1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29#define CLONE_NEWNET 0x40000000 /* New network namespace */ 30#define CLONE_IO 0x80000000 /* Clone io context */ 31 32/* 33 * Scheduling policies 34 */ 35#define SCHED_NORMAL 0 36#define SCHED_FIFO 1 37#define SCHED_RR 2 38#define SCHED_BATCH 3 39/* SCHED_ISO: reserved but not implemented yet */ 40#define SCHED_IDLE 5 41 42#ifdef __KERNEL__ 43 44struct sched_param { 45 int sched_priority; 46}; 47 48#include <asm/param.h> /* for HZ */ 49 50#include <linux/capability.h> 51#include <linux/threads.h> 52#include <linux/kernel.h> 53#include <linux/types.h> 54#include <linux/timex.h> 55#include <linux/jiffies.h> 56#include <linux/rbtree.h> 57#include <linux/thread_info.h> 58#include <linux/cpumask.h> 59#include <linux/errno.h> 60#include <linux/nodemask.h> 61#include <linux/mm_types.h> 62 63#include <asm/system.h> 64#include <asm/semaphore.h> 65#include <asm/page.h> 66#include <asm/ptrace.h> 67#include <asm/cputime.h> 68 69#include <linux/smp.h> 70#include <linux/sem.h> 71#include <linux/signal.h> 72#include <linux/securebits.h> 73#include <linux/fs_struct.h> 74#include <linux/compiler.h> 75#include <linux/completion.h> 76#include <linux/pid.h> 77#include <linux/percpu.h> 78#include <linux/topology.h> 79#include <linux/proportions.h> 80#include <linux/seccomp.h> 81#include <linux/rcupdate.h> 82#include <linux/rtmutex.h> 83 84#include <linux/time.h> 85#include <linux/param.h> 86#include <linux/resource.h> 87#include <linux/timer.h> 88#include <linux/hrtimer.h> 89#include <linux/task_io_accounting.h> 90#include <linux/kobject.h> 91#include <linux/latencytop.h> 92 93#include <asm/processor.h> 94 95struct exec_domain; 96struct futex_pi_state; 97struct robust_list_head; 98struct bio; 99 100/* 101 * List of flags we want to share for kernel threads, 102 * if only because they are not used by them anyway. 103 */ 104#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 105 106/* 107 * These are the constant used to fake the fixed-point load-average 108 * counting. Some notes: 109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 110 * a load-average precision of 10 bits integer + 11 bits fractional 111 * - if you want to count load-averages more often, you need more 112 * precision, or rounding will get you. With 2-second counting freq, 113 * the EXP_n values would be 1981, 2034 and 2043 if still using only 114 * 11 bit fractions. 115 */ 116extern unsigned long avenrun[]; /* Load averages */ 117 118#define FSHIFT 11 /* nr of bits of precision */ 119#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 120#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 121#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 122#define EXP_5 2014 /* 1/exp(5sec/5min) */ 123#define EXP_15 2037 /* 1/exp(5sec/15min) */ 124 125#define CALC_LOAD(load,exp,n) \ 126 load *= exp; \ 127 load += n*(FIXED_1-exp); \ 128 load >>= FSHIFT; 129 130extern unsigned long total_forks; 131extern int nr_threads; 132DECLARE_PER_CPU(unsigned long, process_counts); 133extern int nr_processes(void); 134extern unsigned long nr_running(void); 135extern unsigned long nr_uninterruptible(void); 136extern unsigned long nr_active(void); 137extern unsigned long nr_iowait(void); 138extern unsigned long weighted_cpuload(const int cpu); 139 140struct seq_file; 141struct cfs_rq; 142struct task_group; 143#ifdef CONFIG_SCHED_DEBUG 144extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 145extern void proc_sched_set_task(struct task_struct *p); 146extern void 147print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 148#else 149static inline void 150proc_sched_show_task(struct task_struct *p, struct seq_file *m) 151{ 152} 153static inline void proc_sched_set_task(struct task_struct *p) 154{ 155} 156static inline void 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 158{ 159} 160#endif 161 162/* 163 * Task state bitmask. NOTE! These bits are also 164 * encoded in fs/proc/array.c: get_task_state(). 165 * 166 * We have two separate sets of flags: task->state 167 * is about runnability, while task->exit_state are 168 * about the task exiting. Confusing, but this way 169 * modifying one set can't modify the other one by 170 * mistake. 171 */ 172#define TASK_RUNNING 0 173#define TASK_INTERRUPTIBLE 1 174#define TASK_UNINTERRUPTIBLE 2 175#define __TASK_STOPPED 4 176#define __TASK_TRACED 8 177/* in tsk->exit_state */ 178#define EXIT_ZOMBIE 16 179#define EXIT_DEAD 32 180/* in tsk->state again */ 181#define TASK_DEAD 64 182#define TASK_WAKEKILL 128 183 184/* Convenience macros for the sake of set_task_state */ 185#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 186#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 187#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 188 189/* Convenience macros for the sake of wake_up */ 190#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 191#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 192 193/* get_task_state() */ 194#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 195 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 196 __TASK_TRACED) 197 198#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 199#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 200#define task_is_stopped_or_traced(task) \ 201 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 202#define task_contributes_to_load(task) \ 203 ((task->state & TASK_UNINTERRUPTIBLE) != 0) 204 205#define __set_task_state(tsk, state_value) \ 206 do { (tsk)->state = (state_value); } while (0) 207#define set_task_state(tsk, state_value) \ 208 set_mb((tsk)->state, (state_value)) 209 210/* 211 * set_current_state() includes a barrier so that the write of current->state 212 * is correctly serialised wrt the caller's subsequent test of whether to 213 * actually sleep: 214 * 215 * set_current_state(TASK_UNINTERRUPTIBLE); 216 * if (do_i_need_to_sleep()) 217 * schedule(); 218 * 219 * If the caller does not need such serialisation then use __set_current_state() 220 */ 221#define __set_current_state(state_value) \ 222 do { current->state = (state_value); } while (0) 223#define set_current_state(state_value) \ 224 set_mb(current->state, (state_value)) 225 226/* Task command name length */ 227#define TASK_COMM_LEN 16 228 229#include <linux/spinlock.h> 230 231/* 232 * This serializes "schedule()" and also protects 233 * the run-queue from deletions/modifications (but 234 * _adding_ to the beginning of the run-queue has 235 * a separate lock). 236 */ 237extern rwlock_t tasklist_lock; 238extern spinlock_t mmlist_lock; 239 240struct task_struct; 241 242extern void sched_init(void); 243extern void sched_init_smp(void); 244extern void init_idle(struct task_struct *idle, int cpu); 245extern void init_idle_bootup_task(struct task_struct *idle); 246 247extern cpumask_t nohz_cpu_mask; 248#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 249extern int select_nohz_load_balancer(int cpu); 250#else 251static inline int select_nohz_load_balancer(int cpu) 252{ 253 return 0; 254} 255#endif 256 257extern unsigned long rt_needs_cpu(int cpu); 258 259/* 260 * Only dump TASK_* tasks. (0 for all tasks) 261 */ 262extern void show_state_filter(unsigned long state_filter); 263 264static inline void show_state(void) 265{ 266 show_state_filter(0); 267} 268 269extern void show_regs(struct pt_regs *); 270 271/* 272 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 273 * task), SP is the stack pointer of the first frame that should be shown in the back 274 * trace (or NULL if the entire call-chain of the task should be shown). 275 */ 276extern void show_stack(struct task_struct *task, unsigned long *sp); 277 278void io_schedule(void); 279long io_schedule_timeout(long timeout); 280 281extern void cpu_init (void); 282extern void trap_init(void); 283extern void account_process_tick(struct task_struct *task, int user); 284extern void update_process_times(int user); 285extern void scheduler_tick(void); 286extern void hrtick_resched(void); 287 288extern void sched_show_task(struct task_struct *p); 289 290#ifdef CONFIG_DETECT_SOFTLOCKUP 291extern void softlockup_tick(void); 292extern void spawn_softlockup_task(void); 293extern void touch_softlockup_watchdog(void); 294extern void touch_all_softlockup_watchdogs(void); 295extern unsigned long softlockup_thresh; 296extern unsigned long sysctl_hung_task_check_count; 297extern unsigned long sysctl_hung_task_timeout_secs; 298extern unsigned long sysctl_hung_task_warnings; 299#else 300static inline void softlockup_tick(void) 301{ 302} 303static inline void spawn_softlockup_task(void) 304{ 305} 306static inline void touch_softlockup_watchdog(void) 307{ 308} 309static inline void touch_all_softlockup_watchdogs(void) 310{ 311} 312#endif 313 314 315/* Attach to any functions which should be ignored in wchan output. */ 316#define __sched __attribute__((__section__(".sched.text"))) 317 318/* Linker adds these: start and end of __sched functions */ 319extern char __sched_text_start[], __sched_text_end[]; 320 321/* Is this address in the __sched functions? */ 322extern int in_sched_functions(unsigned long addr); 323 324#define MAX_SCHEDULE_TIMEOUT LONG_MAX 325extern signed long FASTCALL(schedule_timeout(signed long timeout)); 326extern signed long schedule_timeout_interruptible(signed long timeout); 327extern signed long schedule_timeout_killable(signed long timeout); 328extern signed long schedule_timeout_uninterruptible(signed long timeout); 329asmlinkage void schedule(void); 330 331struct nsproxy; 332struct user_namespace; 333 334/* Maximum number of active map areas.. This is a random (large) number */ 335#define DEFAULT_MAX_MAP_COUNT 65536 336 337extern int sysctl_max_map_count; 338 339#include <linux/aio.h> 340 341extern unsigned long 342arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 343 unsigned long, unsigned long); 344extern unsigned long 345arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 346 unsigned long len, unsigned long pgoff, 347 unsigned long flags); 348extern void arch_unmap_area(struct mm_struct *, unsigned long); 349extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 350 351#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 352/* 353 * The mm counters are not protected by its page_table_lock, 354 * so must be incremented atomically. 355 */ 356#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 357#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 358#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 359#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 360#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 361 362#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 363/* 364 * The mm counters are protected by its page_table_lock, 365 * so can be incremented directly. 366 */ 367#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 368#define get_mm_counter(mm, member) ((mm)->_##member) 369#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 370#define inc_mm_counter(mm, member) (mm)->_##member++ 371#define dec_mm_counter(mm, member) (mm)->_##member-- 372 373#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 374 375#define get_mm_rss(mm) \ 376 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 377#define update_hiwater_rss(mm) do { \ 378 unsigned long _rss = get_mm_rss(mm); \ 379 if ((mm)->hiwater_rss < _rss) \ 380 (mm)->hiwater_rss = _rss; \ 381} while (0) 382#define update_hiwater_vm(mm) do { \ 383 if ((mm)->hiwater_vm < (mm)->total_vm) \ 384 (mm)->hiwater_vm = (mm)->total_vm; \ 385} while (0) 386 387extern void set_dumpable(struct mm_struct *mm, int value); 388extern int get_dumpable(struct mm_struct *mm); 389 390/* mm flags */ 391/* dumpable bits */ 392#define MMF_DUMPABLE 0 /* core dump is permitted */ 393#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 394#define MMF_DUMPABLE_BITS 2 395 396/* coredump filter bits */ 397#define MMF_DUMP_ANON_PRIVATE 2 398#define MMF_DUMP_ANON_SHARED 3 399#define MMF_DUMP_MAPPED_PRIVATE 4 400#define MMF_DUMP_MAPPED_SHARED 5 401#define MMF_DUMP_ELF_HEADERS 6 402#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 403#define MMF_DUMP_FILTER_BITS 5 404#define MMF_DUMP_FILTER_MASK \ 405 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 406#define MMF_DUMP_FILTER_DEFAULT \ 407 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED)) 408 409struct sighand_struct { 410 atomic_t count; 411 struct k_sigaction action[_NSIG]; 412 spinlock_t siglock; 413 wait_queue_head_t signalfd_wqh; 414}; 415 416struct pacct_struct { 417 int ac_flag; 418 long ac_exitcode; 419 unsigned long ac_mem; 420 cputime_t ac_utime, ac_stime; 421 unsigned long ac_minflt, ac_majflt; 422}; 423 424/* 425 * NOTE! "signal_struct" does not have it's own 426 * locking, because a shared signal_struct always 427 * implies a shared sighand_struct, so locking 428 * sighand_struct is always a proper superset of 429 * the locking of signal_struct. 430 */ 431struct signal_struct { 432 atomic_t count; 433 atomic_t live; 434 435 wait_queue_head_t wait_chldexit; /* for wait4() */ 436 437 /* current thread group signal load-balancing target: */ 438 struct task_struct *curr_target; 439 440 /* shared signal handling: */ 441 struct sigpending shared_pending; 442 443 /* thread group exit support */ 444 int group_exit_code; 445 /* overloaded: 446 * - notify group_exit_task when ->count is equal to notify_count 447 * - everyone except group_exit_task is stopped during signal delivery 448 * of fatal signals, group_exit_task processes the signal. 449 */ 450 struct task_struct *group_exit_task; 451 int notify_count; 452 453 /* thread group stop support, overloads group_exit_code too */ 454 int group_stop_count; 455 unsigned int flags; /* see SIGNAL_* flags below */ 456 457 /* POSIX.1b Interval Timers */ 458 struct list_head posix_timers; 459 460 /* ITIMER_REAL timer for the process */ 461 struct hrtimer real_timer; 462 struct task_struct *tsk; 463 ktime_t it_real_incr; 464 465 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 466 cputime_t it_prof_expires, it_virt_expires; 467 cputime_t it_prof_incr, it_virt_incr; 468 469 /* job control IDs */ 470 471 /* 472 * pgrp and session fields are deprecated. 473 * use the task_session_Xnr and task_pgrp_Xnr routines below 474 */ 475 476 union { 477 pid_t pgrp __deprecated; 478 pid_t __pgrp; 479 }; 480 481 struct pid *tty_old_pgrp; 482 483 union { 484 pid_t session __deprecated; 485 pid_t __session; 486 }; 487 488 /* boolean value for session group leader */ 489 int leader; 490 491 struct tty_struct *tty; /* NULL if no tty */ 492 493 /* 494 * Cumulative resource counters for dead threads in the group, 495 * and for reaped dead child processes forked by this group. 496 * Live threads maintain their own counters and add to these 497 * in __exit_signal, except for the group leader. 498 */ 499 cputime_t utime, stime, cutime, cstime; 500 cputime_t gtime; 501 cputime_t cgtime; 502 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 503 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 504 unsigned long inblock, oublock, cinblock, coublock; 505 506 /* 507 * Cumulative ns of scheduled CPU time for dead threads in the 508 * group, not including a zombie group leader. (This only differs 509 * from jiffies_to_ns(utime + stime) if sched_clock uses something 510 * other than jiffies.) 511 */ 512 unsigned long long sum_sched_runtime; 513 514 /* 515 * We don't bother to synchronize most readers of this at all, 516 * because there is no reader checking a limit that actually needs 517 * to get both rlim_cur and rlim_max atomically, and either one 518 * alone is a single word that can safely be read normally. 519 * getrlimit/setrlimit use task_lock(current->group_leader) to 520 * protect this instead of the siglock, because they really 521 * have no need to disable irqs. 522 */ 523 struct rlimit rlim[RLIM_NLIMITS]; 524 525 struct list_head cpu_timers[3]; 526 527 /* keep the process-shared keyrings here so that they do the right 528 * thing in threads created with CLONE_THREAD */ 529#ifdef CONFIG_KEYS 530 struct key *session_keyring; /* keyring inherited over fork */ 531 struct key *process_keyring; /* keyring private to this process */ 532#endif 533#ifdef CONFIG_BSD_PROCESS_ACCT 534 struct pacct_struct pacct; /* per-process accounting information */ 535#endif 536#ifdef CONFIG_TASKSTATS 537 struct taskstats *stats; 538#endif 539#ifdef CONFIG_AUDIT 540 unsigned audit_tty; 541 struct tty_audit_buf *tty_audit_buf; 542#endif 543}; 544 545/* Context switch must be unlocked if interrupts are to be enabled */ 546#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 547# define __ARCH_WANT_UNLOCKED_CTXSW 548#endif 549 550/* 551 * Bits in flags field of signal_struct. 552 */ 553#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 554#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 555#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 556#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 557 558/* 559 * Some day this will be a full-fledged user tracking system.. 560 */ 561struct user_struct { 562 atomic_t __count; /* reference count */ 563 atomic_t processes; /* How many processes does this user have? */ 564 atomic_t files; /* How many open files does this user have? */ 565 atomic_t sigpending; /* How many pending signals does this user have? */ 566#ifdef CONFIG_INOTIFY_USER 567 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 568 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 569#endif 570#ifdef CONFIG_POSIX_MQUEUE 571 /* protected by mq_lock */ 572 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 573#endif 574 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 575 576#ifdef CONFIG_KEYS 577 struct key *uid_keyring; /* UID specific keyring */ 578 struct key *session_keyring; /* UID's default session keyring */ 579#endif 580 581 /* Hash table maintenance information */ 582 struct hlist_node uidhash_node; 583 uid_t uid; 584 585#ifdef CONFIG_FAIR_USER_SCHED 586 struct task_group *tg; 587#ifdef CONFIG_SYSFS 588 struct kobject kobj; 589 struct work_struct work; 590#endif 591#endif 592}; 593 594extern int uids_sysfs_init(void); 595 596extern struct user_struct *find_user(uid_t); 597 598extern struct user_struct root_user; 599#define INIT_USER (&root_user) 600 601struct backing_dev_info; 602struct reclaim_state; 603 604#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 605struct sched_info { 606 /* cumulative counters */ 607 unsigned long pcount; /* # of times run on this cpu */ 608 unsigned long long cpu_time, /* time spent on the cpu */ 609 run_delay; /* time spent waiting on a runqueue */ 610 611 /* timestamps */ 612 unsigned long long last_arrival,/* when we last ran on a cpu */ 613 last_queued; /* when we were last queued to run */ 614#ifdef CONFIG_SCHEDSTATS 615 /* BKL stats */ 616 unsigned int bkl_count; 617#endif 618}; 619#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 620 621#ifdef CONFIG_SCHEDSTATS 622extern const struct file_operations proc_schedstat_operations; 623#endif /* CONFIG_SCHEDSTATS */ 624 625#ifdef CONFIG_TASK_DELAY_ACCT 626struct task_delay_info { 627 spinlock_t lock; 628 unsigned int flags; /* Private per-task flags */ 629 630 /* For each stat XXX, add following, aligned appropriately 631 * 632 * struct timespec XXX_start, XXX_end; 633 * u64 XXX_delay; 634 * u32 XXX_count; 635 * 636 * Atomicity of updates to XXX_delay, XXX_count protected by 637 * single lock above (split into XXX_lock if contention is an issue). 638 */ 639 640 /* 641 * XXX_count is incremented on every XXX operation, the delay 642 * associated with the operation is added to XXX_delay. 643 * XXX_delay contains the accumulated delay time in nanoseconds. 644 */ 645 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 646 u64 blkio_delay; /* wait for sync block io completion */ 647 u64 swapin_delay; /* wait for swapin block io completion */ 648 u32 blkio_count; /* total count of the number of sync block */ 649 /* io operations performed */ 650 u32 swapin_count; /* total count of the number of swapin block */ 651 /* io operations performed */ 652}; 653#endif /* CONFIG_TASK_DELAY_ACCT */ 654 655static inline int sched_info_on(void) 656{ 657#ifdef CONFIG_SCHEDSTATS 658 return 1; 659#elif defined(CONFIG_TASK_DELAY_ACCT) 660 extern int delayacct_on; 661 return delayacct_on; 662#else 663 return 0; 664#endif 665} 666 667enum cpu_idle_type { 668 CPU_IDLE, 669 CPU_NOT_IDLE, 670 CPU_NEWLY_IDLE, 671 CPU_MAX_IDLE_TYPES 672}; 673 674/* 675 * sched-domains (multiprocessor balancing) declarations: 676 */ 677 678/* 679 * Increase resolution of nice-level calculations: 680 */ 681#define SCHED_LOAD_SHIFT 10 682#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 683 684#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 685 686#ifdef CONFIG_SMP 687#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 688#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 689#define SD_BALANCE_EXEC 4 /* Balance on exec */ 690#define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 691#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 692#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 693#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 694#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 695#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 696#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 697#define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 698 699#define BALANCE_FOR_MC_POWER \ 700 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 701 702#define BALANCE_FOR_PKG_POWER \ 703 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 704 SD_POWERSAVINGS_BALANCE : 0) 705 706#define test_sd_parent(sd, flag) ((sd->parent && \ 707 (sd->parent->flags & flag)) ? 1 : 0) 708 709 710struct sched_group { 711 struct sched_group *next; /* Must be a circular list */ 712 cpumask_t cpumask; 713 714 /* 715 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 716 * single CPU. This is read only (except for setup, hotplug CPU). 717 * Note : Never change cpu_power without recompute its reciprocal 718 */ 719 unsigned int __cpu_power; 720 /* 721 * reciprocal value of cpu_power to avoid expensive divides 722 * (see include/linux/reciprocal_div.h) 723 */ 724 u32 reciprocal_cpu_power; 725}; 726 727struct sched_domain { 728 /* These fields must be setup */ 729 struct sched_domain *parent; /* top domain must be null terminated */ 730 struct sched_domain *child; /* bottom domain must be null terminated */ 731 struct sched_group *groups; /* the balancing groups of the domain */ 732 cpumask_t span; /* span of all CPUs in this domain */ 733 unsigned long min_interval; /* Minimum balance interval ms */ 734 unsigned long max_interval; /* Maximum balance interval ms */ 735 unsigned int busy_factor; /* less balancing by factor if busy */ 736 unsigned int imbalance_pct; /* No balance until over watermark */ 737 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 738 unsigned int busy_idx; 739 unsigned int idle_idx; 740 unsigned int newidle_idx; 741 unsigned int wake_idx; 742 unsigned int forkexec_idx; 743 int flags; /* See SD_* */ 744 745 /* Runtime fields. */ 746 unsigned long last_balance; /* init to jiffies. units in jiffies */ 747 unsigned int balance_interval; /* initialise to 1. units in ms. */ 748 unsigned int nr_balance_failed; /* initialise to 0 */ 749 750#ifdef CONFIG_SCHEDSTATS 751 /* load_balance() stats */ 752 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 753 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 754 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 755 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 756 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 757 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 758 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 759 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 760 761 /* Active load balancing */ 762 unsigned int alb_count; 763 unsigned int alb_failed; 764 unsigned int alb_pushed; 765 766 /* SD_BALANCE_EXEC stats */ 767 unsigned int sbe_count; 768 unsigned int sbe_balanced; 769 unsigned int sbe_pushed; 770 771 /* SD_BALANCE_FORK stats */ 772 unsigned int sbf_count; 773 unsigned int sbf_balanced; 774 unsigned int sbf_pushed; 775 776 /* try_to_wake_up() stats */ 777 unsigned int ttwu_wake_remote; 778 unsigned int ttwu_move_affine; 779 unsigned int ttwu_move_balance; 780#endif 781}; 782 783extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new); 784 785#endif /* CONFIG_SMP */ 786 787/* 788 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of 789 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a 790 * task of nice 0 or enough lower priority tasks to bring up the 791 * weighted_cpuload 792 */ 793static inline int above_background_load(void) 794{ 795 unsigned long cpu; 796 797 for_each_online_cpu(cpu) { 798 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE) 799 return 1; 800 } 801 return 0; 802} 803 804struct io_context; /* See blkdev.h */ 805#define NGROUPS_SMALL 32 806#define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 807struct group_info { 808 int ngroups; 809 atomic_t usage; 810 gid_t small_block[NGROUPS_SMALL]; 811 int nblocks; 812 gid_t *blocks[0]; 813}; 814 815/* 816 * get_group_info() must be called with the owning task locked (via task_lock()) 817 * when task != current. The reason being that the vast majority of callers are 818 * looking at current->group_info, which can not be changed except by the 819 * current task. Changing current->group_info requires the task lock, too. 820 */ 821#define get_group_info(group_info) do { \ 822 atomic_inc(&(group_info)->usage); \ 823} while (0) 824 825#define put_group_info(group_info) do { \ 826 if (atomic_dec_and_test(&(group_info)->usage)) \ 827 groups_free(group_info); \ 828} while (0) 829 830extern struct group_info *groups_alloc(int gidsetsize); 831extern void groups_free(struct group_info *group_info); 832extern int set_current_groups(struct group_info *group_info); 833extern int groups_search(struct group_info *group_info, gid_t grp); 834/* access the groups "array" with this macro */ 835#define GROUP_AT(gi, i) \ 836 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 837 838#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 839extern void prefetch_stack(struct task_struct *t); 840#else 841static inline void prefetch_stack(struct task_struct *t) { } 842#endif 843 844struct audit_context; /* See audit.c */ 845struct mempolicy; 846struct pipe_inode_info; 847struct uts_namespace; 848 849struct rq; 850struct sched_domain; 851 852struct sched_class { 853 const struct sched_class *next; 854 855 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 856 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 857 void (*yield_task) (struct rq *rq); 858 int (*select_task_rq)(struct task_struct *p, int sync); 859 860 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p); 861 862 struct task_struct * (*pick_next_task) (struct rq *rq); 863 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 864 865#ifdef CONFIG_SMP 866 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 867 struct rq *busiest, unsigned long max_load_move, 868 struct sched_domain *sd, enum cpu_idle_type idle, 869 int *all_pinned, int *this_best_prio); 870 871 int (*move_one_task) (struct rq *this_rq, int this_cpu, 872 struct rq *busiest, struct sched_domain *sd, 873 enum cpu_idle_type idle); 874 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 875 void (*post_schedule) (struct rq *this_rq); 876 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 877#endif 878 879 void (*set_curr_task) (struct rq *rq); 880 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 881 void (*task_new) (struct rq *rq, struct task_struct *p); 882 void (*set_cpus_allowed)(struct task_struct *p, cpumask_t *newmask); 883 884 void (*join_domain)(struct rq *rq); 885 void (*leave_domain)(struct rq *rq); 886 887 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 888 int running); 889 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 890 int running); 891 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 892 int oldprio, int running); 893}; 894 895struct load_weight { 896 unsigned long weight, inv_weight; 897}; 898 899/* 900 * CFS stats for a schedulable entity (task, task-group etc) 901 * 902 * Current field usage histogram: 903 * 904 * 4 se->block_start 905 * 4 se->run_node 906 * 4 se->sleep_start 907 * 6 se->load.weight 908 */ 909struct sched_entity { 910 struct load_weight load; /* for load-balancing */ 911 struct rb_node run_node; 912 unsigned int on_rq; 913 914 u64 exec_start; 915 u64 sum_exec_runtime; 916 u64 vruntime; 917 u64 prev_sum_exec_runtime; 918 919#ifdef CONFIG_SCHEDSTATS 920 u64 wait_start; 921 u64 wait_max; 922 u64 wait_count; 923 u64 wait_sum; 924 925 u64 sleep_start; 926 u64 sleep_max; 927 s64 sum_sleep_runtime; 928 929 u64 block_start; 930 u64 block_max; 931 u64 exec_max; 932 u64 slice_max; 933 934 u64 nr_migrations; 935 u64 nr_migrations_cold; 936 u64 nr_failed_migrations_affine; 937 u64 nr_failed_migrations_running; 938 u64 nr_failed_migrations_hot; 939 u64 nr_forced_migrations; 940 u64 nr_forced2_migrations; 941 942 u64 nr_wakeups; 943 u64 nr_wakeups_sync; 944 u64 nr_wakeups_migrate; 945 u64 nr_wakeups_local; 946 u64 nr_wakeups_remote; 947 u64 nr_wakeups_affine; 948 u64 nr_wakeups_affine_attempts; 949 u64 nr_wakeups_passive; 950 u64 nr_wakeups_idle; 951#endif 952 953#ifdef CONFIG_FAIR_GROUP_SCHED 954 struct sched_entity *parent; 955 /* rq on which this entity is (to be) queued: */ 956 struct cfs_rq *cfs_rq; 957 /* rq "owned" by this entity/group: */ 958 struct cfs_rq *my_q; 959#endif 960}; 961 962struct sched_rt_entity { 963 struct list_head run_list; 964 unsigned int time_slice; 965 unsigned long timeout; 966 int nr_cpus_allowed; 967 968#ifdef CONFIG_FAIR_GROUP_SCHED 969 struct sched_rt_entity *parent; 970 /* rq on which this entity is (to be) queued: */ 971 struct rt_rq *rt_rq; 972 /* rq "owned" by this entity/group: */ 973 struct rt_rq *my_q; 974#endif 975}; 976 977struct task_struct { 978 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 979 void *stack; 980 atomic_t usage; 981 unsigned int flags; /* per process flags, defined below */ 982 unsigned int ptrace; 983 984 int lock_depth; /* BKL lock depth */ 985 986#ifdef CONFIG_SMP 987#ifdef __ARCH_WANT_UNLOCKED_CTXSW 988 int oncpu; 989#endif 990#endif 991 992 int prio, static_prio, normal_prio; 993 const struct sched_class *sched_class; 994 struct sched_entity se; 995 struct sched_rt_entity rt; 996 997#ifdef CONFIG_PREEMPT_NOTIFIERS 998 /* list of struct preempt_notifier: */ 999 struct hlist_head preempt_notifiers; 1000#endif 1001 1002 /* 1003 * fpu_counter contains the number of consecutive context switches 1004 * that the FPU is used. If this is over a threshold, the lazy fpu 1005 * saving becomes unlazy to save the trap. This is an unsigned char 1006 * so that after 256 times the counter wraps and the behavior turns 1007 * lazy again; this to deal with bursty apps that only use FPU for 1008 * a short time 1009 */ 1010 unsigned char fpu_counter; 1011 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1012#ifdef CONFIG_BLK_DEV_IO_TRACE 1013 unsigned int btrace_seq; 1014#endif 1015 1016 unsigned int policy; 1017 cpumask_t cpus_allowed; 1018 1019#ifdef CONFIG_PREEMPT_RCU 1020 int rcu_read_lock_nesting; 1021 int rcu_flipctr_idx; 1022#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1023 1024#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1025 struct sched_info sched_info; 1026#endif 1027 1028 struct list_head tasks; 1029 /* 1030 * ptrace_list/ptrace_children forms the list of my children 1031 * that were stolen by a ptracer. 1032 */ 1033 struct list_head ptrace_children; 1034 struct list_head ptrace_list; 1035 1036 struct mm_struct *mm, *active_mm; 1037 1038/* task state */ 1039 struct linux_binfmt *binfmt; 1040 int exit_state; 1041 int exit_code, exit_signal; 1042 int pdeath_signal; /* The signal sent when the parent dies */ 1043 /* ??? */ 1044 unsigned int personality; 1045 unsigned did_exec:1; 1046 pid_t pid; 1047 pid_t tgid; 1048 1049#ifdef CONFIG_CC_STACKPROTECTOR 1050 /* Canary value for the -fstack-protector gcc feature */ 1051 unsigned long stack_canary; 1052#endif 1053 /* 1054 * pointers to (original) parent process, youngest child, younger sibling, 1055 * older sibling, respectively. (p->father can be replaced with 1056 * p->parent->pid) 1057 */ 1058 struct task_struct *real_parent; /* real parent process (when being debugged) */ 1059 struct task_struct *parent; /* parent process */ 1060 /* 1061 * children/sibling forms the list of my children plus the 1062 * tasks I'm ptracing. 1063 */ 1064 struct list_head children; /* list of my children */ 1065 struct list_head sibling; /* linkage in my parent's children list */ 1066 struct task_struct *group_leader; /* threadgroup leader */ 1067 1068 /* PID/PID hash table linkage. */ 1069 struct pid_link pids[PIDTYPE_MAX]; 1070 struct list_head thread_group; 1071 1072 struct completion *vfork_done; /* for vfork() */ 1073 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1074 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1075 1076 unsigned int rt_priority; 1077 cputime_t utime, stime, utimescaled, stimescaled; 1078 cputime_t gtime; 1079 cputime_t prev_utime, prev_stime; 1080 unsigned long nvcsw, nivcsw; /* context switch counts */ 1081 struct timespec start_time; /* monotonic time */ 1082 struct timespec real_start_time; /* boot based time */ 1083/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1084 unsigned long min_flt, maj_flt; 1085 1086 cputime_t it_prof_expires, it_virt_expires; 1087 unsigned long long it_sched_expires; 1088 struct list_head cpu_timers[3]; 1089 1090/* process credentials */ 1091 uid_t uid,euid,suid,fsuid; 1092 gid_t gid,egid,sgid,fsgid; 1093 struct group_info *group_info; 1094 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 1095 unsigned keep_capabilities:1; 1096 struct user_struct *user; 1097#ifdef CONFIG_KEYS 1098 struct key *request_key_auth; /* assumed request_key authority */ 1099 struct key *thread_keyring; /* keyring private to this thread */ 1100 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1101#endif 1102 char comm[TASK_COMM_LEN]; /* executable name excluding path 1103 - access with [gs]et_task_comm (which lock 1104 it with task_lock()) 1105 - initialized normally by flush_old_exec */ 1106/* file system info */ 1107 int link_count, total_link_count; 1108#ifdef CONFIG_SYSVIPC 1109/* ipc stuff */ 1110 struct sysv_sem sysvsem; 1111#endif 1112#ifdef CONFIG_DETECT_SOFTLOCKUP 1113/* hung task detection */ 1114 unsigned long last_switch_timestamp; 1115 unsigned long last_switch_count; 1116#endif 1117/* CPU-specific state of this task */ 1118 struct thread_struct thread; 1119/* filesystem information */ 1120 struct fs_struct *fs; 1121/* open file information */ 1122 struct files_struct *files; 1123/* namespaces */ 1124 struct nsproxy *nsproxy; 1125/* signal handlers */ 1126 struct signal_struct *signal; 1127 struct sighand_struct *sighand; 1128 1129 sigset_t blocked, real_blocked; 1130 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 1131 struct sigpending pending; 1132 1133 unsigned long sas_ss_sp; 1134 size_t sas_ss_size; 1135 int (*notifier)(void *priv); 1136 void *notifier_data; 1137 sigset_t *notifier_mask; 1138#ifdef CONFIG_SECURITY 1139 void *security; 1140#endif 1141 struct audit_context *audit_context; 1142#ifdef CONFIG_AUDITSYSCALL 1143 uid_t loginuid; 1144 unsigned int sessionid; 1145#endif 1146 seccomp_t seccomp; 1147 1148/* Thread group tracking */ 1149 u32 parent_exec_id; 1150 u32 self_exec_id; 1151/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1152 spinlock_t alloc_lock; 1153 1154 /* Protection of the PI data structures: */ 1155 spinlock_t pi_lock; 1156 1157#ifdef CONFIG_RT_MUTEXES 1158 /* PI waiters blocked on a rt_mutex held by this task */ 1159 struct plist_head pi_waiters; 1160 /* Deadlock detection and priority inheritance handling */ 1161 struct rt_mutex_waiter *pi_blocked_on; 1162#endif 1163 1164#ifdef CONFIG_DEBUG_MUTEXES 1165 /* mutex deadlock detection */ 1166 struct mutex_waiter *blocked_on; 1167#endif 1168#ifdef CONFIG_TRACE_IRQFLAGS 1169 unsigned int irq_events; 1170 int hardirqs_enabled; 1171 unsigned long hardirq_enable_ip; 1172 unsigned int hardirq_enable_event; 1173 unsigned long hardirq_disable_ip; 1174 unsigned int hardirq_disable_event; 1175 int softirqs_enabled; 1176 unsigned long softirq_disable_ip; 1177 unsigned int softirq_disable_event; 1178 unsigned long softirq_enable_ip; 1179 unsigned int softirq_enable_event; 1180 int hardirq_context; 1181 int softirq_context; 1182#endif 1183#ifdef CONFIG_LOCKDEP 1184# define MAX_LOCK_DEPTH 30UL 1185 u64 curr_chain_key; 1186 int lockdep_depth; 1187 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1188 unsigned int lockdep_recursion; 1189#endif 1190 1191/* journalling filesystem info */ 1192 void *journal_info; 1193 1194/* stacked block device info */ 1195 struct bio *bio_list, **bio_tail; 1196 1197/* VM state */ 1198 struct reclaim_state *reclaim_state; 1199 1200 struct backing_dev_info *backing_dev_info; 1201 1202 struct io_context *io_context; 1203 1204 unsigned long ptrace_message; 1205 siginfo_t *last_siginfo; /* For ptrace use. */ 1206#ifdef CONFIG_TASK_XACCT 1207/* i/o counters(bytes read/written, #syscalls */ 1208 u64 rchar, wchar, syscr, syscw; 1209#endif 1210 struct task_io_accounting ioac; 1211#if defined(CONFIG_TASK_XACCT) 1212 u64 acct_rss_mem1; /* accumulated rss usage */ 1213 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1214 cputime_t acct_stimexpd;/* stime since last update */ 1215#endif 1216#ifdef CONFIG_NUMA 1217 struct mempolicy *mempolicy; 1218 short il_next; 1219#endif 1220#ifdef CONFIG_CPUSETS 1221 nodemask_t mems_allowed; 1222 int cpuset_mems_generation; 1223 int cpuset_mem_spread_rotor; 1224#endif 1225#ifdef CONFIG_CGROUPS 1226 /* Control Group info protected by css_set_lock */ 1227 struct css_set *cgroups; 1228 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1229 struct list_head cg_list; 1230#endif 1231#ifdef CONFIG_FUTEX 1232 struct robust_list_head __user *robust_list; 1233#ifdef CONFIG_COMPAT 1234 struct compat_robust_list_head __user *compat_robust_list; 1235#endif 1236 struct list_head pi_state_list; 1237 struct futex_pi_state *pi_state_cache; 1238#endif 1239 atomic_t fs_excl; /* holding fs exclusive resources */ 1240 struct rcu_head rcu; 1241 1242 /* 1243 * cache last used pipe for splice 1244 */ 1245 struct pipe_inode_info *splice_pipe; 1246#ifdef CONFIG_TASK_DELAY_ACCT 1247 struct task_delay_info *delays; 1248#endif 1249#ifdef CONFIG_FAULT_INJECTION 1250 int make_it_fail; 1251#endif 1252 struct prop_local_single dirties; 1253#ifdef CONFIG_LATENCYTOP 1254 int latency_record_count; 1255 struct latency_record latency_record[LT_SAVECOUNT]; 1256#endif 1257}; 1258 1259/* 1260 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1261 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1262 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1263 * values are inverted: lower p->prio value means higher priority. 1264 * 1265 * The MAX_USER_RT_PRIO value allows the actual maximum 1266 * RT priority to be separate from the value exported to 1267 * user-space. This allows kernel threads to set their 1268 * priority to a value higher than any user task. Note: 1269 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1270 */ 1271 1272#define MAX_USER_RT_PRIO 100 1273#define MAX_RT_PRIO MAX_USER_RT_PRIO 1274 1275#define MAX_PRIO (MAX_RT_PRIO + 40) 1276#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1277 1278static inline int rt_prio(int prio) 1279{ 1280 if (unlikely(prio < MAX_RT_PRIO)) 1281 return 1; 1282 return 0; 1283} 1284 1285static inline int rt_task(struct task_struct *p) 1286{ 1287 return rt_prio(p->prio); 1288} 1289 1290static inline void set_task_session(struct task_struct *tsk, pid_t session) 1291{ 1292 tsk->signal->__session = session; 1293} 1294 1295static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1296{ 1297 tsk->signal->__pgrp = pgrp; 1298} 1299 1300static inline struct pid *task_pid(struct task_struct *task) 1301{ 1302 return task->pids[PIDTYPE_PID].pid; 1303} 1304 1305static inline struct pid *task_tgid(struct task_struct *task) 1306{ 1307 return task->group_leader->pids[PIDTYPE_PID].pid; 1308} 1309 1310static inline struct pid *task_pgrp(struct task_struct *task) 1311{ 1312 return task->group_leader->pids[PIDTYPE_PGID].pid; 1313} 1314 1315static inline struct pid *task_session(struct task_struct *task) 1316{ 1317 return task->group_leader->pids[PIDTYPE_SID].pid; 1318} 1319 1320struct pid_namespace; 1321 1322/* 1323 * the helpers to get the task's different pids as they are seen 1324 * from various namespaces 1325 * 1326 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1327 * task_xid_vnr() : virtual id, i.e. the id seen from the namespace the task 1328 * belongs to. this only makes sence when called in the 1329 * context of the task that belongs to the same namespace; 1330 * task_xid_nr_ns() : id seen from the ns specified; 1331 * 1332 * set_task_vxid() : assigns a virtual id to a task; 1333 * 1334 * see also pid_nr() etc in include/linux/pid.h 1335 */ 1336 1337static inline pid_t task_pid_nr(struct task_struct *tsk) 1338{ 1339 return tsk->pid; 1340} 1341 1342pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1343 1344static inline pid_t task_pid_vnr(struct task_struct *tsk) 1345{ 1346 return pid_vnr(task_pid(tsk)); 1347} 1348 1349 1350static inline pid_t task_tgid_nr(struct task_struct *tsk) 1351{ 1352 return tsk->tgid; 1353} 1354 1355pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1356 1357static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1358{ 1359 return pid_vnr(task_tgid(tsk)); 1360} 1361 1362 1363static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1364{ 1365 return tsk->signal->__pgrp; 1366} 1367 1368pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1369 1370static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1371{ 1372 return pid_vnr(task_pgrp(tsk)); 1373} 1374 1375 1376static inline pid_t task_session_nr(struct task_struct *tsk) 1377{ 1378 return tsk->signal->__session; 1379} 1380 1381pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1382 1383static inline pid_t task_session_vnr(struct task_struct *tsk) 1384{ 1385 return pid_vnr(task_session(tsk)); 1386} 1387 1388 1389/** 1390 * pid_alive - check that a task structure is not stale 1391 * @p: Task structure to be checked. 1392 * 1393 * Test if a process is not yet dead (at most zombie state) 1394 * If pid_alive fails, then pointers within the task structure 1395 * can be stale and must not be dereferenced. 1396 */ 1397static inline int pid_alive(struct task_struct *p) 1398{ 1399 return p->pids[PIDTYPE_PID].pid != NULL; 1400} 1401 1402/** 1403 * is_global_init - check if a task structure is init 1404 * @tsk: Task structure to be checked. 1405 * 1406 * Check if a task structure is the first user space task the kernel created. 1407 */ 1408static inline int is_global_init(struct task_struct *tsk) 1409{ 1410 return tsk->pid == 1; 1411} 1412 1413/* 1414 * is_container_init: 1415 * check whether in the task is init in its own pid namespace. 1416 */ 1417extern int is_container_init(struct task_struct *tsk); 1418 1419extern struct pid *cad_pid; 1420 1421extern void free_task(struct task_struct *tsk); 1422#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1423 1424extern void __put_task_struct(struct task_struct *t); 1425 1426static inline void put_task_struct(struct task_struct *t) 1427{ 1428 if (atomic_dec_and_test(&t->usage)) 1429 __put_task_struct(t); 1430} 1431 1432/* 1433 * Per process flags 1434 */ 1435#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1436 /* Not implemented yet, only for 486*/ 1437#define PF_STARTING 0x00000002 /* being created */ 1438#define PF_EXITING 0x00000004 /* getting shut down */ 1439#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1440#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1441#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1442#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1443#define PF_DUMPCORE 0x00000200 /* dumped core */ 1444#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1445#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1446#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1447#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1448#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1449#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1450#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1451#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1452#define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1453#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1454#define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1455#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1456#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1457#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1458#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1459#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1460#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1461#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1462 1463/* 1464 * Only the _current_ task can read/write to tsk->flags, but other 1465 * tasks can access tsk->flags in readonly mode for example 1466 * with tsk_used_math (like during threaded core dumping). 1467 * There is however an exception to this rule during ptrace 1468 * or during fork: the ptracer task is allowed to write to the 1469 * child->flags of its traced child (same goes for fork, the parent 1470 * can write to the child->flags), because we're guaranteed the 1471 * child is not running and in turn not changing child->flags 1472 * at the same time the parent does it. 1473 */ 1474#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1475#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1476#define clear_used_math() clear_stopped_child_used_math(current) 1477#define set_used_math() set_stopped_child_used_math(current) 1478#define conditional_stopped_child_used_math(condition, child) \ 1479 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1480#define conditional_used_math(condition) \ 1481 conditional_stopped_child_used_math(condition, current) 1482#define copy_to_stopped_child_used_math(child) \ 1483 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1484/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1485#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1486#define used_math() tsk_used_math(current) 1487 1488#ifdef CONFIG_SMP 1489extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); 1490#else 1491static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1492{ 1493 if (!cpu_isset(0, new_mask)) 1494 return -EINVAL; 1495 return 0; 1496} 1497#endif 1498 1499extern unsigned long long sched_clock(void); 1500 1501/* 1502 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1503 * clock constructed from sched_clock(): 1504 */ 1505extern unsigned long long cpu_clock(int cpu); 1506 1507extern unsigned long long 1508task_sched_runtime(struct task_struct *task); 1509 1510/* sched_exec is called by processes performing an exec */ 1511#ifdef CONFIG_SMP 1512extern void sched_exec(void); 1513#else 1514#define sched_exec() {} 1515#endif 1516 1517extern void sched_clock_idle_sleep_event(void); 1518extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1519 1520#ifdef CONFIG_HOTPLUG_CPU 1521extern void idle_task_exit(void); 1522#else 1523static inline void idle_task_exit(void) {} 1524#endif 1525 1526extern void sched_idle_next(void); 1527 1528#ifdef CONFIG_SCHED_DEBUG 1529extern unsigned int sysctl_sched_latency; 1530extern unsigned int sysctl_sched_min_granularity; 1531extern unsigned int sysctl_sched_wakeup_granularity; 1532extern unsigned int sysctl_sched_batch_wakeup_granularity; 1533extern unsigned int sysctl_sched_child_runs_first; 1534extern unsigned int sysctl_sched_features; 1535extern unsigned int sysctl_sched_migration_cost; 1536extern unsigned int sysctl_sched_nr_migrate; 1537extern unsigned int sysctl_sched_rt_period; 1538extern unsigned int sysctl_sched_rt_ratio; 1539#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP) 1540extern unsigned int sysctl_sched_min_bal_int_shares; 1541extern unsigned int sysctl_sched_max_bal_int_shares; 1542#endif 1543 1544int sched_nr_latency_handler(struct ctl_table *table, int write, 1545 struct file *file, void __user *buffer, size_t *length, 1546 loff_t *ppos); 1547#endif 1548 1549extern unsigned int sysctl_sched_compat_yield; 1550 1551#ifdef CONFIG_RT_MUTEXES 1552extern int rt_mutex_getprio(struct task_struct *p); 1553extern void rt_mutex_setprio(struct task_struct *p, int prio); 1554extern void rt_mutex_adjust_pi(struct task_struct *p); 1555#else 1556static inline int rt_mutex_getprio(struct task_struct *p) 1557{ 1558 return p->normal_prio; 1559} 1560# define rt_mutex_adjust_pi(p) do { } while (0) 1561#endif 1562 1563extern void set_user_nice(struct task_struct *p, long nice); 1564extern int task_prio(const struct task_struct *p); 1565extern int task_nice(const struct task_struct *p); 1566extern int can_nice(const struct task_struct *p, const int nice); 1567extern int task_curr(const struct task_struct *p); 1568extern int idle_cpu(int cpu); 1569extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1570extern struct task_struct *idle_task(int cpu); 1571extern struct task_struct *curr_task(int cpu); 1572extern void set_curr_task(int cpu, struct task_struct *p); 1573 1574void yield(void); 1575 1576/* 1577 * The default (Linux) execution domain. 1578 */ 1579extern struct exec_domain default_exec_domain; 1580 1581union thread_union { 1582 struct thread_info thread_info; 1583 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1584}; 1585 1586#ifndef __HAVE_ARCH_KSTACK_END 1587static inline int kstack_end(void *addr) 1588{ 1589 /* Reliable end of stack detection: 1590 * Some APM bios versions misalign the stack 1591 */ 1592 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1593} 1594#endif 1595 1596extern union thread_union init_thread_union; 1597extern struct task_struct init_task; 1598 1599extern struct mm_struct init_mm; 1600 1601extern struct pid_namespace init_pid_ns; 1602 1603/* 1604 * find a task by one of its numerical ids 1605 * 1606 * find_task_by_pid_type_ns(): 1607 * it is the most generic call - it finds a task by all id, 1608 * type and namespace specified 1609 * find_task_by_pid_ns(): 1610 * finds a task by its pid in the specified namespace 1611 * find_task_by_vpid(): 1612 * finds a task by its virtual pid 1613 * find_task_by_pid(): 1614 * finds a task by its global pid 1615 * 1616 * see also find_pid() etc in include/linux/pid.h 1617 */ 1618 1619extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1620 struct pid_namespace *ns); 1621 1622extern struct task_struct *find_task_by_pid(pid_t nr); 1623extern struct task_struct *find_task_by_vpid(pid_t nr); 1624extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1625 struct pid_namespace *ns); 1626 1627extern void __set_special_pids(pid_t session, pid_t pgrp); 1628 1629/* per-UID process charging. */ 1630extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1631static inline struct user_struct *get_uid(struct user_struct *u) 1632{ 1633 atomic_inc(&u->__count); 1634 return u; 1635} 1636extern void free_uid(struct user_struct *); 1637extern void switch_uid(struct user_struct *); 1638extern void release_uids(struct user_namespace *ns); 1639 1640#include <asm/current.h> 1641 1642extern void do_timer(unsigned long ticks); 1643 1644extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1645extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1646extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1647 unsigned long clone_flags)); 1648#ifdef CONFIG_SMP 1649 extern void kick_process(struct task_struct *tsk); 1650#else 1651 static inline void kick_process(struct task_struct *tsk) { } 1652#endif 1653extern void sched_fork(struct task_struct *p, int clone_flags); 1654extern void sched_dead(struct task_struct *p); 1655 1656extern int in_group_p(gid_t); 1657extern int in_egroup_p(gid_t); 1658 1659extern void proc_caches_init(void); 1660extern void flush_signals(struct task_struct *); 1661extern void ignore_signals(struct task_struct *); 1662extern void flush_signal_handlers(struct task_struct *, int force_default); 1663extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1664 1665static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1666{ 1667 unsigned long flags; 1668 int ret; 1669 1670 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1671 ret = dequeue_signal(tsk, mask, info); 1672 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1673 1674 return ret; 1675} 1676 1677extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1678 sigset_t *mask); 1679extern void unblock_all_signals(void); 1680extern void release_task(struct task_struct * p); 1681extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1682extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1683extern int force_sigsegv(int, struct task_struct *); 1684extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1685extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1686extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1687extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1688extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1689extern int kill_pgrp(struct pid *pid, int sig, int priv); 1690extern int kill_pid(struct pid *pid, int sig, int priv); 1691extern int kill_proc_info(int, struct siginfo *, pid_t); 1692extern void do_notify_parent(struct task_struct *, int); 1693extern void force_sig(int, struct task_struct *); 1694extern void force_sig_specific(int, struct task_struct *); 1695extern int send_sig(int, struct task_struct *, int); 1696extern void zap_other_threads(struct task_struct *p); 1697extern int kill_proc(pid_t, int, int); 1698extern struct sigqueue *sigqueue_alloc(void); 1699extern void sigqueue_free(struct sigqueue *); 1700extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1701extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1702extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1703extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1704 1705static inline int kill_cad_pid(int sig, int priv) 1706{ 1707 return kill_pid(cad_pid, sig, priv); 1708} 1709 1710/* These can be the second arg to send_sig_info/send_group_sig_info. */ 1711#define SEND_SIG_NOINFO ((struct siginfo *) 0) 1712#define SEND_SIG_PRIV ((struct siginfo *) 1) 1713#define SEND_SIG_FORCED ((struct siginfo *) 2) 1714 1715static inline int is_si_special(const struct siginfo *info) 1716{ 1717 return info <= SEND_SIG_FORCED; 1718} 1719 1720/* True if we are on the alternate signal stack. */ 1721 1722static inline int on_sig_stack(unsigned long sp) 1723{ 1724 return (sp - current->sas_ss_sp < current->sas_ss_size); 1725} 1726 1727static inline int sas_ss_flags(unsigned long sp) 1728{ 1729 return (current->sas_ss_size == 0 ? SS_DISABLE 1730 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1731} 1732 1733/* 1734 * Routines for handling mm_structs 1735 */ 1736extern struct mm_struct * mm_alloc(void); 1737 1738/* mmdrop drops the mm and the page tables */ 1739extern void FASTCALL(__mmdrop(struct mm_struct *)); 1740static inline void mmdrop(struct mm_struct * mm) 1741{ 1742 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1743 __mmdrop(mm); 1744} 1745 1746/* mmput gets rid of the mappings and all user-space */ 1747extern void mmput(struct mm_struct *); 1748/* Grab a reference to a task's mm, if it is not already going away */ 1749extern struct mm_struct *get_task_mm(struct task_struct *task); 1750/* Remove the current tasks stale references to the old mm_struct */ 1751extern void mm_release(struct task_struct *, struct mm_struct *); 1752 1753extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1754extern void flush_thread(void); 1755extern void exit_thread(void); 1756 1757extern void exit_files(struct task_struct *); 1758extern void __cleanup_signal(struct signal_struct *); 1759extern void __cleanup_sighand(struct sighand_struct *); 1760extern void exit_itimers(struct signal_struct *); 1761 1762extern NORET_TYPE void do_group_exit(int); 1763 1764extern void daemonize(const char *, ...); 1765extern int allow_signal(int); 1766extern int disallow_signal(int); 1767 1768extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1769extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1770struct task_struct *fork_idle(int); 1771 1772extern void set_task_comm(struct task_struct *tsk, char *from); 1773extern void get_task_comm(char *to, struct task_struct *tsk); 1774 1775#ifdef CONFIG_SMP 1776extern void wait_task_inactive(struct task_struct * p); 1777#else 1778#define wait_task_inactive(p) do { } while (0) 1779#endif 1780 1781#define remove_parent(p) list_del_init(&(p)->sibling) 1782#define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1783 1784#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1785 1786#define for_each_process(p) \ 1787 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1788 1789/* 1790 * Careful: do_each_thread/while_each_thread is a double loop so 1791 * 'break' will not work as expected - use goto instead. 1792 */ 1793#define do_each_thread(g, t) \ 1794 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1795 1796#define while_each_thread(g, t) \ 1797 while ((t = next_thread(t)) != g) 1798 1799/* de_thread depends on thread_group_leader not being a pid based check */ 1800#define thread_group_leader(p) (p == p->group_leader) 1801 1802/* Do to the insanities of de_thread it is possible for a process 1803 * to have the pid of the thread group leader without actually being 1804 * the thread group leader. For iteration through the pids in proc 1805 * all we care about is that we have a task with the appropriate 1806 * pid, we don't actually care if we have the right task. 1807 */ 1808static inline int has_group_leader_pid(struct task_struct *p) 1809{ 1810 return p->pid == p->tgid; 1811} 1812 1813static inline 1814int same_thread_group(struct task_struct *p1, struct task_struct *p2) 1815{ 1816 return p1->tgid == p2->tgid; 1817} 1818 1819static inline struct task_struct *next_thread(const struct task_struct *p) 1820{ 1821 return list_entry(rcu_dereference(p->thread_group.next), 1822 struct task_struct, thread_group); 1823} 1824 1825static inline int thread_group_empty(struct task_struct *p) 1826{ 1827 return list_empty(&p->thread_group); 1828} 1829 1830#define delay_group_leader(p) \ 1831 (thread_group_leader(p) && !thread_group_empty(p)) 1832 1833/* 1834 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1835 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1836 * pins the final release of task.io_context. Also protects ->cpuset and 1837 * ->cgroup.subsys[]. 1838 * 1839 * Nests both inside and outside of read_lock(&tasklist_lock). 1840 * It must not be nested with write_lock_irq(&tasklist_lock), 1841 * neither inside nor outside. 1842 */ 1843static inline void task_lock(struct task_struct *p) 1844{ 1845 spin_lock(&p->alloc_lock); 1846} 1847 1848static inline void task_unlock(struct task_struct *p) 1849{ 1850 spin_unlock(&p->alloc_lock); 1851} 1852 1853extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1854 unsigned long *flags); 1855 1856static inline void unlock_task_sighand(struct task_struct *tsk, 1857 unsigned long *flags) 1858{ 1859 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1860} 1861 1862#ifndef __HAVE_THREAD_FUNCTIONS 1863 1864#define task_thread_info(task) ((struct thread_info *)(task)->stack) 1865#define task_stack_page(task) ((task)->stack) 1866 1867static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1868{ 1869 *task_thread_info(p) = *task_thread_info(org); 1870 task_thread_info(p)->task = p; 1871} 1872 1873static inline unsigned long *end_of_stack(struct task_struct *p) 1874{ 1875 return (unsigned long *)(task_thread_info(p) + 1); 1876} 1877 1878#endif 1879 1880/* set thread flags in other task's structures 1881 * - see asm/thread_info.h for TIF_xxxx flags available 1882 */ 1883static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1884{ 1885 set_ti_thread_flag(task_thread_info(tsk), flag); 1886} 1887 1888static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1889{ 1890 clear_ti_thread_flag(task_thread_info(tsk), flag); 1891} 1892 1893static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1894{ 1895 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1896} 1897 1898static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1899{ 1900 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1901} 1902 1903static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1904{ 1905 return test_ti_thread_flag(task_thread_info(tsk), flag); 1906} 1907 1908static inline void set_tsk_need_resched(struct task_struct *tsk) 1909{ 1910 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1911} 1912 1913static inline void clear_tsk_need_resched(struct task_struct *tsk) 1914{ 1915 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1916} 1917 1918static inline int signal_pending(struct task_struct *p) 1919{ 1920 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1921} 1922 1923extern int FASTCALL(__fatal_signal_pending(struct task_struct *p)); 1924 1925static inline int fatal_signal_pending(struct task_struct *p) 1926{ 1927 return signal_pending(p) && __fatal_signal_pending(p); 1928} 1929 1930static inline int need_resched(void) 1931{ 1932 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1933} 1934 1935/* 1936 * cond_resched() and cond_resched_lock(): latency reduction via 1937 * explicit rescheduling in places that are safe. The return 1938 * value indicates whether a reschedule was done in fact. 1939 * cond_resched_lock() will drop the spinlock before scheduling, 1940 * cond_resched_softirq() will enable bhs before scheduling. 1941 */ 1942#ifdef CONFIG_PREEMPT 1943static inline int cond_resched(void) 1944{ 1945 return 0; 1946} 1947#else 1948extern int _cond_resched(void); 1949static inline int cond_resched(void) 1950{ 1951 return _cond_resched(); 1952} 1953#endif 1954extern int cond_resched_lock(spinlock_t * lock); 1955extern int cond_resched_softirq(void); 1956 1957/* 1958 * Does a critical section need to be broken due to another 1959 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 1960 * but a general need for low latency) 1961 */ 1962static inline int spin_needbreak(spinlock_t *lock) 1963{ 1964#ifdef CONFIG_PREEMPT 1965 return spin_is_contended(lock); 1966#else 1967 return 0; 1968#endif 1969} 1970 1971/* 1972 * Reevaluate whether the task has signals pending delivery. 1973 * Wake the task if so. 1974 * This is required every time the blocked sigset_t changes. 1975 * callers must hold sighand->siglock. 1976 */ 1977extern void recalc_sigpending_and_wake(struct task_struct *t); 1978extern void recalc_sigpending(void); 1979 1980extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1981 1982/* 1983 * Wrappers for p->thread_info->cpu access. No-op on UP. 1984 */ 1985#ifdef CONFIG_SMP 1986 1987static inline unsigned int task_cpu(const struct task_struct *p) 1988{ 1989 return task_thread_info(p)->cpu; 1990} 1991 1992extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1993 1994#else 1995 1996static inline unsigned int task_cpu(const struct task_struct *p) 1997{ 1998 return 0; 1999} 2000 2001static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2002{ 2003} 2004 2005#endif /* CONFIG_SMP */ 2006 2007#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 2008extern void arch_pick_mmap_layout(struct mm_struct *mm); 2009#else 2010static inline void arch_pick_mmap_layout(struct mm_struct *mm) 2011{ 2012 mm->mmap_base = TASK_UNMAPPED_BASE; 2013 mm->get_unmapped_area = arch_get_unmapped_area; 2014 mm->unmap_area = arch_unmap_area; 2015} 2016#endif 2017 2018extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 2019extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 2020 2021extern int sched_mc_power_savings, sched_smt_power_savings; 2022 2023extern void normalize_rt_tasks(void); 2024 2025#ifdef CONFIG_FAIR_GROUP_SCHED 2026 2027extern struct task_group init_task_group; 2028 2029extern struct task_group *sched_create_group(void); 2030extern void sched_destroy_group(struct task_group *tg); 2031extern void sched_move_task(struct task_struct *tsk); 2032extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2033extern unsigned long sched_group_shares(struct task_group *tg); 2034 2035#endif 2036 2037#ifdef CONFIG_TASK_XACCT 2038static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2039{ 2040 tsk->rchar += amt; 2041} 2042 2043static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2044{ 2045 tsk->wchar += amt; 2046} 2047 2048static inline void inc_syscr(struct task_struct *tsk) 2049{ 2050 tsk->syscr++; 2051} 2052 2053static inline void inc_syscw(struct task_struct *tsk) 2054{ 2055 tsk->syscw++; 2056} 2057#else 2058static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2059{ 2060} 2061 2062static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2063{ 2064} 2065 2066static inline void inc_syscr(struct task_struct *tsk) 2067{ 2068} 2069 2070static inline void inc_syscw(struct task_struct *tsk) 2071{ 2072} 2073#endif 2074 2075#ifdef CONFIG_SMP 2076void migration_init(void); 2077#else 2078static inline void migration_init(void) 2079{ 2080} 2081#endif 2082 2083#endif /* __KERNEL__ */ 2084 2085#endif