1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/smp.h> 6#include <linux/cpumask.h> 7#include <linux/pfn.h> 8#include <linux/init.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46#define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49} while (0) 50 51#ifdef CONFIG_SMP 52 53/* minimum unit size, also is the maximum supported allocation size */ 54#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 55 56/* 57 * Percpu allocator can serve percpu allocations before slab is 58 * initialized which allows slab to depend on the percpu allocator. 59 * The following two parameters decide how much resource to 60 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 61 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 62 */ 63#define PERCPU_DYNAMIC_EARLY_SLOTS 128 64#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 65 66/* 67 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 68 * back on the first chunk for dynamic percpu allocation if arch is 69 * manually allocating and mapping it for faster access (as a part of 70 * large page mapping for example). 71 * 72 * The following values give between one and two pages of free space 73 * after typical minimal boot (2-way SMP, single disk and NIC) with 74 * both defconfig and a distro config on x86_64 and 32. More 75 * intelligent way to determine this would be nice. 76 */ 77#if BITS_PER_LONG > 32 78#define PERCPU_DYNAMIC_RESERVE (20 << 10) 79#else 80#define PERCPU_DYNAMIC_RESERVE (12 << 10) 81#endif 82 83extern void *pcpu_base_addr; 84extern const unsigned long *pcpu_unit_offsets; 85 86struct pcpu_group_info { 87 int nr_units; /* aligned # of units */ 88 unsigned long base_offset; /* base address offset */ 89 unsigned int *cpu_map; /* unit->cpu map, empty 90 * entries contain NR_CPUS */ 91}; 92 93struct pcpu_alloc_info { 94 size_t static_size; 95 size_t reserved_size; 96 size_t dyn_size; 97 size_t unit_size; 98 size_t atom_size; 99 size_t alloc_size; 100 size_t __ai_size; /* internal, don't use */ 101 int nr_groups; /* 0 if grouping unnecessary */ 102 struct pcpu_group_info groups[]; 103}; 104 105enum pcpu_fc { 106 PCPU_FC_AUTO, 107 PCPU_FC_EMBED, 108 PCPU_FC_PAGE, 109 110 PCPU_FC_NR, 111}; 112extern const char *pcpu_fc_names[PCPU_FC_NR]; 113 114extern enum pcpu_fc pcpu_chosen_fc; 115 116typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 117 size_t align); 118typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 119typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 120typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 121 122extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 123 int nr_units); 124extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 125 126extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 127 void *base_addr); 128 129#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 130extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 131 size_t atom_size, 132 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 133 pcpu_fc_alloc_fn_t alloc_fn, 134 pcpu_fc_free_fn_t free_fn); 135#endif 136 137#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 138extern int __init pcpu_page_first_chunk(size_t reserved_size, 139 pcpu_fc_alloc_fn_t alloc_fn, 140 pcpu_fc_free_fn_t free_fn, 141 pcpu_fc_populate_pte_fn_t populate_pte_fn); 142#endif 143 144/* 145 * Use this to get to a cpu's version of the per-cpu object 146 * dynamically allocated. Non-atomic access to the current CPU's 147 * version should probably be combined with get_cpu()/put_cpu(). 148 */ 149#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 150 151extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 152extern bool is_kernel_percpu_address(unsigned long addr); 153 154#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 155extern void __init setup_per_cpu_areas(void); 156#endif 157extern void __init percpu_init_late(void); 158 159#else /* CONFIG_SMP */ 160 161#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 162 163/* can't distinguish from other static vars, always false */ 164static inline bool is_kernel_percpu_address(unsigned long addr) 165{ 166 return false; 167} 168 169static inline void __init setup_per_cpu_areas(void) { } 170 171static inline void __init percpu_init_late(void) { } 172 173static inline void *pcpu_lpage_remapped(void *kaddr) 174{ 175 return NULL; 176} 177 178#endif /* CONFIG_SMP */ 179 180extern void __percpu *__alloc_percpu(size_t size, size_t align); 181extern void free_percpu(void __percpu *__pdata); 182extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 183 184#define alloc_percpu(type) \ 185 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 186 187/* 188 * Optional methods for optimized non-lvalue per-cpu variable access. 189 * 190 * @var can be a percpu variable or a field of it and its size should 191 * equal char, int or long. percpu_read() evaluates to a lvalue and 192 * all others to void. 193 * 194 * These operations are guaranteed to be atomic w.r.t. preemption. 195 * The generic versions use plain get/put_cpu_var(). Archs are 196 * encouraged to implement single-instruction alternatives which don't 197 * require preemption protection. 198 */ 199#ifndef percpu_read 200# define percpu_read(var) \ 201 ({ \ 202 typeof(var) *pr_ptr__ = &(var); \ 203 typeof(var) pr_ret__; \ 204 pr_ret__ = get_cpu_var(*pr_ptr__); \ 205 put_cpu_var(*pr_ptr__); \ 206 pr_ret__; \ 207 }) 208#endif 209 210#define __percpu_generic_to_op(var, val, op) \ 211do { \ 212 typeof(var) *pgto_ptr__ = &(var); \ 213 get_cpu_var(*pgto_ptr__) op val; \ 214 put_cpu_var(*pgto_ptr__); \ 215} while (0) 216 217#ifndef percpu_write 218# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 219#endif 220 221#ifndef percpu_add 222# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 223#endif 224 225#ifndef percpu_sub 226# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 227#endif 228 229#ifndef percpu_and 230# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 231#endif 232 233#ifndef percpu_or 234# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 235#endif 236 237#ifndef percpu_xor 238# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 239#endif 240 241/* 242 * Branching function to split up a function into a set of functions that 243 * are called for different scalar sizes of the objects handled. 244 */ 245 246extern void __bad_size_call_parameter(void); 247 248#define __pcpu_size_call_return(stem, variable) \ 249({ typeof(variable) pscr_ret__; \ 250 __verify_pcpu_ptr(&(variable)); \ 251 switch(sizeof(variable)) { \ 252 case 1: pscr_ret__ = stem##1(variable);break; \ 253 case 2: pscr_ret__ = stem##2(variable);break; \ 254 case 4: pscr_ret__ = stem##4(variable);break; \ 255 case 8: pscr_ret__ = stem##8(variable);break; \ 256 default: \ 257 __bad_size_call_parameter();break; \ 258 } \ 259 pscr_ret__; \ 260}) 261 262#define __pcpu_size_call(stem, variable, ...) \ 263do { \ 264 __verify_pcpu_ptr(&(variable)); \ 265 switch(sizeof(variable)) { \ 266 case 1: stem##1(variable, __VA_ARGS__);break; \ 267 case 2: stem##2(variable, __VA_ARGS__);break; \ 268 case 4: stem##4(variable, __VA_ARGS__);break; \ 269 case 8: stem##8(variable, __VA_ARGS__);break; \ 270 default: \ 271 __bad_size_call_parameter();break; \ 272 } \ 273} while (0) 274 275/* 276 * Optimized manipulation for memory allocated through the per cpu 277 * allocator or for addresses of per cpu variables. 278 * 279 * These operation guarantee exclusivity of access for other operations 280 * on the *same* processor. The assumption is that per cpu data is only 281 * accessed by a single processor instance (the current one). 282 * 283 * The first group is used for accesses that must be done in a 284 * preemption safe way since we know that the context is not preempt 285 * safe. Interrupts may occur. If the interrupt modifies the variable 286 * too then RMW actions will not be reliable. 287 * 288 * The arch code can provide optimized functions in two ways: 289 * 290 * 1. Override the function completely. F.e. define this_cpu_add(). 291 * The arch must then ensure that the various scalar format passed 292 * are handled correctly. 293 * 294 * 2. Provide functions for certain scalar sizes. F.e. provide 295 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 296 * sized RMW actions. If arch code does not provide operations for 297 * a scalar size then the fallback in the generic code will be 298 * used. 299 */ 300 301#define _this_cpu_generic_read(pcp) \ 302({ typeof(pcp) ret__; \ 303 preempt_disable(); \ 304 ret__ = *this_cpu_ptr(&(pcp)); \ 305 preempt_enable(); \ 306 ret__; \ 307}) 308 309#ifndef this_cpu_read 310# ifndef this_cpu_read_1 311# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 312# endif 313# ifndef this_cpu_read_2 314# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 315# endif 316# ifndef this_cpu_read_4 317# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 318# endif 319# ifndef this_cpu_read_8 320# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 321# endif 322# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 323#endif 324 325#define _this_cpu_generic_to_op(pcp, val, op) \ 326do { \ 327 preempt_disable(); \ 328 *__this_cpu_ptr(&(pcp)) op val; \ 329 preempt_enable(); \ 330} while (0) 331 332#ifndef this_cpu_write 333# ifndef this_cpu_write_1 334# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 335# endif 336# ifndef this_cpu_write_2 337# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 338# endif 339# ifndef this_cpu_write_4 340# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 341# endif 342# ifndef this_cpu_write_8 343# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 344# endif 345# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 346#endif 347 348#ifndef this_cpu_add 349# ifndef this_cpu_add_1 350# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 351# endif 352# ifndef this_cpu_add_2 353# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 354# endif 355# ifndef this_cpu_add_4 356# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 357# endif 358# ifndef this_cpu_add_8 359# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 360# endif 361# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 362#endif 363 364#ifndef this_cpu_sub 365# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 366#endif 367 368#ifndef this_cpu_inc 369# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 370#endif 371 372#ifndef this_cpu_dec 373# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 374#endif 375 376#ifndef this_cpu_and 377# ifndef this_cpu_and_1 378# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 379# endif 380# ifndef this_cpu_and_2 381# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 382# endif 383# ifndef this_cpu_and_4 384# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 385# endif 386# ifndef this_cpu_and_8 387# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 388# endif 389# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 390#endif 391 392#ifndef this_cpu_or 393# ifndef this_cpu_or_1 394# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 395# endif 396# ifndef this_cpu_or_2 397# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 398# endif 399# ifndef this_cpu_or_4 400# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 401# endif 402# ifndef this_cpu_or_8 403# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 404# endif 405# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 406#endif 407 408#ifndef this_cpu_xor 409# ifndef this_cpu_xor_1 410# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 411# endif 412# ifndef this_cpu_xor_2 413# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 414# endif 415# ifndef this_cpu_xor_4 416# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 417# endif 418# ifndef this_cpu_xor_8 419# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 420# endif 421# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 422#endif 423 424/* 425 * Generic percpu operations that do not require preemption handling. 426 * Either we do not care about races or the caller has the 427 * responsibility of handling preemptions issues. Arch code can still 428 * override these instructions since the arch per cpu code may be more 429 * efficient and may actually get race freeness for free (that is the 430 * case for x86 for example). 431 * 432 * If there is no other protection through preempt disable and/or 433 * disabling interupts then one of these RMW operations can show unexpected 434 * behavior because the execution thread was rescheduled on another processor 435 * or an interrupt occurred and the same percpu variable was modified from 436 * the interrupt context. 437 */ 438#ifndef __this_cpu_read 439# ifndef __this_cpu_read_1 440# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 441# endif 442# ifndef __this_cpu_read_2 443# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 444# endif 445# ifndef __this_cpu_read_4 446# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 447# endif 448# ifndef __this_cpu_read_8 449# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 450# endif 451# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 452#endif 453 454#define __this_cpu_generic_to_op(pcp, val, op) \ 455do { \ 456 *__this_cpu_ptr(&(pcp)) op val; \ 457} while (0) 458 459#ifndef __this_cpu_write 460# ifndef __this_cpu_write_1 461# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 462# endif 463# ifndef __this_cpu_write_2 464# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 465# endif 466# ifndef __this_cpu_write_4 467# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 468# endif 469# ifndef __this_cpu_write_8 470# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 471# endif 472# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 473#endif 474 475#ifndef __this_cpu_add 476# ifndef __this_cpu_add_1 477# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 478# endif 479# ifndef __this_cpu_add_2 480# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 481# endif 482# ifndef __this_cpu_add_4 483# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 484# endif 485# ifndef __this_cpu_add_8 486# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 487# endif 488# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 489#endif 490 491#ifndef __this_cpu_sub 492# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 493#endif 494 495#ifndef __this_cpu_inc 496# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 497#endif 498 499#ifndef __this_cpu_dec 500# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 501#endif 502 503#ifndef __this_cpu_and 504# ifndef __this_cpu_and_1 505# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 506# endif 507# ifndef __this_cpu_and_2 508# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 509# endif 510# ifndef __this_cpu_and_4 511# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 512# endif 513# ifndef __this_cpu_and_8 514# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 515# endif 516# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 517#endif 518 519#ifndef __this_cpu_or 520# ifndef __this_cpu_or_1 521# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 522# endif 523# ifndef __this_cpu_or_2 524# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 525# endif 526# ifndef __this_cpu_or_4 527# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 528# endif 529# ifndef __this_cpu_or_8 530# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 531# endif 532# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 533#endif 534 535#ifndef __this_cpu_xor 536# ifndef __this_cpu_xor_1 537# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 538# endif 539# ifndef __this_cpu_xor_2 540# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 541# endif 542# ifndef __this_cpu_xor_4 543# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 544# endif 545# ifndef __this_cpu_xor_8 546# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 547# endif 548# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 549#endif 550 551/* 552 * IRQ safe versions of the per cpu RMW operations. Note that these operations 553 * are *not* safe against modification of the same variable from another 554 * processors (which one gets when using regular atomic operations) 555 . They are guaranteed to be atomic vs. local interrupts and 556 * preemption only. 557 */ 558#define irqsafe_cpu_generic_to_op(pcp, val, op) \ 559do { \ 560 unsigned long flags; \ 561 local_irq_save(flags); \ 562 *__this_cpu_ptr(&(pcp)) op val; \ 563 local_irq_restore(flags); \ 564} while (0) 565 566#ifndef irqsafe_cpu_add 567# ifndef irqsafe_cpu_add_1 568# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 569# endif 570# ifndef irqsafe_cpu_add_2 571# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 572# endif 573# ifndef irqsafe_cpu_add_4 574# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 575# endif 576# ifndef irqsafe_cpu_add_8 577# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 578# endif 579# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 580#endif 581 582#ifndef irqsafe_cpu_sub 583# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 584#endif 585 586#ifndef irqsafe_cpu_inc 587# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 588#endif 589 590#ifndef irqsafe_cpu_dec 591# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 592#endif 593 594#ifndef irqsafe_cpu_and 595# ifndef irqsafe_cpu_and_1 596# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 597# endif 598# ifndef irqsafe_cpu_and_2 599# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 600# endif 601# ifndef irqsafe_cpu_and_4 602# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 603# endif 604# ifndef irqsafe_cpu_and_8 605# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 606# endif 607# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 608#endif 609 610#ifndef irqsafe_cpu_or 611# ifndef irqsafe_cpu_or_1 612# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 613# endif 614# ifndef irqsafe_cpu_or_2 615# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 616# endif 617# ifndef irqsafe_cpu_or_4 618# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 619# endif 620# ifndef irqsafe_cpu_or_8 621# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 622# endif 623# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 624#endif 625 626#ifndef irqsafe_cpu_xor 627# ifndef irqsafe_cpu_xor_1 628# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 629# endif 630# ifndef irqsafe_cpu_xor_2 631# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 632# endif 633# ifndef irqsafe_cpu_xor_4 634# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 635# endif 636# ifndef irqsafe_cpu_xor_8 637# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 638# endif 639# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 640#endif 641 642#endif /* __LINUX_PERCPU_H */