1/* 2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details 3 */ 4 5 /* this file has an amazingly stupid 6 name, yura please fix it to be 7 reiserfs.h, and merge all the rest 8 of our .h files that are in this 9 directory into it. */ 10 11#ifndef _LINUX_REISER_FS_H 12#define _LINUX_REISER_FS_H 13 14#include <linux/types.h> 15#include <linux/magic.h> 16 17#ifdef __KERNEL__ 18#include <linux/slab.h> 19#include <linux/interrupt.h> 20#include <linux/sched.h> 21#include <linux/workqueue.h> 22#include <asm/unaligned.h> 23#include <linux/bitops.h> 24#include <linux/proc_fs.h> 25#include <linux/smp_lock.h> 26#include <linux/buffer_head.h> 27#include <linux/reiserfs_fs_i.h> 28#include <linux/reiserfs_fs_sb.h> 29#endif 30 31struct fid; 32 33/* 34 * include/linux/reiser_fs.h 35 * 36 * Reiser File System constants and structures 37 * 38 */ 39 40/* in reading the #defines, it may help to understand that they employ 41 the following abbreviations: 42 43 B = Buffer 44 I = Item header 45 H = Height within the tree (should be changed to LEV) 46 N = Number of the item in the node 47 STAT = stat data 48 DEH = Directory Entry Header 49 EC = Entry Count 50 E = Entry number 51 UL = Unsigned Long 52 BLKH = BLocK Header 53 UNFM = UNForMatted node 54 DC = Disk Child 55 P = Path 56 57 These #defines are named by concatenating these abbreviations, 58 where first comes the arguments, and last comes the return value, 59 of the macro. 60 61*/ 62 63#define USE_INODE_GENERATION_COUNTER 64 65#define REISERFS_PREALLOCATE 66#define DISPLACE_NEW_PACKING_LOCALITIES 67#define PREALLOCATION_SIZE 9 68 69/* n must be power of 2 */ 70#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) 71 72// to be ok for alpha and others we have to align structures to 8 byte 73// boundary. 74// FIXME: do not change 4 by anything else: there is code which relies on that 75#define ROUND_UP(x) _ROUND_UP(x,8LL) 76 77/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug 78** messages. 79*/ 80#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 81 82void reiserfs_warning(struct super_block *s, const char *fmt, ...); 83/* assertions handling */ 84 85/** always check a condition and panic if it's false. */ 86#define __RASSERT( cond, scond, format, args... ) \ 87if( !( cond ) ) \ 88 reiserfs_panic( NULL, "reiserfs[%i]: assertion " scond " failed at " \ 89 __FILE__ ":%i:%s: " format "\n", \ 90 in_interrupt() ? -1 : task_pid_nr(current), __LINE__ , __FUNCTION__ , ##args ) 91 92#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) 93 94#if defined( CONFIG_REISERFS_CHECK ) 95#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) 96#else 97#define RFALSE( cond, format, args... ) do {;} while( 0 ) 98#endif 99 100#define CONSTF __attribute_const__ 101/* 102 * Disk Data Structures 103 */ 104 105/***************************************************************************/ 106/* SUPER BLOCK */ 107/***************************************************************************/ 108 109/* 110 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs 111 * the version in RAM is part of a larger structure containing fields never written to disk. 112 */ 113#define UNSET_HASH 0 // read_super will guess about, what hash names 114 // in directories were sorted with 115#define TEA_HASH 1 116#define YURA_HASH 2 117#define R5_HASH 3 118#define DEFAULT_HASH R5_HASH 119 120struct journal_params { 121 __le32 jp_journal_1st_block; /* where does journal start from on its 122 * device */ 123 __le32 jp_journal_dev; /* journal device st_rdev */ 124 __le32 jp_journal_size; /* size of the journal */ 125 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */ 126 __le32 jp_journal_magic; /* random value made on fs creation (this 127 * was sb_journal_block_count) */ 128 __le32 jp_journal_max_batch; /* max number of blocks to batch into a 129 * trans */ 130 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async 131 * commit be */ 132 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction 133 * be */ 134}; 135 136/* this is the super from 3.5.X, where X >= 10 */ 137struct reiserfs_super_block_v1 { 138 __le32 s_block_count; /* blocks count */ 139 __le32 s_free_blocks; /* free blocks count */ 140 __le32 s_root_block; /* root block number */ 141 struct journal_params s_journal; 142 __le16 s_blocksize; /* block size */ 143 __le16 s_oid_maxsize; /* max size of object id array, see 144 * get_objectid() commentary */ 145 __le16 s_oid_cursize; /* current size of object id array */ 146 __le16 s_umount_state; /* this is set to 1 when filesystem was 147 * umounted, to 2 - when not */ 148 char s_magic[10]; /* reiserfs magic string indicates that 149 * file system is reiserfs: 150 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ 151 __le16 s_fs_state; /* it is set to used by fsck to mark which 152 * phase of rebuilding is done */ 153 __le32 s_hash_function_code; /* indicate, what hash function is being use 154 * to sort names in a directory*/ 155 __le16 s_tree_height; /* height of disk tree */ 156 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address 157 * each block of file system */ 158 __le16 s_version; /* this field is only reliable on filesystem 159 * with non-standard journal */ 160 __le16 s_reserved_for_journal; /* size in blocks of journal area on main 161 * device, we need to keep after 162 * making fs with non-standard journal */ 163} __attribute__ ((__packed__)); 164 165#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) 166 167/* this is the on disk super block */ 168struct reiserfs_super_block { 169 struct reiserfs_super_block_v1 s_v1; 170 __le32 s_inode_generation; 171 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */ 172 unsigned char s_uuid[16]; /* filesystem unique identifier */ 173 unsigned char s_label[16]; /* filesystem volume label */ 174 char s_unused[88]; /* zero filled by mkreiserfs and 175 * reiserfs_convert_objectid_map_v1() 176 * so any additions must be updated 177 * there as well. */ 178} __attribute__ ((__packed__)); 179 180#define SB_SIZE (sizeof(struct reiserfs_super_block)) 181 182#define REISERFS_VERSION_1 0 183#define REISERFS_VERSION_2 2 184 185// on-disk super block fields converted to cpu form 186#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) 187#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) 188#define SB_BLOCKSIZE(s) \ 189 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) 190#define SB_BLOCK_COUNT(s) \ 191 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) 192#define SB_FREE_BLOCKS(s) \ 193 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) 194#define SB_REISERFS_MAGIC(s) \ 195 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) 196#define SB_ROOT_BLOCK(s) \ 197 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) 198#define SB_TREE_HEIGHT(s) \ 199 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) 200#define SB_REISERFS_STATE(s) \ 201 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) 202#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) 203#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) 204 205#define PUT_SB_BLOCK_COUNT(s, val) \ 206 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) 207#define PUT_SB_FREE_BLOCKS(s, val) \ 208 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) 209#define PUT_SB_ROOT_BLOCK(s, val) \ 210 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) 211#define PUT_SB_TREE_HEIGHT(s, val) \ 212 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) 213#define PUT_SB_REISERFS_STATE(s, val) \ 214 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 215#define PUT_SB_VERSION(s, val) \ 216 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) 217#define PUT_SB_BMAP_NR(s, val) \ 218 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) 219 220#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) 221#define SB_ONDISK_JOURNAL_SIZE(s) \ 222 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) 223#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ 224 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) 225#define SB_ONDISK_JOURNAL_DEVICE(s) \ 226 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) 227#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ 228 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) 229 230#define is_block_in_log_or_reserved_area(s, block) \ 231 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ 232 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ 233 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ 234 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 235 236int is_reiserfs_3_5(struct reiserfs_super_block *rs); 237int is_reiserfs_3_6(struct reiserfs_super_block *rs); 238int is_reiserfs_jr(struct reiserfs_super_block *rs); 239 240/* ReiserFS leaves the first 64k unused, so that partition labels have 241 enough space. If someone wants to write a fancy bootloader that 242 needs more than 64k, let us know, and this will be increased in size. 243 This number must be larger than than the largest block size on any 244 platform, or code will break. -Hans */ 245#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) 246#define REISERFS_FIRST_BLOCK unused_define 247#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES 248 249/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ 250#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) 251 252// reiserfs internal error code (used by search_by_key adn fix_nodes)) 253#define CARRY_ON 0 254#define REPEAT_SEARCH -1 255#define IO_ERROR -2 256#define NO_DISK_SPACE -3 257#define NO_BALANCING_NEEDED (-4) 258#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) 259#define QUOTA_EXCEEDED -6 260 261typedef __u32 b_blocknr_t; 262typedef __le32 unp_t; 263 264struct unfm_nodeinfo { 265 unp_t unfm_nodenum; 266 unsigned short unfm_freespace; 267}; 268 269/* there are two formats of keys: 3.5 and 3.6 270 */ 271#define KEY_FORMAT_3_5 0 272#define KEY_FORMAT_3_6 1 273 274/* there are two stat datas */ 275#define STAT_DATA_V1 0 276#define STAT_DATA_V2 1 277 278static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) 279{ 280 return container_of(inode, struct reiserfs_inode_info, vfs_inode); 281} 282 283static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) 284{ 285 return sb->s_fs_info; 286} 287 288/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 289 * which overflows on large file systems. */ 290static inline u32 reiserfs_bmap_count(struct super_block *sb) 291{ 292 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; 293} 294 295static inline int bmap_would_wrap(unsigned bmap_nr) 296{ 297 return bmap_nr > ((1LL << 16) - 1); 298} 299 300/** this says about version of key of all items (but stat data) the 301 object consists of */ 302#define get_inode_item_key_version( inode ) \ 303 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) 304 305#define set_inode_item_key_version( inode, version ) \ 306 ({ if((version)==KEY_FORMAT_3_6) \ 307 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ 308 else \ 309 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) 310 311#define get_inode_sd_version(inode) \ 312 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) 313 314#define set_inode_sd_version(inode, version) \ 315 ({ if((version)==STAT_DATA_V2) \ 316 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ 317 else \ 318 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) 319 320/* This is an aggressive tail suppression policy, I am hoping it 321 improves our benchmarks. The principle behind it is that percentage 322 space saving is what matters, not absolute space saving. This is 323 non-intuitive, but it helps to understand it if you consider that the 324 cost to access 4 blocks is not much more than the cost to access 1 325 block, if you have to do a seek and rotate. A tail risks a 326 non-linear disk access that is significant as a percentage of total 327 time cost for a 4 block file and saves an amount of space that is 328 less significant as a percentage of space, or so goes the hypothesis. 329 -Hans */ 330#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ 331(\ 332 (!(n_tail_size)) || \ 333 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ 334 ( (n_file_size) >= (n_block_size) * 4 ) || \ 335 ( ( (n_file_size) >= (n_block_size) * 3 ) && \ 336 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ 337 ( ( (n_file_size) >= (n_block_size) * 2 ) && \ 338 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ 339 ( ( (n_file_size) >= (n_block_size) ) && \ 340 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ 341) 342 343/* Another strategy for tails, this one means only create a tail if all the 344 file would fit into one DIRECT item. 345 Primary intention for this one is to increase performance by decreasing 346 seeking. 347*/ 348#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ 349(\ 350 (!(n_tail_size)) || \ 351 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ 352) 353 354/* 355 * values for s_umount_state field 356 */ 357#define REISERFS_VALID_FS 1 358#define REISERFS_ERROR_FS 2 359 360// 361// there are 5 item types currently 362// 363#define TYPE_STAT_DATA 0 364#define TYPE_INDIRECT 1 365#define TYPE_DIRECT 2 366#define TYPE_DIRENTRY 3 367#define TYPE_MAXTYPE 3 368#define TYPE_ANY 15 // FIXME: comment is required 369 370/***************************************************************************/ 371/* KEY & ITEM HEAD */ 372/***************************************************************************/ 373 374// 375// directories use this key as well as old files 376// 377struct offset_v1 { 378 __le32 k_offset; 379 __le32 k_uniqueness; 380} __attribute__ ((__packed__)); 381 382struct offset_v2 { 383 __le64 v; 384} __attribute__ ((__packed__)); 385 386static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) 387{ 388 __u8 type = le64_to_cpu(v2->v) >> 60; 389 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; 390} 391 392static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) 393{ 394 v2->v = 395 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); 396} 397 398static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) 399{ 400 return le64_to_cpu(v2->v) & (~0ULL >> 4); 401} 402 403static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) 404{ 405 offset &= (~0ULL >> 4); 406 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); 407} 408 409/* Key of an item determines its location in the S+tree, and 410 is composed of 4 components */ 411struct reiserfs_key { 412 __le32 k_dir_id; /* packing locality: by default parent 413 directory object id */ 414 __le32 k_objectid; /* object identifier */ 415 union { 416 struct offset_v1 k_offset_v1; 417 struct offset_v2 k_offset_v2; 418 } __attribute__ ((__packed__)) u; 419} __attribute__ ((__packed__)); 420 421struct in_core_key { 422 __u32 k_dir_id; /* packing locality: by default parent 423 directory object id */ 424 __u32 k_objectid; /* object identifier */ 425 __u64 k_offset; 426 __u8 k_type; 427}; 428 429struct cpu_key { 430 struct in_core_key on_disk_key; 431 int version; 432 int key_length; /* 3 in all cases but direct2indirect and 433 indirect2direct conversion */ 434}; 435 436/* Our function for comparing keys can compare keys of different 437 lengths. It takes as a parameter the length of the keys it is to 438 compare. These defines are used in determining what is to be passed 439 to it as that parameter. */ 440#define REISERFS_FULL_KEY_LEN 4 441#define REISERFS_SHORT_KEY_LEN 2 442 443/* The result of the key compare */ 444#define FIRST_GREATER 1 445#define SECOND_GREATER -1 446#define KEYS_IDENTICAL 0 447#define KEY_FOUND 1 448#define KEY_NOT_FOUND 0 449 450#define KEY_SIZE (sizeof(struct reiserfs_key)) 451#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) 452 453/* return values for search_by_key and clones */ 454#define ITEM_FOUND 1 455#define ITEM_NOT_FOUND 0 456#define ENTRY_FOUND 1 457#define ENTRY_NOT_FOUND 0 458#define DIRECTORY_NOT_FOUND -1 459#define REGULAR_FILE_FOUND -2 460#define DIRECTORY_FOUND -3 461#define BYTE_FOUND 1 462#define BYTE_NOT_FOUND 0 463#define FILE_NOT_FOUND -1 464 465#define POSITION_FOUND 1 466#define POSITION_NOT_FOUND 0 467 468// return values for reiserfs_find_entry and search_by_entry_key 469#define NAME_FOUND 1 470#define NAME_NOT_FOUND 0 471#define GOTO_PREVIOUS_ITEM 2 472#define NAME_FOUND_INVISIBLE 3 473 474/* Everything in the filesystem is stored as a set of items. The 475 item head contains the key of the item, its free space (for 476 indirect items) and specifies the location of the item itself 477 within the block. */ 478 479struct item_head { 480 /* Everything in the tree is found by searching for it based on 481 * its key.*/ 482 struct reiserfs_key ih_key; 483 union { 484 /* The free space in the last unformatted node of an 485 indirect item if this is an indirect item. This 486 equals 0xFFFF iff this is a direct item or stat data 487 item. Note that the key, not this field, is used to 488 determine the item type, and thus which field this 489 union contains. */ 490 __le16 ih_free_space_reserved; 491 /* Iff this is a directory item, this field equals the 492 number of directory entries in the directory item. */ 493 __le16 ih_entry_count; 494 } __attribute__ ((__packed__)) u; 495 __le16 ih_item_len; /* total size of the item body */ 496 __le16 ih_item_location; /* an offset to the item body 497 * within the block */ 498 __le16 ih_version; /* 0 for all old items, 2 for new 499 ones. Highest bit is set by fsck 500 temporary, cleaned after all 501 done */ 502} __attribute__ ((__packed__)); 503/* size of item header */ 504#define IH_SIZE (sizeof(struct item_head)) 505 506#define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) 507#define ih_version(ih) le16_to_cpu((ih)->ih_version) 508#define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) 509#define ih_location(ih) le16_to_cpu((ih)->ih_item_location) 510#define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) 511 512#define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) 513#define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) 514#define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) 515#define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) 516#define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) 517 518#define unreachable_item(ih) (ih_version(ih) & (1 << 15)) 519 520#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) 521#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) 522 523/* these operate on indirect items, where you've got an array of ints 524** at a possibly unaligned location. These are a noop on ia32 525** 526** p is the array of __u32, i is the index into the array, v is the value 527** to store there. 528*/ 529#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i))) 530#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i)) 531 532// 533// in old version uniqueness field shows key type 534// 535#define V1_SD_UNIQUENESS 0 536#define V1_INDIRECT_UNIQUENESS 0xfffffffe 537#define V1_DIRECT_UNIQUENESS 0xffffffff 538#define V1_DIRENTRY_UNIQUENESS 500 539#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required 540 541// 542// here are conversion routines 543// 544static inline int uniqueness2type(__u32 uniqueness) CONSTF; 545static inline int uniqueness2type(__u32 uniqueness) 546{ 547 switch ((int)uniqueness) { 548 case V1_SD_UNIQUENESS: 549 return TYPE_STAT_DATA; 550 case V1_INDIRECT_UNIQUENESS: 551 return TYPE_INDIRECT; 552 case V1_DIRECT_UNIQUENESS: 553 return TYPE_DIRECT; 554 case V1_DIRENTRY_UNIQUENESS: 555 return TYPE_DIRENTRY; 556 default: 557 reiserfs_warning(NULL, "vs-500: unknown uniqueness %d", 558 uniqueness); 559 case V1_ANY_UNIQUENESS: 560 return TYPE_ANY; 561 } 562} 563 564static inline __u32 type2uniqueness(int type) CONSTF; 565static inline __u32 type2uniqueness(int type) 566{ 567 switch (type) { 568 case TYPE_STAT_DATA: 569 return V1_SD_UNIQUENESS; 570 case TYPE_INDIRECT: 571 return V1_INDIRECT_UNIQUENESS; 572 case TYPE_DIRECT: 573 return V1_DIRECT_UNIQUENESS; 574 case TYPE_DIRENTRY: 575 return V1_DIRENTRY_UNIQUENESS; 576 default: 577 reiserfs_warning(NULL, "vs-501: unknown type %d", type); 578 case TYPE_ANY: 579 return V1_ANY_UNIQUENESS; 580 } 581} 582 583// 584// key is pointer to on disk key which is stored in le, result is cpu, 585// there is no way to get version of object from key, so, provide 586// version to these defines 587// 588static inline loff_t le_key_k_offset(int version, 589 const struct reiserfs_key *key) 590{ 591 return (version == KEY_FORMAT_3_5) ? 592 le32_to_cpu(key->u.k_offset_v1.k_offset) : 593 offset_v2_k_offset(&(key->u.k_offset_v2)); 594} 595 596static inline loff_t le_ih_k_offset(const struct item_head *ih) 597{ 598 return le_key_k_offset(ih_version(ih), &(ih->ih_key)); 599} 600 601static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) 602{ 603 return (version == KEY_FORMAT_3_5) ? 604 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) : 605 offset_v2_k_type(&(key->u.k_offset_v2)); 606} 607 608static inline loff_t le_ih_k_type(const struct item_head *ih) 609{ 610 return le_key_k_type(ih_version(ih), &(ih->ih_key)); 611} 612 613static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, 614 loff_t offset) 615{ 616 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */ 617 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset)); 618} 619 620static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) 621{ 622 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 623} 624 625static inline void set_le_key_k_type(int version, struct reiserfs_key *key, 626 int type) 627{ 628 (version == KEY_FORMAT_3_5) ? 629 (void)(key->u.k_offset_v1.k_uniqueness = 630 cpu_to_le32(type2uniqueness(type))) 631 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type)); 632} 633static inline void set_le_ih_k_type(struct item_head *ih, int type) 634{ 635 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); 636} 637 638#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY) 639#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT) 640#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT) 641#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA) 642 643// 644// item header has version. 645// 646#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key)) 647#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key)) 648#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key)) 649#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key)) 650 651// 652// key is pointer to cpu key, result is cpu 653// 654static inline loff_t cpu_key_k_offset(const struct cpu_key *key) 655{ 656 return key->on_disk_key.k_offset; 657} 658 659static inline loff_t cpu_key_k_type(const struct cpu_key *key) 660{ 661 return key->on_disk_key.k_type; 662} 663 664static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) 665{ 666 key->on_disk_key.k_offset = offset; 667} 668 669static inline void set_cpu_key_k_type(struct cpu_key *key, int type) 670{ 671 key->on_disk_key.k_type = type; 672} 673 674static inline void cpu_key_k_offset_dec(struct cpu_key *key) 675{ 676 key->on_disk_key.k_offset--; 677} 678 679#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) 680#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) 681#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) 682#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) 683 684/* are these used ? */ 685#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) 686#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) 687#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) 688#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) 689 690#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \ 691 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \ 692 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) ) 693 694/* maximal length of item */ 695#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) 696#define MIN_ITEM_LEN 1 697 698/* object identifier for root dir */ 699#define REISERFS_ROOT_OBJECTID 2 700#define REISERFS_ROOT_PARENT_OBJECTID 1 701extern struct reiserfs_key root_key; 702 703/* 704 * Picture represents a leaf of the S+tree 705 * ______________________________________________________ 706 * | | Array of | | | 707 * |Block | Object-Item | F r e e | Objects- | 708 * | head | Headers | S p a c e | Items | 709 * |______|_______________|___________________|___________| 710 */ 711 712/* Header of a disk block. More precisely, header of a formatted leaf 713 or internal node, and not the header of an unformatted node. */ 714struct block_head { 715 __le16 blk_level; /* Level of a block in the tree. */ 716 __le16 blk_nr_item; /* Number of keys/items in a block. */ 717 __le16 blk_free_space; /* Block free space in bytes. */ 718 __le16 blk_reserved; 719 /* dump this in v4/planA */ 720 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */ 721}; 722 723#define BLKH_SIZE (sizeof(struct block_head)) 724#define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) 725#define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) 726#define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) 727#define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) 728#define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) 729#define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) 730#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) 731#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) 732#define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) 733#define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) 734 735/* 736 * values for blk_level field of the struct block_head 737 */ 738 739#define FREE_LEVEL 0 /* when node gets removed from the tree its 740 blk_level is set to FREE_LEVEL. It is then 741 used to see whether the node is still in the 742 tree */ 743 744#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ 745 746/* Given the buffer head of a formatted node, resolve to the block head of that node. */ 747#define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data)) 748/* Number of items that are in buffer. */ 749#define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh))) 750#define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh))) 751#define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh))) 752 753#define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0) 754#define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0) 755#define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0) 756 757/* Get right delimiting key. -- little endian */ 758#define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh)))) 759 760/* Does the buffer contain a disk leaf. */ 761#define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL) 762 763/* Does the buffer contain a disk internal node */ 764#define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \ 765 && B_LEVEL(p_s_bh) <= MAX_HEIGHT) 766 767/***************************************************************************/ 768/* STAT DATA */ 769/***************************************************************************/ 770 771// 772// old stat data is 32 bytes long. We are going to distinguish new one by 773// different size 774// 775struct stat_data_v1 { 776 __le16 sd_mode; /* file type, permissions */ 777 __le16 sd_nlink; /* number of hard links */ 778 __le16 sd_uid; /* owner */ 779 __le16 sd_gid; /* group */ 780 __le32 sd_size; /* file size */ 781 __le32 sd_atime; /* time of last access */ 782 __le32 sd_mtime; /* time file was last modified */ 783 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ 784 union { 785 __le32 sd_rdev; 786 __le32 sd_blocks; /* number of blocks file uses */ 787 } __attribute__ ((__packed__)) u; 788 __le32 sd_first_direct_byte; /* first byte of file which is stored 789 in a direct item: except that if it 790 equals 1 it is a symlink and if it 791 equals ~(__u32)0 there is no 792 direct item. The existence of this 793 field really grates on me. Let's 794 replace it with a macro based on 795 sd_size and our tail suppression 796 policy. Someday. -Hans */ 797} __attribute__ ((__packed__)); 798 799#define SD_V1_SIZE (sizeof(struct stat_data_v1)) 800#define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) 801#define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 802#define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 803#define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) 804#define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) 805#define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) 806#define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) 807#define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) 808#define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) 809#define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) 810#define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) 811#define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 812#define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 813#define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 814#define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 815#define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 816#define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 817#define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 818#define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 819#define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) 820#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) 821#define sd_v1_first_direct_byte(sdp) \ 822 (le32_to_cpu((sdp)->sd_first_direct_byte)) 823#define set_sd_v1_first_direct_byte(sdp,v) \ 824 ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) 825 826/* inode flags stored in sd_attrs (nee sd_reserved) */ 827 828/* we want common flags to have the same values as in ext2, 829 so chattr(1) will work without problems */ 830#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL 831#define REISERFS_APPEND_FL FS_APPEND_FL 832#define REISERFS_SYNC_FL FS_SYNC_FL 833#define REISERFS_NOATIME_FL FS_NOATIME_FL 834#define REISERFS_NODUMP_FL FS_NODUMP_FL 835#define REISERFS_SECRM_FL FS_SECRM_FL 836#define REISERFS_UNRM_FL FS_UNRM_FL 837#define REISERFS_COMPR_FL FS_COMPR_FL 838#define REISERFS_NOTAIL_FL FS_NOTAIL_FL 839 840/* persistent flags that file inherits from the parent directory */ 841#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ 842 REISERFS_SYNC_FL | \ 843 REISERFS_NOATIME_FL | \ 844 REISERFS_NODUMP_FL | \ 845 REISERFS_SECRM_FL | \ 846 REISERFS_COMPR_FL | \ 847 REISERFS_NOTAIL_FL ) 848 849/* Stat Data on disk (reiserfs version of UFS disk inode minus the 850 address blocks) */ 851struct stat_data { 852 __le16 sd_mode; /* file type, permissions */ 853 __le16 sd_attrs; /* persistent inode flags */ 854 __le32 sd_nlink; /* number of hard links */ 855 __le64 sd_size; /* file size */ 856 __le32 sd_uid; /* owner */ 857 __le32 sd_gid; /* group */ 858 __le32 sd_atime; /* time of last access */ 859 __le32 sd_mtime; /* time file was last modified */ 860 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ 861 __le32 sd_blocks; 862 union { 863 __le32 sd_rdev; 864 __le32 sd_generation; 865 //__le32 sd_first_direct_byte; 866 /* first byte of file which is stored in a 867 direct item: except that if it equals 1 868 it is a symlink and if it equals 869 ~(__u32)0 there is no direct item. The 870 existence of this field really grates 871 on me. Let's replace it with a macro 872 based on sd_size and our tail 873 suppression policy? */ 874 } __attribute__ ((__packed__)) u; 875} __attribute__ ((__packed__)); 876// 877// this is 44 bytes long 878// 879#define SD_SIZE (sizeof(struct stat_data)) 880#define SD_V2_SIZE SD_SIZE 881#define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) 882#define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 883#define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 884/* sd_reserved */ 885/* set_sd_reserved */ 886#define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) 887#define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) 888#define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) 889#define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) 890#define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) 891#define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) 892#define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) 893#define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) 894#define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 895#define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 896#define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 897#define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 898#define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 899#define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 900#define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) 901#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) 902#define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 903#define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 904#define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) 905#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) 906#define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) 907#define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) 908 909/***************************************************************************/ 910/* DIRECTORY STRUCTURE */ 911/***************************************************************************/ 912/* 913 Picture represents the structure of directory items 914 ________________________________________________ 915 | Array of | | | | | | 916 | directory |N-1| N-2 | .... | 1st |0th| 917 | entry headers | | | | | | 918 |_______________|___|_____|________|_______|___| 919 <---- directory entries ------> 920 921 First directory item has k_offset component 1. We store "." and ".." 922 in one item, always, we never split "." and ".." into differing 923 items. This makes, among other things, the code for removing 924 directories simpler. */ 925#define SD_OFFSET 0 926#define SD_UNIQUENESS 0 927#define DOT_OFFSET 1 928#define DOT_DOT_OFFSET 2 929#define DIRENTRY_UNIQUENESS 500 930 931/* */ 932#define FIRST_ITEM_OFFSET 1 933 934/* 935 Q: How to get key of object pointed to by entry from entry? 936 937 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key 938 of object, entry points to */ 939 940/* NOT IMPLEMENTED: 941 Directory will someday contain stat data of object */ 942 943struct reiserfs_de_head { 944 __le32 deh_offset; /* third component of the directory entry key */ 945 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced 946 by directory entry */ 947 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */ 948 __le16 deh_location; /* offset of name in the whole item */ 949 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether 950 entry is hidden (unlinked) */ 951} __attribute__ ((__packed__)); 952#define DEH_SIZE sizeof(struct reiserfs_de_head) 953#define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) 954#define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) 955#define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) 956#define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) 957#define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) 958 959#define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) 960#define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) 961#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) 962#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) 963#define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) 964 965/* empty directory contains two entries "." and ".." and their headers */ 966#define EMPTY_DIR_SIZE \ 967(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) 968 969/* old format directories have this size when empty */ 970#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) 971 972#define DEH_Statdata 0 /* not used now */ 973#define DEH_Visible 2 974 975/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ 976#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) 977# define ADDR_UNALIGNED_BITS (3) 978#endif 979 980/* These are only used to manipulate deh_state. 981 * Because of this, we'll use the ext2_ bit routines, 982 * since they are little endian */ 983#ifdef ADDR_UNALIGNED_BITS 984 985# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) 986# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) 987 988# define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr)) 989# define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr)) 990# define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr)) 991 992#else 993 994# define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr) 995# define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr) 996# define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr) 997 998#endif 999 1000#define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1001#define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1002#define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1003#define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1004 1005#define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1006#define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1007#define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1008 1009extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, 1010 __le32 par_dirid, __le32 par_objid); 1011extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, 1012 __le32 par_dirid, __le32 par_objid); 1013 1014/* array of the entry headers */ 1015 /* get item body */ 1016#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) ) 1017#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih))) 1018 1019/* length of the directory entry in directory item. This define 1020 calculates length of i-th directory entry using directory entry 1021 locations from dir entry head. When it calculates length of 0-th 1022 directory entry, it uses length of whole item in place of entry 1023 location of the non-existent following entry in the calculation. 1024 See picture above.*/ 1025/* 1026#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \ 1027((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh)))) 1028*/ 1029static inline int entry_length(const struct buffer_head *bh, 1030 const struct item_head *ih, int pos_in_item) 1031{ 1032 struct reiserfs_de_head *deh; 1033 1034 deh = B_I_DEH(bh, ih) + pos_in_item; 1035 if (pos_in_item) 1036 return deh_location(deh - 1) - deh_location(deh); 1037 1038 return ih_item_len(ih) - deh_location(deh); 1039} 1040 1041/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */ 1042#define I_ENTRY_COUNT(ih) (ih_entry_count((ih))) 1043 1044/* name by bh, ih and entry_num */ 1045#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num)))) 1046 1047// two entries per block (at least) 1048#define REISERFS_MAX_NAME(block_size) 255 1049 1050/* this structure is used for operations on directory entries. It is 1051 not a disk structure. */ 1052/* When reiserfs_find_entry or search_by_entry_key find directory 1053 entry, they return filled reiserfs_dir_entry structure */ 1054struct reiserfs_dir_entry { 1055 struct buffer_head *de_bh; 1056 int de_item_num; 1057 struct item_head *de_ih; 1058 int de_entry_num; 1059 struct reiserfs_de_head *de_deh; 1060 int de_entrylen; 1061 int de_namelen; 1062 char *de_name; 1063 unsigned long *de_gen_number_bit_string; 1064 1065 __u32 de_dir_id; 1066 __u32 de_objectid; 1067 1068 struct cpu_key de_entry_key; 1069}; 1070 1071/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */ 1072 1073/* pointer to file name, stored in entry */ 1074#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh)) 1075 1076/* length of name */ 1077#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ 1078(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) 1079 1080/* hash value occupies bits from 7 up to 30 */ 1081#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) 1082/* generation number occupies 7 bits starting from 0 up to 6 */ 1083#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) 1084#define MAX_GENERATION_NUMBER 127 1085 1086#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) 1087 1088/* 1089 * Picture represents an internal node of the reiserfs tree 1090 * ______________________________________________________ 1091 * | | Array of | Array of | Free | 1092 * |block | keys | pointers | space | 1093 * | head | N | N+1 | | 1094 * |______|_______________|___________________|___________| 1095 */ 1096 1097/***************************************************************************/ 1098/* DISK CHILD */ 1099/***************************************************************************/ 1100/* Disk child pointer: The pointer from an internal node of the tree 1101 to a node that is on disk. */ 1102struct disk_child { 1103 __le32 dc_block_number; /* Disk child's block number. */ 1104 __le16 dc_size; /* Disk child's used space. */ 1105 __le16 dc_reserved; 1106}; 1107 1108#define DC_SIZE (sizeof(struct disk_child)) 1109#define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) 1110#define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) 1111#define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) 1112#define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) 1113 1114/* Get disk child by buffer header and position in the tree node. */ 1115#define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\ 1116((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos))) 1117 1118/* Get disk child number by buffer header and position in the tree node. */ 1119#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos))) 1120#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val )) 1121 1122 /* maximal value of field child_size in structure disk_child */ 1123 /* child size is the combined size of all items and their headers */ 1124#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) 1125 1126/* amount of used space in buffer (not including block head) */ 1127#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) 1128 1129/* max and min number of keys in internal node */ 1130#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) 1131#define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) 1132 1133/***************************************************************************/ 1134/* PATH STRUCTURES AND DEFINES */ 1135/***************************************************************************/ 1136 1137/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the 1138 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it 1139 does not find them in the cache it reads them from disk. For each node search_by_key finds using 1140 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the 1141 position of the block_number of the next node if it is looking through an internal node. If it 1142 is looking through a leaf node bin_search will find the position of the item which has key either 1143 equal to given key, or which is the maximal key less than the given key. */ 1144 1145struct path_element { 1146 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */ 1147 int pe_position; /* Position in the tree node which is placed in the */ 1148 /* buffer above. */ 1149}; 1150 1151#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */ 1152#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ 1153#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */ 1154 1155#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ 1156#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ 1157 1158/* We need to keep track of who the ancestors of nodes are. When we 1159 perform a search we record which nodes were visited while 1160 descending the tree looking for the node we searched for. This list 1161 of nodes is called the path. This information is used while 1162 performing balancing. Note that this path information may become 1163 invalid, and this means we must check it when using it to see if it 1164 is still valid. You'll need to read search_by_key and the comments 1165 in it, especially about decrement_counters_in_path(), to understand 1166 this structure. 1167 1168Paths make the code so much harder to work with and debug.... An 1169enormous number of bugs are due to them, and trying to write or modify 1170code that uses them just makes my head hurt. They are based on an 1171excessive effort to avoid disturbing the precious VFS code.:-( The 1172gods only know how we are going to SMP the code that uses them. 1173znodes are the way! */ 1174 1175#define PATH_READA 0x1 /* do read ahead */ 1176#define PATH_READA_BACK 0x2 /* read backwards */ 1177 1178struct treepath { 1179 int path_length; /* Length of the array above. */ 1180 int reada; 1181 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */ 1182 int pos_in_item; 1183}; 1184 1185#define pos_in_item(path) ((path)->pos_in_item) 1186 1187#define INITIALIZE_PATH(var) \ 1188struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} 1189 1190/* Get path element by path and path position. */ 1191#define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset)) 1192 1193/* Get buffer header at the path by path and path position. */ 1194#define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer) 1195 1196/* Get position in the element at the path by path and path position. */ 1197#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position) 1198 1199#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length)) 1200 /* you know, to the person who didn't 1201 write this the macro name does not 1202 at first suggest what it does. 1203 Maybe POSITION_FROM_PATH_END? Or 1204 maybe we should just focus on 1205 dumping paths... -Hans */ 1206#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length)) 1207 1208#define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path)) 1209 1210/* in do_balance leaf has h == 0 in contrast with path structure, 1211 where root has level == 0. That is why we need these defines */ 1212#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */ 1213#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */ 1214#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h)) 1215#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */ 1216 1217#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h)) 1218 1219#define get_last_bh(path) PATH_PLAST_BUFFER(path) 1220#define get_ih(path) PATH_PITEM_HEAD(path) 1221#define get_item_pos(path) PATH_LAST_POSITION(path) 1222#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path))) 1223#define item_moved(ih,path) comp_items(ih, path) 1224#define path_changed(ih,path) comp_items (ih, path) 1225 1226/***************************************************************************/ 1227/* MISC */ 1228/***************************************************************************/ 1229 1230/* Size of pointer to the unformatted node. */ 1231#define UNFM_P_SIZE (sizeof(unp_t)) 1232#define UNFM_P_SHIFT 2 1233 1234// in in-core inode key is stored on le form 1235#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) 1236 1237#define MAX_UL_INT 0xffffffff 1238#define MAX_INT 0x7ffffff 1239#define MAX_US_INT 0xffff 1240 1241// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset 1242#define U32_MAX (~(__u32)0) 1243 1244static inline loff_t max_reiserfs_offset(struct inode *inode) 1245{ 1246 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) 1247 return (loff_t) U32_MAX; 1248 1249 return (loff_t) ((~(__u64) 0) >> 4); 1250} 1251 1252/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/ 1253#define MAX_KEY_OBJECTID MAX_UL_INT 1254 1255#define MAX_B_NUM MAX_UL_INT 1256#define MAX_FC_NUM MAX_US_INT 1257 1258/* the purpose is to detect overflow of an unsigned short */ 1259#define REISERFS_LINK_MAX (MAX_US_INT - 1000) 1260 1261/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */ 1262#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */ 1263#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */ 1264 1265#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) 1266#define get_generation(s) atomic_read (&fs_generation(s)) 1267#define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) 1268#define __fs_changed(gen,s) (gen != get_generation (s)) 1269#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);}) 1270 1271/***************************************************************************/ 1272/* FIXATE NODES */ 1273/***************************************************************************/ 1274 1275#define VI_TYPE_LEFT_MERGEABLE 1 1276#define VI_TYPE_RIGHT_MERGEABLE 2 1277 1278/* To make any changes in the tree we always first find node, that 1279 contains item to be changed/deleted or place to insert a new 1280 item. We call this node S. To do balancing we need to decide what 1281 we will shift to left/right neighbor, or to a new node, where new 1282 item will be etc. To make this analysis simpler we build virtual 1283 node. Virtual node is an array of items, that will replace items of 1284 node S. (For instance if we are going to delete an item, virtual 1285 node does not contain it). Virtual node keeps information about 1286 item sizes and types, mergeability of first and last items, sizes 1287 of all entries in directory item. We use this array of items when 1288 calculating what we can shift to neighbors and how many nodes we 1289 have to have if we do not any shiftings, if we shift to left/right 1290 neighbor or to both. */ 1291struct virtual_item { 1292 int vi_index; // index in the array of item operations 1293 unsigned short vi_type; // left/right mergeability 1294 unsigned short vi_item_len; /* length of item that it will have after balancing */ 1295 struct item_head *vi_ih; 1296 const char *vi_item; // body of item (old or new) 1297 const void *vi_new_data; // 0 always but paste mode 1298 void *vi_uarea; // item specific area 1299}; 1300 1301struct virtual_node { 1302 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */ 1303 unsigned short vn_nr_item; /* number of items in virtual node */ 1304 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */ 1305 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */ 1306 short vn_affected_item_num; 1307 short vn_pos_in_item; 1308 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */ 1309 const void *vn_data; 1310 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */ 1311}; 1312 1313/* used by directory items when creating virtual nodes */ 1314struct direntry_uarea { 1315 int flags; 1316 __u16 entry_count; 1317 __u16 entry_sizes[1]; 1318} __attribute__ ((__packed__)); 1319 1320/***************************************************************************/ 1321/* TREE BALANCE */ 1322/***************************************************************************/ 1323 1324/* This temporary structure is used in tree balance algorithms, and 1325 constructed as we go to the extent that its various parts are 1326 needed. It contains arrays of nodes that can potentially be 1327 involved in the balancing of node S, and parameters that define how 1328 each of the nodes must be balanced. Note that in these algorithms 1329 for balancing the worst case is to need to balance the current node 1330 S and the left and right neighbors and all of their parents plus 1331 create a new node. We implement S1 balancing for the leaf nodes 1332 and S0 balancing for the internal nodes (S1 and S0 are defined in 1333 our papers.)*/ 1334 1335#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */ 1336 1337/* maximum number of FEB blocknrs on a single level */ 1338#define MAX_AMOUNT_NEEDED 2 1339 1340/* someday somebody will prefix every field in this struct with tb_ */ 1341struct tree_balance { 1342 int tb_mode; 1343 int need_balance_dirty; 1344 struct super_block *tb_sb; 1345 struct reiserfs_transaction_handle *transaction_handle; 1346 struct treepath *tb_path; 1347 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */ 1348 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */ 1349 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */ 1350 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */ 1351 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */ 1352 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */ 1353 1354 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals 1355 cur_blknum. */ 1356 struct buffer_head *used[MAX_FEB_SIZE]; 1357 struct buffer_head *thrown[MAX_FEB_SIZE]; 1358 int lnum[MAX_HEIGHT]; /* array of number of items which must be 1359 shifted to the left in order to balance the 1360 current node; for leaves includes item that 1361 will be partially shifted; for internal 1362 nodes, it is the number of child pointers 1363 rather than items. It includes the new item 1364 being created. The code sometimes subtracts 1365 one to get the number of wholly shifted 1366 items for other purposes. */ 1367 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */ 1368 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and 1369 S[h] to its item number within the node CFL[h] */ 1370 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */ 1371 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from 1372 S[h]. A negative value means removing. */ 1373 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after 1374 balancing on the level h of the tree. If 0 then S is 1375 being deleted, if 1 then S is remaining and no new nodes 1376 are being created, if 2 or 3 then 1 or 2 new nodes is 1377 being created */ 1378 1379 /* fields that are used only for balancing leaves of the tree */ 1380 int cur_blknum; /* number of empty blocks having been already allocated */ 1381 int s0num; /* number of items that fall into left most node when S[0] splits */ 1382 int s1num; /* number of items that fall into first new node when S[0] splits */ 1383 int s2num; /* number of items that fall into second new node when S[0] splits */ 1384 int lbytes; /* number of bytes which can flow to the left neighbor from the left */ 1385 /* most liquid item that cannot be shifted from S[0] entirely */ 1386 /* if -1 then nothing will be partially shifted */ 1387 int rbytes; /* number of bytes which will flow to the right neighbor from the right */ 1388 /* most liquid item that cannot be shifted from S[0] entirely */ 1389 /* if -1 then nothing will be partially shifted */ 1390 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */ 1391 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */ 1392 int s2bytes; 1393 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */ 1394 char *vn_buf; /* kmalloced memory. Used to create 1395 virtual node and keep map of 1396 dirtied bitmap blocks */ 1397 int vn_buf_size; /* size of the vn_buf */ 1398 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */ 1399 1400 int fs_gen; /* saved value of `reiserfs_generation' counter 1401 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ 1402#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1403 struct in_core_key key; /* key pointer, to pass to block allocator or 1404 another low-level subsystem */ 1405#endif 1406}; 1407 1408/* These are modes of balancing */ 1409 1410/* When inserting an item. */ 1411#define M_INSERT 'i' 1412/* When inserting into (directories only) or appending onto an already 1413 existant item. */ 1414#define M_PASTE 'p' 1415/* When deleting an item. */ 1416#define M_DELETE 'd' 1417/* When truncating an item or removing an entry from a (directory) item. */ 1418#define M_CUT 'c' 1419 1420/* used when balancing on leaf level skipped (in reiserfsck) */ 1421#define M_INTERNAL 'n' 1422 1423/* When further balancing is not needed, then do_balance does not need 1424 to be called. */ 1425#define M_SKIP_BALANCING 's' 1426#define M_CONVERT 'v' 1427 1428/* modes of leaf_move_items */ 1429#define LEAF_FROM_S_TO_L 0 1430#define LEAF_FROM_S_TO_R 1 1431#define LEAF_FROM_R_TO_L 2 1432#define LEAF_FROM_L_TO_R 3 1433#define LEAF_FROM_S_TO_SNEW 4 1434 1435#define FIRST_TO_LAST 0 1436#define LAST_TO_FIRST 1 1437 1438/* used in do_balance for passing parent of node information that has 1439 been gotten from tb struct */ 1440struct buffer_info { 1441 struct tree_balance *tb; 1442 struct buffer_head *bi_bh; 1443 struct buffer_head *bi_parent; 1444 int bi_position; 1445}; 1446 1447/* there are 4 types of items: stat data, directory item, indirect, direct. 1448+-------------------+------------+--------------+------------+ 1449| | k_offset | k_uniqueness | mergeable? | 1450+-------------------+------------+--------------+------------+ 1451| stat data | 0 | 0 | no | 1452+-------------------+------------+--------------+------------+ 1453| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no | 1454| non 1st directory | hash value | | yes | 1455| item | | | | 1456+-------------------+------------+--------------+------------+ 1457| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object 1458+-------------------+------------+--------------+------------+ 1459| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object 1460+-------------------+------------+--------------+------------+ 1461*/ 1462 1463struct item_operations { 1464 int (*bytes_number) (struct item_head * ih, int block_size); 1465 void (*decrement_key) (struct cpu_key *); 1466 int (*is_left_mergeable) (struct reiserfs_key * ih, 1467 unsigned long bsize); 1468 void (*print_item) (struct item_head *, char *item); 1469 void (*check_item) (struct item_head *, char *item); 1470 1471 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 1472 int is_affected, int insert_size); 1473 int (*check_left) (struct virtual_item * vi, int free, 1474 int start_skip, int end_skip); 1475 int (*check_right) (struct virtual_item * vi, int free); 1476 int (*part_size) (struct virtual_item * vi, int from, int to); 1477 int (*unit_num) (struct virtual_item * vi); 1478 void (*print_vi) (struct virtual_item * vi); 1479}; 1480 1481extern struct item_operations *item_ops[TYPE_ANY + 1]; 1482 1483#define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) 1484#define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) 1485#define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) 1486#define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) 1487#define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) 1488#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) 1489#define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) 1490#define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) 1491#define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) 1492#define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) 1493 1494#define COMP_SHORT_KEYS comp_short_keys 1495 1496/* number of blocks pointed to by the indirect item */ 1497#define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE ) 1498 1499/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */ 1500#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) 1501 1502/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */ 1503 1504/* get the item header */ 1505#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) ) 1506 1507/* get key */ 1508#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) ) 1509 1510/* get the key */ 1511#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) ) 1512 1513/* get item body */ 1514#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num)))) 1515 1516/* get the stat data by the buffer header and the item order */ 1517#define B_N_STAT_DATA(bh,nr) \ 1518( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) ) 1519 1520 /* following defines use reiserfs buffer header and item header */ 1521 1522/* get stat-data */ 1523#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) 1524 1525// this is 3976 for size==4096 1526#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) 1527 1528/* indirect items consist of entries which contain blocknrs, pos 1529 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the 1530 blocknr contained by the entry pos points to */ 1531#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos))) 1532#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0) 1533 1534struct reiserfs_iget_args { 1535 __u32 objectid; 1536 __u32 dirid; 1537}; 1538 1539/***************************************************************************/ 1540/* FUNCTION DECLARATIONS */ 1541/***************************************************************************/ 1542 1543/*#ifdef __KERNEL__*/ 1544#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) 1545 1546#define journal_trans_half(blocksize) \ 1547 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) 1548 1549/* journal.c see journal.c for all the comments here */ 1550 1551/* first block written in a commit. */ 1552struct reiserfs_journal_desc { 1553 __le32 j_trans_id; /* id of commit */ 1554 __le32 j_len; /* length of commit. len +1 is the commit block */ 1555 __le32 j_mount_id; /* mount id of this trans */ 1556 __le32 j_realblock[1]; /* real locations for each block */ 1557}; 1558 1559#define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) 1560#define get_desc_trans_len(d) le32_to_cpu((d)->j_len) 1561#define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) 1562 1563#define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) 1564#define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) 1565#define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) 1566 1567/* last block written in a commit */ 1568struct reiserfs_journal_commit { 1569 __le32 j_trans_id; /* must match j_trans_id from the desc block */ 1570 __le32 j_len; /* ditto */ 1571 __le32 j_realblock[1]; /* real locations for each block */ 1572}; 1573 1574#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) 1575#define get_commit_trans_len(c) le32_to_cpu((c)->j_len) 1576#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) 1577 1578#define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) 1579#define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) 1580 1581/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the 1582** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk, 1583** and this transaction does not need to be replayed. 1584*/ 1585struct reiserfs_journal_header { 1586 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */ 1587 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */ 1588 __le32 j_mount_id; 1589 /* 12 */ struct journal_params jh_journal; 1590}; 1591 1592/* biggest tunable defines are right here */ 1593#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ 1594#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */ 1595#define JOURNAL_TRANS_MIN_DEFAULT 256 1596#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */ 1597#define JOURNAL_MIN_RATIO 2 1598#define JOURNAL_MAX_COMMIT_AGE 30 1599#define JOURNAL_MAX_TRANS_AGE 30 1600#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) 1601#ifdef CONFIG_QUOTA 1602/* We need to update data and inode (atime) */ 1603#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0) 1604/* 1 balancing, 1 bitmap, 1 data per write + stat data update */ 1605#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \ 1606(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) 1607/* same as with INIT */ 1608#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \ 1609(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) 1610#else 1611#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 1612#define REISERFS_QUOTA_INIT_BLOCKS(s) 0 1613#define REISERFS_QUOTA_DEL_BLOCKS(s) 0 1614#endif 1615 1616/* both of these can be as low as 1, or as high as you want. The min is the 1617** number of 4k bitmap nodes preallocated on mount. New nodes are allocated 1618** as needed, and released when transactions are committed. On release, if 1619** the current number of nodes is > max, the node is freed, otherwise, 1620** it is put on a free list for faster use later. 1621*/ 1622#define REISERFS_MIN_BITMAP_NODES 10 1623#define REISERFS_MAX_BITMAP_NODES 100 1624 1625#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */ 1626#define JBH_HASH_MASK 8191 1627 1628#define _jhashfn(sb,block) \ 1629 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ 1630 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) 1631#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) 1632 1633// We need these to make journal.c code more readable 1634#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 1635#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 1636#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 1637 1638enum reiserfs_bh_state_bits { 1639 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ 1640 BH_JDirty_wait, 1641 BH_JNew, /* disk block was taken off free list before 1642 * being in a finished transaction, or 1643 * written to disk. Can be reused immed. */ 1644 BH_JPrepared, 1645 BH_JRestore_dirty, 1646 BH_JTest, // debugging only will go away 1647}; 1648 1649BUFFER_FNS(JDirty, journaled); 1650TAS_BUFFER_FNS(JDirty, journaled); 1651BUFFER_FNS(JDirty_wait, journal_dirty); 1652TAS_BUFFER_FNS(JDirty_wait, journal_dirty); 1653BUFFER_FNS(JNew, journal_new); 1654TAS_BUFFER_FNS(JNew, journal_new); 1655BUFFER_FNS(JPrepared, journal_prepared); 1656TAS_BUFFER_FNS(JPrepared, journal_prepared); 1657BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 1658TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 1659BUFFER_FNS(JTest, journal_test); 1660TAS_BUFFER_FNS(JTest, journal_test); 1661 1662/* 1663** transaction handle which is passed around for all journal calls 1664*/ 1665struct reiserfs_transaction_handle { 1666 struct super_block *t_super; /* super for this FS when journal_begin was 1667 called. saves calls to reiserfs_get_super 1668 also used by nested transactions to make 1669 sure they are nesting on the right FS 1670 _must_ be first in the handle 1671 */ 1672 int t_refcount; 1673 int t_blocks_logged; /* number of blocks this writer has logged */ 1674 int t_blocks_allocated; /* number of blocks this writer allocated */ 1675 unsigned long t_trans_id; /* sanity check, equals the current trans id */ 1676 void *t_handle_save; /* save existing current->journal_info */ 1677 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block 1678 should be displaced from others */ 1679 struct list_head t_list; 1680}; 1681 1682/* used to keep track of ordered and tail writes, attached to the buffer 1683 * head through b_journal_head. 1684 */ 1685struct reiserfs_jh { 1686 struct reiserfs_journal_list *jl; 1687 struct buffer_head *bh; 1688 struct list_head list; 1689}; 1690 1691void reiserfs_free_jh(struct buffer_head *bh); 1692int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); 1693int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); 1694int journal_mark_dirty(struct reiserfs_transaction_handle *, 1695 struct super_block *, struct buffer_head *bh); 1696 1697static inline int reiserfs_file_data_log(struct inode *inode) 1698{ 1699 if (reiserfs_data_log(inode->i_sb) || 1700 (REISERFS_I(inode)->i_flags & i_data_log)) 1701 return 1; 1702 return 0; 1703} 1704 1705static inline int reiserfs_transaction_running(struct super_block *s) 1706{ 1707 struct reiserfs_transaction_handle *th = current->journal_info; 1708 if (th && th->t_super == s) 1709 return 1; 1710 if (th && th->t_super == NULL) 1711 BUG(); 1712 return 0; 1713} 1714 1715static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) 1716{ 1717 return th->t_blocks_allocated - th->t_blocks_logged; 1718} 1719 1720struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct 1721 super_block 1722 *, 1723 int count); 1724int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); 1725int reiserfs_commit_page(struct inode *inode, struct page *page, 1726 unsigned from, unsigned to); 1727int reiserfs_flush_old_commits(struct super_block *); 1728int reiserfs_commit_for_inode(struct inode *); 1729int reiserfs_inode_needs_commit(struct inode *); 1730void reiserfs_update_inode_transaction(struct inode *); 1731void reiserfs_wait_on_write_block(struct super_block *s); 1732void reiserfs_block_writes(struct reiserfs_transaction_handle *th); 1733void reiserfs_allow_writes(struct super_block *s); 1734void reiserfs_check_lock_depth(struct super_block *s, char *caller); 1735int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, 1736 int wait); 1737void reiserfs_restore_prepared_buffer(struct super_block *, 1738 struct buffer_head *bh); 1739int journal_init(struct super_block *, const char *j_dev_name, int old_format, 1740 unsigned int); 1741int journal_release(struct reiserfs_transaction_handle *, struct super_block *); 1742int journal_release_error(struct reiserfs_transaction_handle *, 1743 struct super_block *); 1744int journal_end(struct reiserfs_transaction_handle *, struct super_block *, 1745 unsigned long); 1746int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, 1747 unsigned long); 1748int journal_mark_freed(struct reiserfs_transaction_handle *, 1749 struct super_block *, b_blocknr_t blocknr); 1750int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); 1751int reiserfs_in_journal(struct super_block *p_s_sb, unsigned int bmap_nr, 1752 int bit_nr, int searchall, b_blocknr_t *next); 1753int journal_begin(struct reiserfs_transaction_handle *, 1754 struct super_block *p_s_sb, unsigned long); 1755int journal_join_abort(struct reiserfs_transaction_handle *, 1756 struct super_block *p_s_sb, unsigned long); 1757void reiserfs_journal_abort(struct super_block *sb, int errno); 1758void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); 1759int reiserfs_allocate_list_bitmaps(struct super_block *s, 1760 struct reiserfs_list_bitmap *, unsigned int); 1761 1762void add_save_link(struct reiserfs_transaction_handle *th, 1763 struct inode *inode, int truncate); 1764int remove_save_link(struct inode *inode, int truncate); 1765 1766/* objectid.c */ 1767__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); 1768void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, 1769 __u32 objectid_to_release); 1770int reiserfs_convert_objectid_map_v1(struct super_block *); 1771 1772/* stree.c */ 1773int B_IS_IN_TREE(const struct buffer_head *); 1774extern void copy_item_head(struct item_head *p_v_to, 1775 const struct item_head *p_v_from); 1776 1777// first key is in cpu form, second - le 1778extern int comp_short_keys(const struct reiserfs_key *le_key, 1779 const struct cpu_key *cpu_key); 1780extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); 1781 1782// both are in le form 1783extern int comp_le_keys(const struct reiserfs_key *, 1784 const struct reiserfs_key *); 1785extern int comp_short_le_keys(const struct reiserfs_key *, 1786 const struct reiserfs_key *); 1787 1788// 1789// get key version from on disk key - kludge 1790// 1791static inline int le_key_version(const struct reiserfs_key *key) 1792{ 1793 int type; 1794 1795 type = offset_v2_k_type(&(key->u.k_offset_v2)); 1796 if (type != TYPE_DIRECT && type != TYPE_INDIRECT 1797 && type != TYPE_DIRENTRY) 1798 return KEY_FORMAT_3_5; 1799 1800 return KEY_FORMAT_3_6; 1801 1802} 1803 1804static inline void copy_key(struct reiserfs_key *to, 1805 const struct reiserfs_key *from) 1806{ 1807 memcpy(to, from, KEY_SIZE); 1808} 1809 1810int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path); 1811const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path, 1812 const struct super_block *p_s_sb); 1813int search_by_key(struct super_block *, const struct cpu_key *, 1814 struct treepath *, int); 1815#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) 1816int search_for_position_by_key(struct super_block *p_s_sb, 1817 const struct cpu_key *p_s_cpu_key, 1818 struct treepath *p_s_search_path); 1819extern void decrement_bcount(struct buffer_head *p_s_bh); 1820void decrement_counters_in_path(struct treepath *p_s_search_path); 1821void pathrelse(struct treepath *p_s_search_path); 1822int reiserfs_check_path(struct treepath *p); 1823void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path); 1824 1825int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 1826 struct treepath *path, 1827 const struct cpu_key *key, 1828 struct item_head *ih, 1829 struct inode *inode, const char *body); 1830 1831int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 1832 struct treepath *path, 1833 const struct cpu_key *key, 1834 struct inode *inode, 1835 const char *body, int paste_size); 1836 1837int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 1838 struct treepath *path, 1839 struct cpu_key *key, 1840 struct inode *inode, 1841 struct page *page, loff_t new_file_size); 1842 1843int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 1844 struct treepath *path, 1845 const struct cpu_key *key, 1846 struct inode *inode, struct buffer_head *p_s_un_bh); 1847 1848void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 1849 struct inode *inode, struct reiserfs_key *key); 1850int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 1851 struct inode *p_s_inode); 1852int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 1853 struct inode *p_s_inode, struct page *, 1854 int update_timestamps); 1855 1856#define i_block_size(inode) ((inode)->i_sb->s_blocksize) 1857#define file_size(inode) ((inode)->i_size) 1858#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) 1859 1860#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ 1861!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) 1862 1863void padd_item(char *item, int total_length, int length); 1864 1865/* inode.c */ 1866/* args for the create parameter of reiserfs_get_block */ 1867#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ 1868#define GET_BLOCK_CREATE 1 /* add anything you need to find block */ 1869#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ 1870#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ 1871#define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ 1872#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ 1873 1874void reiserfs_read_locked_inode(struct inode *inode, 1875 struct reiserfs_iget_args *args); 1876int reiserfs_find_actor(struct inode *inode, void *p); 1877int reiserfs_init_locked_inode(struct inode *inode, void *p); 1878void reiserfs_delete_inode(struct inode *inode); 1879int reiserfs_write_inode(struct inode *inode, int); 1880int reiserfs_get_block(struct inode *inode, sector_t block, 1881 struct buffer_head *bh_result, int create); 1882struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1883 int fh_len, int fh_type); 1884struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1885 int fh_len, int fh_type); 1886int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1887 int connectable); 1888 1889int reiserfs_truncate_file(struct inode *, int update_timestamps); 1890void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, 1891 int type, int key_length); 1892void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 1893 int version, 1894 loff_t offset, int type, int length, int entry_count); 1895struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); 1896 1897int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1898 struct inode *dir, int mode, 1899 const char *symname, loff_t i_size, 1900 struct dentry *dentry, struct inode *inode); 1901 1902void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1903 struct inode *inode, loff_t size); 1904 1905static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, 1906 struct inode *inode) 1907{ 1908 reiserfs_update_sd_size(th, inode, inode->i_size); 1909} 1910 1911void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); 1912void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); 1913int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); 1914 1915/* namei.c */ 1916void set_de_name_and_namelen(struct reiserfs_dir_entry *de); 1917int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, 1918 struct treepath *path, struct reiserfs_dir_entry *de); 1919struct dentry *reiserfs_get_parent(struct dentry *); 1920/* procfs.c */ 1921 1922#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) 1923#define REISERFS_PROC_INFO 1924#else 1925#undef REISERFS_PROC_INFO 1926#endif 1927 1928int reiserfs_proc_info_init(struct super_block *sb); 1929int reiserfs_proc_info_done(struct super_block *sb); 1930struct proc_dir_entry *reiserfs_proc_register_global(char *name, 1931 read_proc_t * func); 1932void reiserfs_proc_unregister_global(const char *name); 1933int reiserfs_proc_info_global_init(void); 1934int reiserfs_proc_info_global_done(void); 1935int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset, 1936 int count, int *eof, void *data); 1937 1938#if defined( REISERFS_PROC_INFO ) 1939 1940#define PROC_EXP( e ) e 1941 1942#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data 1943#define PROC_INFO_MAX( sb, field, value ) \ 1944 __PINFO( sb ).field = \ 1945 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) 1946#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) 1947#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) 1948#define PROC_INFO_BH_STAT( sb, bh, level ) \ 1949 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ 1950 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ 1951 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) 1952#else 1953#define PROC_EXP( e ) 1954#define VOID_V ( ( void ) 0 ) 1955#define PROC_INFO_MAX( sb, field, value ) VOID_V 1956#define PROC_INFO_INC( sb, field ) VOID_V 1957#define PROC_INFO_ADD( sb, field, val ) VOID_V 1958#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V 1959#endif 1960 1961/* dir.c */ 1962extern const struct inode_operations reiserfs_dir_inode_operations; 1963extern const struct inode_operations reiserfs_symlink_inode_operations; 1964extern const struct inode_operations reiserfs_special_inode_operations; 1965extern const struct file_operations reiserfs_dir_operations; 1966 1967/* tail_conversion.c */ 1968int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, 1969 struct treepath *, struct buffer_head *, loff_t); 1970int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, 1971 struct page *, struct treepath *, const struct cpu_key *, 1972 loff_t, char *); 1973void reiserfs_unmap_buffer(struct buffer_head *); 1974 1975/* file.c */ 1976extern const struct inode_operations reiserfs_file_inode_operations; 1977extern const struct file_operations reiserfs_file_operations; 1978extern const struct address_space_operations reiserfs_address_space_operations; 1979 1980/* fix_nodes.c */ 1981 1982int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, 1983 struct item_head *p_s_ins_ih, const void *); 1984void unfix_nodes(struct tree_balance *); 1985 1986/* prints.c */ 1987void reiserfs_panic(struct super_block *s, const char *fmt, ...) 1988 __attribute__ ((noreturn)); 1989void reiserfs_info(struct super_block *s, const char *fmt, ...); 1990void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); 1991void print_indirect_item(struct buffer_head *bh, int item_num); 1992void store_print_tb(struct tree_balance *tb); 1993void print_cur_tb(char *mes); 1994void print_de(struct reiserfs_dir_entry *de); 1995void print_bi(struct buffer_info *bi, char *mes); 1996#define PRINT_LEAF_ITEMS 1 /* print all items */ 1997#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ 1998#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ 1999void print_block(struct buffer_head *bh, ...); 2000void print_bmap(struct super_block *s, int silent); 2001void print_bmap_block(int i, char *data, int size, int silent); 2002/*void print_super_block (struct super_block * s, char * mes);*/ 2003void print_objectid_map(struct super_block *s); 2004void print_block_head(struct buffer_head *bh, char *mes); 2005void check_leaf(struct buffer_head *bh); 2006void check_internal(struct buffer_head *bh); 2007void print_statistics(struct super_block *s); 2008char *reiserfs_hashname(int code); 2009 2010/* lbalance.c */ 2011int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, 2012 int mov_bytes, struct buffer_head *Snew); 2013int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); 2014int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); 2015void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, 2016 int del_num, int del_bytes); 2017void leaf_insert_into_buf(struct buffer_info *bi, int before, 2018 struct item_head *inserted_item_ih, 2019 const char *inserted_item_body, int zeros_number); 2020void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, 2021 int pos_in_item, int paste_size, const char *body, 2022 int zeros_number); 2023void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, 2024 int pos_in_item, int cut_size); 2025void leaf_paste_entries(struct buffer_head *bh, int item_num, int before, 2026 int new_entry_count, struct reiserfs_de_head *new_dehs, 2027 const char *records, int paste_size); 2028/* ibalance.c */ 2029int balance_internal(struct tree_balance *, int, int, struct item_head *, 2030 struct buffer_head **); 2031 2032/* do_balance.c */ 2033void do_balance_mark_leaf_dirty(struct tree_balance *tb, 2034 struct buffer_head *bh, int flag); 2035#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty 2036#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty 2037 2038void do_balance(struct tree_balance *tb, struct item_head *ih, 2039 const char *body, int flag); 2040void reiserfs_invalidate_buffer(struct tree_balance *tb, 2041 struct buffer_head *bh); 2042 2043int get_left_neighbor_position(struct tree_balance *tb, int h); 2044int get_right_neighbor_position(struct tree_balance *tb, int h); 2045void replace_key(struct tree_balance *tb, struct buffer_head *, int, 2046 struct buffer_head *, int); 2047void make_empty_node(struct buffer_info *); 2048struct buffer_head *get_FEB(struct tree_balance *); 2049 2050/* bitmap.c */ 2051 2052/* structure contains hints for block allocator, and it is a container for 2053 * arguments, such as node, search path, transaction_handle, etc. */ 2054struct __reiserfs_blocknr_hint { 2055 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */ 2056 sector_t block; /* file offset, in blocks */ 2057 struct in_core_key key; 2058 struct treepath *path; /* search path, used by allocator to deternine search_start by 2059 * various ways */ 2060 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and 2061 * bitmap blocks changes */ 2062 b_blocknr_t beg, end; 2063 b_blocknr_t search_start; /* a field used to transfer search start value (block number) 2064 * between different block allocator procedures 2065 * (determine_search_start() and others) */ 2066 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed 2067 * function that do actual allocation */ 2068 2069 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for 2070 * formatted/unformatted blocks with/without preallocation */ 2071 unsigned preallocate:1; 2072}; 2073 2074typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; 2075 2076int reiserfs_parse_alloc_options(struct super_block *, char *); 2077void reiserfs_init_alloc_options(struct super_block *s); 2078 2079/* 2080 * given a directory, this will tell you what packing locality 2081 * to use for a new object underneat it. The locality is returned 2082 * in disk byte order (le). 2083 */ 2084__le32 reiserfs_choose_packing(struct inode *dir); 2085 2086int reiserfs_init_bitmap_cache(struct super_block *sb); 2087void reiserfs_free_bitmap_cache(struct super_block *sb); 2088void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); 2089struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); 2090int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); 2091void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, 2092 b_blocknr_t, int for_unformatted); 2093int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, 2094 int); 2095static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, 2096 b_blocknr_t * new_blocknrs, 2097 int amount_needed) 2098{ 2099 reiserfs_blocknr_hint_t hint = { 2100 .th = tb->transaction_handle, 2101 .path = tb->tb_path, 2102 .inode = NULL, 2103 .key = tb->key, 2104 .block = 0, 2105 .formatted_node = 1 2106 }; 2107 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 2108 0); 2109} 2110 2111static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle 2112 *th, struct inode *inode, 2113 b_blocknr_t * new_blocknrs, 2114 struct treepath *path, 2115 sector_t block) 2116{ 2117 reiserfs_blocknr_hint_t hint = { 2118 .th = th, 2119 .path = path, 2120 .inode = inode, 2121 .block = block, 2122 .formatted_node = 0, 2123 .preallocate = 0 2124 }; 2125 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 2126} 2127 2128#ifdef REISERFS_PREALLOCATE 2129static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle 2130 *th, struct inode *inode, 2131 b_blocknr_t * new_blocknrs, 2132 struct treepath *path, 2133 sector_t block) 2134{ 2135 reiserfs_blocknr_hint_t hint = { 2136 .th = th, 2137 .path = path, 2138 .inode = inode, 2139 .block = block, 2140 .formatted_node = 0, 2141 .preallocate = 1 2142 }; 2143 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 2144} 2145 2146void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, 2147 struct inode *inode); 2148void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); 2149#endif 2150 2151/* hashes.c */ 2152__u32 keyed_hash(const signed char *msg, int len); 2153__u32 yura_hash(const signed char *msg, int len); 2154__u32 r5_hash(const signed char *msg, int len); 2155 2156/* the ext2 bit routines adjust for big or little endian as 2157** appropriate for the arch, so in our laziness we use them rather 2158** than using the bit routines they call more directly. These 2159** routines must be used when changing on disk bitmaps. */ 2160#define reiserfs_test_and_set_le_bit ext2_set_bit 2161#define reiserfs_test_and_clear_le_bit ext2_clear_bit 2162#define reiserfs_test_le_bit ext2_test_bit 2163#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit 2164 2165/* sometimes reiserfs_truncate may require to allocate few new blocks 2166 to perform indirect2direct conversion. People probably used to 2167 think, that truncate should work without problems on a filesystem 2168 without free disk space. They may complain that they can not 2169 truncate due to lack of free disk space. This spare space allows us 2170 to not worry about it. 500 is probably too much, but it should be 2171 absolutely safe */ 2172#define SPARE_SPACE 500 2173 2174/* prototypes from ioctl.c */ 2175int reiserfs_ioctl(struct inode *inode, struct file *filp, 2176 unsigned int cmd, unsigned long arg); 2177long reiserfs_compat_ioctl(struct file *filp, 2178 unsigned int cmd, unsigned long arg); 2179 2180/* ioctl's command */ 2181#define REISERFS_IOC_UNPACK _IOW(0xCD,1,long) 2182/* define following flags to be the same as in ext2, so that chattr(1), 2183 lsattr(1) will work with us. */ 2184#define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS 2185#define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS 2186#define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION 2187#define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION 2188 2189/* the 32 bit compat definitions with int argument */ 2190#define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) 2191#define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 2192#define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 2193#define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION 2194#define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION 2195 2196/* Locking primitives */ 2197/* Right now we are still falling back to (un)lock_kernel, but eventually that 2198 would evolve into real per-fs locks */ 2199#define reiserfs_write_lock( sb ) lock_kernel() 2200#define reiserfs_write_unlock( sb ) unlock_kernel() 2201 2202/* xattr stuff */ 2203#define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem) 2204 2205#endif /* _LINUX_REISER_FS_H */