1#ifndef _LINUX_JIFFIES_H 2#define _LINUX_JIFFIES_H 3 4#include <linux/calc64.h> 5#include <linux/kernel.h> 6#include <linux/types.h> 7#include <linux/time.h> 8#include <linux/timex.h> 9#include <asm/param.h> /* for HZ */ 10 11/* 12 * The following defines establish the engineering parameters of the PLL 13 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 14 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 15 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 16 * nearest power of two in order to avoid hardware multiply operations. 17 */ 18#if HZ >= 12 && HZ < 24 19# define SHIFT_HZ 4 20#elif HZ >= 24 && HZ < 48 21# define SHIFT_HZ 5 22#elif HZ >= 48 && HZ < 96 23# define SHIFT_HZ 6 24#elif HZ >= 96 && HZ < 192 25# define SHIFT_HZ 7 26#elif HZ >= 192 && HZ < 384 27# define SHIFT_HZ 8 28#elif HZ >= 384 && HZ < 768 29# define SHIFT_HZ 9 30#elif HZ >= 768 && HZ < 1536 31# define SHIFT_HZ 10 32#elif HZ >= 1536 && HZ < 3072 33# define SHIFT_HZ 11 34#elif HZ >= 3072 && HZ < 6144 35# define SHIFT_HZ 12 36#elif HZ >= 6144 && HZ < 12288 37# define SHIFT_HZ 13 38#else 39# error You lose. 40#endif 41 42/* LATCH is used in the interval timer and ftape setup. */ 43#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 44 45/* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can 46 * improve accuracy by shifting LSH bits, hence calculating: 47 * (NOM << LSH) / DEN 48 * This however means trouble for large NOM, because (NOM << LSH) may no 49 * longer fit in 32 bits. The following way of calculating this gives us 50 * some slack, under the following conditions: 51 * - (NOM / DEN) fits in (32 - LSH) bits. 52 * - (NOM % DEN) fits in (32 - LSH) bits. 53 */ 54#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ 55 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) 56 57/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */ 58#define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8)) 59 60/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */ 61#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8)) 62 63/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 64#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 65 66/* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and */ 67/* a value TUSEC for TICK_USEC (can be set bij adjtimex) */ 68#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8)) 69 70/* some arch's have a small-data section that can be accessed register-relative 71 * but that can only take up to, say, 4-byte variables. jiffies being part of 72 * an 8-byte variable may not be correctly accessed unless we force the issue 73 */ 74#define __jiffy_data __attribute__((section(".data"))) 75 76/* 77 * The 64-bit value is not atomic - you MUST NOT read it 78 * without sampling the sequence number in xtime_lock. 79 * get_jiffies_64() will do this for you as appropriate. 80 */ 81extern u64 __jiffy_data jiffies_64; 82extern unsigned long volatile __jiffy_data jiffies; 83 84#if (BITS_PER_LONG < 64) 85u64 get_jiffies_64(void); 86#else 87static inline u64 get_jiffies_64(void) 88{ 89 return (u64)jiffies; 90} 91#endif 92 93/* 94 * These inlines deal with timer wrapping correctly. You are 95 * strongly encouraged to use them 96 * 1. Because people otherwise forget 97 * 2. Because if the timer wrap changes in future you won't have to 98 * alter your driver code. 99 * 100 * time_after(a,b) returns true if the time a is after time b. 101 * 102 * Do this with "<0" and ">=0" to only test the sign of the result. A 103 * good compiler would generate better code (and a really good compiler 104 * wouldn't care). Gcc is currently neither. 105 */ 106#define time_after(a,b) \ 107 (typecheck(unsigned long, a) && \ 108 typecheck(unsigned long, b) && \ 109 ((long)(b) - (long)(a) < 0)) 110#define time_before(a,b) time_after(b,a) 111 112#define time_after_eq(a,b) \ 113 (typecheck(unsigned long, a) && \ 114 typecheck(unsigned long, b) && \ 115 ((long)(a) - (long)(b) >= 0)) 116#define time_before_eq(a,b) time_after_eq(b,a) 117 118#define time_in_range(a,b,c) \ 119 (time_after_eq(a,b) && \ 120 time_before_eq(a,c)) 121 122/* Same as above, but does so with platform independent 64bit types. 123 * These must be used when utilizing jiffies_64 (i.e. return value of 124 * get_jiffies_64() */ 125#define time_after64(a,b) \ 126 (typecheck(__u64, a) && \ 127 typecheck(__u64, b) && \ 128 ((__s64)(b) - (__s64)(a) < 0)) 129#define time_before64(a,b) time_after64(b,a) 130 131#define time_after_eq64(a,b) \ 132 (typecheck(__u64, a) && \ 133 typecheck(__u64, b) && \ 134 ((__s64)(a) - (__s64)(b) >= 0)) 135#define time_before_eq64(a,b) time_after_eq64(b,a) 136 137/* 138 * Have the 32 bit jiffies value wrap 5 minutes after boot 139 * so jiffies wrap bugs show up earlier. 140 */ 141#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 142 143/* 144 * Change timeval to jiffies, trying to avoid the 145 * most obvious overflows.. 146 * 147 * And some not so obvious. 148 * 149 * Note that we don't want to return LONG_MAX, because 150 * for various timeout reasons we often end up having 151 * to wait "jiffies+1" in order to guarantee that we wait 152 * at _least_ "jiffies" - so "jiffies+1" had better still 153 * be positive. 154 */ 155#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) 156 157extern unsigned long preset_lpj; 158 159/* 160 * We want to do realistic conversions of time so we need to use the same 161 * values the update wall clock code uses as the jiffies size. This value 162 * is: TICK_NSEC (which is defined in timex.h). This 163 * is a constant and is in nanoseconds. We will used scaled math 164 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 165 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 166 * constants and so are computed at compile time. SHIFT_HZ (computed in 167 * timex.h) adjusts the scaling for different HZ values. 168 169 * Scaled math??? What is that? 170 * 171 * Scaled math is a way to do integer math on values that would, 172 * otherwise, either overflow, underflow, or cause undesired div 173 * instructions to appear in the execution path. In short, we "scale" 174 * up the operands so they take more bits (more precision, less 175 * underflow), do the desired operation and then "scale" the result back 176 * by the same amount. If we do the scaling by shifting we avoid the 177 * costly mpy and the dastardly div instructions. 178 179 * Suppose, for example, we want to convert from seconds to jiffies 180 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 181 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 182 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 183 * might calculate at compile time, however, the result will only have 184 * about 3-4 bits of precision (less for smaller values of HZ). 185 * 186 * So, we scale as follows: 187 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 188 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 189 * Then we make SCALE a power of two so: 190 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 191 * Now we define: 192 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 193 * jiff = (sec * SEC_CONV) >> SCALE; 194 * 195 * Often the math we use will expand beyond 32-bits so we tell C how to 196 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 197 * which should take the result back to 32-bits. We want this expansion 198 * to capture as much precision as possible. At the same time we don't 199 * want to overflow so we pick the SCALE to avoid this. In this file, 200 * that means using a different scale for each range of HZ values (as 201 * defined in timex.h). 202 * 203 * For those who want to know, gcc will give a 64-bit result from a "*" 204 * operator if the result is a long long AND at least one of the 205 * operands is cast to long long (usually just prior to the "*" so as 206 * not to confuse it into thinking it really has a 64-bit operand, 207 * which, buy the way, it can do, but it take more code and at least 2 208 * mpys). 209 210 * We also need to be aware that one second in nanoseconds is only a 211 * couple of bits away from overflowing a 32-bit word, so we MUST use 212 * 64-bits to get the full range time in nanoseconds. 213 214 */ 215 216/* 217 * Here are the scales we will use. One for seconds, nanoseconds and 218 * microseconds. 219 * 220 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 221 * check if the sign bit is set. If not, we bump the shift count by 1. 222 * (Gets an extra bit of precision where we can use it.) 223 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 224 * Haven't tested others. 225 226 * Limits of cpp (for #if expressions) only long (no long long), but 227 * then we only need the most signicant bit. 228 */ 229 230#define SEC_JIFFIE_SC (31 - SHIFT_HZ) 231#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 232#undef SEC_JIFFIE_SC 233#define SEC_JIFFIE_SC (32 - SHIFT_HZ) 234#endif 235#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 236#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19) 237#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 238 TICK_NSEC -1) / (u64)TICK_NSEC)) 239 240#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 241 TICK_NSEC -1) / (u64)TICK_NSEC)) 242#define USEC_CONVERSION \ 243 ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\ 244 TICK_NSEC -1) / (u64)TICK_NSEC)) 245/* 246 * USEC_ROUND is used in the timeval to jiffie conversion. See there 247 * for more details. It is the scaled resolution rounding value. Note 248 * that it is a 64-bit value. Since, when it is applied, we are already 249 * in jiffies (albit scaled), it is nothing but the bits we will shift 250 * off. 251 */ 252#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1) 253/* 254 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 255 * into seconds. The 64-bit case will overflow if we are not careful, 256 * so use the messy SH_DIV macro to do it. Still all constants. 257 */ 258#if BITS_PER_LONG < 64 259# define MAX_SEC_IN_JIFFIES \ 260 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 261#else /* take care of overflow on 64 bits machines */ 262# define MAX_SEC_IN_JIFFIES \ 263 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 264 265#endif 266 267/* 268 * Convert various time units to each other: 269 */ 270extern unsigned int jiffies_to_msecs(const unsigned long j); 271extern unsigned int jiffies_to_usecs(const unsigned long j); 272extern unsigned long msecs_to_jiffies(const unsigned int m); 273extern unsigned long usecs_to_jiffies(const unsigned int u); 274extern unsigned long timespec_to_jiffies(const struct timespec *value); 275extern void jiffies_to_timespec(const unsigned long jiffies, 276 struct timespec *value); 277extern unsigned long timeval_to_jiffies(const struct timeval *value); 278extern void jiffies_to_timeval(const unsigned long jiffies, 279 struct timeval *value); 280extern clock_t jiffies_to_clock_t(long x); 281extern unsigned long clock_t_to_jiffies(unsigned long x); 282extern u64 jiffies_64_to_clock_t(u64 x); 283extern u64 nsec_to_clock_t(u64 x); 284 285#define TIMESTAMP_SIZE 30 286 287#endif