1/* 2 * include/asm-xtensa/pgtable.h 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * Copyright (C) 2001 - 2007 Tensilica Inc. 9 */ 10 11#ifndef _XTENSA_PGTABLE_H 12#define _XTENSA_PGTABLE_H 13 14#include <asm-generic/pgtable-nopmd.h> 15#include <asm/page.h> 16 17/* 18 * We only use two ring levels, user and kernel space. 19 */ 20 21#define USER_RING 1 /* user ring level */ 22#define KERNEL_RING 0 /* kernel ring level */ 23 24/* 25 * The Xtensa architecture port of Linux has a two-level page table system, 26 * i.e. the logical three-level Linux page table layout is folded. 27 * Each task has the following memory page tables: 28 * 29 * PGD table (page directory), ie. 3rd-level page table: 30 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables 31 * (Architectures that don't have the PMD folded point to the PMD tables) 32 * 33 * The pointer to the PGD table for a given task can be retrieved from 34 * the task structure (struct task_struct*) t, e.g. current(): 35 * (t->mm ? t->mm : t->active_mm)->pgd 36 * 37 * PMD tables (page middle-directory), ie. 2nd-level page tables: 38 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). 39 * 40 * PTE tables (page table entry), ie. 1st-level page tables: 41 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE 42 * invalid_pte_table for absent mappings. 43 * 44 * The individual pages are 4 kB big with special pages for the empty_zero_page. 45 */ 46 47#define PGDIR_SHIFT 22 48#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 49#define PGDIR_MASK (~(PGDIR_SIZE-1)) 50 51/* 52 * Entries per page directory level: we use two-level, so 53 * we don't really have any PMD directory physically. 54 */ 55#define PTRS_PER_PTE 1024 56#define PTRS_PER_PTE_SHIFT 10 57#define PTRS_PER_PGD 1024 58#define PGD_ORDER 0 59#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 60#define FIRST_USER_ADDRESS 0 61#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) 62 63/* 64 * Virtual memory area. We keep a distance to other memory regions to be 65 * on the safe side. We also use this area for cache aliasing. 66 */ 67 68#define VMALLOC_START 0xC0000000 69#define VMALLOC_END 0xC6FEFFFF 70#define TLBTEMP_BASE_1 0xC6FF0000 71#define TLBTEMP_BASE_2 0xC6FF8000 72#define MODULE_START 0xC7000000 73#define MODULE_END 0xC7FFFFFF 74 75/* 76 * Xtensa Linux config PTE layout (when present): 77 * 31-12: PPN 78 * 11-6: Software 79 * 5-4: RING 80 * 3-0: CA 81 * 82 * Similar to the Alpha and MIPS ports, we need to keep track of the ref 83 * and mod bits in software. We have a software "you can read 84 * from this page" bit, and a hardware one which actually lets the 85 * process read from the page. On the same token we have a software 86 * writable bit and the real hardware one which actually lets the 87 * process write to the page. 88 * 89 * See further below for PTE layout for swapped-out pages. 90 */ 91 92#define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */ 93#define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */ 94 95#define _PAGE_FILE (1<<1) /* non-linear mapping, if !present */ 96#define _PAGE_PROTNONE (3<<0) /* special case for VM_PROT_NONE */ 97 98/* None of these cache modes include MP coherency: */ 99#define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */ 100#define _PAGE_CA_WB (1<<2) /* write-back */ 101#define _PAGE_CA_WT (2<<2) /* write-through */ 102#define _PAGE_CA_MASK (3<<2) 103#define _PAGE_INVALID (3<<2) 104 105#define _PAGE_USER (1<<4) /* user access (ring=1) */ 106 107/* Software */ 108#define _PAGE_WRITABLE_BIT 6 109#define _PAGE_WRITABLE (1<<6) /* software: page writable */ 110#define _PAGE_DIRTY (1<<7) /* software: page dirty */ 111#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ 112 113/* On older HW revisions, we always have to set bit 0 */ 114#if XCHAL_HW_VERSION_MAJOR < 2000 115# define _PAGE_VALID (1<<0) 116#else 117# define _PAGE_VALID 0 118#endif 119 120#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 121#define _PAGE_PRESENT (_PAGE_VALID | _PAGE_CA_WB | _PAGE_ACCESSED) 122 123#ifdef CONFIG_MMU 124 125#define PAGE_NONE __pgprot(_PAGE_INVALID | _PAGE_USER | _PAGE_PROTNONE) 126#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) 127#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 128#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) 129#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 130#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE) 131#define PAGE_SHARED_EXEC \ 132 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC) 133#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE) 134#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC) 135 136#if (DCACHE_WAY_SIZE > PAGE_SIZE) 137# define _PAGE_DIRECTORY (_PAGE_VALID | _PAGE_ACCESSED) 138#else 139# define _PAGE_DIRECTORY (_PAGE_VALID | _PAGE_ACCESSED | _PAGE_CA_WB) 140#endif 141 142#else /* no mmu */ 143 144# define PAGE_NONE __pgprot(0) 145# define PAGE_SHARED __pgprot(0) 146# define PAGE_COPY __pgprot(0) 147# define PAGE_READONLY __pgprot(0) 148# define PAGE_KERNEL __pgprot(0) 149 150#endif 151 152/* 153 * On certain configurations of Xtensa MMUs (eg. the initial Linux config), 154 * the MMU can't do page protection for execute, and considers that the same as 155 * read. Also, write permissions may imply read permissions. 156 * What follows is the closest we can get by reasonable means.. 157 * See linux/mm/mmap.c for protection_map[] array that uses these definitions. 158 */ 159#define __P000 PAGE_NONE /* private --- */ 160#define __P001 PAGE_READONLY /* private --r */ 161#define __P010 PAGE_COPY /* private -w- */ 162#define __P011 PAGE_COPY /* private -wr */ 163#define __P100 PAGE_READONLY_EXEC /* private x-- */ 164#define __P101 PAGE_READONLY_EXEC /* private x-r */ 165#define __P110 PAGE_COPY_EXEC /* private xw- */ 166#define __P111 PAGE_COPY_EXEC /* private xwr */ 167 168#define __S000 PAGE_NONE /* shared --- */ 169#define __S001 PAGE_READONLY /* shared --r */ 170#define __S010 PAGE_SHARED /* shared -w- */ 171#define __S011 PAGE_SHARED /* shared -wr */ 172#define __S100 PAGE_READONLY_EXEC /* shared x-- */ 173#define __S101 PAGE_READONLY_EXEC /* shared x-r */ 174#define __S110 PAGE_SHARED_EXEC /* shared xw- */ 175#define __S111 PAGE_SHARED_EXEC /* shared xwr */ 176 177#ifndef __ASSEMBLY__ 178 179#define pte_ERROR(e) \ 180 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 181#define pgd_ERROR(e) \ 182 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 183 184extern unsigned long empty_zero_page[1024]; 185 186#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 187 188extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; 189 190/* 191 * The pmd contains the kernel virtual address of the pte page. 192 */ 193#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) 194#define pmd_page(pmd) virt_to_page(pmd_val(pmd)) 195 196/* 197 * pte status. 198 */ 199#define pte_none(pte) (pte_val(pte) == _PAGE_INVALID) 200#define pte_present(pte) \ 201 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_INVALID) \ 202 || ((pte_val(pte) & _PAGE_PROTNONE) == _PAGE_PROTNONE)) 203#define pte_clear(mm,addr,ptep) \ 204 do { update_pte(ptep, __pte(_PAGE_INVALID)); } while(0) 205 206#define pmd_none(pmd) (!pmd_val(pmd)) 207#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) 208#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 209#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) 210 211static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; } 212static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 213static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 214static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 215static inline pte_t pte_wrprotect(pte_t pte) 216 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; } 217static inline pte_t pte_mkclean(pte_t pte) 218 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; } 219static inline pte_t pte_mkold(pte_t pte) 220 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 221static inline pte_t pte_mkdirty(pte_t pte) 222 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 223static inline pte_t pte_mkyoung(pte_t pte) 224 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 225static inline pte_t pte_mkwrite(pte_t pte) 226 { pte_val(pte) |= _PAGE_WRITABLE; return pte; } 227 228/* 229 * Conversion functions: convert a page and protection to a page entry, 230 * and a page entry and page directory to the page they refer to. 231 */ 232 233#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 234#define pte_same(a,b) (pte_val(a) == pte_val(b)) 235#define pte_page(x) pfn_to_page(pte_pfn(x)) 236#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 237#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 238 239static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 240{ 241 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 242} 243 244/* 245 * Certain architectures need to do special things when pte's 246 * within a page table are directly modified. Thus, the following 247 * hook is made available. 248 */ 249static inline void update_pte(pte_t *ptep, pte_t pteval) 250{ 251 *ptep = pteval; 252#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 253 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep)); 254#endif 255 256} 257 258struct mm_struct; 259 260static inline void 261set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) 262{ 263 update_pte(ptep, pteval); 264} 265 266 267static inline void 268set_pmd(pmd_t *pmdp, pmd_t pmdval) 269{ 270 *pmdp = pmdval; 271} 272 273struct vm_area_struct; 274 275static inline int 276ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, 277 pte_t *ptep) 278{ 279 pte_t pte = *ptep; 280 if (!pte_young(pte)) 281 return 0; 282 update_pte(ptep, pte_mkold(pte)); 283 return 1; 284} 285 286static inline pte_t 287ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 288{ 289 pte_t pte = *ptep; 290 pte_clear(mm, addr, ptep); 291 return pte; 292} 293 294static inline void 295ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 296{ 297 pte_t pte = *ptep; 298 update_pte(ptep, pte_wrprotect(pte)); 299} 300 301/* to find an entry in a kernel page-table-directory */ 302#define pgd_offset_k(address) pgd_offset(&init_mm, address) 303 304/* to find an entry in a page-table-directory */ 305#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address)) 306 307#define pgd_index(address) ((address) >> PGDIR_SHIFT) 308 309/* Find an entry in the second-level page table.. */ 310#define pmd_offset(dir,address) ((pmd_t*)(dir)) 311 312/* Find an entry in the third-level page table.. */ 313#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 314#define pte_offset_kernel(dir,addr) \ 315 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr)) 316#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) 317#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr)) 318 319#define pte_unmap(pte) do { } while (0) 320#define pte_unmap_nested(pte) do { } while (0) 321 322 323/* 324 * Encode and decode a swap entry. 325 * 326 * Format of swap pte: 327 * bit 0 MBZ 328 * bit 1 page-file (must be zero) 329 * bits 2 - 3 page hw access mode (must be 11: _PAGE_INVALID) 330 * bits 4 - 5 ring protection (must be 01: _PAGE_USER) 331 * bits 6 - 10 swap type (5 bits -> 32 types) 332 * bits 11 - 31 swap offset / PAGE_SIZE (21 bits -> 8GB) 333 334 * Format of file pte: 335 * bit 0 MBZ 336 * bit 1 page-file (must be one: _PAGE_FILE) 337 * bits 2 - 3 page hw access mode (must be 11: _PAGE_INVALID) 338 * bits 4 - 5 ring protection (must be 01: _PAGE_USER) 339 * bits 6 - 31 file offset / PAGE_SIZE 340 */ 341 342#define __swp_type(entry) (((entry).val >> 6) & 0x1f) 343#define __swp_offset(entry) ((entry).val >> 11) 344#define __swp_entry(type,offs) \ 345 ((swp_entry_t) {((type) << 6) | ((offs) << 11) | _PAGE_INVALID}) 346#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 347#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 348 349#define PTE_FILE_MAX_BITS 28 350#define pte_to_pgoff(pte) (pte_val(pte) >> 4) 351#define pgoff_to_pte(off) \ 352 ((pte_t) { ((off) << 4) | _PAGE_INVALID | _PAGE_FILE }) 353 354#endif /* !defined (__ASSEMBLY__) */ 355 356 357#ifdef __ASSEMBLY__ 358 359/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), 360 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), 361 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) 362 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) 363 * 364 * Note: We require an additional temporary register which can be the same as 365 * the register that holds the address. 366 * 367 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) 368 * 369 */ 370#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT 371#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT 372 373#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ 374 _PGD_INDEX(tmp, adr); \ 375 addx4 mm, tmp, mm 376 377#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ 378 srli pmd, pmd, PAGE_SHIFT; \ 379 slli pmd, pmd, PAGE_SHIFT; \ 380 addx4 pmd, tmp, pmd 381 382#else 383 384extern void paging_init(void); 385 386#define kern_addr_valid(addr) (1) 387 388extern void update_mmu_cache(struct vm_area_struct * vma, 389 unsigned long address, pte_t pte); 390 391/* 392 * remap a physical page `pfn' of size `size' with page protection `prot' 393 * into virtual address `from' 394 */ 395 396#define io_remap_pfn_range(vma,from,pfn,size,prot) \ 397 remap_pfn_range(vma, from, pfn, size, prot) 398 399 400extern void pgtable_cache_init(void); 401 402typedef pte_t *pte_addr_t; 403 404#endif /* !defined (__ASSEMBLY__) */ 405 406#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 407#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 408#define __HAVE_ARCH_PTEP_SET_WRPROTECT 409#define __HAVE_ARCH_PTEP_MKDIRTY 410#define __HAVE_ARCH_PTE_SAME 411 412#include <asm-generic/pgtable.h> 413 414#endif /* _XTENSA_PGTABLE_H */