1/* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22#ifndef __LINUX_SECURITY_H 23#define __LINUX_SECURITY_H 24 25#include <linux/fs.h> 26#include <linux/binfmts.h> 27#include <linux/signal.h> 28#include <linux/resource.h> 29#include <linux/sem.h> 30#include <linux/shm.h> 31#include <linux/msg.h> 32#include <linux/sched.h> 33#include <linux/key.h> 34 35struct ctl_table; 36 37/* 38 * These functions are in security/capability.c and are used 39 * as the default capabilities functions 40 */ 41extern int cap_capable (struct task_struct *tsk, int cap); 42extern int cap_settime (struct timespec *ts, struct timezone *tz); 43extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); 44extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 45extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 46extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 47extern int cap_bprm_set_security (struct linux_binprm *bprm); 48extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); 49extern int cap_bprm_secureexec(struct linux_binprm *bprm); 50extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); 51extern int cap_inode_removexattr(struct dentry *dentry, char *name); 52extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); 53extern void cap_task_reparent_to_init (struct task_struct *p); 54extern int cap_syslog (int type); 55extern int cap_vm_enough_memory (long pages); 56 57struct msghdr; 58struct sk_buff; 59struct sock; 60struct sockaddr; 61struct socket; 62struct flowi; 63struct dst_entry; 64struct xfrm_selector; 65struct xfrm_policy; 66struct xfrm_state; 67struct xfrm_user_sec_ctx; 68 69extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 70extern int cap_netlink_recv(struct sk_buff *skb, int cap); 71 72/* 73 * Values used in the task_security_ops calls 74 */ 75/* setuid or setgid, id0 == uid or gid */ 76#define LSM_SETID_ID 1 77 78/* setreuid or setregid, id0 == real, id1 == eff */ 79#define LSM_SETID_RE 2 80 81/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 82#define LSM_SETID_RES 4 83 84/* setfsuid or setfsgid, id0 == fsuid or fsgid */ 85#define LSM_SETID_FS 8 86 87/* forward declares to avoid warnings */ 88struct nfsctl_arg; 89struct sched_param; 90struct swap_info_struct; 91 92/* bprm_apply_creds unsafe reasons */ 93#define LSM_UNSAFE_SHARE 1 94#define LSM_UNSAFE_PTRACE 2 95#define LSM_UNSAFE_PTRACE_CAP 4 96 97#ifdef CONFIG_SECURITY 98 99/** 100 * struct security_operations - main security structure 101 * 102 * Security hooks for program execution operations. 103 * 104 * @bprm_alloc_security: 105 * Allocate and attach a security structure to the @bprm->security field. 106 * The security field is initialized to NULL when the bprm structure is 107 * allocated. 108 * @bprm contains the linux_binprm structure to be modified. 109 * Return 0 if operation was successful. 110 * @bprm_free_security: 111 * @bprm contains the linux_binprm structure to be modified. 112 * Deallocate and clear the @bprm->security field. 113 * @bprm_apply_creds: 114 * Compute and set the security attributes of a process being transformed 115 * by an execve operation based on the old attributes (current->security) 116 * and the information saved in @bprm->security by the set_security hook. 117 * Since this hook function (and its caller) are void, this hook can not 118 * return an error. However, it can leave the security attributes of the 119 * process unchanged if an access failure occurs at this point. 120 * bprm_apply_creds is called under task_lock. @unsafe indicates various 121 * reasons why it may be unsafe to change security state. 122 * @bprm contains the linux_binprm structure. 123 * @bprm_post_apply_creds: 124 * Runs after bprm_apply_creds with the task_lock dropped, so that 125 * functions which cannot be called safely under the task_lock can 126 * be used. This hook is a good place to perform state changes on 127 * the process such as closing open file descriptors to which access 128 * is no longer granted if the attributes were changed. 129 * Note that a security module might need to save state between 130 * bprm_apply_creds and bprm_post_apply_creds to store the decision 131 * on whether the process may proceed. 132 * @bprm contains the linux_binprm structure. 133 * @bprm_set_security: 134 * Save security information in the bprm->security field, typically based 135 * on information about the bprm->file, for later use by the apply_creds 136 * hook. This hook may also optionally check permissions (e.g. for 137 * transitions between security domains). 138 * This hook may be called multiple times during a single execve, e.g. for 139 * interpreters. The hook can tell whether it has already been called by 140 * checking to see if @bprm->security is non-NULL. If so, then the hook 141 * may decide either to retain the security information saved earlier or 142 * to replace it. 143 * @bprm contains the linux_binprm structure. 144 * Return 0 if the hook is successful and permission is granted. 145 * @bprm_check_security: 146 * This hook mediates the point when a search for a binary handler will 147 * begin. It allows a check the @bprm->security value which is set in 148 * the preceding set_security call. The primary difference from 149 * set_security is that the argv list and envp list are reliably 150 * available in @bprm. This hook may be called multiple times 151 * during a single execve; and in each pass set_security is called 152 * first. 153 * @bprm contains the linux_binprm structure. 154 * Return 0 if the hook is successful and permission is granted. 155 * @bprm_secureexec: 156 * Return a boolean value (0 or 1) indicating whether a "secure exec" 157 * is required. The flag is passed in the auxiliary table 158 * on the initial stack to the ELF interpreter to indicate whether libc 159 * should enable secure mode. 160 * @bprm contains the linux_binprm structure. 161 * 162 * Security hooks for filesystem operations. 163 * 164 * @sb_alloc_security: 165 * Allocate and attach a security structure to the sb->s_security field. 166 * The s_security field is initialized to NULL when the structure is 167 * allocated. 168 * @sb contains the super_block structure to be modified. 169 * Return 0 if operation was successful. 170 * @sb_free_security: 171 * Deallocate and clear the sb->s_security field. 172 * @sb contains the super_block structure to be modified. 173 * @sb_statfs: 174 * Check permission before obtaining filesystem statistics for the @mnt 175 * mountpoint. 176 * @dentry is a handle on the superblock for the filesystem. 177 * Return 0 if permission is granted. 178 * @sb_mount: 179 * Check permission before an object specified by @dev_name is mounted on 180 * the mount point named by @nd. For an ordinary mount, @dev_name 181 * identifies a device if the file system type requires a device. For a 182 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 183 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 184 * pathname of the object being mounted. 185 * @dev_name contains the name for object being mounted. 186 * @nd contains the nameidata structure for mount point object. 187 * @type contains the filesystem type. 188 * @flags contains the mount flags. 189 * @data contains the filesystem-specific data. 190 * Return 0 if permission is granted. 191 * @sb_copy_data: 192 * Allow mount option data to be copied prior to parsing by the filesystem, 193 * so that the security module can extract security-specific mount 194 * options cleanly (a filesystem may modify the data e.g. with strsep()). 195 * This also allows the original mount data to be stripped of security- 196 * specific options to avoid having to make filesystems aware of them. 197 * @type the type of filesystem being mounted. 198 * @orig the original mount data copied from userspace. 199 * @copy copied data which will be passed to the security module. 200 * Returns 0 if the copy was successful. 201 * @sb_check_sb: 202 * Check permission before the device with superblock @mnt->sb is mounted 203 * on the mount point named by @nd. 204 * @mnt contains the vfsmount for device being mounted. 205 * @nd contains the nameidata object for the mount point. 206 * Return 0 if permission is granted. 207 * @sb_umount: 208 * Check permission before the @mnt file system is unmounted. 209 * @mnt contains the mounted file system. 210 * @flags contains the unmount flags, e.g. MNT_FORCE. 211 * Return 0 if permission is granted. 212 * @sb_umount_close: 213 * Close any files in the @mnt mounted filesystem that are held open by 214 * the security module. This hook is called during an umount operation 215 * prior to checking whether the filesystem is still busy. 216 * @mnt contains the mounted filesystem. 217 * @sb_umount_busy: 218 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 219 * any files that were closed by umount_close. This hook is called during 220 * an umount operation if the umount fails after a call to the 221 * umount_close hook. 222 * @mnt contains the mounted filesystem. 223 * @sb_post_remount: 224 * Update the security module's state when a filesystem is remounted. 225 * This hook is only called if the remount was successful. 226 * @mnt contains the mounted file system. 227 * @flags contains the new filesystem flags. 228 * @data contains the filesystem-specific data. 229 * @sb_post_mountroot: 230 * Update the security module's state when the root filesystem is mounted. 231 * This hook is only called if the mount was successful. 232 * @sb_post_addmount: 233 * Update the security module's state when a filesystem is mounted. 234 * This hook is called any time a mount is successfully grafetd to 235 * the tree. 236 * @mnt contains the mounted filesystem. 237 * @mountpoint_nd contains the nameidata structure for the mount point. 238 * @sb_pivotroot: 239 * Check permission before pivoting the root filesystem. 240 * @old_nd contains the nameidata structure for the new location of the current root (put_old). 241 * @new_nd contains the nameidata structure for the new root (new_root). 242 * Return 0 if permission is granted. 243 * @sb_post_pivotroot: 244 * Update module state after a successful pivot. 245 * @old_nd contains the nameidata structure for the old root. 246 * @new_nd contains the nameidata structure for the new root. 247 * 248 * Security hooks for inode operations. 249 * 250 * @inode_alloc_security: 251 * Allocate and attach a security structure to @inode->i_security. The 252 * i_security field is initialized to NULL when the inode structure is 253 * allocated. 254 * @inode contains the inode structure. 255 * Return 0 if operation was successful. 256 * @inode_free_security: 257 * @inode contains the inode structure. 258 * Deallocate the inode security structure and set @inode->i_security to 259 * NULL. 260 * @inode_init_security: 261 * Obtain the security attribute name suffix and value to set on a newly 262 * created inode and set up the incore security field for the new inode. 263 * This hook is called by the fs code as part of the inode creation 264 * transaction and provides for atomic labeling of the inode, unlike 265 * the post_create/mkdir/... hooks called by the VFS. The hook function 266 * is expected to allocate the name and value via kmalloc, with the caller 267 * being responsible for calling kfree after using them. 268 * If the security module does not use security attributes or does 269 * not wish to put a security attribute on this particular inode, 270 * then it should return -EOPNOTSUPP to skip this processing. 271 * @inode contains the inode structure of the newly created inode. 272 * @dir contains the inode structure of the parent directory. 273 * @name will be set to the allocated name suffix (e.g. selinux). 274 * @value will be set to the allocated attribute value. 275 * @len will be set to the length of the value. 276 * Returns 0 if @name and @value have been successfully set, 277 * -EOPNOTSUPP if no security attribute is needed, or 278 * -ENOMEM on memory allocation failure. 279 * @inode_create: 280 * Check permission to create a regular file. 281 * @dir contains inode structure of the parent of the new file. 282 * @dentry contains the dentry structure for the file to be created. 283 * @mode contains the file mode of the file to be created. 284 * Return 0 if permission is granted. 285 * @inode_link: 286 * Check permission before creating a new hard link to a file. 287 * @old_dentry contains the dentry structure for an existing link to the file. 288 * @dir contains the inode structure of the parent directory of the new link. 289 * @new_dentry contains the dentry structure for the new link. 290 * Return 0 if permission is granted. 291 * @inode_unlink: 292 * Check the permission to remove a hard link to a file. 293 * @dir contains the inode structure of parent directory of the file. 294 * @dentry contains the dentry structure for file to be unlinked. 295 * Return 0 if permission is granted. 296 * @inode_symlink: 297 * Check the permission to create a symbolic link to a file. 298 * @dir contains the inode structure of parent directory of the symbolic link. 299 * @dentry contains the dentry structure of the symbolic link. 300 * @old_name contains the pathname of file. 301 * Return 0 if permission is granted. 302 * @inode_mkdir: 303 * Check permissions to create a new directory in the existing directory 304 * associated with inode strcture @dir. 305 * @dir containst the inode structure of parent of the directory to be created. 306 * @dentry contains the dentry structure of new directory. 307 * @mode contains the mode of new directory. 308 * Return 0 if permission is granted. 309 * @inode_rmdir: 310 * Check the permission to remove a directory. 311 * @dir contains the inode structure of parent of the directory to be removed. 312 * @dentry contains the dentry structure of directory to be removed. 313 * Return 0 if permission is granted. 314 * @inode_mknod: 315 * Check permissions when creating a special file (or a socket or a fifo 316 * file created via the mknod system call). Note that if mknod operation 317 * is being done for a regular file, then the create hook will be called 318 * and not this hook. 319 * @dir contains the inode structure of parent of the new file. 320 * @dentry contains the dentry structure of the new file. 321 * @mode contains the mode of the new file. 322 * @dev contains the the device number. 323 * Return 0 if permission is granted. 324 * @inode_rename: 325 * Check for permission to rename a file or directory. 326 * @old_dir contains the inode structure for parent of the old link. 327 * @old_dentry contains the dentry structure of the old link. 328 * @new_dir contains the inode structure for parent of the new link. 329 * @new_dentry contains the dentry structure of the new link. 330 * Return 0 if permission is granted. 331 * @inode_readlink: 332 * Check the permission to read the symbolic link. 333 * @dentry contains the dentry structure for the file link. 334 * Return 0 if permission is granted. 335 * @inode_follow_link: 336 * Check permission to follow a symbolic link when looking up a pathname. 337 * @dentry contains the dentry structure for the link. 338 * @nd contains the nameidata structure for the parent directory. 339 * Return 0 if permission is granted. 340 * @inode_permission: 341 * Check permission before accessing an inode. This hook is called by the 342 * existing Linux permission function, so a security module can use it to 343 * provide additional checking for existing Linux permission checks. 344 * Notice that this hook is called when a file is opened (as well as many 345 * other operations), whereas the file_security_ops permission hook is 346 * called when the actual read/write operations are performed. 347 * @inode contains the inode structure to check. 348 * @mask contains the permission mask. 349 * @nd contains the nameidata (may be NULL). 350 * Return 0 if permission is granted. 351 * @inode_setattr: 352 * Check permission before setting file attributes. Note that the kernel 353 * call to notify_change is performed from several locations, whenever 354 * file attributes change (such as when a file is truncated, chown/chmod 355 * operations, transferring disk quotas, etc). 356 * @dentry contains the dentry structure for the file. 357 * @attr is the iattr structure containing the new file attributes. 358 * Return 0 if permission is granted. 359 * @inode_getattr: 360 * Check permission before obtaining file attributes. 361 * @mnt is the vfsmount where the dentry was looked up 362 * @dentry contains the dentry structure for the file. 363 * Return 0 if permission is granted. 364 * @inode_delete: 365 * @inode contains the inode structure for deleted inode. 366 * This hook is called when a deleted inode is released (i.e. an inode 367 * with no hard links has its use count drop to zero). A security module 368 * can use this hook to release any persistent label associated with the 369 * inode. 370 * @inode_setxattr: 371 * Check permission before setting the extended attributes 372 * @value identified by @name for @dentry. 373 * Return 0 if permission is granted. 374 * @inode_post_setxattr: 375 * Update inode security field after successful setxattr operation. 376 * @value identified by @name for @dentry. 377 * @inode_getxattr: 378 * Check permission before obtaining the extended attributes 379 * identified by @name for @dentry. 380 * Return 0 if permission is granted. 381 * @inode_listxattr: 382 * Check permission before obtaining the list of extended attribute 383 * names for @dentry. 384 * Return 0 if permission is granted. 385 * @inode_removexattr: 386 * Check permission before removing the extended attribute 387 * identified by @name for @dentry. 388 * Return 0 if permission is granted. 389 * @inode_getsecurity: 390 * Copy the extended attribute representation of the security label 391 * associated with @name for @inode into @buffer. @buffer may be 392 * NULL to request the size of the buffer required. @size indicates 393 * the size of @buffer in bytes. Note that @name is the remainder 394 * of the attribute name after the security. prefix has been removed. 395 * @err is the return value from the preceding fs getxattr call, 396 * and can be used by the security module to determine whether it 397 * should try and canonicalize the attribute value. 398 * Return number of bytes used/required on success. 399 * @inode_setsecurity: 400 * Set the security label associated with @name for @inode from the 401 * extended attribute value @value. @size indicates the size of the 402 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 403 * Note that @name is the remainder of the attribute name after the 404 * security. prefix has been removed. 405 * Return 0 on success. 406 * @inode_listsecurity: 407 * Copy the extended attribute names for the security labels 408 * associated with @inode into @buffer. The maximum size of @buffer 409 * is specified by @buffer_size. @buffer may be NULL to request 410 * the size of the buffer required. 411 * Returns number of bytes used/required on success. 412 * 413 * Security hooks for file operations 414 * 415 * @file_permission: 416 * Check file permissions before accessing an open file. This hook is 417 * called by various operations that read or write files. A security 418 * module can use this hook to perform additional checking on these 419 * operations, e.g. to revalidate permissions on use to support privilege 420 * bracketing or policy changes. Notice that this hook is used when the 421 * actual read/write operations are performed, whereas the 422 * inode_security_ops hook is called when a file is opened (as well as 423 * many other operations). 424 * Caveat: Although this hook can be used to revalidate permissions for 425 * various system call operations that read or write files, it does not 426 * address the revalidation of permissions for memory-mapped files. 427 * Security modules must handle this separately if they need such 428 * revalidation. 429 * @file contains the file structure being accessed. 430 * @mask contains the requested permissions. 431 * Return 0 if permission is granted. 432 * @file_alloc_security: 433 * Allocate and attach a security structure to the file->f_security field. 434 * The security field is initialized to NULL when the structure is first 435 * created. 436 * @file contains the file structure to secure. 437 * Return 0 if the hook is successful and permission is granted. 438 * @file_free_security: 439 * Deallocate and free any security structures stored in file->f_security. 440 * @file contains the file structure being modified. 441 * @file_ioctl: 442 * @file contains the file structure. 443 * @cmd contains the operation to perform. 444 * @arg contains the operational arguments. 445 * Check permission for an ioctl operation on @file. Note that @arg can 446 * sometimes represents a user space pointer; in other cases, it may be a 447 * simple integer value. When @arg represents a user space pointer, it 448 * should never be used by the security module. 449 * Return 0 if permission is granted. 450 * @file_mmap : 451 * Check permissions for a mmap operation. The @file may be NULL, e.g. 452 * if mapping anonymous memory. 453 * @file contains the file structure for file to map (may be NULL). 454 * @reqprot contains the protection requested by the application. 455 * @prot contains the protection that will be applied by the kernel. 456 * @flags contains the operational flags. 457 * Return 0 if permission is granted. 458 * @file_mprotect: 459 * Check permissions before changing memory access permissions. 460 * @vma contains the memory region to modify. 461 * @reqprot contains the protection requested by the application. 462 * @prot contains the protection that will be applied by the kernel. 463 * Return 0 if permission is granted. 464 * @file_lock: 465 * Check permission before performing file locking operations. 466 * Note: this hook mediates both flock and fcntl style locks. 467 * @file contains the file structure. 468 * @cmd contains the posix-translated lock operation to perform 469 * (e.g. F_RDLCK, F_WRLCK). 470 * Return 0 if permission is granted. 471 * @file_fcntl: 472 * Check permission before allowing the file operation specified by @cmd 473 * from being performed on the file @file. Note that @arg can sometimes 474 * represents a user space pointer; in other cases, it may be a simple 475 * integer value. When @arg represents a user space pointer, it should 476 * never be used by the security module. 477 * @file contains the file structure. 478 * @cmd contains the operation to be performed. 479 * @arg contains the operational arguments. 480 * Return 0 if permission is granted. 481 * @file_set_fowner: 482 * Save owner security information (typically from current->security) in 483 * file->f_security for later use by the send_sigiotask hook. 484 * @file contains the file structure to update. 485 * Return 0 on success. 486 * @file_send_sigiotask: 487 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 488 * process @tsk. Note that this hook is sometimes called from interrupt. 489 * Note that the fown_struct, @fown, is never outside the context of a 490 * struct file, so the file structure (and associated security information) 491 * can always be obtained: 492 * (struct file *)((long)fown - offsetof(struct file,f_owner)); 493 * @tsk contains the structure of task receiving signal. 494 * @fown contains the file owner information. 495 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 496 * Return 0 if permission is granted. 497 * @file_receive: 498 * This hook allows security modules to control the ability of a process 499 * to receive an open file descriptor via socket IPC. 500 * @file contains the file structure being received. 501 * Return 0 if permission is granted. 502 * 503 * Security hooks for task operations. 504 * 505 * @task_create: 506 * Check permission before creating a child process. See the clone(2) 507 * manual page for definitions of the @clone_flags. 508 * @clone_flags contains the flags indicating what should be shared. 509 * Return 0 if permission is granted. 510 * @task_alloc_security: 511 * @p contains the task_struct for child process. 512 * Allocate and attach a security structure to the p->security field. The 513 * security field is initialized to NULL when the task structure is 514 * allocated. 515 * Return 0 if operation was successful. 516 * @task_free_security: 517 * @p contains the task_struct for process. 518 * Deallocate and clear the p->security field. 519 * @task_setuid: 520 * Check permission before setting one or more of the user identity 521 * attributes of the current process. The @flags parameter indicates 522 * which of the set*uid system calls invoked this hook and how to 523 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 524 * definitions at the beginning of this file for the @flags values and 525 * their meanings. 526 * @id0 contains a uid. 527 * @id1 contains a uid. 528 * @id2 contains a uid. 529 * @flags contains one of the LSM_SETID_* values. 530 * Return 0 if permission is granted. 531 * @task_post_setuid: 532 * Update the module's state after setting one or more of the user 533 * identity attributes of the current process. The @flags parameter 534 * indicates which of the set*uid system calls invoked this hook. If 535 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other 536 * parameters are not used. 537 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). 538 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). 539 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). 540 * @flags contains one of the LSM_SETID_* values. 541 * Return 0 on success. 542 * @task_setgid: 543 * Check permission before setting one or more of the group identity 544 * attributes of the current process. The @flags parameter indicates 545 * which of the set*gid system calls invoked this hook and how to 546 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 547 * definitions at the beginning of this file for the @flags values and 548 * their meanings. 549 * @id0 contains a gid. 550 * @id1 contains a gid. 551 * @id2 contains a gid. 552 * @flags contains one of the LSM_SETID_* values. 553 * Return 0 if permission is granted. 554 * @task_setpgid: 555 * Check permission before setting the process group identifier of the 556 * process @p to @pgid. 557 * @p contains the task_struct for process being modified. 558 * @pgid contains the new pgid. 559 * Return 0 if permission is granted. 560 * @task_getpgid: 561 * Check permission before getting the process group identifier of the 562 * process @p. 563 * @p contains the task_struct for the process. 564 * Return 0 if permission is granted. 565 * @task_getsid: 566 * Check permission before getting the session identifier of the process 567 * @p. 568 * @p contains the task_struct for the process. 569 * Return 0 if permission is granted. 570 * @task_setgroups: 571 * Check permission before setting the supplementary group set of the 572 * current process. 573 * @group_info contains the new group information. 574 * Return 0 if permission is granted. 575 * @task_setnice: 576 * Check permission before setting the nice value of @p to @nice. 577 * @p contains the task_struct of process. 578 * @nice contains the new nice value. 579 * Return 0 if permission is granted. 580 * @task_setioprio 581 * Check permission before setting the ioprio value of @p to @ioprio. 582 * @p contains the task_struct of process. 583 * @ioprio contains the new ioprio value 584 * Return 0 if permission is granted. 585 * @task_setrlimit: 586 * Check permission before setting the resource limits of the current 587 * process for @resource to @new_rlim. The old resource limit values can 588 * be examined by dereferencing (current->signal->rlim + resource). 589 * @resource contains the resource whose limit is being set. 590 * @new_rlim contains the new limits for @resource. 591 * Return 0 if permission is granted. 592 * @task_setscheduler: 593 * Check permission before setting scheduling policy and/or parameters of 594 * process @p based on @policy and @lp. 595 * @p contains the task_struct for process. 596 * @policy contains the scheduling policy. 597 * @lp contains the scheduling parameters. 598 * Return 0 if permission is granted. 599 * @task_getscheduler: 600 * Check permission before obtaining scheduling information for process 601 * @p. 602 * @p contains the task_struct for process. 603 * Return 0 if permission is granted. 604 * @task_movememory 605 * Check permission before moving memory owned by process @p. 606 * @p contains the task_struct for process. 607 * Return 0 if permission is granted. 608 * @task_kill: 609 * Check permission before sending signal @sig to @p. @info can be NULL, 610 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 611 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 612 * from the kernel and should typically be permitted. 613 * SIGIO signals are handled separately by the send_sigiotask hook in 614 * file_security_ops. 615 * @p contains the task_struct for process. 616 * @info contains the signal information. 617 * @sig contains the signal value. 618 * Return 0 if permission is granted. 619 * @task_wait: 620 * Check permission before allowing a process to reap a child process @p 621 * and collect its status information. 622 * @p contains the task_struct for process. 623 * Return 0 if permission is granted. 624 * @task_prctl: 625 * Check permission before performing a process control operation on the 626 * current process. 627 * @option contains the operation. 628 * @arg2 contains a argument. 629 * @arg3 contains a argument. 630 * @arg4 contains a argument. 631 * @arg5 contains a argument. 632 * Return 0 if permission is granted. 633 * @task_reparent_to_init: 634 * Set the security attributes in @p->security for a kernel thread that 635 * is being reparented to the init task. 636 * @p contains the task_struct for the kernel thread. 637 * @task_to_inode: 638 * Set the security attributes for an inode based on an associated task's 639 * security attributes, e.g. for /proc/pid inodes. 640 * @p contains the task_struct for the task. 641 * @inode contains the inode structure for the inode. 642 * 643 * Security hooks for Netlink messaging. 644 * 645 * @netlink_send: 646 * Save security information for a netlink message so that permission 647 * checking can be performed when the message is processed. The security 648 * information can be saved using the eff_cap field of the 649 * netlink_skb_parms structure. Also may be used to provide fine 650 * grained control over message transmission. 651 * @sk associated sock of task sending the message., 652 * @skb contains the sk_buff structure for the netlink message. 653 * Return 0 if the information was successfully saved and message 654 * is allowed to be transmitted. 655 * @netlink_recv: 656 * Check permission before processing the received netlink message in 657 * @skb. 658 * @skb contains the sk_buff structure for the netlink message. 659 * @cap indicates the capability required 660 * Return 0 if permission is granted. 661 * 662 * Security hooks for Unix domain networking. 663 * 664 * @unix_stream_connect: 665 * Check permissions before establishing a Unix domain stream connection 666 * between @sock and @other. 667 * @sock contains the socket structure. 668 * @other contains the peer socket structure. 669 * Return 0 if permission is granted. 670 * @unix_may_send: 671 * Check permissions before connecting or sending datagrams from @sock to 672 * @other. 673 * @sock contains the socket structure. 674 * @sock contains the peer socket structure. 675 * Return 0 if permission is granted. 676 * 677 * The @unix_stream_connect and @unix_may_send hooks were necessary because 678 * Linux provides an alternative to the conventional file name space for Unix 679 * domain sockets. Whereas binding and connecting to sockets in the file name 680 * space is mediated by the typical file permissions (and caught by the mknod 681 * and permission hooks in inode_security_ops), binding and connecting to 682 * sockets in the abstract name space is completely unmediated. Sufficient 683 * control of Unix domain sockets in the abstract name space isn't possible 684 * using only the socket layer hooks, since we need to know the actual target 685 * socket, which is not looked up until we are inside the af_unix code. 686 * 687 * Security hooks for socket operations. 688 * 689 * @socket_create: 690 * Check permissions prior to creating a new socket. 691 * @family contains the requested protocol family. 692 * @type contains the requested communications type. 693 * @protocol contains the requested protocol. 694 * @kern set to 1 if a kernel socket. 695 * Return 0 if permission is granted. 696 * @socket_post_create: 697 * This hook allows a module to update or allocate a per-socket security 698 * structure. Note that the security field was not added directly to the 699 * socket structure, but rather, the socket security information is stored 700 * in the associated inode. Typically, the inode alloc_security hook will 701 * allocate and and attach security information to 702 * sock->inode->i_security. This hook may be used to update the 703 * sock->inode->i_security field with additional information that wasn't 704 * available when the inode was allocated. 705 * @sock contains the newly created socket structure. 706 * @family contains the requested protocol family. 707 * @type contains the requested communications type. 708 * @protocol contains the requested protocol. 709 * @kern set to 1 if a kernel socket. 710 * @socket_bind: 711 * Check permission before socket protocol layer bind operation is 712 * performed and the socket @sock is bound to the address specified in the 713 * @address parameter. 714 * @sock contains the socket structure. 715 * @address contains the address to bind to. 716 * @addrlen contains the length of address. 717 * Return 0 if permission is granted. 718 * @socket_connect: 719 * Check permission before socket protocol layer connect operation 720 * attempts to connect socket @sock to a remote address, @address. 721 * @sock contains the socket structure. 722 * @address contains the address of remote endpoint. 723 * @addrlen contains the length of address. 724 * Return 0 if permission is granted. 725 * @socket_listen: 726 * Check permission before socket protocol layer listen operation. 727 * @sock contains the socket structure. 728 * @backlog contains the maximum length for the pending connection queue. 729 * Return 0 if permission is granted. 730 * @socket_accept: 731 * Check permission before accepting a new connection. Note that the new 732 * socket, @newsock, has been created and some information copied to it, 733 * but the accept operation has not actually been performed. 734 * @sock contains the listening socket structure. 735 * @newsock contains the newly created server socket for connection. 736 * Return 0 if permission is granted. 737 * @socket_post_accept: 738 * This hook allows a security module to copy security 739 * information into the newly created socket's inode. 740 * @sock contains the listening socket structure. 741 * @newsock contains the newly created server socket for connection. 742 * @socket_sendmsg: 743 * Check permission before transmitting a message to another socket. 744 * @sock contains the socket structure. 745 * @msg contains the message to be transmitted. 746 * @size contains the size of message. 747 * Return 0 if permission is granted. 748 * @socket_recvmsg: 749 * Check permission before receiving a message from a socket. 750 * @sock contains the socket structure. 751 * @msg contains the message structure. 752 * @size contains the size of message structure. 753 * @flags contains the operational flags. 754 * Return 0 if permission is granted. 755 * @socket_getsockname: 756 * Check permission before the local address (name) of the socket object 757 * @sock is retrieved. 758 * @sock contains the socket structure. 759 * Return 0 if permission is granted. 760 * @socket_getpeername: 761 * Check permission before the remote address (name) of a socket object 762 * @sock is retrieved. 763 * @sock contains the socket structure. 764 * Return 0 if permission is granted. 765 * @socket_getsockopt: 766 * Check permissions before retrieving the options associated with socket 767 * @sock. 768 * @sock contains the socket structure. 769 * @level contains the protocol level to retrieve option from. 770 * @optname contains the name of option to retrieve. 771 * Return 0 if permission is granted. 772 * @socket_setsockopt: 773 * Check permissions before setting the options associated with socket 774 * @sock. 775 * @sock contains the socket structure. 776 * @level contains the protocol level to set options for. 777 * @optname contains the name of the option to set. 778 * Return 0 if permission is granted. 779 * @socket_shutdown: 780 * Checks permission before all or part of a connection on the socket 781 * @sock is shut down. 782 * @sock contains the socket structure. 783 * @how contains the flag indicating how future sends and receives are handled. 784 * Return 0 if permission is granted. 785 * @socket_sock_rcv_skb: 786 * Check permissions on incoming network packets. This hook is distinct 787 * from Netfilter's IP input hooks since it is the first time that the 788 * incoming sk_buff @skb has been associated with a particular socket, @sk. 789 * @sk contains the sock (not socket) associated with the incoming sk_buff. 790 * @skb contains the incoming network data. 791 * @socket_getpeersec: 792 * This hook allows the security module to provide peer socket security 793 * state to userspace via getsockopt SO_GETPEERSEC. 794 * @sock is the local socket. 795 * @optval userspace memory where the security state is to be copied. 796 * @optlen userspace int where the module should copy the actual length 797 * of the security state. 798 * @len as input is the maximum length to copy to userspace provided 799 * by the caller. 800 * Return 0 if all is well, otherwise, typical getsockopt return 801 * values. 802 * @sk_alloc_security: 803 * Allocate and attach a security structure to the sk->sk_security field, 804 * which is used to copy security attributes between local stream sockets. 805 * @sk_free_security: 806 * Deallocate security structure. 807 * @sk_getsid: 808 * Retrieve the LSM-specific sid for the sock to enable caching of network 809 * authorizations. 810 * 811 * Security hooks for XFRM operations. 812 * 813 * @xfrm_policy_alloc_security: 814 * @xp contains the xfrm_policy being added to Security Policy Database 815 * used by the XFRM system. 816 * @sec_ctx contains the security context information being provided by 817 * the user-level policy update program (e.g., setkey). 818 * Allocate a security structure to the xp->security field. 819 * The security field is initialized to NULL when the xfrm_policy is 820 * allocated. 821 * Return 0 if operation was successful (memory to allocate, legal context) 822 * @xfrm_policy_clone_security: 823 * @old contains an existing xfrm_policy in the SPD. 824 * @new contains a new xfrm_policy being cloned from old. 825 * Allocate a security structure to the new->security field 826 * that contains the information from the old->security field. 827 * Return 0 if operation was successful (memory to allocate). 828 * @xfrm_policy_free_security: 829 * @xp contains the xfrm_policy 830 * Deallocate xp->security. 831 * @xfrm_policy_delete_security: 832 * @xp contains the xfrm_policy. 833 * Authorize deletion of xp->security. 834 * @xfrm_state_alloc_security: 835 * @x contains the xfrm_state being added to the Security Association 836 * Database by the XFRM system. 837 * @sec_ctx contains the security context information being provided by 838 * the user-level SA generation program (e.g., setkey or racoon). 839 * Allocate a security structure to the x->security field. The 840 * security field is initialized to NULL when the xfrm_state is 841 * allocated. 842 * Return 0 if operation was successful (memory to allocate, legal context). 843 * @xfrm_state_free_security: 844 * @x contains the xfrm_state. 845 * Deallocate x->security. 846 * @xfrm_state_delete_security: 847 * @x contains the xfrm_state. 848 * Authorize deletion of x->security. 849 * @xfrm_policy_lookup: 850 * @xp contains the xfrm_policy for which the access control is being 851 * checked. 852 * @sk_sid contains the sock security label that is used to authorize 853 * access to the policy xp. 854 * @dir contains the direction of the flow (input or output). 855 * Check permission when a sock selects a xfrm_policy for processing 856 * XFRMs on a packet. The hook is called when selecting either a 857 * per-socket policy or a generic xfrm policy. 858 * Return 0 if permission is granted. 859 * 860 * Security hooks affecting all Key Management operations 861 * 862 * @key_alloc: 863 * Permit allocation of a key and assign security data. Note that key does 864 * not have a serial number assigned at this point. 865 * @key points to the key. 866 * @flags is the allocation flags 867 * Return 0 if permission is granted, -ve error otherwise. 868 * @key_free: 869 * Notification of destruction; free security data. 870 * @key points to the key. 871 * No return value. 872 * @key_permission: 873 * See whether a specific operational right is granted to a process on a 874 * key. 875 * @key_ref refers to the key (key pointer + possession attribute bit). 876 * @context points to the process to provide the context against which to 877 * evaluate the security data on the key. 878 * @perm describes the combination of permissions required of this key. 879 * Return 1 if permission granted, 0 if permission denied and -ve it the 880 * normal permissions model should be effected. 881 * 882 * Security hooks affecting all System V IPC operations. 883 * 884 * @ipc_permission: 885 * Check permissions for access to IPC 886 * @ipcp contains the kernel IPC permission structure 887 * @flag contains the desired (requested) permission set 888 * Return 0 if permission is granted. 889 * 890 * Security hooks for individual messages held in System V IPC message queues 891 * @msg_msg_alloc_security: 892 * Allocate and attach a security structure to the msg->security field. 893 * The security field is initialized to NULL when the structure is first 894 * created. 895 * @msg contains the message structure to be modified. 896 * Return 0 if operation was successful and permission is granted. 897 * @msg_msg_free_security: 898 * Deallocate the security structure for this message. 899 * @msg contains the message structure to be modified. 900 * 901 * Security hooks for System V IPC Message Queues 902 * 903 * @msg_queue_alloc_security: 904 * Allocate and attach a security structure to the 905 * msq->q_perm.security field. The security field is initialized to 906 * NULL when the structure is first created. 907 * @msq contains the message queue structure to be modified. 908 * Return 0 if operation was successful and permission is granted. 909 * @msg_queue_free_security: 910 * Deallocate security structure for this message queue. 911 * @msq contains the message queue structure to be modified. 912 * @msg_queue_associate: 913 * Check permission when a message queue is requested through the 914 * msgget system call. This hook is only called when returning the 915 * message queue identifier for an existing message queue, not when a 916 * new message queue is created. 917 * @msq contains the message queue to act upon. 918 * @msqflg contains the operation control flags. 919 * Return 0 if permission is granted. 920 * @msg_queue_msgctl: 921 * Check permission when a message control operation specified by @cmd 922 * is to be performed on the message queue @msq. 923 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 924 * @msq contains the message queue to act upon. May be NULL. 925 * @cmd contains the operation to be performed. 926 * Return 0 if permission is granted. 927 * @msg_queue_msgsnd: 928 * Check permission before a message, @msg, is enqueued on the message 929 * queue, @msq. 930 * @msq contains the message queue to send message to. 931 * @msg contains the message to be enqueued. 932 * @msqflg contains operational flags. 933 * Return 0 if permission is granted. 934 * @msg_queue_msgrcv: 935 * Check permission before a message, @msg, is removed from the message 936 * queue, @msq. The @target task structure contains a pointer to the 937 * process that will be receiving the message (not equal to the current 938 * process when inline receives are being performed). 939 * @msq contains the message queue to retrieve message from. 940 * @msg contains the message destination. 941 * @target contains the task structure for recipient process. 942 * @type contains the type of message requested. 943 * @mode contains the operational flags. 944 * Return 0 if permission is granted. 945 * 946 * Security hooks for System V Shared Memory Segments 947 * 948 * @shm_alloc_security: 949 * Allocate and attach a security structure to the shp->shm_perm.security 950 * field. The security field is initialized to NULL when the structure is 951 * first created. 952 * @shp contains the shared memory structure to be modified. 953 * Return 0 if operation was successful and permission is granted. 954 * @shm_free_security: 955 * Deallocate the security struct for this memory segment. 956 * @shp contains the shared memory structure to be modified. 957 * @shm_associate: 958 * Check permission when a shared memory region is requested through the 959 * shmget system call. This hook is only called when returning the shared 960 * memory region identifier for an existing region, not when a new shared 961 * memory region is created. 962 * @shp contains the shared memory structure to be modified. 963 * @shmflg contains the operation control flags. 964 * Return 0 if permission is granted. 965 * @shm_shmctl: 966 * Check permission when a shared memory control operation specified by 967 * @cmd is to be performed on the shared memory region @shp. 968 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 969 * @shp contains shared memory structure to be modified. 970 * @cmd contains the operation to be performed. 971 * Return 0 if permission is granted. 972 * @shm_shmat: 973 * Check permissions prior to allowing the shmat system call to attach the 974 * shared memory segment @shp to the data segment of the calling process. 975 * The attaching address is specified by @shmaddr. 976 * @shp contains the shared memory structure to be modified. 977 * @shmaddr contains the address to attach memory region to. 978 * @shmflg contains the operational flags. 979 * Return 0 if permission is granted. 980 * 981 * Security hooks for System V Semaphores 982 * 983 * @sem_alloc_security: 984 * Allocate and attach a security structure to the sma->sem_perm.security 985 * field. The security field is initialized to NULL when the structure is 986 * first created. 987 * @sma contains the semaphore structure 988 * Return 0 if operation was successful and permission is granted. 989 * @sem_free_security: 990 * deallocate security struct for this semaphore 991 * @sma contains the semaphore structure. 992 * @sem_associate: 993 * Check permission when a semaphore is requested through the semget 994 * system call. This hook is only called when returning the semaphore 995 * identifier for an existing semaphore, not when a new one must be 996 * created. 997 * @sma contains the semaphore structure. 998 * @semflg contains the operation control flags. 999 * Return 0 if permission is granted. 1000 * @sem_semctl: 1001 * Check permission when a semaphore operation specified by @cmd is to be 1002 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1003 * IPC_INFO or SEM_INFO. 1004 * @sma contains the semaphore structure. May be NULL. 1005 * @cmd contains the operation to be performed. 1006 * Return 0 if permission is granted. 1007 * @sem_semop 1008 * Check permissions before performing operations on members of the 1009 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1010 * may be modified. 1011 * @sma contains the semaphore structure. 1012 * @sops contains the operations to perform. 1013 * @nsops contains the number of operations to perform. 1014 * @alter contains the flag indicating whether changes are to be made. 1015 * Return 0 if permission is granted. 1016 * 1017 * @ptrace: 1018 * Check permission before allowing the @parent process to trace the 1019 * @child process. 1020 * Security modules may also want to perform a process tracing check 1021 * during an execve in the set_security or apply_creds hooks of 1022 * binprm_security_ops if the process is being traced and its security 1023 * attributes would be changed by the execve. 1024 * @parent contains the task_struct structure for parent process. 1025 * @child contains the task_struct structure for child process. 1026 * Return 0 if permission is granted. 1027 * @capget: 1028 * Get the @effective, @inheritable, and @permitted capability sets for 1029 * the @target process. The hook may also perform permission checking to 1030 * determine if the current process is allowed to see the capability sets 1031 * of the @target process. 1032 * @target contains the task_struct structure for target process. 1033 * @effective contains the effective capability set. 1034 * @inheritable contains the inheritable capability set. 1035 * @permitted contains the permitted capability set. 1036 * Return 0 if the capability sets were successfully obtained. 1037 * @capset_check: 1038 * Check permission before setting the @effective, @inheritable, and 1039 * @permitted capability sets for the @target process. 1040 * Caveat: @target is also set to current if a set of processes is 1041 * specified (i.e. all processes other than current and init or a 1042 * particular process group). Hence, the capset_set hook may need to 1043 * revalidate permission to the actual target process. 1044 * @target contains the task_struct structure for target process. 1045 * @effective contains the effective capability set. 1046 * @inheritable contains the inheritable capability set. 1047 * @permitted contains the permitted capability set. 1048 * Return 0 if permission is granted. 1049 * @capset_set: 1050 * Set the @effective, @inheritable, and @permitted capability sets for 1051 * the @target process. Since capset_check cannot always check permission 1052 * to the real @target process, this hook may also perform permission 1053 * checking to determine if the current process is allowed to set the 1054 * capability sets of the @target process. However, this hook has no way 1055 * of returning an error due to the structure of the sys_capset code. 1056 * @target contains the task_struct structure for target process. 1057 * @effective contains the effective capability set. 1058 * @inheritable contains the inheritable capability set. 1059 * @permitted contains the permitted capability set. 1060 * @capable: 1061 * Check whether the @tsk process has the @cap capability. 1062 * @tsk contains the task_struct for the process. 1063 * @cap contains the capability <include/linux/capability.h>. 1064 * Return 0 if the capability is granted for @tsk. 1065 * @acct: 1066 * Check permission before enabling or disabling process accounting. If 1067 * accounting is being enabled, then @file refers to the open file used to 1068 * store accounting records. If accounting is being disabled, then @file 1069 * is NULL. 1070 * @file contains the file structure for the accounting file (may be NULL). 1071 * Return 0 if permission is granted. 1072 * @sysctl: 1073 * Check permission before accessing the @table sysctl variable in the 1074 * manner specified by @op. 1075 * @table contains the ctl_table structure for the sysctl variable. 1076 * @op contains the operation (001 = search, 002 = write, 004 = read). 1077 * Return 0 if permission is granted. 1078 * @syslog: 1079 * Check permission before accessing the kernel message ring or changing 1080 * logging to the console. 1081 * See the syslog(2) manual page for an explanation of the @type values. 1082 * @type contains the type of action. 1083 * Return 0 if permission is granted. 1084 * @settime: 1085 * Check permission to change the system time. 1086 * struct timespec and timezone are defined in include/linux/time.h 1087 * @ts contains new time 1088 * @tz contains new timezone 1089 * Return 0 if permission is granted. 1090 * @vm_enough_memory: 1091 * Check permissions for allocating a new virtual mapping. 1092 * @pages contains the number of pages. 1093 * Return 0 if permission is granted. 1094 * 1095 * @register_security: 1096 * allow module stacking. 1097 * @name contains the name of the security module being stacked. 1098 * @ops contains a pointer to the struct security_operations of the module to stack. 1099 * @unregister_security: 1100 * remove a stacked module. 1101 * @name contains the name of the security module being unstacked. 1102 * @ops contains a pointer to the struct security_operations of the module to unstack. 1103 * 1104 * This is the main security structure. 1105 */ 1106struct security_operations { 1107 int (*ptrace) (struct task_struct * parent, struct task_struct * child); 1108 int (*capget) (struct task_struct * target, 1109 kernel_cap_t * effective, 1110 kernel_cap_t * inheritable, kernel_cap_t * permitted); 1111 int (*capset_check) (struct task_struct * target, 1112 kernel_cap_t * effective, 1113 kernel_cap_t * inheritable, 1114 kernel_cap_t * permitted); 1115 void (*capset_set) (struct task_struct * target, 1116 kernel_cap_t * effective, 1117 kernel_cap_t * inheritable, 1118 kernel_cap_t * permitted); 1119 int (*capable) (struct task_struct * tsk, int cap); 1120 int (*acct) (struct file * file); 1121 int (*sysctl) (struct ctl_table * table, int op); 1122 int (*quotactl) (int cmds, int type, int id, struct super_block * sb); 1123 int (*quota_on) (struct dentry * dentry); 1124 int (*syslog) (int type); 1125 int (*settime) (struct timespec *ts, struct timezone *tz); 1126 int (*vm_enough_memory) (long pages); 1127 1128 int (*bprm_alloc_security) (struct linux_binprm * bprm); 1129 void (*bprm_free_security) (struct linux_binprm * bprm); 1130 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); 1131 void (*bprm_post_apply_creds) (struct linux_binprm * bprm); 1132 int (*bprm_set_security) (struct linux_binprm * bprm); 1133 int (*bprm_check_security) (struct linux_binprm * bprm); 1134 int (*bprm_secureexec) (struct linux_binprm * bprm); 1135 1136 int (*sb_alloc_security) (struct super_block * sb); 1137 void (*sb_free_security) (struct super_block * sb); 1138 int (*sb_copy_data)(struct file_system_type *type, 1139 void *orig, void *copy); 1140 int (*sb_kern_mount) (struct super_block *sb, void *data); 1141 int (*sb_statfs) (struct dentry *dentry); 1142 int (*sb_mount) (char *dev_name, struct nameidata * nd, 1143 char *type, unsigned long flags, void *data); 1144 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); 1145 int (*sb_umount) (struct vfsmount * mnt, int flags); 1146 void (*sb_umount_close) (struct vfsmount * mnt); 1147 void (*sb_umount_busy) (struct vfsmount * mnt); 1148 void (*sb_post_remount) (struct vfsmount * mnt, 1149 unsigned long flags, void *data); 1150 void (*sb_post_mountroot) (void); 1151 void (*sb_post_addmount) (struct vfsmount * mnt, 1152 struct nameidata * mountpoint_nd); 1153 int (*sb_pivotroot) (struct nameidata * old_nd, 1154 struct nameidata * new_nd); 1155 void (*sb_post_pivotroot) (struct nameidata * old_nd, 1156 struct nameidata * new_nd); 1157 1158 int (*inode_alloc_security) (struct inode *inode); 1159 void (*inode_free_security) (struct inode *inode); 1160 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1161 char **name, void **value, size_t *len); 1162 int (*inode_create) (struct inode *dir, 1163 struct dentry *dentry, int mode); 1164 int (*inode_link) (struct dentry *old_dentry, 1165 struct inode *dir, struct dentry *new_dentry); 1166 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1167 int (*inode_symlink) (struct inode *dir, 1168 struct dentry *dentry, const char *old_name); 1169 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1170 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1171 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1172 int mode, dev_t dev); 1173 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1174 struct inode *new_dir, struct dentry *new_dentry); 1175 int (*inode_readlink) (struct dentry *dentry); 1176 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1177 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); 1178 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1179 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1180 void (*inode_delete) (struct inode *inode); 1181 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, 1182 size_t size, int flags); 1183 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, 1184 size_t size, int flags); 1185 int (*inode_getxattr) (struct dentry *dentry, char *name); 1186 int (*inode_listxattr) (struct dentry *dentry); 1187 int (*inode_removexattr) (struct dentry *dentry, char *name); 1188 const char *(*inode_xattr_getsuffix) (void); 1189 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err); 1190 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1191 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); 1192 1193 int (*file_permission) (struct file * file, int mask); 1194 int (*file_alloc_security) (struct file * file); 1195 void (*file_free_security) (struct file * file); 1196 int (*file_ioctl) (struct file * file, unsigned int cmd, 1197 unsigned long arg); 1198 int (*file_mmap) (struct file * file, 1199 unsigned long reqprot, 1200 unsigned long prot, unsigned long flags); 1201 int (*file_mprotect) (struct vm_area_struct * vma, 1202 unsigned long reqprot, 1203 unsigned long prot); 1204 int (*file_lock) (struct file * file, unsigned int cmd); 1205 int (*file_fcntl) (struct file * file, unsigned int cmd, 1206 unsigned long arg); 1207 int (*file_set_fowner) (struct file * file); 1208 int (*file_send_sigiotask) (struct task_struct * tsk, 1209 struct fown_struct * fown, int sig); 1210 int (*file_receive) (struct file * file); 1211 1212 int (*task_create) (unsigned long clone_flags); 1213 int (*task_alloc_security) (struct task_struct * p); 1214 void (*task_free_security) (struct task_struct * p); 1215 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1216 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , 1217 uid_t old_euid, uid_t old_suid, int flags); 1218 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1219 int (*task_setpgid) (struct task_struct * p, pid_t pgid); 1220 int (*task_getpgid) (struct task_struct * p); 1221 int (*task_getsid) (struct task_struct * p); 1222 int (*task_setgroups) (struct group_info *group_info); 1223 int (*task_setnice) (struct task_struct * p, int nice); 1224 int (*task_setioprio) (struct task_struct * p, int ioprio); 1225 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); 1226 int (*task_setscheduler) (struct task_struct * p, int policy, 1227 struct sched_param * lp); 1228 int (*task_getscheduler) (struct task_struct * p); 1229 int (*task_movememory) (struct task_struct * p); 1230 int (*task_kill) (struct task_struct * p, 1231 struct siginfo * info, int sig); 1232 int (*task_wait) (struct task_struct * p); 1233 int (*task_prctl) (int option, unsigned long arg2, 1234 unsigned long arg3, unsigned long arg4, 1235 unsigned long arg5); 1236 void (*task_reparent_to_init) (struct task_struct * p); 1237 void (*task_to_inode)(struct task_struct *p, struct inode *inode); 1238 1239 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); 1240 1241 int (*msg_msg_alloc_security) (struct msg_msg * msg); 1242 void (*msg_msg_free_security) (struct msg_msg * msg); 1243 1244 int (*msg_queue_alloc_security) (struct msg_queue * msq); 1245 void (*msg_queue_free_security) (struct msg_queue * msq); 1246 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); 1247 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); 1248 int (*msg_queue_msgsnd) (struct msg_queue * msq, 1249 struct msg_msg * msg, int msqflg); 1250 int (*msg_queue_msgrcv) (struct msg_queue * msq, 1251 struct msg_msg * msg, 1252 struct task_struct * target, 1253 long type, int mode); 1254 1255 int (*shm_alloc_security) (struct shmid_kernel * shp); 1256 void (*shm_free_security) (struct shmid_kernel * shp); 1257 int (*shm_associate) (struct shmid_kernel * shp, int shmflg); 1258 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); 1259 int (*shm_shmat) (struct shmid_kernel * shp, 1260 char __user *shmaddr, int shmflg); 1261 1262 int (*sem_alloc_security) (struct sem_array * sma); 1263 void (*sem_free_security) (struct sem_array * sma); 1264 int (*sem_associate) (struct sem_array * sma, int semflg); 1265 int (*sem_semctl) (struct sem_array * sma, int cmd); 1266 int (*sem_semop) (struct sem_array * sma, 1267 struct sembuf * sops, unsigned nsops, int alter); 1268 1269 int (*netlink_send) (struct sock * sk, struct sk_buff * skb); 1270 int (*netlink_recv) (struct sk_buff * skb, int cap); 1271 1272 /* allow module stacking */ 1273 int (*register_security) (const char *name, 1274 struct security_operations *ops); 1275 int (*unregister_security) (const char *name, 1276 struct security_operations *ops); 1277 1278 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1279 1280 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1281 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1282 1283#ifdef CONFIG_SECURITY_NETWORK 1284 int (*unix_stream_connect) (struct socket * sock, 1285 struct socket * other, struct sock * newsk); 1286 int (*unix_may_send) (struct socket * sock, struct socket * other); 1287 1288 int (*socket_create) (int family, int type, int protocol, int kern); 1289 void (*socket_post_create) (struct socket * sock, int family, 1290 int type, int protocol, int kern); 1291 int (*socket_bind) (struct socket * sock, 1292 struct sockaddr * address, int addrlen); 1293 int (*socket_connect) (struct socket * sock, 1294 struct sockaddr * address, int addrlen); 1295 int (*socket_listen) (struct socket * sock, int backlog); 1296 int (*socket_accept) (struct socket * sock, struct socket * newsock); 1297 void (*socket_post_accept) (struct socket * sock, 1298 struct socket * newsock); 1299 int (*socket_sendmsg) (struct socket * sock, 1300 struct msghdr * msg, int size); 1301 int (*socket_recvmsg) (struct socket * sock, 1302 struct msghdr * msg, int size, int flags); 1303 int (*socket_getsockname) (struct socket * sock); 1304 int (*socket_getpeername) (struct socket * sock); 1305 int (*socket_getsockopt) (struct socket * sock, int level, int optname); 1306 int (*socket_setsockopt) (struct socket * sock, int level, int optname); 1307 int (*socket_shutdown) (struct socket * sock, int how); 1308 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); 1309 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1310 int (*socket_getpeersec_dgram) (struct sk_buff *skb, char **secdata, u32 *seclen); 1311 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1312 void (*sk_free_security) (struct sock *sk); 1313 unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir); 1314#endif /* CONFIG_SECURITY_NETWORK */ 1315 1316#ifdef CONFIG_SECURITY_NETWORK_XFRM 1317 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx); 1318 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); 1319 void (*xfrm_policy_free_security) (struct xfrm_policy *xp); 1320 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp); 1321 int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); 1322 void (*xfrm_state_free_security) (struct xfrm_state *x); 1323 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1324 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir); 1325#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1326 1327 /* key management security hooks */ 1328#ifdef CONFIG_KEYS 1329 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags); 1330 void (*key_free)(struct key *key); 1331 int (*key_permission)(key_ref_t key_ref, 1332 struct task_struct *context, 1333 key_perm_t perm); 1334 1335#endif /* CONFIG_KEYS */ 1336 1337}; 1338 1339/* global variables */ 1340extern struct security_operations *security_ops; 1341 1342/* inline stuff */ 1343static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) 1344{ 1345 return security_ops->ptrace (parent, child); 1346} 1347 1348static inline int security_capget (struct task_struct *target, 1349 kernel_cap_t *effective, 1350 kernel_cap_t *inheritable, 1351 kernel_cap_t *permitted) 1352{ 1353 return security_ops->capget (target, effective, inheritable, permitted); 1354} 1355 1356static inline int security_capset_check (struct task_struct *target, 1357 kernel_cap_t *effective, 1358 kernel_cap_t *inheritable, 1359 kernel_cap_t *permitted) 1360{ 1361 return security_ops->capset_check (target, effective, inheritable, permitted); 1362} 1363 1364static inline void security_capset_set (struct task_struct *target, 1365 kernel_cap_t *effective, 1366 kernel_cap_t *inheritable, 1367 kernel_cap_t *permitted) 1368{ 1369 security_ops->capset_set (target, effective, inheritable, permitted); 1370} 1371 1372static inline int security_capable(struct task_struct *tsk, int cap) 1373{ 1374 return security_ops->capable(tsk, cap); 1375} 1376 1377static inline int security_acct (struct file *file) 1378{ 1379 return security_ops->acct (file); 1380} 1381 1382static inline int security_sysctl(struct ctl_table *table, int op) 1383{ 1384 return security_ops->sysctl(table, op); 1385} 1386 1387static inline int security_quotactl (int cmds, int type, int id, 1388 struct super_block *sb) 1389{ 1390 return security_ops->quotactl (cmds, type, id, sb); 1391} 1392 1393static inline int security_quota_on (struct dentry * dentry) 1394{ 1395 return security_ops->quota_on (dentry); 1396} 1397 1398static inline int security_syslog(int type) 1399{ 1400 return security_ops->syslog(type); 1401} 1402 1403static inline int security_settime(struct timespec *ts, struct timezone *tz) 1404{ 1405 return security_ops->settime(ts, tz); 1406} 1407 1408 1409static inline int security_vm_enough_memory(long pages) 1410{ 1411 return security_ops->vm_enough_memory(pages); 1412} 1413 1414static inline int security_bprm_alloc (struct linux_binprm *bprm) 1415{ 1416 return security_ops->bprm_alloc_security (bprm); 1417} 1418static inline void security_bprm_free (struct linux_binprm *bprm) 1419{ 1420 security_ops->bprm_free_security (bprm); 1421} 1422static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 1423{ 1424 security_ops->bprm_apply_creds (bprm, unsafe); 1425} 1426static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 1427{ 1428 security_ops->bprm_post_apply_creds (bprm); 1429} 1430static inline int security_bprm_set (struct linux_binprm *bprm) 1431{ 1432 return security_ops->bprm_set_security (bprm); 1433} 1434 1435static inline int security_bprm_check (struct linux_binprm *bprm) 1436{ 1437 return security_ops->bprm_check_security (bprm); 1438} 1439 1440static inline int security_bprm_secureexec (struct linux_binprm *bprm) 1441{ 1442 return security_ops->bprm_secureexec (bprm); 1443} 1444 1445static inline int security_sb_alloc (struct super_block *sb) 1446{ 1447 return security_ops->sb_alloc_security (sb); 1448} 1449 1450static inline void security_sb_free (struct super_block *sb) 1451{ 1452 security_ops->sb_free_security (sb); 1453} 1454 1455static inline int security_sb_copy_data (struct file_system_type *type, 1456 void *orig, void *copy) 1457{ 1458 return security_ops->sb_copy_data (type, orig, copy); 1459} 1460 1461static inline int security_sb_kern_mount (struct super_block *sb, void *data) 1462{ 1463 return security_ops->sb_kern_mount (sb, data); 1464} 1465 1466static inline int security_sb_statfs (struct dentry *dentry) 1467{ 1468 return security_ops->sb_statfs (dentry); 1469} 1470 1471static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 1472 char *type, unsigned long flags, 1473 void *data) 1474{ 1475 return security_ops->sb_mount (dev_name, nd, type, flags, data); 1476} 1477 1478static inline int security_sb_check_sb (struct vfsmount *mnt, 1479 struct nameidata *nd) 1480{ 1481 return security_ops->sb_check_sb (mnt, nd); 1482} 1483 1484static inline int security_sb_umount (struct vfsmount *mnt, int flags) 1485{ 1486 return security_ops->sb_umount (mnt, flags); 1487} 1488 1489static inline void security_sb_umount_close (struct vfsmount *mnt) 1490{ 1491 security_ops->sb_umount_close (mnt); 1492} 1493 1494static inline void security_sb_umount_busy (struct vfsmount *mnt) 1495{ 1496 security_ops->sb_umount_busy (mnt); 1497} 1498 1499static inline void security_sb_post_remount (struct vfsmount *mnt, 1500 unsigned long flags, void *data) 1501{ 1502 security_ops->sb_post_remount (mnt, flags, data); 1503} 1504 1505static inline void security_sb_post_mountroot (void) 1506{ 1507 security_ops->sb_post_mountroot (); 1508} 1509 1510static inline void security_sb_post_addmount (struct vfsmount *mnt, 1511 struct nameidata *mountpoint_nd) 1512{ 1513 security_ops->sb_post_addmount (mnt, mountpoint_nd); 1514} 1515 1516static inline int security_sb_pivotroot (struct nameidata *old_nd, 1517 struct nameidata *new_nd) 1518{ 1519 return security_ops->sb_pivotroot (old_nd, new_nd); 1520} 1521 1522static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 1523 struct nameidata *new_nd) 1524{ 1525 security_ops->sb_post_pivotroot (old_nd, new_nd); 1526} 1527 1528static inline int security_inode_alloc (struct inode *inode) 1529{ 1530 return security_ops->inode_alloc_security (inode); 1531} 1532 1533static inline void security_inode_free (struct inode *inode) 1534{ 1535 security_ops->inode_free_security (inode); 1536} 1537 1538static inline int security_inode_init_security (struct inode *inode, 1539 struct inode *dir, 1540 char **name, 1541 void **value, 1542 size_t *len) 1543{ 1544 if (unlikely (IS_PRIVATE (inode))) 1545 return -EOPNOTSUPP; 1546 return security_ops->inode_init_security (inode, dir, name, value, len); 1547} 1548 1549static inline int security_inode_create (struct inode *dir, 1550 struct dentry *dentry, 1551 int mode) 1552{ 1553 if (unlikely (IS_PRIVATE (dir))) 1554 return 0; 1555 return security_ops->inode_create (dir, dentry, mode); 1556} 1557 1558static inline int security_inode_link (struct dentry *old_dentry, 1559 struct inode *dir, 1560 struct dentry *new_dentry) 1561{ 1562 if (unlikely (IS_PRIVATE (old_dentry->d_inode))) 1563 return 0; 1564 return security_ops->inode_link (old_dentry, dir, new_dentry); 1565} 1566 1567static inline int security_inode_unlink (struct inode *dir, 1568 struct dentry *dentry) 1569{ 1570 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1571 return 0; 1572 return security_ops->inode_unlink (dir, dentry); 1573} 1574 1575static inline int security_inode_symlink (struct inode *dir, 1576 struct dentry *dentry, 1577 const char *old_name) 1578{ 1579 if (unlikely (IS_PRIVATE (dir))) 1580 return 0; 1581 return security_ops->inode_symlink (dir, dentry, old_name); 1582} 1583 1584static inline int security_inode_mkdir (struct inode *dir, 1585 struct dentry *dentry, 1586 int mode) 1587{ 1588 if (unlikely (IS_PRIVATE (dir))) 1589 return 0; 1590 return security_ops->inode_mkdir (dir, dentry, mode); 1591} 1592 1593static inline int security_inode_rmdir (struct inode *dir, 1594 struct dentry *dentry) 1595{ 1596 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1597 return 0; 1598 return security_ops->inode_rmdir (dir, dentry); 1599} 1600 1601static inline int security_inode_mknod (struct inode *dir, 1602 struct dentry *dentry, 1603 int mode, dev_t dev) 1604{ 1605 if (unlikely (IS_PRIVATE (dir))) 1606 return 0; 1607 return security_ops->inode_mknod (dir, dentry, mode, dev); 1608} 1609 1610static inline int security_inode_rename (struct inode *old_dir, 1611 struct dentry *old_dentry, 1612 struct inode *new_dir, 1613 struct dentry *new_dentry) 1614{ 1615 if (unlikely (IS_PRIVATE (old_dentry->d_inode) || 1616 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) 1617 return 0; 1618 return security_ops->inode_rename (old_dir, old_dentry, 1619 new_dir, new_dentry); 1620} 1621 1622static inline int security_inode_readlink (struct dentry *dentry) 1623{ 1624 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1625 return 0; 1626 return security_ops->inode_readlink (dentry); 1627} 1628 1629static inline int security_inode_follow_link (struct dentry *dentry, 1630 struct nameidata *nd) 1631{ 1632 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1633 return 0; 1634 return security_ops->inode_follow_link (dentry, nd); 1635} 1636 1637static inline int security_inode_permission (struct inode *inode, int mask, 1638 struct nameidata *nd) 1639{ 1640 if (unlikely (IS_PRIVATE (inode))) 1641 return 0; 1642 return security_ops->inode_permission (inode, mask, nd); 1643} 1644 1645static inline int security_inode_setattr (struct dentry *dentry, 1646 struct iattr *attr) 1647{ 1648 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1649 return 0; 1650 return security_ops->inode_setattr (dentry, attr); 1651} 1652 1653static inline int security_inode_getattr (struct vfsmount *mnt, 1654 struct dentry *dentry) 1655{ 1656 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1657 return 0; 1658 return security_ops->inode_getattr (mnt, dentry); 1659} 1660 1661static inline void security_inode_delete (struct inode *inode) 1662{ 1663 if (unlikely (IS_PRIVATE (inode))) 1664 return; 1665 security_ops->inode_delete (inode); 1666} 1667 1668static inline int security_inode_setxattr (struct dentry *dentry, char *name, 1669 void *value, size_t size, int flags) 1670{ 1671 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1672 return 0; 1673 return security_ops->inode_setxattr (dentry, name, value, size, flags); 1674} 1675 1676static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 1677 void *value, size_t size, int flags) 1678{ 1679 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1680 return; 1681 security_ops->inode_post_setxattr (dentry, name, value, size, flags); 1682} 1683 1684static inline int security_inode_getxattr (struct dentry *dentry, char *name) 1685{ 1686 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1687 return 0; 1688 return security_ops->inode_getxattr (dentry, name); 1689} 1690 1691static inline int security_inode_listxattr (struct dentry *dentry) 1692{ 1693 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1694 return 0; 1695 return security_ops->inode_listxattr (dentry); 1696} 1697 1698static inline int security_inode_removexattr (struct dentry *dentry, char *name) 1699{ 1700 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1701 return 0; 1702 return security_ops->inode_removexattr (dentry, name); 1703} 1704 1705static inline const char *security_inode_xattr_getsuffix(void) 1706{ 1707 return security_ops->inode_xattr_getsuffix(); 1708} 1709 1710static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 1711{ 1712 if (unlikely (IS_PRIVATE (inode))) 1713 return 0; 1714 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 1715} 1716 1717static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1718{ 1719 if (unlikely (IS_PRIVATE (inode))) 1720 return 0; 1721 return security_ops->inode_setsecurity(inode, name, value, size, flags); 1722} 1723 1724static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1725{ 1726 if (unlikely (IS_PRIVATE (inode))) 1727 return 0; 1728 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 1729} 1730 1731static inline int security_file_permission (struct file *file, int mask) 1732{ 1733 return security_ops->file_permission (file, mask); 1734} 1735 1736static inline int security_file_alloc (struct file *file) 1737{ 1738 return security_ops->file_alloc_security (file); 1739} 1740 1741static inline void security_file_free (struct file *file) 1742{ 1743 security_ops->file_free_security (file); 1744} 1745 1746static inline int security_file_ioctl (struct file *file, unsigned int cmd, 1747 unsigned long arg) 1748{ 1749 return security_ops->file_ioctl (file, cmd, arg); 1750} 1751 1752static inline int security_file_mmap (struct file *file, unsigned long reqprot, 1753 unsigned long prot, 1754 unsigned long flags) 1755{ 1756 return security_ops->file_mmap (file, reqprot, prot, flags); 1757} 1758 1759static inline int security_file_mprotect (struct vm_area_struct *vma, 1760 unsigned long reqprot, 1761 unsigned long prot) 1762{ 1763 return security_ops->file_mprotect (vma, reqprot, prot); 1764} 1765 1766static inline int security_file_lock (struct file *file, unsigned int cmd) 1767{ 1768 return security_ops->file_lock (file, cmd); 1769} 1770 1771static inline int security_file_fcntl (struct file *file, unsigned int cmd, 1772 unsigned long arg) 1773{ 1774 return security_ops->file_fcntl (file, cmd, arg); 1775} 1776 1777static inline int security_file_set_fowner (struct file *file) 1778{ 1779 return security_ops->file_set_fowner (file); 1780} 1781 1782static inline int security_file_send_sigiotask (struct task_struct *tsk, 1783 struct fown_struct *fown, 1784 int sig) 1785{ 1786 return security_ops->file_send_sigiotask (tsk, fown, sig); 1787} 1788 1789static inline int security_file_receive (struct file *file) 1790{ 1791 return security_ops->file_receive (file); 1792} 1793 1794static inline int security_task_create (unsigned long clone_flags) 1795{ 1796 return security_ops->task_create (clone_flags); 1797} 1798 1799static inline int security_task_alloc (struct task_struct *p) 1800{ 1801 return security_ops->task_alloc_security (p); 1802} 1803 1804static inline void security_task_free (struct task_struct *p) 1805{ 1806 security_ops->task_free_security (p); 1807} 1808 1809static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 1810 int flags) 1811{ 1812 return security_ops->task_setuid (id0, id1, id2, flags); 1813} 1814 1815static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 1816 uid_t old_suid, int flags) 1817{ 1818 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); 1819} 1820 1821static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 1822 int flags) 1823{ 1824 return security_ops->task_setgid (id0, id1, id2, flags); 1825} 1826 1827static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 1828{ 1829 return security_ops->task_setpgid (p, pgid); 1830} 1831 1832static inline int security_task_getpgid (struct task_struct *p) 1833{ 1834 return security_ops->task_getpgid (p); 1835} 1836 1837static inline int security_task_getsid (struct task_struct *p) 1838{ 1839 return security_ops->task_getsid (p); 1840} 1841 1842static inline int security_task_setgroups (struct group_info *group_info) 1843{ 1844 return security_ops->task_setgroups (group_info); 1845} 1846 1847static inline int security_task_setnice (struct task_struct *p, int nice) 1848{ 1849 return security_ops->task_setnice (p, nice); 1850} 1851 1852static inline int security_task_setioprio (struct task_struct *p, int ioprio) 1853{ 1854 return security_ops->task_setioprio (p, ioprio); 1855} 1856 1857static inline int security_task_setrlimit (unsigned int resource, 1858 struct rlimit *new_rlim) 1859{ 1860 return security_ops->task_setrlimit (resource, new_rlim); 1861} 1862 1863static inline int security_task_setscheduler (struct task_struct *p, 1864 int policy, 1865 struct sched_param *lp) 1866{ 1867 return security_ops->task_setscheduler (p, policy, lp); 1868} 1869 1870static inline int security_task_getscheduler (struct task_struct *p) 1871{ 1872 return security_ops->task_getscheduler (p); 1873} 1874 1875static inline int security_task_movememory (struct task_struct *p) 1876{ 1877 return security_ops->task_movememory (p); 1878} 1879 1880static inline int security_task_kill (struct task_struct *p, 1881 struct siginfo *info, int sig) 1882{ 1883 return security_ops->task_kill (p, info, sig); 1884} 1885 1886static inline int security_task_wait (struct task_struct *p) 1887{ 1888 return security_ops->task_wait (p); 1889} 1890 1891static inline int security_task_prctl (int option, unsigned long arg2, 1892 unsigned long arg3, 1893 unsigned long arg4, 1894 unsigned long arg5) 1895{ 1896 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); 1897} 1898 1899static inline void security_task_reparent_to_init (struct task_struct *p) 1900{ 1901 security_ops->task_reparent_to_init (p); 1902} 1903 1904static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 1905{ 1906 security_ops->task_to_inode(p, inode); 1907} 1908 1909static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 1910 short flag) 1911{ 1912 return security_ops->ipc_permission (ipcp, flag); 1913} 1914 1915static inline int security_msg_msg_alloc (struct msg_msg * msg) 1916{ 1917 return security_ops->msg_msg_alloc_security (msg); 1918} 1919 1920static inline void security_msg_msg_free (struct msg_msg * msg) 1921{ 1922 security_ops->msg_msg_free_security(msg); 1923} 1924 1925static inline int security_msg_queue_alloc (struct msg_queue *msq) 1926{ 1927 return security_ops->msg_queue_alloc_security (msq); 1928} 1929 1930static inline void security_msg_queue_free (struct msg_queue *msq) 1931{ 1932 security_ops->msg_queue_free_security (msq); 1933} 1934 1935static inline int security_msg_queue_associate (struct msg_queue * msq, 1936 int msqflg) 1937{ 1938 return security_ops->msg_queue_associate (msq, msqflg); 1939} 1940 1941static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 1942{ 1943 return security_ops->msg_queue_msgctl (msq, cmd); 1944} 1945 1946static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 1947 struct msg_msg * msg, int msqflg) 1948{ 1949 return security_ops->msg_queue_msgsnd (msq, msg, msqflg); 1950} 1951 1952static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 1953 struct msg_msg * msg, 1954 struct task_struct * target, 1955 long type, int mode) 1956{ 1957 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); 1958} 1959 1960static inline int security_shm_alloc (struct shmid_kernel *shp) 1961{ 1962 return security_ops->shm_alloc_security (shp); 1963} 1964 1965static inline void security_shm_free (struct shmid_kernel *shp) 1966{ 1967 security_ops->shm_free_security (shp); 1968} 1969 1970static inline int security_shm_associate (struct shmid_kernel * shp, 1971 int shmflg) 1972{ 1973 return security_ops->shm_associate(shp, shmflg); 1974} 1975 1976static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 1977{ 1978 return security_ops->shm_shmctl (shp, cmd); 1979} 1980 1981static inline int security_shm_shmat (struct shmid_kernel * shp, 1982 char __user *shmaddr, int shmflg) 1983{ 1984 return security_ops->shm_shmat(shp, shmaddr, shmflg); 1985} 1986 1987static inline int security_sem_alloc (struct sem_array *sma) 1988{ 1989 return security_ops->sem_alloc_security (sma); 1990} 1991 1992static inline void security_sem_free (struct sem_array *sma) 1993{ 1994 security_ops->sem_free_security (sma); 1995} 1996 1997static inline int security_sem_associate (struct sem_array * sma, int semflg) 1998{ 1999 return security_ops->sem_associate (sma, semflg); 2000} 2001 2002static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2003{ 2004 return security_ops->sem_semctl(sma, cmd); 2005} 2006 2007static inline int security_sem_semop (struct sem_array * sma, 2008 struct sembuf * sops, unsigned nsops, 2009 int alter) 2010{ 2011 return security_ops->sem_semop(sma, sops, nsops, alter); 2012} 2013 2014static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2015{ 2016 if (unlikely (inode && IS_PRIVATE (inode))) 2017 return; 2018 security_ops->d_instantiate (dentry, inode); 2019} 2020 2021static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2022{ 2023 return security_ops->getprocattr(p, name, value, size); 2024} 2025 2026static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2027{ 2028 return security_ops->setprocattr(p, name, value, size); 2029} 2030 2031static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) 2032{ 2033 return security_ops->netlink_send(sk, skb); 2034} 2035 2036static inline int security_netlink_recv(struct sk_buff * skb, int cap) 2037{ 2038 return security_ops->netlink_recv(skb, cap); 2039} 2040 2041/* prototypes */ 2042extern int security_init (void); 2043extern int register_security (struct security_operations *ops); 2044extern int unregister_security (struct security_operations *ops); 2045extern int mod_reg_security (const char *name, struct security_operations *ops); 2046extern int mod_unreg_security (const char *name, struct security_operations *ops); 2047extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2048 struct dentry *parent, void *data, 2049 struct file_operations *fops); 2050extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2051extern void securityfs_remove(struct dentry *dentry); 2052 2053 2054#else /* CONFIG_SECURITY */ 2055 2056/* 2057 * This is the default capabilities functionality. Most of these functions 2058 * are just stubbed out, but a few must call the proper capable code. 2059 */ 2060 2061static inline int security_init(void) 2062{ 2063 return 0; 2064} 2065 2066static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) 2067{ 2068 return cap_ptrace (parent, child); 2069} 2070 2071static inline int security_capget (struct task_struct *target, 2072 kernel_cap_t *effective, 2073 kernel_cap_t *inheritable, 2074 kernel_cap_t *permitted) 2075{ 2076 return cap_capget (target, effective, inheritable, permitted); 2077} 2078 2079static inline int security_capset_check (struct task_struct *target, 2080 kernel_cap_t *effective, 2081 kernel_cap_t *inheritable, 2082 kernel_cap_t *permitted) 2083{ 2084 return cap_capset_check (target, effective, inheritable, permitted); 2085} 2086 2087static inline void security_capset_set (struct task_struct *target, 2088 kernel_cap_t *effective, 2089 kernel_cap_t *inheritable, 2090 kernel_cap_t *permitted) 2091{ 2092 cap_capset_set (target, effective, inheritable, permitted); 2093} 2094 2095static inline int security_capable(struct task_struct *tsk, int cap) 2096{ 2097 return cap_capable(tsk, cap); 2098} 2099 2100static inline int security_acct (struct file *file) 2101{ 2102 return 0; 2103} 2104 2105static inline int security_sysctl(struct ctl_table *table, int op) 2106{ 2107 return 0; 2108} 2109 2110static inline int security_quotactl (int cmds, int type, int id, 2111 struct super_block * sb) 2112{ 2113 return 0; 2114} 2115 2116static inline int security_quota_on (struct dentry * dentry) 2117{ 2118 return 0; 2119} 2120 2121static inline int security_syslog(int type) 2122{ 2123 return cap_syslog(type); 2124} 2125 2126static inline int security_settime(struct timespec *ts, struct timezone *tz) 2127{ 2128 return cap_settime(ts, tz); 2129} 2130 2131static inline int security_vm_enough_memory(long pages) 2132{ 2133 return cap_vm_enough_memory(pages); 2134} 2135 2136static inline int security_bprm_alloc (struct linux_binprm *bprm) 2137{ 2138 return 0; 2139} 2140 2141static inline void security_bprm_free (struct linux_binprm *bprm) 2142{ } 2143 2144static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 2145{ 2146 cap_bprm_apply_creds (bprm, unsafe); 2147} 2148 2149static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 2150{ 2151 return; 2152} 2153 2154static inline int security_bprm_set (struct linux_binprm *bprm) 2155{ 2156 return cap_bprm_set_security (bprm); 2157} 2158 2159static inline int security_bprm_check (struct linux_binprm *bprm) 2160{ 2161 return 0; 2162} 2163 2164static inline int security_bprm_secureexec (struct linux_binprm *bprm) 2165{ 2166 return cap_bprm_secureexec(bprm); 2167} 2168 2169static inline int security_sb_alloc (struct super_block *sb) 2170{ 2171 return 0; 2172} 2173 2174static inline void security_sb_free (struct super_block *sb) 2175{ } 2176 2177static inline int security_sb_copy_data (struct file_system_type *type, 2178 void *orig, void *copy) 2179{ 2180 return 0; 2181} 2182 2183static inline int security_sb_kern_mount (struct super_block *sb, void *data) 2184{ 2185 return 0; 2186} 2187 2188static inline int security_sb_statfs (struct dentry *dentry) 2189{ 2190 return 0; 2191} 2192 2193static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 2194 char *type, unsigned long flags, 2195 void *data) 2196{ 2197 return 0; 2198} 2199 2200static inline int security_sb_check_sb (struct vfsmount *mnt, 2201 struct nameidata *nd) 2202{ 2203 return 0; 2204} 2205 2206static inline int security_sb_umount (struct vfsmount *mnt, int flags) 2207{ 2208 return 0; 2209} 2210 2211static inline void security_sb_umount_close (struct vfsmount *mnt) 2212{ } 2213 2214static inline void security_sb_umount_busy (struct vfsmount *mnt) 2215{ } 2216 2217static inline void security_sb_post_remount (struct vfsmount *mnt, 2218 unsigned long flags, void *data) 2219{ } 2220 2221static inline void security_sb_post_mountroot (void) 2222{ } 2223 2224static inline void security_sb_post_addmount (struct vfsmount *mnt, 2225 struct nameidata *mountpoint_nd) 2226{ } 2227 2228static inline int security_sb_pivotroot (struct nameidata *old_nd, 2229 struct nameidata *new_nd) 2230{ 2231 return 0; 2232} 2233 2234static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 2235 struct nameidata *new_nd) 2236{ } 2237 2238static inline int security_inode_alloc (struct inode *inode) 2239{ 2240 return 0; 2241} 2242 2243static inline void security_inode_free (struct inode *inode) 2244{ } 2245 2246static inline int security_inode_init_security (struct inode *inode, 2247 struct inode *dir, 2248 char **name, 2249 void **value, 2250 size_t *len) 2251{ 2252 return -EOPNOTSUPP; 2253} 2254 2255static inline int security_inode_create (struct inode *dir, 2256 struct dentry *dentry, 2257 int mode) 2258{ 2259 return 0; 2260} 2261 2262static inline int security_inode_link (struct dentry *old_dentry, 2263 struct inode *dir, 2264 struct dentry *new_dentry) 2265{ 2266 return 0; 2267} 2268 2269static inline int security_inode_unlink (struct inode *dir, 2270 struct dentry *dentry) 2271{ 2272 return 0; 2273} 2274 2275static inline int security_inode_symlink (struct inode *dir, 2276 struct dentry *dentry, 2277 const char *old_name) 2278{ 2279 return 0; 2280} 2281 2282static inline int security_inode_mkdir (struct inode *dir, 2283 struct dentry *dentry, 2284 int mode) 2285{ 2286 return 0; 2287} 2288 2289static inline int security_inode_rmdir (struct inode *dir, 2290 struct dentry *dentry) 2291{ 2292 return 0; 2293} 2294 2295static inline int security_inode_mknod (struct inode *dir, 2296 struct dentry *dentry, 2297 int mode, dev_t dev) 2298{ 2299 return 0; 2300} 2301 2302static inline int security_inode_rename (struct inode *old_dir, 2303 struct dentry *old_dentry, 2304 struct inode *new_dir, 2305 struct dentry *new_dentry) 2306{ 2307 return 0; 2308} 2309 2310static inline int security_inode_readlink (struct dentry *dentry) 2311{ 2312 return 0; 2313} 2314 2315static inline int security_inode_follow_link (struct dentry *dentry, 2316 struct nameidata *nd) 2317{ 2318 return 0; 2319} 2320 2321static inline int security_inode_permission (struct inode *inode, int mask, 2322 struct nameidata *nd) 2323{ 2324 return 0; 2325} 2326 2327static inline int security_inode_setattr (struct dentry *dentry, 2328 struct iattr *attr) 2329{ 2330 return 0; 2331} 2332 2333static inline int security_inode_getattr (struct vfsmount *mnt, 2334 struct dentry *dentry) 2335{ 2336 return 0; 2337} 2338 2339static inline void security_inode_delete (struct inode *inode) 2340{ } 2341 2342static inline int security_inode_setxattr (struct dentry *dentry, char *name, 2343 void *value, size_t size, int flags) 2344{ 2345 return cap_inode_setxattr(dentry, name, value, size, flags); 2346} 2347 2348static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 2349 void *value, size_t size, int flags) 2350{ } 2351 2352static inline int security_inode_getxattr (struct dentry *dentry, char *name) 2353{ 2354 return 0; 2355} 2356 2357static inline int security_inode_listxattr (struct dentry *dentry) 2358{ 2359 return 0; 2360} 2361 2362static inline int security_inode_removexattr (struct dentry *dentry, char *name) 2363{ 2364 return cap_inode_removexattr(dentry, name); 2365} 2366 2367static inline const char *security_inode_xattr_getsuffix (void) 2368{ 2369 return NULL ; 2370} 2371 2372static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2373{ 2374 return -EOPNOTSUPP; 2375} 2376 2377static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2378{ 2379 return -EOPNOTSUPP; 2380} 2381 2382static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2383{ 2384 return 0; 2385} 2386 2387static inline int security_file_permission (struct file *file, int mask) 2388{ 2389 return 0; 2390} 2391 2392static inline int security_file_alloc (struct file *file) 2393{ 2394 return 0; 2395} 2396 2397static inline void security_file_free (struct file *file) 2398{ } 2399 2400static inline int security_file_ioctl (struct file *file, unsigned int cmd, 2401 unsigned long arg) 2402{ 2403 return 0; 2404} 2405 2406static inline int security_file_mmap (struct file *file, unsigned long reqprot, 2407 unsigned long prot, 2408 unsigned long flags) 2409{ 2410 return 0; 2411} 2412 2413static inline int security_file_mprotect (struct vm_area_struct *vma, 2414 unsigned long reqprot, 2415 unsigned long prot) 2416{ 2417 return 0; 2418} 2419 2420static inline int security_file_lock (struct file *file, unsigned int cmd) 2421{ 2422 return 0; 2423} 2424 2425static inline int security_file_fcntl (struct file *file, unsigned int cmd, 2426 unsigned long arg) 2427{ 2428 return 0; 2429} 2430 2431static inline int security_file_set_fowner (struct file *file) 2432{ 2433 return 0; 2434} 2435 2436static inline int security_file_send_sigiotask (struct task_struct *tsk, 2437 struct fown_struct *fown, 2438 int sig) 2439{ 2440 return 0; 2441} 2442 2443static inline int security_file_receive (struct file *file) 2444{ 2445 return 0; 2446} 2447 2448static inline int security_task_create (unsigned long clone_flags) 2449{ 2450 return 0; 2451} 2452 2453static inline int security_task_alloc (struct task_struct *p) 2454{ 2455 return 0; 2456} 2457 2458static inline void security_task_free (struct task_struct *p) 2459{ } 2460 2461static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 2462 int flags) 2463{ 2464 return 0; 2465} 2466 2467static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 2468 uid_t old_suid, int flags) 2469{ 2470 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); 2471} 2472 2473static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 2474 int flags) 2475{ 2476 return 0; 2477} 2478 2479static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 2480{ 2481 return 0; 2482} 2483 2484static inline int security_task_getpgid (struct task_struct *p) 2485{ 2486 return 0; 2487} 2488 2489static inline int security_task_getsid (struct task_struct *p) 2490{ 2491 return 0; 2492} 2493 2494static inline int security_task_setgroups (struct group_info *group_info) 2495{ 2496 return 0; 2497} 2498 2499static inline int security_task_setnice (struct task_struct *p, int nice) 2500{ 2501 return 0; 2502} 2503 2504static inline int security_task_setioprio (struct task_struct *p, int ioprio) 2505{ 2506 return 0; 2507} 2508 2509static inline int security_task_setrlimit (unsigned int resource, 2510 struct rlimit *new_rlim) 2511{ 2512 return 0; 2513} 2514 2515static inline int security_task_setscheduler (struct task_struct *p, 2516 int policy, 2517 struct sched_param *lp) 2518{ 2519 return 0; 2520} 2521 2522static inline int security_task_getscheduler (struct task_struct *p) 2523{ 2524 return 0; 2525} 2526 2527static inline int security_task_movememory (struct task_struct *p) 2528{ 2529 return 0; 2530} 2531 2532static inline int security_task_kill (struct task_struct *p, 2533 struct siginfo *info, int sig) 2534{ 2535 return 0; 2536} 2537 2538static inline int security_task_wait (struct task_struct *p) 2539{ 2540 return 0; 2541} 2542 2543static inline int security_task_prctl (int option, unsigned long arg2, 2544 unsigned long arg3, 2545 unsigned long arg4, 2546 unsigned long arg5) 2547{ 2548 return 0; 2549} 2550 2551static inline void security_task_reparent_to_init (struct task_struct *p) 2552{ 2553 cap_task_reparent_to_init (p); 2554} 2555 2556static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2557{ } 2558 2559static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 2560 short flag) 2561{ 2562 return 0; 2563} 2564 2565static inline int security_msg_msg_alloc (struct msg_msg * msg) 2566{ 2567 return 0; 2568} 2569 2570static inline void security_msg_msg_free (struct msg_msg * msg) 2571{ } 2572 2573static inline int security_msg_queue_alloc (struct msg_queue *msq) 2574{ 2575 return 0; 2576} 2577 2578static inline void security_msg_queue_free (struct msg_queue *msq) 2579{ } 2580 2581static inline int security_msg_queue_associate (struct msg_queue * msq, 2582 int msqflg) 2583{ 2584 return 0; 2585} 2586 2587static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2588{ 2589 return 0; 2590} 2591 2592static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2593 struct msg_msg * msg, int msqflg) 2594{ 2595 return 0; 2596} 2597 2598static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2599 struct msg_msg * msg, 2600 struct task_struct * target, 2601 long type, int mode) 2602{ 2603 return 0; 2604} 2605 2606static inline int security_shm_alloc (struct shmid_kernel *shp) 2607{ 2608 return 0; 2609} 2610 2611static inline void security_shm_free (struct shmid_kernel *shp) 2612{ } 2613 2614static inline int security_shm_associate (struct shmid_kernel * shp, 2615 int shmflg) 2616{ 2617 return 0; 2618} 2619 2620static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2621{ 2622 return 0; 2623} 2624 2625static inline int security_shm_shmat (struct shmid_kernel * shp, 2626 char __user *shmaddr, int shmflg) 2627{ 2628 return 0; 2629} 2630 2631static inline int security_sem_alloc (struct sem_array *sma) 2632{ 2633 return 0; 2634} 2635 2636static inline void security_sem_free (struct sem_array *sma) 2637{ } 2638 2639static inline int security_sem_associate (struct sem_array * sma, int semflg) 2640{ 2641 return 0; 2642} 2643 2644static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2645{ 2646 return 0; 2647} 2648 2649static inline int security_sem_semop (struct sem_array * sma, 2650 struct sembuf * sops, unsigned nsops, 2651 int alter) 2652{ 2653 return 0; 2654} 2655 2656static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2657{ } 2658 2659static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2660{ 2661 return -EINVAL; 2662} 2663 2664static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2665{ 2666 return -EINVAL; 2667} 2668 2669static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) 2670{ 2671 return cap_netlink_send (sk, skb); 2672} 2673 2674static inline int security_netlink_recv (struct sk_buff *skb, int cap) 2675{ 2676 return cap_netlink_recv (skb, cap); 2677} 2678 2679static inline struct dentry *securityfs_create_dir(const char *name, 2680 struct dentry *parent) 2681{ 2682 return ERR_PTR(-ENODEV); 2683} 2684 2685static inline struct dentry *securityfs_create_file(const char *name, 2686 mode_t mode, 2687 struct dentry *parent, 2688 void *data, 2689 struct file_operations *fops) 2690{ 2691 return ERR_PTR(-ENODEV); 2692} 2693 2694static inline void securityfs_remove(struct dentry *dentry) 2695{ 2696} 2697 2698#endif /* CONFIG_SECURITY */ 2699 2700#ifdef CONFIG_SECURITY_NETWORK 2701static inline int security_unix_stream_connect(struct socket * sock, 2702 struct socket * other, 2703 struct sock * newsk) 2704{ 2705 return security_ops->unix_stream_connect(sock, other, newsk); 2706} 2707 2708 2709static inline int security_unix_may_send(struct socket * sock, 2710 struct socket * other) 2711{ 2712 return security_ops->unix_may_send(sock, other); 2713} 2714 2715static inline int security_socket_create (int family, int type, 2716 int protocol, int kern) 2717{ 2718 return security_ops->socket_create(family, type, protocol, kern); 2719} 2720 2721static inline void security_socket_post_create(struct socket * sock, 2722 int family, 2723 int type, 2724 int protocol, int kern) 2725{ 2726 security_ops->socket_post_create(sock, family, type, 2727 protocol, kern); 2728} 2729 2730static inline int security_socket_bind(struct socket * sock, 2731 struct sockaddr * address, 2732 int addrlen) 2733{ 2734 return security_ops->socket_bind(sock, address, addrlen); 2735} 2736 2737static inline int security_socket_connect(struct socket * sock, 2738 struct sockaddr * address, 2739 int addrlen) 2740{ 2741 return security_ops->socket_connect(sock, address, addrlen); 2742} 2743 2744static inline int security_socket_listen(struct socket * sock, int backlog) 2745{ 2746 return security_ops->socket_listen(sock, backlog); 2747} 2748 2749static inline int security_socket_accept(struct socket * sock, 2750 struct socket * newsock) 2751{ 2752 return security_ops->socket_accept(sock, newsock); 2753} 2754 2755static inline void security_socket_post_accept(struct socket * sock, 2756 struct socket * newsock) 2757{ 2758 security_ops->socket_post_accept(sock, newsock); 2759} 2760 2761static inline int security_socket_sendmsg(struct socket * sock, 2762 struct msghdr * msg, int size) 2763{ 2764 return security_ops->socket_sendmsg(sock, msg, size); 2765} 2766 2767static inline int security_socket_recvmsg(struct socket * sock, 2768 struct msghdr * msg, int size, 2769 int flags) 2770{ 2771 return security_ops->socket_recvmsg(sock, msg, size, flags); 2772} 2773 2774static inline int security_socket_getsockname(struct socket * sock) 2775{ 2776 return security_ops->socket_getsockname(sock); 2777} 2778 2779static inline int security_socket_getpeername(struct socket * sock) 2780{ 2781 return security_ops->socket_getpeername(sock); 2782} 2783 2784static inline int security_socket_getsockopt(struct socket * sock, 2785 int level, int optname) 2786{ 2787 return security_ops->socket_getsockopt(sock, level, optname); 2788} 2789 2790static inline int security_socket_setsockopt(struct socket * sock, 2791 int level, int optname) 2792{ 2793 return security_ops->socket_setsockopt(sock, level, optname); 2794} 2795 2796static inline int security_socket_shutdown(struct socket * sock, int how) 2797{ 2798 return security_ops->socket_shutdown(sock, how); 2799} 2800 2801static inline int security_sock_rcv_skb (struct sock * sk, 2802 struct sk_buff * skb) 2803{ 2804 return security_ops->socket_sock_rcv_skb (sk, skb); 2805} 2806 2807static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2808 int __user *optlen, unsigned len) 2809{ 2810 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 2811} 2812 2813static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, 2814 u32 *seclen) 2815{ 2816 return security_ops->socket_getpeersec_dgram(skb, secdata, seclen); 2817} 2818 2819static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2820{ 2821 return security_ops->sk_alloc_security(sk, family, priority); 2822} 2823 2824static inline void security_sk_free(struct sock *sk) 2825{ 2826 return security_ops->sk_free_security(sk); 2827} 2828 2829static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) 2830{ 2831 return security_ops->sk_getsid(sk, fl, dir); 2832} 2833#else /* CONFIG_SECURITY_NETWORK */ 2834static inline int security_unix_stream_connect(struct socket * sock, 2835 struct socket * other, 2836 struct sock * newsk) 2837{ 2838 return 0; 2839} 2840 2841static inline int security_unix_may_send(struct socket * sock, 2842 struct socket * other) 2843{ 2844 return 0; 2845} 2846 2847static inline int security_socket_create (int family, int type, 2848 int protocol, int kern) 2849{ 2850 return 0; 2851} 2852 2853static inline void security_socket_post_create(struct socket * sock, 2854 int family, 2855 int type, 2856 int protocol, int kern) 2857{ 2858} 2859 2860static inline int security_socket_bind(struct socket * sock, 2861 struct sockaddr * address, 2862 int addrlen) 2863{ 2864 return 0; 2865} 2866 2867static inline int security_socket_connect(struct socket * sock, 2868 struct sockaddr * address, 2869 int addrlen) 2870{ 2871 return 0; 2872} 2873 2874static inline int security_socket_listen(struct socket * sock, int backlog) 2875{ 2876 return 0; 2877} 2878 2879static inline int security_socket_accept(struct socket * sock, 2880 struct socket * newsock) 2881{ 2882 return 0; 2883} 2884 2885static inline void security_socket_post_accept(struct socket * sock, 2886 struct socket * newsock) 2887{ 2888} 2889 2890static inline int security_socket_sendmsg(struct socket * sock, 2891 struct msghdr * msg, int size) 2892{ 2893 return 0; 2894} 2895 2896static inline int security_socket_recvmsg(struct socket * sock, 2897 struct msghdr * msg, int size, 2898 int flags) 2899{ 2900 return 0; 2901} 2902 2903static inline int security_socket_getsockname(struct socket * sock) 2904{ 2905 return 0; 2906} 2907 2908static inline int security_socket_getpeername(struct socket * sock) 2909{ 2910 return 0; 2911} 2912 2913static inline int security_socket_getsockopt(struct socket * sock, 2914 int level, int optname) 2915{ 2916 return 0; 2917} 2918 2919static inline int security_socket_setsockopt(struct socket * sock, 2920 int level, int optname) 2921{ 2922 return 0; 2923} 2924 2925static inline int security_socket_shutdown(struct socket * sock, int how) 2926{ 2927 return 0; 2928} 2929static inline int security_sock_rcv_skb (struct sock * sk, 2930 struct sk_buff * skb) 2931{ 2932 return 0; 2933} 2934 2935static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2936 int __user *optlen, unsigned len) 2937{ 2938 return -ENOPROTOOPT; 2939} 2940 2941static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, 2942 u32 *seclen) 2943{ 2944 return -ENOPROTOOPT; 2945} 2946 2947static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2948{ 2949 return 0; 2950} 2951 2952static inline void security_sk_free(struct sock *sk) 2953{ 2954} 2955 2956static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) 2957{ 2958 return 0; 2959} 2960#endif /* CONFIG_SECURITY_NETWORK */ 2961 2962#ifdef CONFIG_SECURITY_NETWORK_XFRM 2963static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 2964{ 2965 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 2966} 2967 2968static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 2969{ 2970 return security_ops->xfrm_policy_clone_security(old, new); 2971} 2972 2973static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 2974{ 2975 security_ops->xfrm_policy_free_security(xp); 2976} 2977 2978static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 2979{ 2980 return security_ops->xfrm_policy_delete_security(xp); 2981} 2982 2983static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 2984{ 2985 return security_ops->xfrm_state_alloc_security(x, sec_ctx); 2986} 2987 2988static inline int security_xfrm_state_delete(struct xfrm_state *x) 2989{ 2990 return security_ops->xfrm_state_delete_security(x); 2991} 2992 2993static inline void security_xfrm_state_free(struct xfrm_state *x) 2994{ 2995 security_ops->xfrm_state_free_security(x); 2996} 2997 2998static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) 2999{ 3000 return security_ops->xfrm_policy_lookup(xp, sk_sid, dir); 3001} 3002#else /* CONFIG_SECURITY_NETWORK_XFRM */ 3003static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3004{ 3005 return 0; 3006} 3007 3008static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3009{ 3010 return 0; 3011} 3012 3013static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3014{ 3015} 3016 3017static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3018{ 3019 return 0; 3020} 3021 3022static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 3023{ 3024 return 0; 3025} 3026 3027static inline void security_xfrm_state_free(struct xfrm_state *x) 3028{ 3029} 3030 3031static inline int security_xfrm_state_delete(struct xfrm_state *x) 3032{ 3033 return 0; 3034} 3035 3036static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) 3037{ 3038 return 0; 3039} 3040#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 3041 3042#ifdef CONFIG_KEYS 3043#ifdef CONFIG_SECURITY 3044static inline int security_key_alloc(struct key *key, 3045 struct task_struct *tsk, 3046 unsigned long flags) 3047{ 3048 return security_ops->key_alloc(key, tsk, flags); 3049} 3050 3051static inline void security_key_free(struct key *key) 3052{ 3053 security_ops->key_free(key); 3054} 3055 3056static inline int security_key_permission(key_ref_t key_ref, 3057 struct task_struct *context, 3058 key_perm_t perm) 3059{ 3060 return security_ops->key_permission(key_ref, context, perm); 3061} 3062 3063#else 3064 3065static inline int security_key_alloc(struct key *key, 3066 struct task_struct *tsk, 3067 unsigned long flags) 3068{ 3069 return 0; 3070} 3071 3072static inline void security_key_free(struct key *key) 3073{ 3074} 3075 3076static inline int security_key_permission(key_ref_t key_ref, 3077 struct task_struct *context, 3078 key_perm_t perm) 3079{ 3080 return 0; 3081} 3082 3083#endif 3084#endif /* CONFIG_KEYS */ 3085 3086#endif /* ! __LINUX_SECURITY_H */ 3087