at cba767175becadc5c4016cceb7bfdd2c7fe722f4 455 lines 13 kB view raw
1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <asm/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15#include <linux/hardirq.h> /* for in_interrupt() */ 16 17/* 18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 19 * allocation mode flags. 20 */ 21#define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */ 22#define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */ 23#define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */ 24 25static inline void mapping_set_error(struct address_space *mapping, int error) 26{ 27 if (unlikely(error)) { 28 if (error == -ENOSPC) 29 set_bit(AS_ENOSPC, &mapping->flags); 30 else 31 set_bit(AS_EIO, &mapping->flags); 32 } 33} 34 35#ifdef CONFIG_UNEVICTABLE_LRU 36#define AS_UNEVICTABLE (__GFP_BITS_SHIFT + 2) /* e.g., ramdisk, SHM_LOCK */ 37 38static inline void mapping_set_unevictable(struct address_space *mapping) 39{ 40 set_bit(AS_UNEVICTABLE, &mapping->flags); 41} 42 43static inline void mapping_clear_unevictable(struct address_space *mapping) 44{ 45 clear_bit(AS_UNEVICTABLE, &mapping->flags); 46} 47 48static inline int mapping_unevictable(struct address_space *mapping) 49{ 50 if (likely(mapping)) 51 return test_bit(AS_UNEVICTABLE, &mapping->flags); 52 return !!mapping; 53} 54#else 55static inline void mapping_set_unevictable(struct address_space *mapping) { } 56static inline void mapping_clear_unevictable(struct address_space *mapping) { } 57static inline int mapping_unevictable(struct address_space *mapping) 58{ 59 return 0; 60} 61#endif 62 63static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 64{ 65 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; 66} 67 68/* 69 * This is non-atomic. Only to be used before the mapping is activated. 70 * Probably needs a barrier... 71 */ 72static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 73{ 74 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | 75 (__force unsigned long)mask; 76} 77 78/* 79 * The page cache can done in larger chunks than 80 * one page, because it allows for more efficient 81 * throughput (it can then be mapped into user 82 * space in smaller chunks for same flexibility). 83 * 84 * Or rather, it _will_ be done in larger chunks. 85 */ 86#define PAGE_CACHE_SHIFT PAGE_SHIFT 87#define PAGE_CACHE_SIZE PAGE_SIZE 88#define PAGE_CACHE_MASK PAGE_MASK 89#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) 90 91#define page_cache_get(page) get_page(page) 92#define page_cache_release(page) put_page(page) 93void release_pages(struct page **pages, int nr, int cold); 94 95/* 96 * speculatively take a reference to a page. 97 * If the page is free (_count == 0), then _count is untouched, and 0 98 * is returned. Otherwise, _count is incremented by 1 and 1 is returned. 99 * 100 * This function must be called inside the same rcu_read_lock() section as has 101 * been used to lookup the page in the pagecache radix-tree (or page table): 102 * this allows allocators to use a synchronize_rcu() to stabilize _count. 103 * 104 * Unless an RCU grace period has passed, the count of all pages coming out 105 * of the allocator must be considered unstable. page_count may return higher 106 * than expected, and put_page must be able to do the right thing when the 107 * page has been finished with, no matter what it is subsequently allocated 108 * for (because put_page is what is used here to drop an invalid speculative 109 * reference). 110 * 111 * This is the interesting part of the lockless pagecache (and lockless 112 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 113 * has the following pattern: 114 * 1. find page in radix tree 115 * 2. conditionally increment refcount 116 * 3. check the page is still in pagecache (if no, goto 1) 117 * 118 * Remove-side that cares about stability of _count (eg. reclaim) has the 119 * following (with tree_lock held for write): 120 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 121 * B. remove page from pagecache 122 * C. free the page 123 * 124 * There are 2 critical interleavings that matter: 125 * - 2 runs before A: in this case, A sees elevated refcount and bails out 126 * - A runs before 2: in this case, 2 sees zero refcount and retries; 127 * subsequently, B will complete and 1 will find no page, causing the 128 * lookup to return NULL. 129 * 130 * It is possible that between 1 and 2, the page is removed then the exact same 131 * page is inserted into the same position in pagecache. That's OK: the 132 * old find_get_page using tree_lock could equally have run before or after 133 * such a re-insertion, depending on order that locks are granted. 134 * 135 * Lookups racing against pagecache insertion isn't a big problem: either 1 136 * will find the page or it will not. Likewise, the old find_get_page could run 137 * either before the insertion or afterwards, depending on timing. 138 */ 139static inline int page_cache_get_speculative(struct page *page) 140{ 141 VM_BUG_ON(in_interrupt()); 142 143#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU) 144# ifdef CONFIG_PREEMPT 145 VM_BUG_ON(!in_atomic()); 146# endif 147 /* 148 * Preempt must be disabled here - we rely on rcu_read_lock doing 149 * this for us. 150 * 151 * Pagecache won't be truncated from interrupt context, so if we have 152 * found a page in the radix tree here, we have pinned its refcount by 153 * disabling preempt, and hence no need for the "speculative get" that 154 * SMP requires. 155 */ 156 VM_BUG_ON(page_count(page) == 0); 157 atomic_inc(&page->_count); 158 159#else 160 if (unlikely(!get_page_unless_zero(page))) { 161 /* 162 * Either the page has been freed, or will be freed. 163 * In either case, retry here and the caller should 164 * do the right thing (see comments above). 165 */ 166 return 0; 167 } 168#endif 169 VM_BUG_ON(PageTail(page)); 170 171 return 1; 172} 173 174/* 175 * Same as above, but add instead of inc (could just be merged) 176 */ 177static inline int page_cache_add_speculative(struct page *page, int count) 178{ 179 VM_BUG_ON(in_interrupt()); 180 181#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU) 182# ifdef CONFIG_PREEMPT 183 VM_BUG_ON(!in_atomic()); 184# endif 185 VM_BUG_ON(page_count(page) == 0); 186 atomic_add(count, &page->_count); 187 188#else 189 if (unlikely(!atomic_add_unless(&page->_count, count, 0))) 190 return 0; 191#endif 192 VM_BUG_ON(PageCompound(page) && page != compound_head(page)); 193 194 return 1; 195} 196 197static inline int page_freeze_refs(struct page *page, int count) 198{ 199 return likely(atomic_cmpxchg(&page->_count, count, 0) == count); 200} 201 202static inline void page_unfreeze_refs(struct page *page, int count) 203{ 204 VM_BUG_ON(page_count(page) != 0); 205 VM_BUG_ON(count == 0); 206 207 atomic_set(&page->_count, count); 208} 209 210#ifdef CONFIG_NUMA 211extern struct page *__page_cache_alloc(gfp_t gfp); 212#else 213static inline struct page *__page_cache_alloc(gfp_t gfp) 214{ 215 return alloc_pages(gfp, 0); 216} 217#endif 218 219static inline struct page *page_cache_alloc(struct address_space *x) 220{ 221 return __page_cache_alloc(mapping_gfp_mask(x)); 222} 223 224static inline struct page *page_cache_alloc_cold(struct address_space *x) 225{ 226 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 227} 228 229typedef int filler_t(void *, struct page *); 230 231extern struct page * find_get_page(struct address_space *mapping, 232 pgoff_t index); 233extern struct page * find_lock_page(struct address_space *mapping, 234 pgoff_t index); 235extern struct page * find_or_create_page(struct address_space *mapping, 236 pgoff_t index, gfp_t gfp_mask); 237unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 238 unsigned int nr_pages, struct page **pages); 239unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 240 unsigned int nr_pages, struct page **pages); 241unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 242 int tag, unsigned int nr_pages, struct page **pages); 243 244struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index); 245 246/* 247 * Returns locked page at given index in given cache, creating it if needed. 248 */ 249static inline struct page *grab_cache_page(struct address_space *mapping, 250 pgoff_t index) 251{ 252 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 253} 254 255extern struct page * grab_cache_page_nowait(struct address_space *mapping, 256 pgoff_t index); 257extern struct page * read_cache_page_async(struct address_space *mapping, 258 pgoff_t index, filler_t *filler, 259 void *data); 260extern struct page * read_cache_page(struct address_space *mapping, 261 pgoff_t index, filler_t *filler, 262 void *data); 263extern int read_cache_pages(struct address_space *mapping, 264 struct list_head *pages, filler_t *filler, void *data); 265 266static inline struct page *read_mapping_page_async( 267 struct address_space *mapping, 268 pgoff_t index, void *data) 269{ 270 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 271 return read_cache_page_async(mapping, index, filler, data); 272} 273 274static inline struct page *read_mapping_page(struct address_space *mapping, 275 pgoff_t index, void *data) 276{ 277 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 278 return read_cache_page(mapping, index, filler, data); 279} 280 281/* 282 * Return byte-offset into filesystem object for page. 283 */ 284static inline loff_t page_offset(struct page *page) 285{ 286 return ((loff_t)page->index) << PAGE_CACHE_SHIFT; 287} 288 289static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 290 unsigned long address) 291{ 292 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 293 pgoff += vma->vm_pgoff; 294 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); 295} 296 297extern void __lock_page(struct page *page); 298extern int __lock_page_killable(struct page *page); 299extern void __lock_page_nosync(struct page *page); 300extern void unlock_page(struct page *page); 301 302static inline void __set_page_locked(struct page *page) 303{ 304 __set_bit(PG_locked, &page->flags); 305} 306 307static inline void __clear_page_locked(struct page *page) 308{ 309 __clear_bit(PG_locked, &page->flags); 310} 311 312static inline int trylock_page(struct page *page) 313{ 314 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 315} 316 317/* 318 * lock_page may only be called if we have the page's inode pinned. 319 */ 320static inline void lock_page(struct page *page) 321{ 322 might_sleep(); 323 if (!trylock_page(page)) 324 __lock_page(page); 325} 326 327/* 328 * lock_page_killable is like lock_page but can be interrupted by fatal 329 * signals. It returns 0 if it locked the page and -EINTR if it was 330 * killed while waiting. 331 */ 332static inline int lock_page_killable(struct page *page) 333{ 334 might_sleep(); 335 if (!trylock_page(page)) 336 return __lock_page_killable(page); 337 return 0; 338} 339 340/* 341 * lock_page_nosync should only be used if we can't pin the page's inode. 342 * Doesn't play quite so well with block device plugging. 343 */ 344static inline void lock_page_nosync(struct page *page) 345{ 346 might_sleep(); 347 if (!trylock_page(page)) 348 __lock_page_nosync(page); 349} 350 351/* 352 * This is exported only for wait_on_page_locked/wait_on_page_writeback. 353 * Never use this directly! 354 */ 355extern void wait_on_page_bit(struct page *page, int bit_nr); 356 357/* 358 * Wait for a page to be unlocked. 359 * 360 * This must be called with the caller "holding" the page, 361 * ie with increased "page->count" so that the page won't 362 * go away during the wait.. 363 */ 364static inline void wait_on_page_locked(struct page *page) 365{ 366 if (PageLocked(page)) 367 wait_on_page_bit(page, PG_locked); 368} 369 370/* 371 * Wait for a page to complete writeback 372 */ 373static inline void wait_on_page_writeback(struct page *page) 374{ 375 if (PageWriteback(page)) 376 wait_on_page_bit(page, PG_writeback); 377} 378 379extern void end_page_writeback(struct page *page); 380 381/* 382 * Fault a userspace page into pagetables. Return non-zero on a fault. 383 * 384 * This assumes that two userspace pages are always sufficient. That's 385 * not true if PAGE_CACHE_SIZE > PAGE_SIZE. 386 */ 387static inline int fault_in_pages_writeable(char __user *uaddr, int size) 388{ 389 int ret; 390 391 if (unlikely(size == 0)) 392 return 0; 393 394 /* 395 * Writing zeroes into userspace here is OK, because we know that if 396 * the zero gets there, we'll be overwriting it. 397 */ 398 ret = __put_user(0, uaddr); 399 if (ret == 0) { 400 char __user *end = uaddr + size - 1; 401 402 /* 403 * If the page was already mapped, this will get a cache miss 404 * for sure, so try to avoid doing it. 405 */ 406 if (((unsigned long)uaddr & PAGE_MASK) != 407 ((unsigned long)end & PAGE_MASK)) 408 ret = __put_user(0, end); 409 } 410 return ret; 411} 412 413static inline int fault_in_pages_readable(const char __user *uaddr, int size) 414{ 415 volatile char c; 416 int ret; 417 418 if (unlikely(size == 0)) 419 return 0; 420 421 ret = __get_user(c, uaddr); 422 if (ret == 0) { 423 const char __user *end = uaddr + size - 1; 424 425 if (((unsigned long)uaddr & PAGE_MASK) != 426 ((unsigned long)end & PAGE_MASK)) 427 ret = __get_user(c, end); 428 } 429 return ret; 430} 431 432int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 433 pgoff_t index, gfp_t gfp_mask); 434int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 435 pgoff_t index, gfp_t gfp_mask); 436extern void remove_from_page_cache(struct page *page); 437extern void __remove_from_page_cache(struct page *page); 438 439/* 440 * Like add_to_page_cache_locked, but used to add newly allocated pages: 441 * the page is new, so we can just run __set_page_locked() against it. 442 */ 443static inline int add_to_page_cache(struct page *page, 444 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 445{ 446 int error; 447 448 __set_page_locked(page); 449 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 450 if (unlikely(error)) 451 __clear_page_locked(page); 452 return error; 453} 454 455#endif /* _LINUX_PAGEMAP_H */