1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15 16struct mempolicy; 17struct anon_vma; 18struct file_ra_state; 19struct user_struct; 20struct writeback_control; 21 22#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 23extern unsigned long max_mapnr; 24#endif 25 26extern unsigned long num_physpages; 27extern void * high_memory; 28extern int page_cluster; 29 30#ifdef CONFIG_SYSCTL 31extern int sysctl_legacy_va_layout; 32#else 33#define sysctl_legacy_va_layout 0 34#endif 35 36extern unsigned long mmap_min_addr; 37 38#include <asm/page.h> 39#include <asm/pgtable.h> 40#include <asm/processor.h> 41 42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44/* 45 * Linux kernel virtual memory manager primitives. 46 * The idea being to have a "virtual" mm in the same way 47 * we have a virtual fs - giving a cleaner interface to the 48 * mm details, and allowing different kinds of memory mappings 49 * (from shared memory to executable loading to arbitrary 50 * mmap() functions). 51 */ 52 53extern struct kmem_cache *vm_area_cachep; 54 55/* 56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 57 * disabled, then there's a single shared list of VMAs maintained by the 58 * system, and mm's subscribe to these individually 59 */ 60struct vm_list_struct { 61 struct vm_list_struct *next; 62 struct vm_area_struct *vma; 63}; 64 65#ifndef CONFIG_MMU 66extern struct rb_root nommu_vma_tree; 67extern struct rw_semaphore nommu_vma_sem; 68 69extern unsigned int kobjsize(const void *objp); 70#endif 71 72/* 73 * vm_flags.. 74 */ 75#define VM_READ 0x00000001 /* currently active flags */ 76#define VM_WRITE 0x00000002 77#define VM_EXEC 0x00000004 78#define VM_SHARED 0x00000008 79 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82#define VM_MAYWRITE 0x00000020 83#define VM_MAYEXEC 0x00000040 84#define VM_MAYSHARE 0x00000080 85 86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87#define VM_GROWSUP 0x00000200 88#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91#define VM_EXECUTABLE 0x00001000 92#define VM_LOCKED 0x00002000 93#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 104#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 105#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 106#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 107#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 108 109#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 110 111#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 112#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 113#endif 114 115#ifdef CONFIG_STACK_GROWSUP 116#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 117#else 118#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 119#endif 120 121#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 122#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 123#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 124#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 125#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 126 127/* 128 * mapping from the currently active vm_flags protection bits (the 129 * low four bits) to a page protection mask.. 130 */ 131extern pgprot_t protection_map[16]; 132 133#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 134#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 135 136 137/* 138 * vm_fault is filled by the the pagefault handler and passed to the vma's 139 * ->fault function. The vma's ->fault is responsible for returning a bitmask 140 * of VM_FAULT_xxx flags that give details about how the fault was handled. 141 * 142 * pgoff should be used in favour of virtual_address, if possible. If pgoff 143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 144 * mapping support. 145 */ 146struct vm_fault { 147 unsigned int flags; /* FAULT_FLAG_xxx flags */ 148 pgoff_t pgoff; /* Logical page offset based on vma */ 149 void __user *virtual_address; /* Faulting virtual address */ 150 151 struct page *page; /* ->fault handlers should return a 152 * page here, unless VM_FAULT_NOPAGE 153 * is set (which is also implied by 154 * VM_FAULT_ERROR). 155 */ 156}; 157 158/* 159 * These are the virtual MM functions - opening of an area, closing and 160 * unmapping it (needed to keep files on disk up-to-date etc), pointer 161 * to the functions called when a no-page or a wp-page exception occurs. 162 */ 163struct vm_operations_struct { 164 void (*open)(struct vm_area_struct * area); 165 void (*close)(struct vm_area_struct * area); 166 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 167 struct page *(*nopage)(struct vm_area_struct *area, 168 unsigned long address, int *type); 169 unsigned long (*nopfn)(struct vm_area_struct *area, 170 unsigned long address); 171 172 /* notification that a previously read-only page is about to become 173 * writable, if an error is returned it will cause a SIGBUS */ 174 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 175#ifdef CONFIG_NUMA 176 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 177 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 178 unsigned long addr); 179 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 180 const nodemask_t *to, unsigned long flags); 181#endif 182}; 183 184struct mmu_gather; 185struct inode; 186 187#define page_private(page) ((page)->private) 188#define set_page_private(page, v) ((page)->private = (v)) 189 190/* 191 * FIXME: take this include out, include page-flags.h in 192 * files which need it (119 of them) 193 */ 194#include <linux/page-flags.h> 195 196#ifdef CONFIG_DEBUG_VM 197#define VM_BUG_ON(cond) BUG_ON(cond) 198#else 199#define VM_BUG_ON(condition) do { } while(0) 200#endif 201 202/* 203 * Methods to modify the page usage count. 204 * 205 * What counts for a page usage: 206 * - cache mapping (page->mapping) 207 * - private data (page->private) 208 * - page mapped in a task's page tables, each mapping 209 * is counted separately 210 * 211 * Also, many kernel routines increase the page count before a critical 212 * routine so they can be sure the page doesn't go away from under them. 213 */ 214 215/* 216 * Drop a ref, return true if the refcount fell to zero (the page has no users) 217 */ 218static inline int put_page_testzero(struct page *page) 219{ 220 VM_BUG_ON(atomic_read(&page->_count) == 0); 221 return atomic_dec_and_test(&page->_count); 222} 223 224/* 225 * Try to grab a ref unless the page has a refcount of zero, return false if 226 * that is the case. 227 */ 228static inline int get_page_unless_zero(struct page *page) 229{ 230 VM_BUG_ON(PageCompound(page)); 231 return atomic_inc_not_zero(&page->_count); 232} 233 234static inline struct page *compound_head(struct page *page) 235{ 236 if (unlikely(PageTail(page))) 237 return page->first_page; 238 return page; 239} 240 241static inline int page_count(struct page *page) 242{ 243 return atomic_read(&compound_head(page)->_count); 244} 245 246static inline void get_page(struct page *page) 247{ 248 page = compound_head(page); 249 VM_BUG_ON(atomic_read(&page->_count) == 0); 250 atomic_inc(&page->_count); 251} 252 253static inline struct page *virt_to_head_page(const void *x) 254{ 255 struct page *page = virt_to_page(x); 256 return compound_head(page); 257} 258 259/* 260 * Setup the page count before being freed into the page allocator for 261 * the first time (boot or memory hotplug) 262 */ 263static inline void init_page_count(struct page *page) 264{ 265 atomic_set(&page->_count, 1); 266} 267 268void put_page(struct page *page); 269void put_pages_list(struct list_head *pages); 270 271void split_page(struct page *page, unsigned int order); 272 273/* 274 * Compound pages have a destructor function. Provide a 275 * prototype for that function and accessor functions. 276 * These are _only_ valid on the head of a PG_compound page. 277 */ 278typedef void compound_page_dtor(struct page *); 279 280static inline void set_compound_page_dtor(struct page *page, 281 compound_page_dtor *dtor) 282{ 283 page[1].lru.next = (void *)dtor; 284} 285 286static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 287{ 288 return (compound_page_dtor *)page[1].lru.next; 289} 290 291static inline int compound_order(struct page *page) 292{ 293 if (!PageHead(page)) 294 return 0; 295 return (unsigned long)page[1].lru.prev; 296} 297 298static inline void set_compound_order(struct page *page, unsigned long order) 299{ 300 page[1].lru.prev = (void *)order; 301} 302 303/* 304 * Multiple processes may "see" the same page. E.g. for untouched 305 * mappings of /dev/null, all processes see the same page full of 306 * zeroes, and text pages of executables and shared libraries have 307 * only one copy in memory, at most, normally. 308 * 309 * For the non-reserved pages, page_count(page) denotes a reference count. 310 * page_count() == 0 means the page is free. page->lru is then used for 311 * freelist management in the buddy allocator. 312 * page_count() > 0 means the page has been allocated. 313 * 314 * Pages are allocated by the slab allocator in order to provide memory 315 * to kmalloc and kmem_cache_alloc. In this case, the management of the 316 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 317 * unless a particular usage is carefully commented. (the responsibility of 318 * freeing the kmalloc memory is the caller's, of course). 319 * 320 * A page may be used by anyone else who does a __get_free_page(). 321 * In this case, page_count still tracks the references, and should only 322 * be used through the normal accessor functions. The top bits of page->flags 323 * and page->virtual store page management information, but all other fields 324 * are unused and could be used privately, carefully. The management of this 325 * page is the responsibility of the one who allocated it, and those who have 326 * subsequently been given references to it. 327 * 328 * The other pages (we may call them "pagecache pages") are completely 329 * managed by the Linux memory manager: I/O, buffers, swapping etc. 330 * The following discussion applies only to them. 331 * 332 * A pagecache page contains an opaque `private' member, which belongs to the 333 * page's address_space. Usually, this is the address of a circular list of 334 * the page's disk buffers. PG_private must be set to tell the VM to call 335 * into the filesystem to release these pages. 336 * 337 * A page may belong to an inode's memory mapping. In this case, page->mapping 338 * is the pointer to the inode, and page->index is the file offset of the page, 339 * in units of PAGE_CACHE_SIZE. 340 * 341 * If pagecache pages are not associated with an inode, they are said to be 342 * anonymous pages. These may become associated with the swapcache, and in that 343 * case PG_swapcache is set, and page->private is an offset into the swapcache. 344 * 345 * In either case (swapcache or inode backed), the pagecache itself holds one 346 * reference to the page. Setting PG_private should also increment the 347 * refcount. The each user mapping also has a reference to the page. 348 * 349 * The pagecache pages are stored in a per-mapping radix tree, which is 350 * rooted at mapping->page_tree, and indexed by offset. 351 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 352 * lists, we instead now tag pages as dirty/writeback in the radix tree. 353 * 354 * All pagecache pages may be subject to I/O: 355 * - inode pages may need to be read from disk, 356 * - inode pages which have been modified and are MAP_SHARED may need 357 * to be written back to the inode on disk, 358 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 359 * modified may need to be swapped out to swap space and (later) to be read 360 * back into memory. 361 */ 362 363/* 364 * The zone field is never updated after free_area_init_core() 365 * sets it, so none of the operations on it need to be atomic. 366 */ 367 368 369/* 370 * page->flags layout: 371 * 372 * There are three possibilities for how page->flags get 373 * laid out. The first is for the normal case, without 374 * sparsemem. The second is for sparsemem when there is 375 * plenty of space for node and section. The last is when 376 * we have run out of space and have to fall back to an 377 * alternate (slower) way of determining the node. 378 * 379 * No sparsemem: | NODE | ZONE | ... | FLAGS | 380 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 381 * no space for node: | SECTION | ZONE | ... | FLAGS | 382 */ 383#ifdef CONFIG_SPARSEMEM 384#define SECTIONS_WIDTH SECTIONS_SHIFT 385#else 386#define SECTIONS_WIDTH 0 387#endif 388 389#define ZONES_WIDTH ZONES_SHIFT 390 391#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 392#define NODES_WIDTH NODES_SHIFT 393#else 394#define NODES_WIDTH 0 395#endif 396 397/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 398#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 399#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 400#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 401 402/* 403 * We are going to use the flags for the page to node mapping if its in 404 * there. This includes the case where there is no node, so it is implicit. 405 */ 406#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 407#define NODE_NOT_IN_PAGE_FLAGS 408#endif 409 410#ifndef PFN_SECTION_SHIFT 411#define PFN_SECTION_SHIFT 0 412#endif 413 414/* 415 * Define the bit shifts to access each section. For non-existant 416 * sections we define the shift as 0; that plus a 0 mask ensures 417 * the compiler will optimise away reference to them. 418 */ 419#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 420#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 421#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 422 423/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 424#ifdef NODE_NOT_IN_PAGEFLAGS 425#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 426#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 427 SECTIONS_PGOFF : ZONES_PGOFF) 428#else 429#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 430#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 431 NODES_PGOFF : ZONES_PGOFF) 432#endif 433 434#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 435 436#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 437#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 438#endif 439 440#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 441#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 442#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 443#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 444 445static inline enum zone_type page_zonenum(struct page *page) 446{ 447 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 448} 449 450/* 451 * The identification function is only used by the buddy allocator for 452 * determining if two pages could be buddies. We are not really 453 * identifying a zone since we could be using a the section number 454 * id if we have not node id available in page flags. 455 * We guarantee only that it will return the same value for two 456 * combinable pages in a zone. 457 */ 458static inline int page_zone_id(struct page *page) 459{ 460 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 461} 462 463static inline int zone_to_nid(struct zone *zone) 464{ 465#ifdef CONFIG_NUMA 466 return zone->node; 467#else 468 return 0; 469#endif 470} 471 472#ifdef NODE_NOT_IN_PAGE_FLAGS 473extern int page_to_nid(struct page *page); 474#else 475static inline int page_to_nid(struct page *page) 476{ 477 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 478} 479#endif 480 481static inline struct zone *page_zone(struct page *page) 482{ 483 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 484} 485 486static inline unsigned long page_to_section(struct page *page) 487{ 488 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 489} 490 491static inline void set_page_zone(struct page *page, enum zone_type zone) 492{ 493 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 494 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 495} 496 497static inline void set_page_node(struct page *page, unsigned long node) 498{ 499 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 500 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 501} 502 503static inline void set_page_section(struct page *page, unsigned long section) 504{ 505 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 506 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 507} 508 509static inline void set_page_links(struct page *page, enum zone_type zone, 510 unsigned long node, unsigned long pfn) 511{ 512 set_page_zone(page, zone); 513 set_page_node(page, node); 514 set_page_section(page, pfn_to_section_nr(pfn)); 515} 516 517/* 518 * If a hint addr is less than mmap_min_addr change hint to be as 519 * low as possible but still greater than mmap_min_addr 520 */ 521static inline unsigned long round_hint_to_min(unsigned long hint) 522{ 523#ifdef CONFIG_SECURITY 524 hint &= PAGE_MASK; 525 if (((void *)hint != NULL) && 526 (hint < mmap_min_addr)) 527 return PAGE_ALIGN(mmap_min_addr); 528#endif 529 return hint; 530} 531 532/* 533 * Some inline functions in vmstat.h depend on page_zone() 534 */ 535#include <linux/vmstat.h> 536 537static __always_inline void *lowmem_page_address(struct page *page) 538{ 539 return __va(page_to_pfn(page) << PAGE_SHIFT); 540} 541 542#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 543#define HASHED_PAGE_VIRTUAL 544#endif 545 546#if defined(WANT_PAGE_VIRTUAL) 547#define page_address(page) ((page)->virtual) 548#define set_page_address(page, address) \ 549 do { \ 550 (page)->virtual = (address); \ 551 } while(0) 552#define page_address_init() do { } while(0) 553#endif 554 555#if defined(HASHED_PAGE_VIRTUAL) 556void *page_address(struct page *page); 557void set_page_address(struct page *page, void *virtual); 558void page_address_init(void); 559#endif 560 561#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 562#define page_address(page) lowmem_page_address(page) 563#define set_page_address(page, address) do { } while(0) 564#define page_address_init() do { } while(0) 565#endif 566 567/* 568 * On an anonymous page mapped into a user virtual memory area, 569 * page->mapping points to its anon_vma, not to a struct address_space; 570 * with the PAGE_MAPPING_ANON bit set to distinguish it. 571 * 572 * Please note that, confusingly, "page_mapping" refers to the inode 573 * address_space which maps the page from disk; whereas "page_mapped" 574 * refers to user virtual address space into which the page is mapped. 575 */ 576#define PAGE_MAPPING_ANON 1 577 578extern struct address_space swapper_space; 579static inline struct address_space *page_mapping(struct page *page) 580{ 581 struct address_space *mapping = page->mapping; 582 583 VM_BUG_ON(PageSlab(page)); 584 if (unlikely(PageSwapCache(page))) 585 mapping = &swapper_space; 586 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 587 mapping = NULL; 588 return mapping; 589} 590 591static inline int PageAnon(struct page *page) 592{ 593 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 594} 595 596/* 597 * Return the pagecache index of the passed page. Regular pagecache pages 598 * use ->index whereas swapcache pages use ->private 599 */ 600static inline pgoff_t page_index(struct page *page) 601{ 602 if (unlikely(PageSwapCache(page))) 603 return page_private(page); 604 return page->index; 605} 606 607/* 608 * The atomic page->_mapcount, like _count, starts from -1: 609 * so that transitions both from it and to it can be tracked, 610 * using atomic_inc_and_test and atomic_add_negative(-1). 611 */ 612static inline void reset_page_mapcount(struct page *page) 613{ 614 atomic_set(&(page)->_mapcount, -1); 615} 616 617static inline int page_mapcount(struct page *page) 618{ 619 return atomic_read(&(page)->_mapcount) + 1; 620} 621 622/* 623 * Return true if this page is mapped into pagetables. 624 */ 625static inline int page_mapped(struct page *page) 626{ 627 return atomic_read(&(page)->_mapcount) >= 0; 628} 629 630/* 631 * Error return values for the *_nopage functions 632 */ 633#define NOPAGE_SIGBUS (NULL) 634#define NOPAGE_OOM ((struct page *) (-1)) 635 636/* 637 * Error return values for the *_nopfn functions 638 */ 639#define NOPFN_SIGBUS ((unsigned long) -1) 640#define NOPFN_OOM ((unsigned long) -2) 641#define NOPFN_REFAULT ((unsigned long) -3) 642 643/* 644 * Different kinds of faults, as returned by handle_mm_fault(). 645 * Used to decide whether a process gets delivered SIGBUS or 646 * just gets major/minor fault counters bumped up. 647 */ 648 649#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 650 651#define VM_FAULT_OOM 0x0001 652#define VM_FAULT_SIGBUS 0x0002 653#define VM_FAULT_MAJOR 0x0004 654#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 655 656#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 657#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 658 659#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 660 661#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 662 663extern void show_free_areas(void); 664 665#ifdef CONFIG_SHMEM 666int shmem_lock(struct file *file, int lock, struct user_struct *user); 667#else 668static inline int shmem_lock(struct file *file, int lock, 669 struct user_struct *user) 670{ 671 return 0; 672} 673#endif 674struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 675 676int shmem_zero_setup(struct vm_area_struct *); 677 678#ifndef CONFIG_MMU 679extern unsigned long shmem_get_unmapped_area(struct file *file, 680 unsigned long addr, 681 unsigned long len, 682 unsigned long pgoff, 683 unsigned long flags); 684#endif 685 686extern int can_do_mlock(void); 687extern int user_shm_lock(size_t, struct user_struct *); 688extern void user_shm_unlock(size_t, struct user_struct *); 689 690/* 691 * Parameter block passed down to zap_pte_range in exceptional cases. 692 */ 693struct zap_details { 694 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 695 struct address_space *check_mapping; /* Check page->mapping if set */ 696 pgoff_t first_index; /* Lowest page->index to unmap */ 697 pgoff_t last_index; /* Highest page->index to unmap */ 698 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 699 unsigned long truncate_count; /* Compare vm_truncate_count */ 700}; 701 702struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 703unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 704 unsigned long size, struct zap_details *); 705unsigned long unmap_vmas(struct mmu_gather **tlb, 706 struct vm_area_struct *start_vma, unsigned long start_addr, 707 unsigned long end_addr, unsigned long *nr_accounted, 708 struct zap_details *); 709void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 710 unsigned long end, unsigned long floor, unsigned long ceiling); 711void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 712 unsigned long floor, unsigned long ceiling); 713int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 714 struct vm_area_struct *vma); 715void unmap_mapping_range(struct address_space *mapping, 716 loff_t const holebegin, loff_t const holelen, int even_cows); 717 718static inline void unmap_shared_mapping_range(struct address_space *mapping, 719 loff_t const holebegin, loff_t const holelen) 720{ 721 unmap_mapping_range(mapping, holebegin, holelen, 0); 722} 723 724extern int vmtruncate(struct inode * inode, loff_t offset); 725extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 726 727#ifdef CONFIG_MMU 728extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 729 unsigned long address, int write_access); 730#else 731static inline int handle_mm_fault(struct mm_struct *mm, 732 struct vm_area_struct *vma, unsigned long address, 733 int write_access) 734{ 735 /* should never happen if there's no MMU */ 736 BUG(); 737 return VM_FAULT_SIGBUS; 738} 739#endif 740 741extern int make_pages_present(unsigned long addr, unsigned long end); 742extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 743 744int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 745 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 746void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 747 748extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 749extern void do_invalidatepage(struct page *page, unsigned long offset); 750 751int __set_page_dirty_nobuffers(struct page *page); 752int __set_page_dirty_no_writeback(struct page *page); 753int redirty_page_for_writepage(struct writeback_control *wbc, 754 struct page *page); 755int FASTCALL(set_page_dirty(struct page *page)); 756int set_page_dirty_lock(struct page *page); 757int clear_page_dirty_for_io(struct page *page); 758 759extern unsigned long move_page_tables(struct vm_area_struct *vma, 760 unsigned long old_addr, struct vm_area_struct *new_vma, 761 unsigned long new_addr, unsigned long len); 762extern unsigned long do_mremap(unsigned long addr, 763 unsigned long old_len, unsigned long new_len, 764 unsigned long flags, unsigned long new_addr); 765extern int mprotect_fixup(struct vm_area_struct *vma, 766 struct vm_area_struct **pprev, unsigned long start, 767 unsigned long end, unsigned long newflags); 768 769/* 770 * A callback you can register to apply pressure to ageable caches. 771 * 772 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 773 * look through the least-recently-used 'nr_to_scan' entries and 774 * attempt to free them up. It should return the number of objects 775 * which remain in the cache. If it returns -1, it means it cannot do 776 * any scanning at this time (eg. there is a risk of deadlock). 777 * 778 * The 'gfpmask' refers to the allocation we are currently trying to 779 * fulfil. 780 * 781 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 782 * querying the cache size, so a fastpath for that case is appropriate. 783 */ 784struct shrinker { 785 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 786 int seeks; /* seeks to recreate an obj */ 787 788 /* These are for internal use */ 789 struct list_head list; 790 long nr; /* objs pending delete */ 791}; 792#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 793extern void register_shrinker(struct shrinker *); 794extern void unregister_shrinker(struct shrinker *); 795 796int vma_wants_writenotify(struct vm_area_struct *vma); 797 798extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 799 800#ifdef __PAGETABLE_PUD_FOLDED 801static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 802 unsigned long address) 803{ 804 return 0; 805} 806#else 807int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 808#endif 809 810#ifdef __PAGETABLE_PMD_FOLDED 811static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 812 unsigned long address) 813{ 814 return 0; 815} 816#else 817int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 818#endif 819 820int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 821int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 822 823/* 824 * The following ifdef needed to get the 4level-fixup.h header to work. 825 * Remove it when 4level-fixup.h has been removed. 826 */ 827#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 828static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 829{ 830 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 831 NULL: pud_offset(pgd, address); 832} 833 834static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 835{ 836 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 837 NULL: pmd_offset(pud, address); 838} 839#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 840 841#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 842/* 843 * We tuck a spinlock to guard each pagetable page into its struct page, 844 * at page->private, with BUILD_BUG_ON to make sure that this will not 845 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 846 * When freeing, reset page->mapping so free_pages_check won't complain. 847 */ 848#define __pte_lockptr(page) &((page)->ptl) 849#define pte_lock_init(_page) do { \ 850 spin_lock_init(__pte_lockptr(_page)); \ 851} while (0) 852#define pte_lock_deinit(page) ((page)->mapping = NULL) 853#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 854#else 855/* 856 * We use mm->page_table_lock to guard all pagetable pages of the mm. 857 */ 858#define pte_lock_init(page) do {} while (0) 859#define pte_lock_deinit(page) do {} while (0) 860#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 861#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 862 863#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 864({ \ 865 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 866 pte_t *__pte = pte_offset_map(pmd, address); \ 867 *(ptlp) = __ptl; \ 868 spin_lock(__ptl); \ 869 __pte; \ 870}) 871 872#define pte_unmap_unlock(pte, ptl) do { \ 873 spin_unlock(ptl); \ 874 pte_unmap(pte); \ 875} while (0) 876 877#define pte_alloc_map(mm, pmd, address) \ 878 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 879 NULL: pte_offset_map(pmd, address)) 880 881#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 882 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 883 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 884 885#define pte_alloc_kernel(pmd, address) \ 886 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 887 NULL: pte_offset_kernel(pmd, address)) 888 889extern void free_area_init(unsigned long * zones_size); 890extern void free_area_init_node(int nid, pg_data_t *pgdat, 891 unsigned long * zones_size, unsigned long zone_start_pfn, 892 unsigned long *zholes_size); 893#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 894/* 895 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 896 * zones, allocate the backing mem_map and account for memory holes in a more 897 * architecture independent manner. This is a substitute for creating the 898 * zone_sizes[] and zholes_size[] arrays and passing them to 899 * free_area_init_node() 900 * 901 * An architecture is expected to register range of page frames backed by 902 * physical memory with add_active_range() before calling 903 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 904 * usage, an architecture is expected to do something like 905 * 906 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 907 * max_highmem_pfn}; 908 * for_each_valid_physical_page_range() 909 * add_active_range(node_id, start_pfn, end_pfn) 910 * free_area_init_nodes(max_zone_pfns); 911 * 912 * If the architecture guarantees that there are no holes in the ranges 913 * registered with add_active_range(), free_bootmem_active_regions() 914 * will call free_bootmem_node() for each registered physical page range. 915 * Similarly sparse_memory_present_with_active_regions() calls 916 * memory_present() for each range when SPARSEMEM is enabled. 917 * 918 * See mm/page_alloc.c for more information on each function exposed by 919 * CONFIG_ARCH_POPULATES_NODE_MAP 920 */ 921extern void free_area_init_nodes(unsigned long *max_zone_pfn); 922extern void add_active_range(unsigned int nid, unsigned long start_pfn, 923 unsigned long end_pfn); 924extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 925 unsigned long new_end_pfn); 926extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 927 unsigned long end_pfn); 928extern void remove_all_active_ranges(void); 929extern unsigned long absent_pages_in_range(unsigned long start_pfn, 930 unsigned long end_pfn); 931extern void get_pfn_range_for_nid(unsigned int nid, 932 unsigned long *start_pfn, unsigned long *end_pfn); 933extern unsigned long find_min_pfn_with_active_regions(void); 934extern unsigned long find_max_pfn_with_active_regions(void); 935extern void free_bootmem_with_active_regions(int nid, 936 unsigned long max_low_pfn); 937extern void sparse_memory_present_with_active_regions(int nid); 938#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 939extern int early_pfn_to_nid(unsigned long pfn); 940#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 941#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 942extern void set_dma_reserve(unsigned long new_dma_reserve); 943extern void memmap_init_zone(unsigned long, int, unsigned long, 944 unsigned long, enum memmap_context); 945extern void setup_per_zone_pages_min(void); 946extern void mem_init(void); 947extern void show_mem(void); 948extern void si_meminfo(struct sysinfo * val); 949extern void si_meminfo_node(struct sysinfo *val, int nid); 950 951#ifdef CONFIG_NUMA 952extern void setup_per_cpu_pageset(void); 953#else 954static inline void setup_per_cpu_pageset(void) {} 955#endif 956 957/* prio_tree.c */ 958void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 959void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 960void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 961struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 962 struct prio_tree_iter *iter); 963 964#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 965 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 966 (vma = vma_prio_tree_next(vma, iter)); ) 967 968static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 969 struct list_head *list) 970{ 971 vma->shared.vm_set.parent = NULL; 972 list_add_tail(&vma->shared.vm_set.list, list); 973} 974 975/* mmap.c */ 976extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 977extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 978 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 979extern struct vm_area_struct *vma_merge(struct mm_struct *, 980 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 981 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 982 struct mempolicy *); 983extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 984extern int split_vma(struct mm_struct *, 985 struct vm_area_struct *, unsigned long addr, int new_below); 986extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 987extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 988 struct rb_node **, struct rb_node *); 989extern void unlink_file_vma(struct vm_area_struct *); 990extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 991 unsigned long addr, unsigned long len, pgoff_t pgoff); 992extern void exit_mmap(struct mm_struct *); 993extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 994extern int install_special_mapping(struct mm_struct *mm, 995 unsigned long addr, unsigned long len, 996 unsigned long flags, struct page **pages); 997 998extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 999 1000extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1001 unsigned long len, unsigned long prot, 1002 unsigned long flag, unsigned long pgoff); 1003extern unsigned long mmap_region(struct file *file, unsigned long addr, 1004 unsigned long len, unsigned long flags, 1005 unsigned int vm_flags, unsigned long pgoff, 1006 int accountable); 1007 1008static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1009 unsigned long len, unsigned long prot, 1010 unsigned long flag, unsigned long offset) 1011{ 1012 unsigned long ret = -EINVAL; 1013 if ((offset + PAGE_ALIGN(len)) < offset) 1014 goto out; 1015 if (!(offset & ~PAGE_MASK)) 1016 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1017out: 1018 return ret; 1019} 1020 1021extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1022 1023extern unsigned long do_brk(unsigned long, unsigned long); 1024 1025/* filemap.c */ 1026extern unsigned long page_unuse(struct page *); 1027extern void truncate_inode_pages(struct address_space *, loff_t); 1028extern void truncate_inode_pages_range(struct address_space *, 1029 loff_t lstart, loff_t lend); 1030 1031/* generic vm_area_ops exported for stackable file systems */ 1032extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1033 1034/* mm/page-writeback.c */ 1035int write_one_page(struct page *page, int wait); 1036 1037/* readahead.c */ 1038#define VM_MAX_READAHEAD 128 /* kbytes */ 1039#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1040 1041int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1042 pgoff_t offset, unsigned long nr_to_read); 1043int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1044 pgoff_t offset, unsigned long nr_to_read); 1045 1046void page_cache_sync_readahead(struct address_space *mapping, 1047 struct file_ra_state *ra, 1048 struct file *filp, 1049 pgoff_t offset, 1050 unsigned long size); 1051 1052void page_cache_async_readahead(struct address_space *mapping, 1053 struct file_ra_state *ra, 1054 struct file *filp, 1055 struct page *pg, 1056 pgoff_t offset, 1057 unsigned long size); 1058 1059unsigned long max_sane_readahead(unsigned long nr); 1060 1061/* Do stack extension */ 1062extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1063#ifdef CONFIG_IA64 1064extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1065#endif 1066extern int expand_stack_downwards(struct vm_area_struct *vma, 1067 unsigned long address); 1068 1069/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1070extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1071extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1072 struct vm_area_struct **pprev); 1073 1074/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1075 NULL if none. Assume start_addr < end_addr. */ 1076static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1077{ 1078 struct vm_area_struct * vma = find_vma(mm,start_addr); 1079 1080 if (vma && end_addr <= vma->vm_start) 1081 vma = NULL; 1082 return vma; 1083} 1084 1085static inline unsigned long vma_pages(struct vm_area_struct *vma) 1086{ 1087 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1088} 1089 1090pgprot_t vm_get_page_prot(unsigned long vm_flags); 1091struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1092struct page *vmalloc_to_page(void *addr); 1093unsigned long vmalloc_to_pfn(void *addr); 1094int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1095 unsigned long pfn, unsigned long size, pgprot_t); 1096int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1097int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1098 unsigned long pfn); 1099 1100struct page *follow_page(struct vm_area_struct *, unsigned long address, 1101 unsigned int foll_flags); 1102#define FOLL_WRITE 0x01 /* check pte is writable */ 1103#define FOLL_TOUCH 0x02 /* mark page accessed */ 1104#define FOLL_GET 0x04 /* do get_page on page */ 1105#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1106 1107typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr, 1108 void *data); 1109extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1110 unsigned long size, pte_fn_t fn, void *data); 1111 1112#ifdef CONFIG_PROC_FS 1113void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1114#else 1115static inline void vm_stat_account(struct mm_struct *mm, 1116 unsigned long flags, struct file *file, long pages) 1117{ 1118} 1119#endif /* CONFIG_PROC_FS */ 1120 1121#ifdef CONFIG_DEBUG_PAGEALLOC 1122extern int debug_pagealloc_enabled; 1123 1124extern void kernel_map_pages(struct page *page, int numpages, int enable); 1125 1126static inline void enable_debug_pagealloc(void) 1127{ 1128 debug_pagealloc_enabled = 1; 1129} 1130#else 1131static inline void 1132kernel_map_pages(struct page *page, int numpages, int enable) {} 1133static inline void enable_debug_pagealloc(void) 1134{ 1135} 1136#endif 1137 1138extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1139#ifdef __HAVE_ARCH_GATE_AREA 1140int in_gate_area_no_task(unsigned long addr); 1141int in_gate_area(struct task_struct *task, unsigned long addr); 1142#else 1143int in_gate_area_no_task(unsigned long addr); 1144#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1145#endif /* __HAVE_ARCH_GATE_AREA */ 1146 1147int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1148 void __user *, size_t *, loff_t *); 1149unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1150 unsigned long lru_pages); 1151void drop_pagecache(void); 1152void drop_slab(void); 1153 1154#ifndef CONFIG_MMU 1155#define randomize_va_space 0 1156#else 1157extern int randomize_va_space; 1158#endif 1159 1160const char * arch_vma_name(struct vm_area_struct *vma); 1161void print_vma_addr(char *prefix, unsigned long rip); 1162 1163struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1164pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1165pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1166pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1167pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1168void *vmemmap_alloc_block(unsigned long size, int node); 1169void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1170int vmemmap_populate_basepages(struct page *start_page, 1171 unsigned long pages, int node); 1172int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1173 1174#endif /* __KERNEL__ */ 1175#endif /* _LINUX_MM_H */