiffies. units in jiffies */
756 unsigned int balance_interval; /* initialise to 1. units in ms. */
757 unsigned int nr_balance_failed; /* initialise to 0 */
758
759#ifdef CONFIG_SCHEDSTATS
760 /* load_balance() stats */
761 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
762 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
763 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
764 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
765 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
766 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
767 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
768 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
769
770 /* Active load balancing */
771 unsigned int alb_count;
772 unsigned int alb_failed;
773 unsigned int alb_pushed;
774
775 /* SD_BALANCE_EXEC stats */
776 unsigned int sbe_count;
777 unsigned int sbe_balanced;
778 unsigned int sbe_pushed;
779
780 /* SD_BALANCE_FORK stats */
781 unsigned int sbf_count;
782 unsigned int sbf_balanced;
783 unsigned int sbf_pushed;
784
785 /* try_to_wake_up() stats */
786 unsigned int ttwu_wake_remote;
787 unsigned int ttwu_move_affine;
788 unsigned int ttwu_move_balance;
789#endif
790};
791
792extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
793
794#endif /* CONFIG_SMP */
795
796/*
797 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
798 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
799 * task of nice 0 or enough lower priority tasks to bring up the
800 * weighted_cpuload
801 */
802static inline int above_background_load(void)
803{
804 unsigned long cpu;
805
806 for_each_online_cpu(cpu) {
807 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
808 return 1;
809 }
810 return 0;
811}
812
813struct io_context; /* See blkdev.h */
814#define NGROUPS_SMALL 32
815#define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
816struct group_info {
817 int ngroups;
818 atomic_t usage;
819 gid_t small_block[NGROUPS_SMALL];
820 int nblocks;
821 gid_t *blocks[0];
822};
823
824/*
825 * get_group_info() must be called with the owning task locked (via task_lock())
826 * when task != current. The reason being that the vast majority of callers are
827 * looking at current->group_info, which can not be changed except by the
828 * current task. Changing current->group_info requires the task lock, too.
829 */
830#define get_group_info(group_info) do { \
831 atomic_inc(&(group_info)->usage); \
832} while (0)
833
834#define put_group_info(group_info) do { \
835 if (atomic_dec_and_test(&(group_info)->usage)) \
836 groups_free(group_info); \
837} while (0)
838
839extern struct group_info *groups_alloc(int gidsetsize);
840extern void groups_free(struct group_info *group_info);
841extern int set_current_groups(struct group_info *group_info);
842extern int groups_search(struct group_info *group_info, gid_t grp);
843/* access the groups "array" with this macro */
844#define GROUP_AT(gi, i) \
845 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
846
847#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
848extern void prefetch_stack(struct task_struct *t);
849#else
850static inline void prefetch_stack(struct task_struct *t) { }
851#endif
852
853struct audit_context; /* See audit.c */
854struct mempolicy;
855struct pipe_inode_info;
856struct uts_namespace;
857
858struct rq;
859struct sched_domain;
860
861struct sched_class {
862 const struct sched_class *next;
863
864 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
865 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
866 void (*yield_task) (struct rq *rq);
867 int (*select_task_rq)(struct task_struct *p, int sync);
868
869 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
870
871 struct task_struct * (*pick_next_task) (struct rq *rq);
872 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
873
874#ifdef CONFIG_SMP
875 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
876 struct rq *busiest, unsigned long max_load_move,
877 struct sched_domain *sd, enum cpu_idle_type idle,
878 int *all_pinned, int *this_best_prio);
879
880 int (*move_one_task) (struct rq *this_rq, int this_cpu,
881 struct rq *busiest, struct sched_domain *sd,
882 enum cpu_idle_type idle);
883 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
884 void (*post_schedule) (struct rq *this_rq);
885 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
886#endif
887
888 void (*set_curr_task) (struct rq *rq);
889 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
890 void (*task_new) (struct rq *rq, struct task_struct *p);
891 void (*set_cpus_allowed)(struct task_struct *p, cpumask_t *newmask);
892
893 void (*join_domain)(struct rq *rq);
894 void (*leave_domain)(struct rq *rq);
895
896 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
897 int running);
898 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
899 int running);
900 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
901 int oldprio, int running);
902
903#ifdef CONFIG_FAIR_GROUP_SCHED
904 void (*moved_group) (struct task_struct *p);
905#endif
906};
907
908struct load_weight {
909 unsigned long weight, inv_weight;
910};
911
912/*
913 * CFS stats for a schedulable entity (task, task-group etc)
914 *
915 * Current field usage histogram:
916 *
917 * 4 se->block_start
918 * 4 se->run_node
919 * 4 se->sleep_start
920 * 6 se->load.weight
921 */
922struct sched_entity {
923 struct load_weight load; /* for load-balancing */
924 struct rb_node run_node;
925 unsigned int on_rq;
926
927 u64 exec_start;
928 u64 sum_exec_runtime;
929 u64 vruntime;
930 u64 prev_sum_exec_runtime;
931
932#ifdef CONFIG_SCHEDSTATS
933 u64 wait_start;
934 u64 wait_max;
935 u64 wait_count;
936 u64 wait_sum;
937
938 u64 sleep_start;
939 u64 sleep_max;
940 s64 sum_sleep_runtime;
941
942 u64 block_start;
943 u64 block_max;
944 u64 exec_max;
945 u64 slice_max;
946
947 u64 nr_migrations;
948 u64 nr_migrations_cold;
949 u64 nr_failed_migrations_affine;
950 u64 nr_failed_migrations_running;
951 u64 nr_failed_migrations_hot;
952 u64 nr_forced_migrations;
953 u64 nr_forced2_migrations;
954
955 u64 nr_wakeups;
956 u64 nr_wakeups_sync;
957 u64 nr_wakeups_migrate;
958 u64 nr_wakeups_local;
959 u64 nr_wakeups_remote;
960 u64 nr_wakeups_affine;
961 u64 nr_wakeups_affine_attempts;
962 u64 nr_wakeups_passive;
963 u64 nr_wakeups_idle;
964#endif
965
966#ifdef CONFIG_FAIR_GROUP_SCHED
967 struct sched_entity *parent;
968 /* rq on which this entity is (to be) queued: */
969 struct cfs_rq *cfs_rq;
970 /* rq "owned" by this entity/group: */
971 struct cfs_rq *my_q;
972#endif
973};
974
975struct sched_rt_entity {
976 struct list_head run_list;
977 unsigned int time_slice;
978 unsigned long timeout;
979 int nr_cpus_allowed;
980
981#ifdef CONFIG_RT_GROUP_SCHED
982 struct sched_rt_entity *parent;
983 /* rq on which this entity is (to be) queued: */
984 struct rt_rq *rt_rq;
985 /* rq "owned" by this entity/group: */
986 struct rt_rq *my_q;
987#endif
988};
989
990struct task_struct {
991 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
992 void *stack;
993 atomic_t usage;
994 unsigned int flags; /* per process flags, defined below */
995 unsigned int ptrace;
996
997 int lock_depth; /* BKL lock depth */
998
999#ifdef CONFIG_SMP
1000#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1001 int oncpu;
1002#endif
1003#endif
1004
1005 int prio, static_prio, normal_prio;
1006 const struct sched_class *sched_class;
1007 struct sched_entity se;
1008 struct sched_rt_entity rt;
1009
1010#ifdef CONFIG_PREEMPT_NOTIFIERS
1011 /* list of struct preempt_notifier: */
1012 struct hlist_head preempt_notifiers;
1013#endif
1014
1015 /*
1016 * fpu_counter contains the number of consecutive context switches
1017 * that the FPU is used. If this is over a threshold, the lazy fpu
1018 * saving becomes unlazy to save the trap. This is an unsigned char
1019 * so that after 256 times the counter wraps and the behavior turns
1020 * lazy again; this to deal with bursty apps that only use FPU for
1021 * a short time
1022 */
1023 unsigned char fpu_counter;
1024 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1025#ifdef CONFIG_BLK_DEV_IO_TRACE
1026 unsigned int btrace_seq;
1027#endif
1028
1029 unsigned int policy;
1030 cpumask_t cpus_allowed;
1031
1032#ifdef CONFIG_PREEMPT_RCU
1033 int rcu_read_lock_nesting;
1034 int rcu_flipctr_idx;
1035#endif /* #ifdef CONFIG_PREEMPT_RCU */
1036
1037#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1038 struct sched_info sched_info;
1039#endif
1040
1041 struct list_head tasks;
1042 /*
1043 * ptrace_list/ptrace_children forms the list of my children
1044 * that were stolen by a ptracer.
1045 */
1046 struct list_head ptrace_children;
1047 struct list_head ptrace_list;
1048
1049 struct mm_struct *mm, *active_mm;
1050
1051/* task state */
1052 struct linux_binfmt *binfmt;
1053 int exit_state;
1054 int exit_code, exit_signal;
1055 int pdeath_signal; /* The signal sent when the parent dies */
1056 /* ??? */
1057 unsigned int personality;
1058 unsigned did_exec:1;
1059 pid_t pid;
1060 pid_t tgid;
1061
1062#ifdef CONFIG_CC_STACKPROTECTOR
1063 /* Canary value for the -fstack-protector gcc feature */
1064 unsigned long stack_canary;
1065#endif
1066 /*
1067 * pointers to (original) parent process, youngest child, younger sibling,
1068 * older sibling, respectively. (p->father can be replaced with
1069 * p->parent->pid)
1070 */
1071 struct task_struct *real_parent; /* real parent process (when being debugged) */
1072 struct task_struct *parent; /* parent process */
1073 /*
1074 * children/sibling forms the list of my children plus the
1075 * tasks I'm ptracing.
1076 */
1077 struct list_head children; /* list of my children */
1078 struct list_head sibling; /* linkage in my parent's children list */
1079 struct task_struct *group_leader; /* threadgroup leader */
1080
1081 /* PID/PID hash table linkage. */
1082 struct pid_link pids[PIDTYPE_MAX];
1083 struct list_head thread_group;
1084
1085 struct completion *vfork_done; /* for vfork() */
1086 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1087 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1088
1089 unsigned int rt_priority;
1090 cputime_t utime, stime, utimescaled, stimescaled;
1091 cputime_t gtime;
1092 cputime_t prev_utime, prev_stime;
1093 unsigned long nvcsw, nivcsw; /* context switch counts */
1094 struct timespec start_time; /* monotonic time */
1095 struct timespec real_start_time; /* boot based time */
1096/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1097 unsigned long min_flt, maj_flt;
1098
1099 cputime_t it_prof_expires, it_virt_expires;
1100 unsigned long long it_sched_expires;
1101 struct list_head cpu_timers[3];
1102
1103/* process credentials */
1104 uid_t uid,euid,suid,fsuid;
1105 gid_t gid,egid,sgid,fsgid;
1106 struct group_info *group_info;
1107 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1108 unsigned keep_capabilities:1;
1109 struct user_struct *user;
1110#ifdef CONFIG_KEYS
1111 struct key *request_key_auth; /* assumed request_key authority */
1112 struct key *thread_keyring; /* keyring private to this thread */
1113 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1114#endif
1115 char comm[TASK_COMM_LEN]; /* executable name excluding path
1116 - access with [gs]et_task_comm (which lock
1117 it with task_lock())
1118 - initialized normally by flush_old_exec */
1119/* file system info */
1120 int link_count, total_link_count;
1121#ifdef CONFIG_SYSVIPC
1122/* ipc stuff */
1123 struct sysv_sem sysvsem;
1124#endif
1125#ifdef CONFIG_DETECT_SOFTLOCKUP
1126/* hung task detection */
1127 unsigned long last_switch_timestamp;
1128 unsigned long last_switch_count;
1129#endif
1130/* CPU-specific state of this task */
1131 struct thread_struct thread;
1132/* filesystem information */
1133 struct fs_struct *fs;
1134/* open file information */
1135 struct files_struct *files;
1136/* namespaces */
1137 struct nsproxy *nsproxy;
1138/* signal handlers */
1139 struct signal_struct *signal;
1140 struct sighand_struct *sighand;
1141
1142 sigset_t blocked, real_blocked;
1143 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1144 struct sigpending pending;
1145
1146 unsigned long sas_ss_sp;
1147 size_t sas_ss_size;
1148 int (*notifier)(void *priv);
1149 void *notifier_data;
1150 sigset_t *notifier_mask;
1151#ifdef CONFIG_SECURITY
1152 void *security;
1153#endif
1154 struct audit_context *audit_context;
1155#ifdef CONFIG_AUDITSYSCALL
1156 uid_t loginuid;
1157 unsigned int sessionid;
1158#endif
1159 seccomp_t seccomp;
1160
1161/* Thread group tracking */
1162 u32 parent_exec_id;
1163 u32 self_exec_id;
1164/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1165 spinlock_t alloc_lock;
1166
1167 /* Protection of the PI data structures: */
1168 spinlock_t pi_lock;
1169
1170#ifdef CONFIG_RT_MUTEXES
1171 /* PI waiters blocked on a rt_mutex held by this task */
1172 struct plist_head pi_waiters;
1173 /* Deadlock detection and priority inheritance handling */
1174 struct rt_mutex_waiter *pi_blocked_on;
1175#endif
1176
1177#ifdef CONFIG_DEBUG_MUTEXES
1178 /* mutex deadlock detection */
1179 struct mutex_waiter *blocked_on;
1180#endif
1181#ifdef CONFIG_TRACE_IRQFLAGS
1182 unsigned int irq_events;
1183 int hardirqs_enabled;
1184 unsigned long hardirq_enable_ip;
1185 unsigned int hardirq_enable_event;
1186 unsigned long hardirq_disable_ip;
1187 unsigned int hardirq_disable_event;
1188 int softirqs_enabled;
1189 unsigned long softirq_disable_ip;
1190 unsigned int softirq_disable_event;
1191 unsigned long softirq_enable_ip;
1192 unsigned int softirq_enable_event;
1193 int hardirq_context;
1194 int softirq_context;
1195#endif
1196#ifdef CONFIG_LOCKDEP
1197# define MAX_LOCK_DEPTH 48UL
1198 u64 curr_chain_key;
1199 int lockdep_depth;
1200 struct held_lock held_locks[MAX_LOCK_DEPTH];
1201 unsigned int lockdep_recursion;
1202#endif
1203
1204/* journalling filesystem info */
1205 void *journal_info;
1206
1207/* stacked block device info */
1208 struct bio *bio_list, **bio_tail;
1209
1210/* VM state */
1211 struct reclaim_state *reclaim_state;
1212
1213 struct backing_dev_info *backing_dev_info;
1214
1215 struct io_context *io_context;
1216
1217 unsigned long ptrace_message;
1218 siginfo_t *last_siginfo; /* For ptrace use. */
1219#ifdef CONFIG_TASK_XACCT
1220/* i/o counters(bytes read/written, #syscalls */
1221 u64 rchar, wchar, syscr, syscw;
1222#endif
1223 struct task_io_accounting ioac;
1224#if defined(CONFIG_TASK_XACCT)
1225 u64 acct_rss_mem1; /* accumulated rss usage */
1226 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1227 cputime_t acct_stimexpd;/* stime since last update */
1228#endif
1229#ifdef CONFIG_NUMA
1230 struct mempolicy *mempolicy;
1231 short il_next;
1232#endif
1233#ifdef CONFIG_CPUSETS
1234 nodemask_t mems_allowed;
1235 int cpuset_mems_generation;
1236 int cpuset_mem_spread_rotor;
1237#endif
1238#ifdef CONFIG_CGROUPS
1239 /* Control Group info protected by css_set_lock */
1240 struct css_set *cgroups;
1241 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1242 struct list_head cg_list;
1243#endif
1244#ifdef CONFIG_FUTEX
1245 struct robust_list_head __user *robust_list;
1246#ifdef CONFIG_COMPAT
1247 struct compat_robust_list_head __user *compat_robust_list;
1248#endif
1249 struct list_head pi_state_list;
1250 struct futex_pi_state *pi_state_cache;
1251#endif
1252 atomic_t fs_excl; /* holding fs exclusive resources */
1253 struct rcu_head rcu;
1254
1255 /*
1256 * cache last used pipe for splice
1257 */
1258 struct pipe_inode_info *splice_pipe;
1259#ifdef CONFIG_TASK_DELAY_ACCT
1260 struct task_delay_info *delays;
1261#endif
1262#ifdef CONFIG_FAULT_INJECTION
1263 int make_it_fail;
1264#endif
1265 struct prop_local_single dirties;
1266#ifdef CONFIG_LATENCYTOP
1267 int latency_record_count;
1268 struct latency_record latency_record[LT_SAVECOUNT];
1269#endif
1270};
1271
1272/*
1273 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1274 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1275 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1276 * values are inverted: lower p->prio value means higher priority.
1277 *
1278 * The MAX_USER_RT_PRIO value allows the actual maximum
1279 * RT priority to be separate from the value exported to
1280 * user-space. This allows kernel threads to set their
1281 * priority to a value higher than any user task. Note:
1282 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1283 */
1284
1285#define MAX_USER_RT_PRIO 100
1286#define MAX_RT_PRIO MAX_USER_RT_PRIO
1287
1288#define MAX_PRIO (MAX_RT_PRIO + 40)
1289#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1290
1291static inline int rt_prio(int prio)
1292{
1293 if (unlikely(prio < MAX_RT_PRIO))
1294 return 1;
1295 return 0;
1296}
1297
1298static inline int rt_task(struct task_struct *p)
1299{
1300 return rt_prio(p->prio);
1301}
1302
1303static inline void set_task_session(struct task_struct *tsk, pid_t session)
1304{
1305 tsk->signal->__session = session;
1306}
1307
1308static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1309{
1310 tsk->signal->__pgrp = pgrp;
1311}
1312
1313static inline struct pid *task_pid(struct task_struct *task)
1314{
1315 return task->pids[PIDTYPE_PID].pid;
1316}
1317
1318static inline struct pid *task_tgid(struct task_struct *task)
1319{
1320 return task->group_leader->pids[PIDTYPE_PID].pid;
1321}
1322
1323static inline struct pid *task_pgrp(struct task_struct *task)
1324{
1325 return task->group_leader->pids[PIDTYPE_PGID].pid;
1326}
1327
1328static inline struct pid *task_session(struct task_struct *task)
1329{
1330 return task->group_leader->pids[PIDTYPE_SID].pid;
1331}
1332
1333struct pid_namespace;
1334
1335/*
1336 * the helpers to get the task's different pids as they are seen
1337 * from various namespaces
1338 *
1339 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1340 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1341 * current.
1342 * task_xid_nr_ns() : id seen from the ns specified;
1343 *
1344 * set_task_vxid() : assigns a virtual id to a task;
1345 *
1346 * see also pid_nr() etc in include/linux/pid.h
1347 */
1348
1349static inline pid_t task_pid_nr(struct task_struct *tsk)
1350{
1351 return tsk->pid;
1352}
1353
1354pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1355
1356static inline pid_t task_pid_vnr(struct task_struct *tsk)
1357{
1358 return pid_vnr(task_pid(tsk));
1359}
1360
1361
1362static inline pid_t task_tgid_nr(struct task_struct *tsk)
1363{
1364 return tsk->tgid;
1365}
1366
1367pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1368
1369static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1370{
1371 return pid_vnr(task_tgid(tsk));
1372}
1373
1374
1375static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1376{
1377 return tsk->signal->__pgrp;
1378}
1379
1380pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1381
1382static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1383{
1384 return pid_vnr(task_pgrp(tsk));
1385}
1386
1387
1388static inline pid_t task_session_nr(struct task_struct *tsk)
1389{
1390 return tsk->signal->__session;
1391}
1392
1393pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1394
1395static inline pid_t task_session_vnr(struct task_struct *tsk)
1396{
1397 return pid_vnr(task_session(tsk));
1398}
1399
1400
1401/**
1402 * pid_alive - check that a task structure is not stale
1403 * @p: Task structure to be checked.
1404 *
1405 * Test if a process is not yet dead (at most zombie state)
1406 * If pid_alive fails, then pointers within the task structure
1407 * can be stale and must not be dereferenced.
1408 */
1409static inline int pid_alive(struct task_struct *p)
1410{
1411 return p->pids[PIDTYPE_PID].pid != NULL;
1412}
1413
1414/**
1415 * is_global_init - check if a task structure is init
1416 * @tsk: Task structure to be checked.
1417 *
1418 * Check if a task structure is the first user space task the kernel created.
1419 */
1420static inline int is_global_init(struct task_struct *tsk)
1421{
1422 return tsk->pid == 1;
1423}
1424
1425/*
1426 * is_container_init:
1427 * check whether in the task is init in its own pid namespace.
1428 */
1429extern int is_container_init(struct task_struct *tsk);
1430
1431extern struct pid *cad_pid;
1432
1433extern void free_task(struct task_struct *tsk);
1434#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1435
1436extern void __put_task_struct(struct task_struct *t);
1437
1438static inline void put_task_struct(struct task_struct *t)
1439{
1440 if (atomic_dec_and_test(&t->usage))
1441 __put_task_struct(t);
1442}
1443
1444/*
1445 * Per process flags
1446 */
1447#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1448 /* Not implemented yet, only for 486*/
1449#define PF_STARTING 0x00000002 /* being created */
1450#define PF_EXITING 0x00000004 /* getting shut down */
1451#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1452#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1453#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1454#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1455#define PF_DUMPCORE 0x00000200 /* dumped core */
1456#define PF_SIGNALED 0x00000400 /* killed by a signal */
1457#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1458#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1459#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1460#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1461#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1462#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1463#define PF_KSWAPD 0x00040000 /* I am kswapd */
1464#define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1465#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1466#define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1467#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1468#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1469#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1470#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1471#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1472#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1473#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1474
1475/*
1476 * Only the _current_ task can read/write to tsk->flags, but other
1477 * tasks can access tsk->flags in readonly mode for example
1478 * with tsk_used_math (like during threaded core dumping).
1479 * There is however an exception to this rule during ptrace
1480 * or during fork: the ptracer task is allowed to write to the
1481 * child->flags of its traced child (same goes for fork, the parent
1482 * can write to the child->flags), because we're guaranteed the
1483 * child is not running and in turn not changing child->flags
1484 * at the same time the parent does it.
1485 */
1486#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1487#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1488#define clear_used_math() clear_stopped_child_used_math(current)
1489#define set_used_math() set_stopped_child_used_math(current)
1490#define conditional_stopped_child_used_math(condition, child) \
1491 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1492#define conditional_used_math(condition) \
1493 conditional_stopped_child_used_math(condition, current)
1494#define copy_to_stopped_child_used_math(child) \
1495 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1496/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1497#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1498#define used_math() tsk_used_math(current)
1499
1500#ifdef CONFIG_SMP
1501extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1502#else
1503static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1504{
1505 if (!cpu_isset(0, new_mask))
1506 return -EINVAL;
1507 return 0;
1508}
1509#endif
1510
1511extern unsigned long long sched_clock(void);
1512
1513/*
1514 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1515 * clock constructed from sched_clock():
1516 */
1517extern unsigned long long cpu_clock(int cpu);
1518
1519extern unsigned long long
1520task_sched_runtime(struct task_struct *task);
1521
1522/* sched_exec is called by processes performing an exec */
1523#ifdef CONFIG_SMP
1524extern void sched_exec(void);
1525#else
1526#define sched_exec() {}
1527#endif
1528
1529extern void sched_clock_idle_sleep_event(void);
1530extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1531
1532#ifdef CONFIG_HOTPLUG_CPU
1533extern void idle_task_exit(void);
1534#else
1535static inline void idle_task_exit(void) {}
1536#endif
1537
1538extern void sched_idle_next(void);
1539
1540#ifdef CONFIG_SCHED_DEBUG
1541extern unsigned int sysctl_sched_latency;
1542extern unsigned int sysctl_sched_min_granularity;
1543extern unsigned int sysctl_sched_wakeup_granularity;
1544extern unsigned int sysctl_sched_batch_wakeup_granularity;
1545extern unsigned int sysctl_sched_child_runs_first;
1546extern unsigned int sysctl_sched_features;
1547extern unsigned int sysctl_sched_migration_cost;
1548extern unsigned int sysctl_sched_nr_migrate;
1549
1550int sched_nr_latency_handler(struct ctl_table *table, int write,
1551 struct file *file, void __user *buffer, size_t *length,
1552 loff_t *ppos);
1553#endif
1554extern unsigned int sysctl_sched_rt_period;
1555extern int sysctl_sched_rt_runtime;
1556
1557extern unsigned int sysctl_sched_compat_yield;
1558
1559#ifdef CONFIG_RT_MUTEXES
1560extern int rt_mutex_getprio(struct task_struct *p);
1561extern void rt_mutex_setprio(struct task_struct *p, int prio);
1562extern void rt_mutex_adjust_pi(struct task_struct *p);
1563#else
1564static inline int rt_mutex_getprio(struct task_struct *p)
1565{
1566 return p->normal_prio;
1567}
1568# define rt_mutex_adjust_pi(p) do { } while (0)
1569#endif
1570
1571extern void set_user_nice(struct task_struct *p, long nice);
1572extern int task_prio(const struct task_struct *p);
1573extern int task_nice(const struct task_struct *p);
1574extern int can_nice(const struct task_struct *p, const int nice);
1575extern int task_curr(const struct task_struct *p);
1576extern int idle_cpu(int cpu);
1577extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1578extern struct task_struct *idle_task(int cpu);
1579extern struct task_struct *curr_task(int cpu);
1580extern void set_curr_task(int cpu, struct task_struct *p);
1581
1582void yield(void);
1583
1584/*
1585 * The default (Linux) execution domain.
1586 */
1587extern struct exec_domain default_exec_domain;
1588
1589union thread_union {
1590 struct thread_info thread_info;
1591 unsigned long stack[THREAD_SIZE/sizeof(long)];
1592};
1593
1594#ifndef __HAVE_ARCH_KSTACK_END
1595static inline int kstack_end(void *addr)
1596{
1597 /* Reliable end of stack detection:
1598 * Some APM bios versions misalign the stack
1599 */
1600 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1601}
1602#endif
1603
1604extern union thread_union init_thread_union;
1605extern struct task_struct init_task;
1606
1607extern struct mm_struct init_mm;
1608
1609extern struct pid_namespace init_pid_ns;
1610
1611/*
1612 * find a task by one of its numerical ids
1613 *
1614 * find_task_by_pid_type_ns():
1615 * it is the most generic call - it finds a task by all id,
1616 * type and namespace specified
1617 * find_task_by_pid_ns():
1618 * finds a task by its pid in the specified namespace
1619 * find_task_by_vpid():
1620 * finds a task by its virtual pid
1621 * find_task_by_pid():
1622 * finds a task by its global pid
1623 *
1624 * see also find_pid() etc in include/linux/pid.h
1625 */
1626
1627extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1628 struct pid_namespace *ns);
1629
1630extern struct task_struct *find_task_by_pid(pid_t nr);
1631extern struct task_struct *find_task_by_vpid(pid_t nr);
1632extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1633 struct pid_namespace *ns);
1634
1635extern void __set_special_pids(struct pid *pid);
1636
1637/* per-UID process charging. */
1638extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1639static inline struct user_struct *get_uid(struct user_struct *u)
1640{
1641 atomic_inc(&u->__count);
1642 return u;
1643}
1644extern void free_uid(struct user_struct *);
1645extern void switch_uid(struct user_struct *);
1646extern void release_uids(struct user_namespace *ns);
1647
1648#include <asm/current.h>
1649
1650extern void do_timer(unsigned long ticks);
1651
1652extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1653extern int wake_up_process(struct task_struct *tsk);
1654extern void wake_up_new_task(struct task_struct *tsk,
1655 unsigned long clone_flags);
1656#ifdef CONFIG_SMP
1657 extern void kick_process(struct task_struct *tsk);
1658#else
1659 static inline void kick_process(struct task_struct *tsk) { }
1660#endif
1661extern void sched_fork(struct task_struct *p, int clone_flags);
1662extern void sched_dead(struct task_struct *p);
1663
1664extern int in_group_p(gid_t);
1665extern int in_egroup_p(gid_t);
1666
1667extern void proc_caches_init(void);
1668extern void flush_signals(struct task_struct *);
1669extern void ignore_signals(struct task_struct *);
1670extern void flush_signal_handlers(struct task_struct *, int force_default);
1671extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1672
1673static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1674{
1675 unsigned long flags;
1676 int ret;
1677
1678 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1679 ret = dequeue_signal(tsk, mask, info);
1680 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1681
1682 return ret;
1683}
1684
1685extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1686 sigset_t *mask);
1687extern void unblock_all_signals(void);
1688extern void release_task(struct task_struct * p);
1689extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1690extern int force_sigsegv(int, struct task_struct *);
1691extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1692extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1693extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1694extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1695extern int kill_pgrp(struct pid *pid, int sig, int priv);
1696extern int kill_pid(struct pid *pid, int sig, int priv);
1697extern int kill_proc_info(int, struct siginfo *, pid_t);
1698extern void do_notify_parent(struct task_struct *, int);
1699extern void force_sig(int, struct task_struct *);
1700extern void force_sig_specific(int, struct task_struct *);
1701extern int send_sig(int, struct task_struct *, int);
1702extern void zap_other_threads(struct task_struct *p);
1703extern int kill_proc(pid_t, int, int);
1704extern struct sigqueue *sigqueue_alloc(void);
1705extern void sigqueue_free(struct sigqueue *);
1706extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1707extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1708extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1709extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1710
1711static inline int kill_cad_pid(int sig, int priv)
1712{
1713 return kill_pid(cad_pid, sig, priv);
1714}
1715
1716/* These can be the second arg to send_sig_info/send_group_sig_info. */
1717#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1718#define SEND_SIG_PRIV ((struct siginfo *) 1)
1719#define SEND_SIG_FORCED ((struct siginfo *) 2)
1720
1721static inline int is_si_special(const struct siginfo *info)
1722{
1723 return info <= SEND_SIG_FORCED;
1724}
1725
1726/* True if we are on the alternate signal stack. */
1727
1728static inline int on_sig_stack(unsigned long sp)
1729{
1730 return (sp - current->sas_ss_sp < current->sas_ss_size);
1731}
1732
1733static inline int sas_ss_flags(unsigned long sp)
1734{
1735 return (current->sas_ss_size == 0 ? SS_DISABLE
1736 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1737}
1738
1739/*
1740 * Routines for handling mm_structs
1741 */
1742extern struct mm_struct * mm_alloc(void);
1743
1744/* mmdrop drops the mm and the page tables */
1745extern void __mmdrop(struct mm_struct *);
1746static inline void mmdrop(struct mm_struct * mm)
1747{
1748 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1749 __mmdrop(mm);
1750}
1751
1752/* mmput gets rid of the mappings and all user-space */
1753extern void mmput(struct mm_struct *);
1754/* Grab a reference to a task's mm, if it is not already going away */
1755extern struct mm_struct *get_task_mm(struct task_struct *task);
1756/* Remove the current tasks stale references to the old mm_struct */
1757extern void mm_release(struct task_struct *, struct mm_struct *);
1758
1759extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1760extern void flush_thread(void);
1761extern void exit_thread(void);
1762
1763extern void exit_files(struct task_struct *);
1764extern void __cleanup_signal(struct signal_struct *);
1765extern void __cleanup_sighand(struct sighand_struct *);
1766extern void exit_itimers(struct signal_struct *);
1767
1768extern NORET_TYPE void do_group_exit(int);
1769
1770extern void daemonize(const char *, ...);
1771extern int allow_signal(int);
1772extern int disallow_signal(int);
1773
1774extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1775extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1776struct task_struct *fork_idle(int);
1777
1778extern void set_task_comm(struct task_struct *tsk, char *from);
1779extern char *get_task_comm(char *to, struct task_struct *tsk);
1780
1781#ifdef CONFIG_SMP
1782extern void wait_task_inactive(struct task_struct * p);
1783#else
1784#define wait_task_inactive(p) do { } while (0)
1785#endif
1786
1787#define remove_parent(p) list_del_init(&(p)->sibling)
1788#define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1789
1790#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1791
1792#define for_each_process(p) \
1793 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1794
1795/*
1796 * Careful: do_each_thread/while_each_thread is a double loop so
1797 * 'break' will not work as expected - use goto instead.
1798 */
1799#define do_each_thread(g, t) \
1800 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1801
1802#define while_each_thread(g, t) \
1803 while ((t = next_thread(t)) != g)
1804
1805/* de_thread depends on thread_group_leader not being a pid based check */
1806#define thread_group_leader(p) (p == p->group_leader)
1807
1808/* Do to the insanities of de_thread it is possible for a process
1809 * to have the pid of the thread group leader without actually being
1810 * the thread group leader. For iteration through the pids in proc
1811 * all we care about is that we have a task with the appropriate
1812 * pid, we don't actually care if we have the right task.
1813 */
1814static inline int has_group_leader_pid(struct task_struct *p)
1815{
1816 return p->pid == p->tgid;
1817}
1818
1819static inline
1820int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1821{
1822 return p1->tgid == p2->tgid;
1823}
1824
1825static inline struct task_struct *next_thread(const struct task_struct *p)
1826{
1827 return list_entry(rcu_dereference(p->thread_group.next),
1828 struct task_struct, thread_group);
1829}
1830
1831static inline int thread_group_empty(struct task_struct *p)
1832{
1833 return list_empty(&p->thread_group);
1834}
1835
1836#define delay_group_leader(p) \
1837 (thread_group_leader(p) && !thread_group_empty(p))
1838
1839/*
1840 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1841 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1842 * pins the final release of task.io_context. Also protects ->cpuset and
1843 * ->cgroup.subsys[].
1844 *
1845 * Nests both inside and outside of read_lock(&tasklist_lock).
1846 * It must not be nested with write_lock_irq(&tasklist_lock),
1847 * neither inside nor outside.
1848 */
1849static inline void task_lock(struct task_struct *p)
1850{
1851 spin_lock(&p->alloc_lock);
1852}
1853
1854static inline void task_unlock(struct task_struct *p)
1855{
1856 spin_unlock(&p->alloc_lock);
1857}
1858
1859extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1860 unsigned long *flags);
1861
1862static inline void unlock_task_sighand(struct task_struct *tsk,
1863 unsigned long *flags)
1864{
1865 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1866}
1867
1868#ifndef __HAVE_THREAD_FUNCTIONS
1869
1870#define task_thread_info(task) ((struct thread_info *)(task)->stack)
1871#define task_stack_page(task) ((task)->stack)
1872
1873static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1874{
1875 *task_thread_info(p) = *task_thread_info(org);
1876 task_thread_info(p)->task = p;
1877}
1878
1879static inline unsigned long *end_of_stack(struct task_struct *p)
1880{
1881 return (unsigned long *)(task_thread_info(p) + 1);
1882}
1883
1884#endif
1885
1886/* set thread flags in other task's structures
1887 * - see asm/thread_info.h for TIF_xxxx flags available
1888 */
1889static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1890{
1891 set_ti_thread_flag(task_thread_info(tsk), flag);
1892}
1893
1894static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1895{
1896 clear_ti_thread_flag(task_thread_info(tsk), flag);
1897}
1898
1899static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1900{
1901 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1902}
1903
1904static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1905{
1906 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1907}
1908
1909static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1910{
1911 return test_ti_thread_flag(task_thread_info(tsk), flag);
1912}
1913
1914static inline void set_tsk_need_resched(struct task_struct *tsk)
1915{
1916 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1917}
1918
1919static inline void clear_tsk_need_resched(struct task_struct *tsk)
1920{
1921 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1922}
1923
1924static inline int signal_pending(struct task_struct *p)
1925{
1926 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1927}
1928
1929extern int __fatal_signal_pending(struct task_struct *p);
1930
1931static inline int fatal_signal_pending(struct task_struct *p)
1932{
1933 return signal_pending(p) && __fatal_signal_pending(p);
1934}
1935
1936static inline int need_resched(void)
1937{
1938 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1939}
1940
1941/*
1942 * cond_resched() and cond_resched_lock(): latency reduction via
1943 * explicit rescheduling in places that are safe. The return
1944 * value indicates whether a reschedule was done in fact.
1945 * cond_resched_lock() will drop the spinlock before scheduling,
1946 * cond_resched_softirq() will enable bhs before scheduling.
1947 */
1948#ifdef CONFIG_PREEMPT
1949static inline int cond_resched(void)
1950{
1951 return 0;
1952}
1953#else
1954extern int _cond_resched(void);
1955static inline int cond_resched(void)
1956{
1957 return _cond_resched();
1958}
1959#endif
1960extern int cond_resched_lock(spinlock_t * lock);
1961extern int cond_resched_softirq(void);
1962
1963/*
1964 * Does a critical section need to be broken due to another
1965 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1966 * but a general need for low latency)
1967 */
1968static inline int spin_needbreak(spinlock_t *lock)
1969{
1970#ifdef CONFIG_PREEMPT
1971 return spin_is_contended(lock);
1972#else
1973 return 0;
1974#endif
1975}
1976
1977/*
1978 * Reevaluate whether the task has signals pending delivery.
1979 * Wake the task if so.
1980 * This is required every time the blocked sigset_t changes.
1981 * callers must hold sighand->siglock.
1982 */
1983extern void recalc_sigpending_and_wake(struct task_struct *t);
1984extern void recalc_sigpending(void);
1985
1986extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1987
1988/*
1989 * Wrappers for p->thread_info->cpu access. No-op on UP.
1990 */
1991#ifdef CONFIG_SMP
1992
1993static inline unsigned int task_cpu(const struct task_struct *p)
1994{
1995 return task_thread_info(p)->cpu;
1996}
1997
1998extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1999
2000#else
2001
2002static inline unsigned int task_cpu(const struct task_struct *p)
2003{
2004 return 0;
2005}
2006
2007static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2008{
2009}
2010
2011#endif /* CONFIG_SMP */
2012
2013#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2014extern void arch_pick_mmap_layout(struct mm_struct *mm);
2015#else
2016static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2017{
2018 mm->mmap_base = TASK_UNMAPPED_BASE;
2019 mm->get_unmapped_area = arch_get_unmapped_area;
2020 mm->unmap_area = arch_unmap_area;
2021}
2022#endif
2023
2024extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
2025extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2026
2027extern int sched_mc_power_savings, sched_smt_power_savings;
2028
2029extern void normalize_rt_tasks(void);
2030
2031#ifdef CONFIG_GROUP_SCHED
2032
2033extern struct task_group init_task_group;
2034
2035extern struct task_group *sched_create_group(void);
2036extern void sched_destroy_group(struct task_group *tg);
2037extern void sched_move_task(struct task_struct *tsk);
2038#ifdef CONFIG_FAIR_GROUP_SCHED
2039extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2040extern unsigned long sched_group_shares(struct task_group *tg);
2041#endif
2042#ifdef CONFIG_RT_GROUP_SCHED
2043extern int sched_group_set_rt_runtime(struct task_group *tg,
2044 long rt_runtime_us);
2045extern long sched_group_rt_runtime(struct task_group *tg);
2046#endif
2047#endif
2048
2049#ifdef CONFIG_TASK_XACCT
2050static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2051{
2052 tsk->rchar += amt;
2053}
2054
2055static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2056{
2057 tsk->wchar += amt;
2058}
2059
2060static inline void inc_syscr(struct task_struct *tsk)
2061{
2062 tsk->syscr++;
2063}
2064
2065static inline void inc_syscw(struct task_struct *tsk)
2066{
2067 tsk->syscw++;
2068}
2069#else
2070static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2071{
2072}
2073
2074static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2075{
2076}
2077
2078static inline void inc_syscr(struct task_struct *tsk)
2079{
2080}
2081
2082static inline void inc_syscw(struct task_struct *tsk)
2083{
2084}
2085#endif
2086
2087#ifdef CONFIG_SMP
2088void migration_init(void);
2089#else
2090static inline void migration_init(void)
2091{
2092}
2093#endif
2094
2095#ifndef TASK_SIZE_OF
2096#define TASK_SIZE_OF(tsk) TASK_SIZE
2097#endif
2098
2099#endif /* __KERNEL__ */
2100
2101#endif