at cba767175becadc5c4016cceb7bfdd2c7fe722f4 249 lines 6.9 kB view raw
1#ifndef _LINUX_SLUB_DEF_H 2#define _LINUX_SLUB_DEF_H 3 4/* 5 * SLUB : A Slab allocator without object queues. 6 * 7 * (C) 2007 SGI, Christoph Lameter 8 */ 9#include <linux/types.h> 10#include <linux/gfp.h> 11#include <linux/workqueue.h> 12#include <linux/kobject.h> 13 14enum stat_item { 15 ALLOC_FASTPATH, /* Allocation from cpu slab */ 16 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 17 FREE_FASTPATH, /* Free to cpu slub */ 18 FREE_SLOWPATH, /* Freeing not to cpu slab */ 19 FREE_FROZEN, /* Freeing to frozen slab */ 20 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 21 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 22 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */ 23 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 24 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 25 FREE_SLAB, /* Slab freed to the page allocator */ 26 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 27 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 28 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 29 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 30 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 31 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 32 ORDER_FALLBACK, /* Number of times fallback was necessary */ 33 NR_SLUB_STAT_ITEMS }; 34 35struct kmem_cache_cpu { 36 void **freelist; /* Pointer to first free per cpu object */ 37 struct page *page; /* The slab from which we are allocating */ 38 int node; /* The node of the page (or -1 for debug) */ 39 unsigned int offset; /* Freepointer offset (in word units) */ 40 unsigned int objsize; /* Size of an object (from kmem_cache) */ 41#ifdef CONFIG_SLUB_STATS 42 unsigned stat[NR_SLUB_STAT_ITEMS]; 43#endif 44}; 45 46struct kmem_cache_node { 47 spinlock_t list_lock; /* Protect partial list and nr_partial */ 48 unsigned long nr_partial; 49 unsigned long min_partial; 50 struct list_head partial; 51#ifdef CONFIG_SLUB_DEBUG 52 atomic_long_t nr_slabs; 53 atomic_long_t total_objects; 54 struct list_head full; 55#endif 56}; 57 58/* 59 * Word size structure that can be atomically updated or read and that 60 * contains both the order and the number of objects that a slab of the 61 * given order would contain. 62 */ 63struct kmem_cache_order_objects { 64 unsigned long x; 65}; 66 67/* 68 * Slab cache management. 69 */ 70struct kmem_cache { 71 /* Used for retriving partial slabs etc */ 72 unsigned long flags; 73 int size; /* The size of an object including meta data */ 74 int objsize; /* The size of an object without meta data */ 75 int offset; /* Free pointer offset. */ 76 struct kmem_cache_order_objects oo; 77 78 /* 79 * Avoid an extra cache line for UP, SMP and for the node local to 80 * struct kmem_cache. 81 */ 82 struct kmem_cache_node local_node; 83 84 /* Allocation and freeing of slabs */ 85 struct kmem_cache_order_objects max; 86 struct kmem_cache_order_objects min; 87 gfp_t allocflags; /* gfp flags to use on each alloc */ 88 int refcount; /* Refcount for slab cache destroy */ 89 void (*ctor)(void *); 90 int inuse; /* Offset to metadata */ 91 int align; /* Alignment */ 92 const char *name; /* Name (only for display!) */ 93 struct list_head list; /* List of slab caches */ 94#ifdef CONFIG_SLUB_DEBUG 95 struct kobject kobj; /* For sysfs */ 96#endif 97 98#ifdef CONFIG_NUMA 99 /* 100 * Defragmentation by allocating from a remote node. 101 */ 102 int remote_node_defrag_ratio; 103 struct kmem_cache_node *node[MAX_NUMNODES]; 104#endif 105#ifdef CONFIG_SMP 106 struct kmem_cache_cpu *cpu_slab[NR_CPUS]; 107#else 108 struct kmem_cache_cpu cpu_slab; 109#endif 110}; 111 112/* 113 * Kmalloc subsystem. 114 */ 115#if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8 116#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN 117#else 118#define KMALLOC_MIN_SIZE 8 119#endif 120 121#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 122 123/* 124 * We keep the general caches in an array of slab caches that are used for 125 * 2^x bytes of allocations. 126 */ 127extern struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1]; 128 129/* 130 * Sorry that the following has to be that ugly but some versions of GCC 131 * have trouble with constant propagation and loops. 132 */ 133static __always_inline int kmalloc_index(size_t size) 134{ 135 if (!size) 136 return 0; 137 138 if (size <= KMALLOC_MIN_SIZE) 139 return KMALLOC_SHIFT_LOW; 140 141#if KMALLOC_MIN_SIZE <= 64 142 if (size > 64 && size <= 96) 143 return 1; 144 if (size > 128 && size <= 192) 145 return 2; 146#endif 147 if (size <= 8) return 3; 148 if (size <= 16) return 4; 149 if (size <= 32) return 5; 150 if (size <= 64) return 6; 151 if (size <= 128) return 7; 152 if (size <= 256) return 8; 153 if (size <= 512) return 9; 154 if (size <= 1024) return 10; 155 if (size <= 2 * 1024) return 11; 156 if (size <= 4 * 1024) return 12; 157/* 158 * The following is only needed to support architectures with a larger page 159 * size than 4k. 160 */ 161 if (size <= 8 * 1024) return 13; 162 if (size <= 16 * 1024) return 14; 163 if (size <= 32 * 1024) return 15; 164 if (size <= 64 * 1024) return 16; 165 if (size <= 128 * 1024) return 17; 166 if (size <= 256 * 1024) return 18; 167 if (size <= 512 * 1024) return 19; 168 if (size <= 1024 * 1024) return 20; 169 if (size <= 2 * 1024 * 1024) return 21; 170 return -1; 171 172/* 173 * What we really wanted to do and cannot do because of compiler issues is: 174 * int i; 175 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) 176 * if (size <= (1 << i)) 177 * return i; 178 */ 179} 180 181/* 182 * Find the slab cache for a given combination of allocation flags and size. 183 * 184 * This ought to end up with a global pointer to the right cache 185 * in kmalloc_caches. 186 */ 187static __always_inline struct kmem_cache *kmalloc_slab(size_t size) 188{ 189 int index = kmalloc_index(size); 190 191 if (index == 0) 192 return NULL; 193 194 return &kmalloc_caches[index]; 195} 196 197#ifdef CONFIG_ZONE_DMA 198#define SLUB_DMA __GFP_DMA 199#else 200/* Disable DMA functionality */ 201#define SLUB_DMA (__force gfp_t)0 202#endif 203 204void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 205void *__kmalloc(size_t size, gfp_t flags); 206 207static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 208{ 209 return (void *)__get_free_pages(flags | __GFP_COMP, get_order(size)); 210} 211 212static __always_inline void *kmalloc(size_t size, gfp_t flags) 213{ 214 if (__builtin_constant_p(size)) { 215 if (size > PAGE_SIZE) 216 return kmalloc_large(size, flags); 217 218 if (!(flags & SLUB_DMA)) { 219 struct kmem_cache *s = kmalloc_slab(size); 220 221 if (!s) 222 return ZERO_SIZE_PTR; 223 224 return kmem_cache_alloc(s, flags); 225 } 226 } 227 return __kmalloc(size, flags); 228} 229 230#ifdef CONFIG_NUMA 231void *__kmalloc_node(size_t size, gfp_t flags, int node); 232void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 233 234static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 235{ 236 if (__builtin_constant_p(size) && 237 size <= PAGE_SIZE && !(flags & SLUB_DMA)) { 238 struct kmem_cache *s = kmalloc_slab(size); 239 240 if (!s) 241 return ZERO_SIZE_PTR; 242 243 return kmem_cache_alloc_node(s, flags, node); 244 } 245 return __kmalloc_node(size, flags, node); 246} 247#endif 248 249#endif /* _LINUX_SLUB_DEF_H */