1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29#define CLONE_NEWNET 0x40000000 /* New network namespace */ 30#define CLONE_IO 0x80000000 /* Clone io context */ 31 32/* 33 * Scheduling policies 34 */ 35#define SCHED_NORMAL 0 36#define SCHED_FIFO 1 37#define SCHED_RR 2 38#define SCHED_BATCH 3 39/* SCHED_ISO: reserved but not implemented yet */ 40#define SCHED_IDLE 5 41 42#ifdef __KERNEL__ 43 44struct sched_param { 45 int sched_priority; 46}; 47 48#include <asm/param.h> /* for HZ */ 49 50#include <linux/capability.h> 51#include <linux/threads.h> 52#include <linux/kernel.h> 53#include <linux/types.h> 54#include <linux/timex.h> 55#include <linux/jiffies.h> 56#include <linux/rbtree.h> 57#include <linux/thread_info.h> 58#include <linux/cpumask.h> 59#include <linux/errno.h> 60#include <linux/nodemask.h> 61#include <linux/mm_types.h> 62 63#include <asm/system.h> 64#include <asm/semaphore.h> 65#include <asm/page.h> 66#include <asm/ptrace.h> 67#include <asm/cputime.h> 68 69#include <linux/smp.h> 70#include <linux/sem.h> 71#include <linux/signal.h> 72#include <linux/securebits.h> 73#include <linux/fs_struct.h> 74#include <linux/compiler.h> 75#include <linux/completion.h> 76#include <linux/pid.h> 77#include <linux/percpu.h> 78#include <linux/topology.h> 79#include <linux/proportions.h> 80#include <linux/seccomp.h> 81#include <linux/rcupdate.h> 82#include <linux/rtmutex.h> 83 84#include <linux/time.h> 85#include <linux/param.h> 86#include <linux/resource.h> 87#include <linux/timer.h> 88#include <linux/hrtimer.h> 89#include <linux/task_io_accounting.h> 90#include <linux/kobject.h> 91#include <linux/latencytop.h> 92 93#include <asm/processor.h> 94 95struct mem_cgroup; 96struct exec_domain; 97struct futex_pi_state; 98struct robust_list_head; 99struct bio; 100 101/* 102 * List of flags we want to share for kernel threads, 103 * if only because they are not used by them anyway. 104 */ 105#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 106 107/* 108 * These are the constant used to fake the fixed-point load-average 109 * counting. Some notes: 110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 111 * a load-average precision of 10 bits integer + 11 bits fractional 112 * - if you want to count load-averages more often, you need more 113 * precision, or rounding will get you. With 2-second counting freq, 114 * the EXP_n values would be 1981, 2034 and 2043 if still using only 115 * 11 bit fractions. 116 */ 117extern unsigned long avenrun[]; /* Load averages */ 118 119#define FSHIFT 11 /* nr of bits of precision */ 120#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 121#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 122#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 123#define EXP_5 2014 /* 1/exp(5sec/5min) */ 124#define EXP_15 2037 /* 1/exp(5sec/15min) */ 125 126#define CALC_LOAD(load,exp,n) \ 127 load *= exp; \ 128 load += n*(FIXED_1-exp); \ 129 load >>= FSHIFT; 130 131extern unsigned long total_forks; 132extern int nr_threads; 133DECLARE_PER_CPU(unsigned long, process_counts); 134extern int nr_processes(void); 135extern unsigned long nr_running(void); 136extern unsigned long nr_uninterruptible(void); 137extern unsigned long nr_active(void); 138extern unsigned long nr_iowait(void); 139extern unsigned long weighted_cpuload(const int cpu); 140 141struct seq_file; 142struct cfs_rq; 143struct task_group; 144#ifdef CONFIG_SCHED_DEBUG 145extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 146extern void proc_sched_set_task(struct task_struct *p); 147extern void 148print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 149#else 150static inline void 151proc_sched_show_task(struct task_struct *p, struct seq_file *m) 152{ 153} 154static inline void proc_sched_set_task(struct task_struct *p) 155{ 156} 157static inline void 158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 159{ 160} 161#endif 162 163/* 164 * Task state bitmask. NOTE! These bits are also 165 * encoded in fs/proc/array.c: get_task_state(). 166 * 167 * We have two separate sets of flags: task->state 168 * is about runnability, while task->exit_state are 169 * about the task exiting. Confusing, but this way 170 * modifying one set can't modify the other one by 171 * mistake. 172 */ 173#define TASK_RUNNING 0 174#define TASK_INTERRUPTIBLE 1 175#define TASK_UNINTERRUPTIBLE 2 176#define __TASK_STOPPED 4 177#define __TASK_TRACED 8 178/* in tsk->exit_state */ 179#define EXIT_ZOMBIE 16 180#define EXIT_DEAD 32 181/* in tsk->state again */ 182#define TASK_DEAD 64 183#define TASK_WAKEKILL 128 184 185/* Convenience macros for the sake of set_task_state */ 186#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 187#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 188#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 189 190/* Convenience macros for the sake of wake_up */ 191#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 192#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 193 194/* get_task_state() */ 195#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 197 __TASK_TRACED) 198 199#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 200#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 201#define task_is_stopped_or_traced(task) \ 202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 203#define task_contributes_to_load(task) \ 204 ((task->state & TASK_UNINTERRUPTIBLE) != 0) 205 206#define __set_task_state(tsk, state_value) \ 207 do { (tsk)->state = (state_value); } while (0) 208#define set_task_state(tsk, state_value) \ 209 set_mb((tsk)->state, (state_value)) 210 211/* 212 * set_current_state() includes a barrier so that the write of current->state 213 * is correctly serialised wrt the caller's subsequent test of whether to 214 * actually sleep: 215 * 216 * set_current_state(TASK_UNINTERRUPTIBLE); 217 * if (do_i_need_to_sleep()) 218 * schedule(); 219 * 220 * If the caller does not need such serialisation then use __set_current_state() 221 */ 222#define __set_current_state(state_value) \ 223 do { current->state = (state_value); } while (0) 224#define set_current_state(state_value) \ 225 set_mb(current->state, (state_value)) 226 227/* Task command name length */ 228#define TASK_COMM_LEN 16 229 230#include <linux/spinlock.h> 231 232/* 233 * This serializes "schedule()" and also protects 234 * the run-queue from deletions/modifications (but 235 * _adding_ to the beginning of the run-queue has 236 * a separate lock). 237 */ 238extern rwlock_t tasklist_lock; 239extern spinlock_t mmlist_lock; 240 241struct task_struct; 242 243extern void sched_init(void); 244extern void sched_init_smp(void); 245extern asmlinkage void schedule_tail(struct task_struct *prev); 246extern void init_idle(struct task_struct *idle, int cpu); 247extern void init_idle_bootup_task(struct task_struct *idle); 248 249extern cpumask_t nohz_cpu_mask; 250#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 251extern int select_nohz_load_balancer(int cpu); 252#else 253static inline int select_nohz_load_balancer(int cpu) 254{ 255 return 0; 256} 257#endif 258 259extern unsigned long rt_needs_cpu(int cpu); 260 261/* 262 * Only dump TASK_* tasks. (0 for all tasks) 263 */ 264extern void show_state_filter(unsigned long state_filter); 265 266static inline void show_state(void) 267{ 268 show_state_filter(0); 269} 270 271extern void show_regs(struct pt_regs *); 272 273/* 274 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 275 * task), SP is the stack pointer of the first frame that should be shown in the back 276 * trace (or NULL if the entire call-chain of the task should be shown). 277 */ 278extern void show_stack(struct task_struct *task, unsigned long *sp); 279 280void io_schedule(void); 281long io_schedule_timeout(long timeout); 282 283extern void cpu_init (void); 284extern void trap_init(void); 285extern void account_process_tick(struct task_struct *task, int user); 286extern void update_process_times(int user); 287extern void scheduler_tick(void); 288extern void hrtick_resched(void); 289 290extern void sched_show_task(struct task_struct *p); 291 292#ifdef CONFIG_DETECT_SOFTLOCKUP 293extern void softlockup_tick(void); 294extern void spawn_softlockup_task(void); 295extern void touch_softlockup_watchdog(void); 296extern void touch_all_softlockup_watchdogs(void); 297extern unsigned long softlockup_thresh; 298extern unsigned long sysctl_hung_task_check_count; 299extern unsigned long sysctl_hung_task_timeout_secs; 300extern unsigned long sysctl_hung_task_warnings; 301#else 302static inline void softlockup_tick(void) 303{ 304} 305static inline void spawn_softlockup_task(void) 306{ 307} 308static inline void touch_softlockup_watchdog(void) 309{ 310} 311static inline void touch_all_softlockup_watchdogs(void) 312{ 313} 314#endif 315 316 317/* Attach to any functions which should be ignored in wchan output. */ 318#define __sched __attribute__((__section__(".sched.text"))) 319 320/* Linker adds these: start and end of __sched functions */ 321extern char __sched_text_start[], __sched_text_end[]; 322 323/* Is this address in the __sched functions? */ 324extern int in_sched_functions(unsigned long addr); 325 326#define MAX_SCHEDULE_TIMEOUT LONG_MAX 327extern signed long schedule_timeout(signed long timeout); 328extern signed long schedule_timeout_interruptible(signed long timeout); 329extern signed long schedule_timeout_killable(signed long timeout); 330extern signed long schedule_timeout_uninterruptible(signed long timeout); 331asmlinkage void schedule(void); 332 333struct nsproxy; 334struct user_namespace; 335 336/* Maximum number of active map areas.. This is a random (large) number */ 337#define DEFAULT_MAX_MAP_COUNT 65536 338 339extern int sysctl_max_map_count; 340 341#include <linux/aio.h> 342 343extern unsigned long 344arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 345 unsigned long, unsigned long); 346extern unsigned long 347arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 348 unsigned long len, unsigned long pgoff, 349 unsigned long flags); 350extern void arch_unmap_area(struct mm_struct *, unsigned long); 351extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 352 353#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 354/* 355 * The mm counters are not protected by its page_table_lock, 356 * so must be incremented atomically. 357 */ 358#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 359#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 360#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 361#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 362#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 363 364#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 365/* 366 * The mm counters are protected by its page_table_lock, 367 * so can be incremented directly. 368 */ 369#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 370#define get_mm_counter(mm, member) ((mm)->_##member) 371#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 372#define inc_mm_counter(mm, member) (mm)->_##member++ 373#define dec_mm_counter(mm, member) (mm)->_##member-- 374 375#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 376 377#define get_mm_rss(mm) \ 378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 379#define update_hiwater_rss(mm) do { \ 380 unsigned long _rss = get_mm_rss(mm); \ 381 if ((mm)->hiwater_rss < _rss) \ 382 (mm)->hiwater_rss = _rss; \ 383} while (0) 384#define update_hiwater_vm(mm) do { \ 385 if ((mm)->hiwater_vm < (mm)->total_vm) \ 386 (mm)->hiwater_vm = (mm)->total_vm; \ 387} while (0) 388 389extern void set_dumpable(struct mm_struct *mm, int value); 390extern int get_dumpable(struct mm_struct *mm); 391 392/* mm flags */ 393/* dumpable bits */ 394#define MMF_DUMPABLE 0 /* core dump is permitted */ 395#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 396#define MMF_DUMPABLE_BITS 2 397 398/* coredump filter bits */ 399#define MMF_DUMP_ANON_PRIVATE 2 400#define MMF_DUMP_ANON_SHARED 3 401#define MMF_DUMP_MAPPED_PRIVATE 4 402#define MMF_DUMP_MAPPED_SHARED 5 403#define MMF_DUMP_ELF_HEADERS 6 404#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 405#define MMF_DUMP_FILTER_BITS 5 406#define MMF_DUMP_FILTER_MASK \ 407 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 408#define MMF_DUMP_FILTER_DEFAULT \ 409 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED)) 410 411struct sighand_struct { 412 atomic_t count; 413 struct k_sigaction action[_NSIG]; 414 spinlock_t siglock; 415 wait_queue_head_t signalfd_wqh; 416}; 417 418struct pacct_struct { 419 int ac_flag; 420 long ac_exitcode; 421 unsigned long ac_mem; 422 cputime_t ac_utime, ac_stime; 423 unsigned long ac_minflt, ac_majflt; 424}; 425 426/* 427 * NOTE! "signal_struct" does not have it's own 428 * locking, because a shared signal_struct always 429 * implies a shared sighand_struct, so locking 430 * sighand_struct is always a proper superset of 431 * the locking of signal_struct. 432 */ 433struct signal_struct { 434 atomic_t count; 435 atomic_t live; 436 437 wait_queue_head_t wait_chldexit; /* for wait4() */ 438 439 /* current thread group signal load-balancing target: */ 440 struct task_struct *curr_target; 441 442 /* shared signal handling: */ 443 struct sigpending shared_pending; 444 445 /* thread group exit support */ 446 int group_exit_code; 447 /* overloaded: 448 * - notify group_exit_task when ->count is equal to notify_count 449 * - everyone except group_exit_task is stopped during signal delivery 450 * of fatal signals, group_exit_task processes the signal. 451 */ 452 struct task_struct *group_exit_task; 453 int notify_count; 454 455 /* thread group stop support, overloads group_exit_code too */ 456 int group_stop_count; 457 unsigned int flags; /* see SIGNAL_* flags below */ 458 459 /* POSIX.1b Interval Timers */ 460 struct list_head posix_timers; 461 462 /* ITIMER_REAL timer for the process */ 463 struct hrtimer real_timer; 464 struct pid *leader_pid; 465 ktime_t it_real_incr; 466 467 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 468 cputime_t it_prof_expires, it_virt_expires; 469 cputime_t it_prof_incr, it_virt_incr; 470 471 /* job control IDs */ 472 473 /* 474 * pgrp and session fields are deprecated. 475 * use the task_session_Xnr and task_pgrp_Xnr routines below 476 */ 477 478 union { 479 pid_t pgrp __deprecated; 480 pid_t __pgrp; 481 }; 482 483 struct pid *tty_old_pgrp; 484 485 union { 486 pid_t session __deprecated; 487 pid_t __session; 488 }; 489 490 /* boolean value for session group leader */ 491 int leader; 492 493 struct tty_struct *tty; /* NULL if no tty */ 494 495 /* 496 * Cumulative resource counters for dead threads in the group, 497 * and for reaped dead child processes forked by this group. 498 * Live threads maintain their own counters and add to these 499 * in __exit_signal, except for the group leader. 500 */ 501 cputime_t utime, stime, cutime, cstime; 502 cputime_t gtime; 503 cputime_t cgtime; 504 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 505 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 506 unsigned long inblock, oublock, cinblock, coublock; 507 508 /* 509 * Cumulative ns of scheduled CPU time for dead threads in the 510 * group, not including a zombie group leader. (This only differs 511 * from jiffies_to_ns(utime + stime) if sched_clock uses something 512 * other than jiffies.) 513 */ 514 unsigned long long sum_sched_runtime; 515 516 /* 517 * We don't bother to synchronize most readers of this at all, 518 * because there is no reader checking a limit that actually needs 519 * to get both rlim_cur and rlim_max atomically, and either one 520 * alone is a single word that can safely be read normally. 521 * getrlimit/setrlimit use task_lock(current->group_leader) to 522 * protect this instead of the siglock, because they really 523 * have no need to disable irqs. 524 */ 525 struct rlimit rlim[RLIM_NLIMITS]; 526 527 struct list_head cpu_timers[3]; 528 529 /* keep the process-shared keyrings here so that they do the right 530 * thing in threads created with CLONE_THREAD */ 531#ifdef CONFIG_KEYS 532 struct key *session_keyring; /* keyring inherited over fork */ 533 struct key *process_keyring; /* keyring private to this process */ 534#endif 535#ifdef CONFIG_BSD_PROCESS_ACCT 536 struct pacct_struct pacct; /* per-process accounting information */ 537#endif 538#ifdef CONFIG_TASKSTATS 539 struct taskstats *stats; 540#endif 541#ifdef CONFIG_AUDIT 542 unsigned audit_tty; 543 struct tty_audit_buf *tty_audit_buf; 544#endif 545}; 546 547/* Context switch must be unlocked if interrupts are to be enabled */ 548#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 549# define __ARCH_WANT_UNLOCKED_CTXSW 550#endif 551 552/* 553 * Bits in flags field of signal_struct. 554 */ 555#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 556#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 557#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 558#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 559 560/* If true, all threads except ->group_exit_task have pending SIGKILL */ 561static inline int signal_group_exit(const struct signal_struct *sig) 562{ 563 return (sig->flags & SIGNAL_GROUP_EXIT) || 564 (sig->group_exit_task != NULL); 565} 566 567/* 568 * Some day this will be a full-fledged user tracking system.. 569 */ 570struct user_struct { 571 atomic_t __count; /* reference count */ 572 atomic_t processes; /* How many processes does this user have? */ 573 atomic_t files; /* How many open files does this user have? */ 574 atomic_t sigpending; /* How many pending signals does this user have? */ 575#ifdef CONFIG_INOTIFY_USER 576 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 577 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 578#endif 579#ifdef CONFIG_POSIX_MQUEUE 580 /* protected by mq_lock */ 581 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 582#endif 583 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 584 585#ifdef CONFIG_KEYS 586 struct key *uid_keyring; /* UID specific keyring */ 587 struct key *session_keyring; /* UID's default session keyring */ 588#endif 589 590 /* Hash table maintenance information */ 591 struct hlist_node uidhash_node; 592 uid_t uid; 593 594#ifdef CONFIG_USER_SCHED 595 struct task_group *tg; 596#ifdef CONFIG_SYSFS 597 struct kobject kobj; 598 struct work_struct work; 599#endif 600#endif 601}; 602 603extern int uids_sysfs_init(void); 604 605extern struct user_struct *find_user(uid_t); 606 607extern struct user_struct root_user; 608#define INIT_USER (&root_user) 609 610struct backing_dev_info; 611struct reclaim_state; 612 613#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 614struct sched_info { 615 /* cumulative counters */ 616 unsigned long pcount; /* # of times run on this cpu */ 617 unsigned long long cpu_time, /* time spent on the cpu */ 618 run_delay; /* time spent waiting on a runqueue */ 619 620 /* timestamps */ 621 unsigned long long last_arrival,/* when we last ran on a cpu */ 622 last_queued; /* when we were last queued to run */ 623#ifdef CONFIG_SCHEDSTATS 624 /* BKL stats */ 625 unsigned int bkl_count; 626#endif 627}; 628#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 629 630#ifdef CONFIG_SCHEDSTATS 631extern const struct file_operations proc_schedstat_operations; 632#endif /* CONFIG_SCHEDSTATS */ 633 634#ifdef CONFIG_TASK_DELAY_ACCT 635struct task_delay_info { 636 spinlock_t lock; 637 unsigned int flags; /* Private per-task flags */ 638 639 /* For each stat XXX, add following, aligned appropriately 640 * 641 * struct timespec XXX_start, XXX_end; 642 * u64 XXX_delay; 643 * u32 XXX_count; 644 * 645 * Atomicity of updates to XXX_delay, XXX_count protected by 646 * single lock above (split into XXX_lock if contention is an issue). 647 */ 648 649 /* 650 * XXX_count is incremented on every XXX operation, the delay 651 * associated with the operation is added to XXX_delay. 652 * XXX_delay contains the accumulated delay time in nanoseconds. 653 */ 654 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 655 u64 blkio_delay; /* wait for sync block io completion */ 656 u64 swapin_delay; /* wait for swapin block io completion */ 657 u32 blkio_count; /* total count of the number of sync block */ 658 /* io operations performed */ 659 u32 swapin_count; /* total count of the number of swapin block */ 660 /* io operations performed */ 661}; 662#endif /* CONFIG_TASK_DELAY_ACCT */ 663 664static inline int sched_info_on(void) 665{ 666#ifdef CONFIG_SCHEDSTATS 667 return 1; 668#elif defined(CONFIG_TASK_DELAY_ACCT) 669 extern int delayacct_on; 670 return delayacct_on; 671#else 672 return 0; 673#endif 674} 675 676enum cpu_idle_type { 677 CPU_IDLE, 678 CPU_NOT_IDLE, 679 CPU_NEWLY_IDLE, 680 CPU_MAX_IDLE_TYPES 681}; 682 683/* 684 * sched-domains (multiprocessor balancing) declarations: 685 */ 686 687/* 688 * Increase resolution of nice-level calculations: 689 */ 690#define SCHED_LOAD_SHIFT 10 691#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 692 693#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 694 695#ifdef CONFIG_SMP 696#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 697#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 698#define SD_BALANCE_EXEC 4 /* Balance on exec */ 699#define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 700#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 701#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 702#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 703#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 704#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 705#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 706#define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 707 708#define BALANCE_FOR_MC_POWER \ 709 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 710 711#define BALANCE_FOR_PKG_POWER \ 712 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 713 SD_POWERSAVINGS_BALANCE : 0) 714 715#define test_sd_parent(sd, flag) ((sd->parent && \ 716 (sd->parent->flags & flag)) ? 1 : 0) 717 718 719struct sched_group { 720 struct sched_group *next; /* Must be a circular list */ 721 cpumask_t cpumask; 722 723 /* 724 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 725 * single CPU. This is read only (except for setup, hotplug CPU). 726 * Note : Never change cpu_power without recompute its reciprocal 727 */ 728 unsigned int __cpu_power; 729 /* 730 * reciprocal value of cpu_power to avoid expensive divides 731 * (see include/linux/reciprocal_div.h) 732 */ 733 u32 reciprocal_cpu_power; 734}; 735 736struct sched_domain { 737 /* These fields must be setup */ 738 struct sched_domain *parent; /* top domain must be null terminated */ 739 struct sched_domain *child; /* bottom domain must be null terminated */ 740 struct sched_group *groups; /* the balancing groups of the domain */ 741 cpumask_t span; /* span of all CPUs in this domain */ 742 unsigned long min_interval; /* Minimum balance interval ms */ 743 unsigned long max_interval; /* Maximum balance interval ms */ 744 unsigned int busy_factor; /* less balancing by factor if busy */ 745 unsigned int imbalance_pct; /* No balance until over watermark */ 746 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 747 unsigned int busy_idx; 748 unsigned int idle_idx; 749 unsigned int newidle_idx; 750 unsigned int wake_idx; 751 unsigned int forkexec_idx; 752 int flags; /* See SD_* */ 753 754 /* Runtime fields. */ 755 unsigned long last_balance; /* init to jiffies. units in jiffies */ 756 unsigned int balance_interval; /* initialise to 1. units in ms. */ 757 unsigned int nr_balance_failed; /* initialise to 0 */ 758 759#ifdef CONFIG_SCHEDSTATS 760 /* load_balance() stats */ 761 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 762 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 763 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 764 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 765 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 766 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 767 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 768 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 769 770 /* Active load balancing */ 771 unsigned int alb_count; 772 unsigned int alb_failed; 773 unsigned int alb_pushed; 774 775 /* SD_BALANCE_EXEC stats */ 776 unsigned int sbe_count; 777 unsigned int sbe_balanced; 778 unsigned int sbe_pushed; 779 780 /* SD_BALANCE_FORK stats */ 781 unsigned int sbf_count; 782 unsigned int sbf_balanced; 783 unsigned int sbf_pushed; 784 785 /* try_to_wake_up() stats */ 786 unsigned int ttwu_wake_remote; 787 unsigned int ttwu_move_affine; 788 unsigned int ttwu_move_balance; 789#endif 790}; 791 792extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new); 793 794#endif /* CONFIG_SMP */ 795 796/* 797 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of 798 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a 799 * task of nice 0 or enough lower priority tasks to bring up the 800 * weighted_cpuload 801 */ 802static inline int above_background_load(void) 803{ 804 unsigned long cpu; 805 806 for_each_online_cpu(cpu) { 807 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE) 808 return 1; 809 } 810 return 0; 811} 812 813struct io_context; /* See blkdev.h */ 814#define NGROUPS_SMALL 32 815#define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t))) 816struct group_info { 817 int ngroups; 818 atomic_t usage; 819 gid_t small_block[NGROUPS_SMALL]; 820 int nblocks; 821 gid_t *blocks[0]; 822}; 823 824/* 825 * get_group_info() must be called with the owning task locked (via task_lock()) 826 * when task != current. The reason being that the vast majority of callers are 827 * looking at current->group_info, which can not be changed except by the 828 * current task. Changing current->group_info requires the task lock, too. 829 */ 830#define get_group_info(group_info) do { \ 831 atomic_inc(&(group_info)->usage); \ 832} while (0) 833 834#define put_group_info(group_info) do { \ 835 if (atomic_dec_and_test(&(group_info)->usage)) \ 836 groups_free(group_info); \ 837} while (0) 838 839extern struct group_info *groups_alloc(int gidsetsize); 840extern void groups_free(struct group_info *group_info); 841extern int set_current_groups(struct group_info *group_info); 842extern int groups_search(struct group_info *group_info, gid_t grp); 843/* access the groups "array" with this macro */ 844#define GROUP_AT(gi, i) \ 845 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 846 847#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 848extern void prefetch_stack(struct task_struct *t); 849#else 850static inline void prefetch_stack(struct task_struct *t) { } 851#endif 852 853struct audit_context; /* See audit.c */ 854struct mempolicy; 855struct pipe_inode_info; 856struct uts_namespace; 857 858struct rq; 859struct sched_domain; 860 861struct sched_class { 862 const struct sched_class *next; 863 864 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 865 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 866 void (*yield_task) (struct rq *rq); 867 int (*select_task_rq)(struct task_struct *p, int sync); 868 869 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p); 870 871 struct task_struct * (*pick_next_task) (struct rq *rq); 872 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 873 874#ifdef CONFIG_SMP 875 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 876 struct rq *busiest, unsigned long max_load_move, 877 struct sched_domain *sd, enum cpu_idle_type idle, 878 int *all_pinned, int *this_best_prio); 879 880 int (*move_one_task) (struct rq *this_rq, int this_cpu, 881 struct rq *busiest, struct sched_domain *sd, 882 enum cpu_idle_type idle); 883 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 884 void (*post_schedule) (struct rq *this_rq); 885 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 886#endif 887 888 void (*set_curr_task) (struct rq *rq); 889 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 890 void (*task_new) (struct rq *rq, struct task_struct *p); 891 void (*set_cpus_allowed)(struct task_struct *p, cpumask_t *newmask); 892 893 void (*join_domain)(struct rq *rq); 894 void (*leave_domain)(struct rq *rq); 895 896 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 897 int running); 898 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 899 int running); 900 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 901 int oldprio, int running); 902 903#ifdef CONFIG_FAIR_GROUP_SCHED 904 void (*moved_group) (struct task_struct *p); 905#endif 906}; 907 908struct load_weight { 909 unsigned long weight, inv_weight; 910}; 911 912/* 913 * CFS stats for a schedulable entity (task, task-group etc) 914 * 915 * Current field usage histogram: 916 * 917 * 4 se->block_start 918 * 4 se->run_node 919 * 4 se->sleep_start 920 * 6 se->load.weight 921 */ 922struct sched_entity { 923 struct load_weight load; /* for load-balancing */ 924 struct rb_node run_node; 925 unsigned int on_rq; 926 927 u64 exec_start; 928 u64 sum_exec_runtime; 929 u64 vruntime; 930 u64 prev_sum_exec_runtime; 931 932#ifdef CONFIG_SCHEDSTATS 933 u64 wait_start; 934 u64 wait_max; 935 u64 wait_count; 936 u64 wait_sum; 937 938 u64 sleep_start; 939 u64 sleep_max; 940 s64 sum_sleep_runtime; 941 942 u64 block_start; 943 u64 block_max; 944 u64 exec_max; 945 u64 slice_max; 946 947 u64 nr_migrations; 948 u64 nr_migrations_cold; 949 u64 nr_failed_migrations_affine; 950 u64 nr_failed_migrations_running; 951 u64 nr_failed_migrations_hot; 952 u64 nr_forced_migrations; 953 u64 nr_forced2_migrations; 954 955 u64 nr_wakeups; 956 u64 nr_wakeups_sync; 957 u64 nr_wakeups_migrate; 958 u64 nr_wakeups_local; 959 u64 nr_wakeups_remote; 960 u64 nr_wakeups_affine; 961 u64 nr_wakeups_affine_attempts; 962 u64 nr_wakeups_passive; 963 u64 nr_wakeups_idle; 964#endif 965 966#ifdef CONFIG_FAIR_GROUP_SCHED 967 struct sched_entity *parent; 968 /* rq on which this entity is (to be) queued: */ 969 struct cfs_rq *cfs_rq; 970 /* rq "owned" by this entity/group: */ 971 struct cfs_rq *my_q; 972#endif 973}; 974 975struct sched_rt_entity { 976 struct list_head run_list; 977 unsigned int time_slice; 978 unsigned long timeout; 979 int nr_cpus_allowed; 980 981#ifdef CONFIG_RT_GROUP_SCHED 982 struct sched_rt_entity *parent; 983 /* rq on which this entity is (to be) queued: */ 984 struct rt_rq *rt_rq; 985 /* rq "owned" by this entity/group: */ 986 struct rt_rq *my_q; 987#endif 988}; 989 990struct task_struct { 991 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 992 void *stack; 993 atomic_t usage; 994 unsigned int flags; /* per process flags, defined below */ 995 unsigned int ptrace; 996 997 int lock_depth; /* BKL lock depth */ 998 999#ifdef CONFIG_SMP 1000#ifdef __ARCH_WANT_UNLOCKED_CTXSW 1001 int oncpu; 1002#endif 1003#endif 1004 1005 int prio, static_prio, normal_prio; 1006 const struct sched_class *sched_class; 1007 struct sched_entity se; 1008 struct sched_rt_entity rt; 1009 1010#ifdef CONFIG_PREEMPT_NOTIFIERS 1011 /* list of struct preempt_notifier: */ 1012 struct hlist_head preempt_notifiers; 1013#endif 1014 1015 /* 1016 * fpu_counter contains the number of consecutive context switches 1017 * that the FPU is used. If this is over a threshold, the lazy fpu 1018 * saving becomes unlazy to save the trap. This is an unsigned char 1019 * so that after 256 times the counter wraps and the behavior turns 1020 * lazy again; this to deal with bursty apps that only use FPU for 1021 * a short time 1022 */ 1023 unsigned char fpu_counter; 1024 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1025#ifdef CONFIG_BLK_DEV_IO_TRACE 1026 unsigned int btrace_seq; 1027#endif 1028 1029 unsigned int policy; 1030 cpumask_t cpus_allowed; 1031 1032#ifdef CONFIG_PREEMPT_RCU 1033 int rcu_read_lock_nesting; 1034 int rcu_flipctr_idx; 1035#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1036 1037#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1038 struct sched_info sched_info; 1039#endif 1040 1041 struct list_head tasks; 1042 /* 1043 * ptrace_list/ptrace_children forms the list of my children 1044 * that were stolen by a ptracer. 1045 */ 1046 struct list_head ptrace_children; 1047 struct list_head ptrace_list; 1048 1049 struct mm_struct *mm, *active_mm; 1050 1051/* task state */ 1052 struct linux_binfmt *binfmt; 1053 int exit_state; 1054 int exit_code, exit_signal; 1055 int pdeath_signal; /* The signal sent when the parent dies */ 1056 /* ??? */ 1057 unsigned int personality; 1058 unsigned did_exec:1; 1059 pid_t pid; 1060 pid_t tgid; 1061 1062#ifdef CONFIG_CC_STACKPROTECTOR 1063 /* Canary value for the -fstack-protector gcc feature */ 1064 unsigned long stack_canary; 1065#endif 1066 /* 1067 * pointers to (original) parent process, youngest child, younger sibling, 1068 * older sibling, respectively. (p->father can be replaced with 1069 * p->parent->pid) 1070 */ 1071 struct task_struct *real_parent; /* real parent process (when being debugged) */ 1072 struct task_struct *parent; /* parent process */ 1073 /* 1074 * children/sibling forms the list of my children plus the 1075 * tasks I'm ptracing. 1076 */ 1077 struct list_head children; /* list of my children */ 1078 struct list_head sibling; /* linkage in my parent's children list */ 1079 struct task_struct *group_leader; /* threadgroup leader */ 1080 1081 /* PID/PID hash table linkage. */ 1082 struct pid_link pids[PIDTYPE_MAX]; 1083 struct list_head thread_group; 1084 1085 struct completion *vfork_done; /* for vfork() */ 1086 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1087 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1088 1089 unsigned int rt_priority; 1090 cputime_t utime, stime, utimescaled, stimescaled; 1091 cputime_t gtime; 1092 cputime_t prev_utime, prev_stime; 1093 unsigned long nvcsw, nivcsw; /* context switch counts */ 1094 struct timespec start_time; /* monotonic time */ 1095 struct timespec real_start_time; /* boot based time */ 1096/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1097 unsigned long min_flt, maj_flt; 1098 1099 cputime_t it_prof_expires, it_virt_expires; 1100 unsigned long long it_sched_expires; 1101 struct list_head cpu_timers[3]; 1102 1103/* process credentials */ 1104 uid_t uid,euid,suid,fsuid; 1105 gid_t gid,egid,sgid,fsgid; 1106 struct group_info *group_info; 1107 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset; 1108 unsigned keep_capabilities:1; 1109 struct user_struct *user; 1110#ifdef CONFIG_KEYS 1111 struct key *request_key_auth; /* assumed request_key authority */ 1112 struct key *thread_keyring; /* keyring private to this thread */ 1113 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1114#endif 1115 char comm[TASK_COMM_LEN]; /* executable name excluding path 1116 - access with [gs]et_task_comm (which lock 1117 it with task_lock()) 1118 - initialized normally by flush_old_exec */ 1119/* file system info */ 1120 int link_count, total_link_count; 1121#ifdef CONFIG_SYSVIPC 1122/* ipc stuff */ 1123 struct sysv_sem sysvsem; 1124#endif 1125#ifdef CONFIG_DETECT_SOFTLOCKUP 1126/* hung task detection */ 1127 unsigned long last_switch_timestamp; 1128 unsigned long last_switch_count; 1129#endif 1130/* CPU-specific state of this task */ 1131 struct thread_struct thread; 1132/* filesystem information */ 1133 struct fs_struct *fs; 1134/* open file information */ 1135 struct files_struct *files; 1136/* namespaces */ 1137 struct nsproxy *nsproxy; 1138/* signal handlers */ 1139 struct signal_struct *signal; 1140 struct sighand_struct *sighand; 1141 1142 sigset_t blocked, real_blocked; 1143 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 1144 struct sigpending pending; 1145 1146 unsigned long sas_ss_sp; 1147 size_t sas_ss_size; 1148 int (*notifier)(void *priv); 1149 void *notifier_data; 1150 sigset_t *notifier_mask; 1151#ifdef CONFIG_SECURITY 1152 void *security; 1153#endif 1154 struct audit_context *audit_context; 1155#ifdef CONFIG_AUDITSYSCALL 1156 uid_t loginuid; 1157 unsigned int sessionid; 1158#endif 1159 seccomp_t seccomp; 1160 1161/* Thread group tracking */ 1162 u32 parent_exec_id; 1163 u32 self_exec_id; 1164/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1165 spinlock_t alloc_lock; 1166 1167 /* Protection of the PI data structures: */ 1168 spinlock_t pi_lock; 1169 1170#ifdef CONFIG_RT_MUTEXES 1171 /* PI waiters blocked on a rt_mutex held by this task */ 1172 struct plist_head pi_waiters; 1173 /* Deadlock detection and priority inheritance handling */ 1174 struct rt_mutex_waiter *pi_blocked_on; 1175#endif 1176 1177#ifdef CONFIG_DEBUG_MUTEXES 1178 /* mutex deadlock detection */ 1179 struct mutex_waiter *blocked_on; 1180#endif 1181#ifdef CONFIG_TRACE_IRQFLAGS 1182 unsigned int irq_events; 1183 int hardirqs_enabled; 1184 unsigned long hardirq_enable_ip; 1185 unsigned int hardirq_enable_event; 1186 unsigned long hardirq_disable_ip; 1187 unsigned int hardirq_disable_event; 1188 int softirqs_enabled; 1189 unsigned long softirq_disable_ip; 1190 unsigned int softirq_disable_event; 1191 unsigned long softirq_enable_ip; 1192 unsigned int softirq_enable_event; 1193 int hardirq_context; 1194 int softirq_context; 1195#endif 1196#ifdef CONFIG_LOCKDEP 1197# define MAX_LOCK_DEPTH 48UL 1198 u64 curr_chain_key; 1199 int lockdep_depth; 1200 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1201 unsigned int lockdep_recursion; 1202#endif 1203 1204/* journalling filesystem info */ 1205 void *journal_info; 1206 1207/* stacked block device info */ 1208 struct bio *bio_list, **bio_tail; 1209 1210/* VM state */ 1211 struct reclaim_state *reclaim_state; 1212 1213 struct backing_dev_info *backing_dev_info; 1214 1215 struct io_context *io_context; 1216 1217 unsigned long ptrace_message; 1218 siginfo_t *last_siginfo; /* For ptrace use. */ 1219#ifdef CONFIG_TASK_XACCT 1220/* i/o counters(bytes read/written, #syscalls */ 1221 u64 rchar, wchar, syscr, syscw; 1222#endif 1223 struct task_io_accounting ioac; 1224#if defined(CONFIG_TASK_XACCT) 1225 u64 acct_rss_mem1; /* accumulated rss usage */ 1226 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1227 cputime_t acct_stimexpd;/* stime since last update */ 1228#endif 1229#ifdef CONFIG_NUMA 1230 struct mempolicy *mempolicy; 1231 short il_next; 1232#endif 1233#ifdef CONFIG_CPUSETS 1234 nodemask_t mems_allowed; 1235 int cpuset_mems_generation; 1236 int cpuset_mem_spread_rotor; 1237#endif 1238#ifdef CONFIG_CGROUPS 1239 /* Control Group info protected by css_set_lock */ 1240 struct css_set *cgroups; 1241 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1242 struct list_head cg_list; 1243#endif 1244#ifdef CONFIG_FUTEX 1245 struct robust_list_head __user *robust_list; 1246#ifdef CONFIG_COMPAT 1247 struct compat_robust_list_head __user *compat_robust_list; 1248#endif 1249 struct list_head pi_state_list; 1250 struct futex_pi_state *pi_state_cache; 1251#endif 1252 atomic_t fs_excl; /* holding fs exclusive resources */ 1253 struct rcu_head rcu; 1254 1255 /* 1256 * cache last used pipe for splice 1257 */ 1258 struct pipe_inode_info *splice_pipe; 1259#ifdef CONFIG_TASK_DELAY_ACCT 1260 struct task_delay_info *delays; 1261#endif 1262#ifdef CONFIG_FAULT_INJECTION 1263 int make_it_fail; 1264#endif 1265 struct prop_local_single dirties; 1266#ifdef CONFIG_LATENCYTOP 1267 int latency_record_count; 1268 struct latency_record latency_record[LT_SAVECOUNT]; 1269#endif 1270}; 1271 1272/* 1273 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1274 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1275 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1276 * values are inverted: lower p->prio value means higher priority. 1277 * 1278 * The MAX_USER_RT_PRIO value allows the actual maximum 1279 * RT priority to be separate from the value exported to 1280 * user-space. This allows kernel threads to set their 1281 * priority to a value higher than any user task. Note: 1282 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1283 */ 1284 1285#define MAX_USER_RT_PRIO 100 1286#define MAX_RT_PRIO MAX_USER_RT_PRIO 1287 1288#define MAX_PRIO (MAX_RT_PRIO + 40) 1289#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1290 1291static inline int rt_prio(int prio) 1292{ 1293 if (unlikely(prio < MAX_RT_PRIO)) 1294 return 1; 1295 return 0; 1296} 1297 1298static inline int rt_task(struct task_struct *p) 1299{ 1300 return rt_prio(p->prio); 1301} 1302 1303static inline void set_task_session(struct task_struct *tsk, pid_t session) 1304{ 1305 tsk->signal->__session = session; 1306} 1307 1308static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1309{ 1310 tsk->signal->__pgrp = pgrp; 1311} 1312 1313static inline struct pid *task_pid(struct task_struct *task) 1314{ 1315 return task->pids[PIDTYPE_PID].pid; 1316} 1317 1318static inline struct pid *task_tgid(struct task_struct *task) 1319{ 1320 return task->group_leader->pids[PIDTYPE_PID].pid; 1321} 1322 1323static inline struct pid *task_pgrp(struct task_struct *task) 1324{ 1325 return task->group_leader->pids[PIDTYPE_PGID].pid; 1326} 1327 1328static inline struct pid *task_session(struct task_struct *task) 1329{ 1330 return task->group_leader->pids[PIDTYPE_SID].pid; 1331} 1332 1333struct pid_namespace; 1334 1335/* 1336 * the helpers to get the task's different pids as they are seen 1337 * from various namespaces 1338 * 1339 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1340 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1341 * current. 1342 * task_xid_nr_ns() : id seen from the ns specified; 1343 * 1344 * set_task_vxid() : assigns a virtual id to a task; 1345 * 1346 * see also pid_nr() etc in include/linux/pid.h 1347 */ 1348 1349static inline pid_t task_pid_nr(struct task_struct *tsk) 1350{ 1351 return tsk->pid; 1352} 1353 1354pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1355 1356static inline pid_t task_pid_vnr(struct task_struct *tsk) 1357{ 1358 return pid_vnr(task_pid(tsk)); 1359} 1360 1361 1362static inline pid_t task_tgid_nr(struct task_struct *tsk) 1363{ 1364 return tsk->tgid; 1365} 1366 1367pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1368 1369static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1370{ 1371 return pid_vnr(task_tgid(tsk)); 1372} 1373 1374 1375static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1376{ 1377 return tsk->signal->__pgrp; 1378} 1379 1380pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1381 1382static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1383{ 1384 return pid_vnr(task_pgrp(tsk)); 1385} 1386 1387 1388static inline pid_t task_session_nr(struct task_struct *tsk) 1389{ 1390 return tsk->signal->__session; 1391} 1392 1393pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1394 1395static inline pid_t task_session_vnr(struct task_struct *tsk) 1396{ 1397 return pid_vnr(task_session(tsk)); 1398} 1399 1400 1401/** 1402 * pid_alive - check that a task structure is not stale 1403 * @p: Task structure to be checked. 1404 * 1405 * Test if a process is not yet dead (at most zombie state) 1406 * If pid_alive fails, then pointers within the task structure 1407 * can be stale and must not be dereferenced. 1408 */ 1409static inline int pid_alive(struct task_struct *p) 1410{ 1411 return p->pids[PIDTYPE_PID].pid != NULL; 1412} 1413 1414/** 1415 * is_global_init - check if a task structure is init 1416 * @tsk: Task structure to be checked. 1417 * 1418 * Check if a task structure is the first user space task the kernel created. 1419 */ 1420static inline int is_global_init(struct task_struct *tsk) 1421{ 1422 return tsk->pid == 1; 1423} 1424 1425/* 1426 * is_container_init: 1427 * check whether in the task is init in its own pid namespace. 1428 */ 1429extern int is_container_init(struct task_struct *tsk); 1430 1431extern struct pid *cad_pid; 1432 1433extern void free_task(struct task_struct *tsk); 1434#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1435 1436extern void __put_task_struct(struct task_struct *t); 1437 1438static inline void put_task_struct(struct task_struct *t) 1439{ 1440 if (atomic_dec_and_test(&t->usage)) 1441 __put_task_struct(t); 1442} 1443 1444/* 1445 * Per process flags 1446 */ 1447#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1448 /* Not implemented yet, only for 486*/ 1449#define PF_STARTING 0x00000002 /* being created */ 1450#define PF_EXITING 0x00000004 /* getting shut down */ 1451#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1452#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1453#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1454#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1455#define PF_DUMPCORE 0x00000200 /* dumped core */ 1456#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1457#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1458#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1459#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1460#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1461#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1462#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1463#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1464#define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1465#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1466#define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1467#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1468#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1469#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1470#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1471#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1472#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1473#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1474 1475/* 1476 * Only the _current_ task can read/write to tsk->flags, but other 1477 * tasks can access tsk->flags in readonly mode for example 1478 * with tsk_used_math (like during threaded core dumping). 1479 * There is however an exception to this rule during ptrace 1480 * or during fork: the ptracer task is allowed to write to the 1481 * child->flags of its traced child (same goes for fork, the parent 1482 * can write to the child->flags), because we're guaranteed the 1483 * child is not running and in turn not changing child->flags 1484 * at the same time the parent does it. 1485 */ 1486#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1487#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1488#define clear_used_math() clear_stopped_child_used_math(current) 1489#define set_used_math() set_stopped_child_used_math(current) 1490#define conditional_stopped_child_used_math(condition, child) \ 1491 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1492#define conditional_used_math(condition) \ 1493 conditional_stopped_child_used_math(condition, current) 1494#define copy_to_stopped_child_used_math(child) \ 1495 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1496/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1497#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1498#define used_math() tsk_used_math(current) 1499 1500#ifdef CONFIG_SMP 1501extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); 1502#else 1503static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1504{ 1505 if (!cpu_isset(0, new_mask)) 1506 return -EINVAL; 1507 return 0; 1508} 1509#endif 1510 1511extern unsigned long long sched_clock(void); 1512 1513/* 1514 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1515 * clock constructed from sched_clock(): 1516 */ 1517extern unsigned long long cpu_clock(int cpu); 1518 1519extern unsigned long long 1520task_sched_runtime(struct task_struct *task); 1521 1522/* sched_exec is called by processes performing an exec */ 1523#ifdef CONFIG_SMP 1524extern void sched_exec(void); 1525#else 1526#define sched_exec() {} 1527#endif 1528 1529extern void sched_clock_idle_sleep_event(void); 1530extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1531 1532#ifdef CONFIG_HOTPLUG_CPU 1533extern void idle_task_exit(void); 1534#else 1535static inline void idle_task_exit(void) {} 1536#endif 1537 1538extern void sched_idle_next(void); 1539 1540#ifdef CONFIG_SCHED_DEBUG 1541extern unsigned int sysctl_sched_latency; 1542extern unsigned int sysctl_sched_min_granularity; 1543extern unsigned int sysctl_sched_wakeup_granularity; 1544extern unsigned int sysctl_sched_batch_wakeup_granularity; 1545extern unsigned int sysctl_sched_child_runs_first; 1546extern unsigned int sysctl_sched_features; 1547extern unsigned int sysctl_sched_migration_cost; 1548extern unsigned int sysctl_sched_nr_migrate; 1549 1550int sched_nr_latency_handler(struct ctl_table *table, int write, 1551 struct file *file, void __user *buffer, size_t *length, 1552 loff_t *ppos); 1553#endif 1554extern unsigned int sysctl_sched_rt_period; 1555extern int sysctl_sched_rt_runtime; 1556 1557extern unsigned int sysctl_sched_compat_yield; 1558 1559#ifdef CONFIG_RT_MUTEXES 1560extern int rt_mutex_getprio(struct task_struct *p); 1561extern void rt_mutex_setprio(struct task_struct *p, int prio); 1562extern void rt_mutex_adjust_pi(struct task_struct *p); 1563#else 1564static inline int rt_mutex_getprio(struct task_struct *p) 1565{ 1566 return p->normal_prio; 1567} 1568# define rt_mutex_adjust_pi(p) do { } while (0) 1569#endif 1570 1571extern void set_user_nice(struct task_struct *p, long nice); 1572extern int task_prio(const struct task_struct *p); 1573extern int task_nice(const struct task_struct *p); 1574extern int can_nice(const struct task_struct *p, const int nice); 1575extern int task_curr(const struct task_struct *p); 1576extern int idle_cpu(int cpu); 1577extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1578extern struct task_struct *idle_task(int cpu); 1579extern struct task_struct *curr_task(int cpu); 1580extern void set_curr_task(int cpu, struct task_struct *p); 1581 1582void yield(void); 1583 1584/* 1585 * The default (Linux) execution domain. 1586 */ 1587extern struct exec_domain default_exec_domain; 1588 1589union thread_union { 1590 struct thread_info thread_info; 1591 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1592}; 1593 1594#ifndef __HAVE_ARCH_KSTACK_END 1595static inline int kstack_end(void *addr) 1596{ 1597 /* Reliable end of stack detection: 1598 * Some APM bios versions misalign the stack 1599 */ 1600 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1601} 1602#endif 1603 1604extern union thread_union init_thread_union; 1605extern struct task_struct init_task; 1606 1607extern struct mm_struct init_mm; 1608 1609extern struct pid_namespace init_pid_ns; 1610 1611/* 1612 * find a task by one of its numerical ids 1613 * 1614 * find_task_by_pid_type_ns(): 1615 * it is the most generic call - it finds a task by all id, 1616 * type and namespace specified 1617 * find_task_by_pid_ns(): 1618 * finds a task by its pid in the specified namespace 1619 * find_task_by_vpid(): 1620 * finds a task by its virtual pid 1621 * find_task_by_pid(): 1622 * finds a task by its global pid 1623 * 1624 * see also find_pid() etc in include/linux/pid.h 1625 */ 1626 1627extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1628 struct pid_namespace *ns); 1629 1630extern struct task_struct *find_task_by_pid(pid_t nr); 1631extern struct task_struct *find_task_by_vpid(pid_t nr); 1632extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1633 struct pid_namespace *ns); 1634 1635extern void __set_special_pids(struct pid *pid); 1636 1637/* per-UID process charging. */ 1638extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1639static inline struct user_struct *get_uid(struct user_struct *u) 1640{ 1641 atomic_inc(&u->__count); 1642 return u; 1643} 1644extern void free_uid(struct user_struct *); 1645extern void switch_uid(struct user_struct *); 1646extern void release_uids(struct user_namespace *ns); 1647 1648#include <asm/current.h> 1649 1650extern void do_timer(unsigned long ticks); 1651 1652extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1653extern int wake_up_process(struct task_struct *tsk); 1654extern void wake_up_new_task(struct task_struct *tsk, 1655 unsigned long clone_flags); 1656#ifdef CONFIG_SMP 1657 extern void kick_process(struct task_struct *tsk); 1658#else 1659 static inline void kick_process(struct task_struct *tsk) { } 1660#endif 1661extern void sched_fork(struct task_struct *p, int clone_flags); 1662extern void sched_dead(struct task_struct *p); 1663 1664extern int in_group_p(gid_t); 1665extern int in_egroup_p(gid_t); 1666 1667extern void proc_caches_init(void); 1668extern void flush_signals(struct task_struct *); 1669extern void ignore_signals(struct task_struct *); 1670extern void flush_signal_handlers(struct task_struct *, int force_default); 1671extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1672 1673static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1674{ 1675 unsigned long flags; 1676 int ret; 1677 1678 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1679 ret = dequeue_signal(tsk, mask, info); 1680 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1681 1682 return ret; 1683} 1684 1685extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1686 sigset_t *mask); 1687extern void unblock_all_signals(void); 1688extern void release_task(struct task_struct * p); 1689extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1690extern int force_sigsegv(int, struct task_struct *); 1691extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1692extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1693extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1694extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1695extern int kill_pgrp(struct pid *pid, int sig, int priv); 1696extern int kill_pid(struct pid *pid, int sig, int priv); 1697extern int kill_proc_info(int, struct siginfo *, pid_t); 1698extern void do_notify_parent(struct task_struct *, int); 1699extern void force_sig(int, struct task_struct *); 1700extern void force_sig_specific(int, struct task_struct *); 1701extern int send_sig(int, struct task_struct *, int); 1702extern void zap_other_threads(struct task_struct *p); 1703extern int kill_proc(pid_t, int, int); 1704extern struct sigqueue *sigqueue_alloc(void); 1705extern void sigqueue_free(struct sigqueue *); 1706extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1707extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1708extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1709extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1710 1711static inline int kill_cad_pid(int sig, int priv) 1712{ 1713 return kill_pid(cad_pid, sig, priv); 1714} 1715 1716/* These can be the second arg to send_sig_info/send_group_sig_info. */ 1717#define SEND_SIG_NOINFO ((struct siginfo *) 0) 1718#define SEND_SIG_PRIV ((struct siginfo *) 1) 1719#define SEND_SIG_FORCED ((struct siginfo *) 2) 1720 1721static inline int is_si_special(const struct siginfo *info) 1722{ 1723 return info <= SEND_SIG_FORCED; 1724} 1725 1726/* True if we are on the alternate signal stack. */ 1727 1728static inline int on_sig_stack(unsigned long sp) 1729{ 1730 return (sp - current->sas_ss_sp < current->sas_ss_size); 1731} 1732 1733static inline int sas_ss_flags(unsigned long sp) 1734{ 1735 return (current->sas_ss_size == 0 ? SS_DISABLE 1736 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1737} 1738 1739/* 1740 * Routines for handling mm_structs 1741 */ 1742extern struct mm_struct * mm_alloc(void); 1743 1744/* mmdrop drops the mm and the page tables */ 1745extern void __mmdrop(struct mm_struct *); 1746static inline void mmdrop(struct mm_struct * mm) 1747{ 1748 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1749 __mmdrop(mm); 1750} 1751 1752/* mmput gets rid of the mappings and all user-space */ 1753extern void mmput(struct mm_struct *); 1754/* Grab a reference to a task's mm, if it is not already going away */ 1755extern struct mm_struct *get_task_mm(struct task_struct *task); 1756/* Remove the current tasks stale references to the old mm_struct */ 1757extern void mm_release(struct task_struct *, struct mm_struct *); 1758 1759extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1760extern void flush_thread(void); 1761extern void exit_thread(void); 1762 1763extern void exit_files(struct task_struct *); 1764extern void __cleanup_signal(struct signal_struct *); 1765extern void __cleanup_sighand(struct sighand_struct *); 1766extern void exit_itimers(struct signal_struct *); 1767 1768extern NORET_TYPE void do_group_exit(int); 1769 1770extern void daemonize(const char *, ...); 1771extern int allow_signal(int); 1772extern int disallow_signal(int); 1773 1774extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1775extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1776struct task_struct *fork_idle(int); 1777 1778extern void set_task_comm(struct task_struct *tsk, char *from); 1779extern char *get_task_comm(char *to, struct task_struct *tsk); 1780 1781#ifdef CONFIG_SMP 1782extern void wait_task_inactive(struct task_struct * p); 1783#else 1784#define wait_task_inactive(p) do { } while (0) 1785#endif 1786 1787#define remove_parent(p) list_del_init(&(p)->sibling) 1788#define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1789 1790#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1791 1792#define for_each_process(p) \ 1793 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1794 1795/* 1796 * Careful: do_each_thread/while_each_thread is a double loop so 1797 * 'break' will not work as expected - use goto instead. 1798 */ 1799#define do_each_thread(g, t) \ 1800 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1801 1802#define while_each_thread(g, t) \ 1803 while ((t = next_thread(t)) != g) 1804 1805/* de_thread depends on thread_group_leader not being a pid based check */ 1806#define thread_group_leader(p) (p == p->group_leader) 1807 1808/* Do to the insanities of de_thread it is possible for a process 1809 * to have the pid of the thread group leader without actually being 1810 * the thread group leader. For iteration through the pids in proc 1811 * all we care about is that we have a task with the appropriate 1812 * pid, we don't actually care if we have the right task. 1813 */ 1814static inline int has_group_leader_pid(struct task_struct *p) 1815{ 1816 return p->pid == p->tgid; 1817} 1818 1819static inline 1820int same_thread_group(struct task_struct *p1, struct task_struct *p2) 1821{ 1822 return p1->tgid == p2->tgid; 1823} 1824 1825static inline struct task_struct *next_thread(const struct task_struct *p) 1826{ 1827 return list_entry(rcu_dereference(p->thread_group.next), 1828 struct task_struct, thread_group); 1829} 1830 1831static inline int thread_group_empty(struct task_struct *p) 1832{ 1833 return list_empty(&p->thread_group); 1834} 1835 1836#define delay_group_leader(p) \ 1837 (thread_group_leader(p) && !thread_group_empty(p)) 1838 1839/* 1840 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1841 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1842 * pins the final release of task.io_context. Also protects ->cpuset and 1843 * ->cgroup.subsys[]. 1844 * 1845 * Nests both inside and outside of read_lock(&tasklist_lock). 1846 * It must not be nested with write_lock_irq(&tasklist_lock), 1847 * neither inside nor outside. 1848 */ 1849static inline void task_lock(struct task_struct *p) 1850{ 1851 spin_lock(&p->alloc_lock); 1852} 1853 1854static inline void task_unlock(struct task_struct *p) 1855{ 1856 spin_unlock(&p->alloc_lock); 1857} 1858 1859extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1860 unsigned long *flags); 1861 1862static inline void unlock_task_sighand(struct task_struct *tsk, 1863 unsigned long *flags) 1864{ 1865 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1866} 1867 1868#ifndef __HAVE_THREAD_FUNCTIONS 1869 1870#define task_thread_info(task) ((struct thread_info *)(task)->stack) 1871#define task_stack_page(task) ((task)->stack) 1872 1873static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1874{ 1875 *task_thread_info(p) = *task_thread_info(org); 1876 task_thread_info(p)->task = p; 1877} 1878 1879static inline unsigned long *end_of_stack(struct task_struct *p) 1880{ 1881 return (unsigned long *)(task_thread_info(p) + 1); 1882} 1883 1884#endif 1885 1886/* set thread flags in other task's structures 1887 * - see asm/thread_info.h for TIF_xxxx flags available 1888 */ 1889static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1890{ 1891 set_ti_thread_flag(task_thread_info(tsk), flag); 1892} 1893 1894static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1895{ 1896 clear_ti_thread_flag(task_thread_info(tsk), flag); 1897} 1898 1899static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1900{ 1901 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1902} 1903 1904static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1905{ 1906 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1907} 1908 1909static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1910{ 1911 return test_ti_thread_flag(task_thread_info(tsk), flag); 1912} 1913 1914static inline void set_tsk_need_resched(struct task_struct *tsk) 1915{ 1916 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1917} 1918 1919static inline void clear_tsk_need_resched(struct task_struct *tsk) 1920{ 1921 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1922} 1923 1924static inline int signal_pending(struct task_struct *p) 1925{ 1926 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1927} 1928 1929extern int __fatal_signal_pending(struct task_struct *p); 1930 1931static inline int fatal_signal_pending(struct task_struct *p) 1932{ 1933 return signal_pending(p) && __fatal_signal_pending(p); 1934} 1935 1936static inline int need_resched(void) 1937{ 1938 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1939} 1940 1941/* 1942 * cond_resched() and cond_resched_lock(): latency reduction via 1943 * explicit rescheduling in places that are safe. The return 1944 * value indicates whether a reschedule was done in fact. 1945 * cond_resched_lock() will drop the spinlock before scheduling, 1946 * cond_resched_softirq() will enable bhs before scheduling. 1947 */ 1948#ifdef CONFIG_PREEMPT 1949static inline int cond_resched(void) 1950{ 1951 return 0; 1952} 1953#else 1954extern int _cond_resched(void); 1955static inline int cond_resched(void) 1956{ 1957 return _cond_resched(); 1958} 1959#endif 1960extern int cond_resched_lock(spinlock_t * lock); 1961extern int cond_resched_softirq(void); 1962 1963/* 1964 * Does a critical section need to be broken due to another 1965 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 1966 * but a general need for low latency) 1967 */ 1968static inline int spin_needbreak(spinlock_t *lock) 1969{ 1970#ifdef CONFIG_PREEMPT 1971 return spin_is_contended(lock); 1972#else 1973 return 0; 1974#endif 1975} 1976 1977/* 1978 * Reevaluate whether the task has signals pending delivery. 1979 * Wake the task if so. 1980 * This is required every time the blocked sigset_t changes. 1981 * callers must hold sighand->siglock. 1982 */ 1983extern void recalc_sigpending_and_wake(struct task_struct *t); 1984extern void recalc_sigpending(void); 1985 1986extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1987 1988/* 1989 * Wrappers for p->thread_info->cpu access. No-op on UP. 1990 */ 1991#ifdef CONFIG_SMP 1992 1993static inline unsigned int task_cpu(const struct task_struct *p) 1994{ 1995 return task_thread_info(p)->cpu; 1996} 1997 1998extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1999 2000#else 2001 2002static inline unsigned int task_cpu(const struct task_struct *p) 2003{ 2004 return 0; 2005} 2006 2007static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2008{ 2009} 2010 2011#endif /* CONFIG_SMP */ 2012 2013#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 2014extern void arch_pick_mmap_layout(struct mm_struct *mm); 2015#else 2016static inline void arch_pick_mmap_layout(struct mm_struct *mm) 2017{ 2018 mm->mmap_base = TASK_UNMAPPED_BASE; 2019 mm->get_unmapped_area = arch_get_unmapped_area; 2020 mm->unmap_area = arch_unmap_area; 2021} 2022#endif 2023 2024extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 2025extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 2026 2027extern int sched_mc_power_savings, sched_smt_power_savings; 2028 2029extern void normalize_rt_tasks(void); 2030 2031#ifdef CONFIG_GROUP_SCHED 2032 2033extern struct task_group init_task_group; 2034 2035extern struct task_group *sched_create_group(void); 2036extern void sched_destroy_group(struct task_group *tg); 2037extern void sched_move_task(struct task_struct *tsk); 2038#ifdef CONFIG_FAIR_GROUP_SCHED 2039extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2040extern unsigned long sched_group_shares(struct task_group *tg); 2041#endif 2042#ifdef CONFIG_RT_GROUP_SCHED 2043extern int sched_group_set_rt_runtime(struct task_group *tg, 2044 long rt_runtime_us); 2045extern long sched_group_rt_runtime(struct task_group *tg); 2046#endif 2047#endif 2048 2049#ifdef CONFIG_TASK_XACCT 2050static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2051{ 2052 tsk->rchar += amt; 2053} 2054 2055static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2056{ 2057 tsk->wchar += amt; 2058} 2059 2060static inline void inc_syscr(struct task_struct *tsk) 2061{ 2062 tsk->syscr++; 2063} 2064 2065static inline void inc_syscw(struct task_struct *tsk) 2066{ 2067 tsk->syscw++; 2068} 2069#else 2070static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2071{ 2072} 2073 2074static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2075{ 2076} 2077 2078static inline void inc_syscr(struct task_struct *tsk) 2079{ 2080} 2081 2082static inline void inc_syscw(struct task_struct *tsk) 2083{ 2084} 2085#endif 2086 2087#ifdef CONFIG_SMP 2088void migration_init(void); 2089#else 2090static inline void migration_init(void) 2091{ 2092} 2093#endif 2094 2095#ifndef TASK_SIZE_OF 2096#define TASK_SIZE_OF(tsk) TASK_SIZE 2097#endif 2098 2099#endif /* __KERNEL__ */ 2100 2101#endif