1/******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2007 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29#include <linux/module.h> 30#include <linux/types.h> 31#include <linux/init.h> 32#include <linux/pci.h> 33#include <linux/vmalloc.h> 34#include <linux/pagemap.h> 35#include <linux/delay.h> 36#include <linux/netdevice.h> 37#include <linux/tcp.h> 38#include <linux/ipv6.h> 39#include <net/checksum.h> 40#include <net/ip6_checksum.h> 41#include <linux/mii.h> 42#include <linux/ethtool.h> 43#include <linux/if_vlan.h> 44#include <linux/cpu.h> 45#include <linux/smp.h> 46 47#include "e1000.h" 48 49#define DRV_VERSION "0.2.0" 50char e1000e_driver_name[] = "e1000e"; 51const char e1000e_driver_version[] = DRV_VERSION; 52 53static const struct e1000_info *e1000_info_tbl[] = { 54 [board_82571] = &e1000_82571_info, 55 [board_82572] = &e1000_82572_info, 56 [board_82573] = &e1000_82573_info, 57 [board_80003es2lan] = &e1000_es2_info, 58 [board_ich8lan] = &e1000_ich8_info, 59 [board_ich9lan] = &e1000_ich9_info, 60}; 61 62#ifdef DEBUG 63/** 64 * e1000_get_hw_dev_name - return device name string 65 * used by hardware layer to print debugging information 66 **/ 67char *e1000e_get_hw_dev_name(struct e1000_hw *hw) 68{ 69 return hw->adapter->netdev->name; 70} 71#endif 72 73/** 74 * e1000_desc_unused - calculate if we have unused descriptors 75 **/ 76static int e1000_desc_unused(struct e1000_ring *ring) 77{ 78 if (ring->next_to_clean > ring->next_to_use) 79 return ring->next_to_clean - ring->next_to_use - 1; 80 81 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 82} 83 84/** 85 * e1000_receive_skb - helper function to handle rx indications 86 * @adapter: board private structure 87 * @status: descriptor status field as written by hardware 88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 89 * @skb: pointer to sk_buff to be indicated to stack 90 **/ 91static void e1000_receive_skb(struct e1000_adapter *adapter, 92 struct net_device *netdev, 93 struct sk_buff *skb, 94 u8 status, __le16 vlan) 95{ 96 skb->protocol = eth_type_trans(skb, netdev); 97 98 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) 99 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, 100 le16_to_cpu(vlan) & 101 E1000_RXD_SPC_VLAN_MASK); 102 else 103 netif_receive_skb(skb); 104 105 netdev->last_rx = jiffies; 106} 107 108/** 109 * e1000_rx_checksum - Receive Checksum Offload for 82543 110 * @adapter: board private structure 111 * @status_err: receive descriptor status and error fields 112 * @csum: receive descriptor csum field 113 * @sk_buff: socket buffer with received data 114 **/ 115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 116 u32 csum, struct sk_buff *skb) 117{ 118 u16 status = (u16)status_err; 119 u8 errors = (u8)(status_err >> 24); 120 skb->ip_summed = CHECKSUM_NONE; 121 122 /* Ignore Checksum bit is set */ 123 if (status & E1000_RXD_STAT_IXSM) 124 return; 125 /* TCP/UDP checksum error bit is set */ 126 if (errors & E1000_RXD_ERR_TCPE) { 127 /* let the stack verify checksum errors */ 128 adapter->hw_csum_err++; 129 return; 130 } 131 132 /* TCP/UDP Checksum has not been calculated */ 133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 134 return; 135 136 /* It must be a TCP or UDP packet with a valid checksum */ 137 if (status & E1000_RXD_STAT_TCPCS) { 138 /* TCP checksum is good */ 139 skb->ip_summed = CHECKSUM_UNNECESSARY; 140 } else { 141 /* IP fragment with UDP payload */ 142 /* Hardware complements the payload checksum, so we undo it 143 * and then put the value in host order for further stack use. 144 */ 145 __sum16 sum = (__force __sum16)htons(csum); 146 skb->csum = csum_unfold(~sum); 147 skb->ip_summed = CHECKSUM_COMPLETE; 148 } 149 adapter->hw_csum_good++; 150} 151 152/** 153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 154 * @adapter: address of board private structure 155 **/ 156static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 157 int cleaned_count) 158{ 159 struct net_device *netdev = adapter->netdev; 160 struct pci_dev *pdev = adapter->pdev; 161 struct e1000_ring *rx_ring = adapter->rx_ring; 162 struct e1000_rx_desc *rx_desc; 163 struct e1000_buffer *buffer_info; 164 struct sk_buff *skb; 165 unsigned int i; 166 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; 167 168 i = rx_ring->next_to_use; 169 buffer_info = &rx_ring->buffer_info[i]; 170 171 while (cleaned_count--) { 172 skb = buffer_info->skb; 173 if (skb) { 174 skb_trim(skb, 0); 175 goto map_skb; 176 } 177 178 skb = netdev_alloc_skb(netdev, bufsz); 179 if (!skb) { 180 /* Better luck next round */ 181 adapter->alloc_rx_buff_failed++; 182 break; 183 } 184 185 /* Make buffer alignment 2 beyond a 16 byte boundary 186 * this will result in a 16 byte aligned IP header after 187 * the 14 byte MAC header is removed 188 */ 189 skb_reserve(skb, NET_IP_ALIGN); 190 191 buffer_info->skb = skb; 192map_skb: 193 buffer_info->dma = pci_map_single(pdev, skb->data, 194 adapter->rx_buffer_len, 195 PCI_DMA_FROMDEVICE); 196 if (pci_dma_mapping_error(buffer_info->dma)) { 197 dev_err(&pdev->dev, "RX DMA map failed\n"); 198 adapter->rx_dma_failed++; 199 break; 200 } 201 202 rx_desc = E1000_RX_DESC(*rx_ring, i); 203 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 204 205 i++; 206 if (i == rx_ring->count) 207 i = 0; 208 buffer_info = &rx_ring->buffer_info[i]; 209 } 210 211 if (rx_ring->next_to_use != i) { 212 rx_ring->next_to_use = i; 213 if (i-- == 0) 214 i = (rx_ring->count - 1); 215 216 /* Force memory writes to complete before letting h/w 217 * know there are new descriptors to fetch. (Only 218 * applicable for weak-ordered memory model archs, 219 * such as IA-64). */ 220 wmb(); 221 writel(i, adapter->hw.hw_addr + rx_ring->tail); 222 } 223} 224 225/** 226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 227 * @adapter: address of board private structure 228 **/ 229static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, 230 int cleaned_count) 231{ 232 struct net_device *netdev = adapter->netdev; 233 struct pci_dev *pdev = adapter->pdev; 234 union e1000_rx_desc_packet_split *rx_desc; 235 struct e1000_ring *rx_ring = adapter->rx_ring; 236 struct e1000_buffer *buffer_info; 237 struct e1000_ps_page *ps_page; 238 struct sk_buff *skb; 239 unsigned int i, j; 240 241 i = rx_ring->next_to_use; 242 buffer_info = &rx_ring->buffer_info[i]; 243 244 while (cleaned_count--) { 245 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 246 247 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 248 ps_page = &buffer_info->ps_pages[j]; 249 if (j >= adapter->rx_ps_pages) { 250 /* all unused desc entries get hw null ptr */ 251 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); 252 continue; 253 } 254 if (!ps_page->page) { 255 ps_page->page = alloc_page(GFP_ATOMIC); 256 if (!ps_page->page) { 257 adapter->alloc_rx_buff_failed++; 258 goto no_buffers; 259 } 260 ps_page->dma = pci_map_page(pdev, 261 ps_page->page, 262 0, PAGE_SIZE, 263 PCI_DMA_FROMDEVICE); 264 if (pci_dma_mapping_error(ps_page->dma)) { 265 dev_err(&adapter->pdev->dev, 266 "RX DMA page map failed\n"); 267 adapter->rx_dma_failed++; 268 goto no_buffers; 269 } 270 } 271 /* 272 * Refresh the desc even if buffer_addrs 273 * didn't change because each write-back 274 * erases this info. 275 */ 276 rx_desc->read.buffer_addr[j+1] = 277 cpu_to_le64(ps_page->dma); 278 } 279 280 skb = netdev_alloc_skb(netdev, 281 adapter->rx_ps_bsize0 + NET_IP_ALIGN); 282 283 if (!skb) { 284 adapter->alloc_rx_buff_failed++; 285 break; 286 } 287 288 /* Make buffer alignment 2 beyond a 16 byte boundary 289 * this will result in a 16 byte aligned IP header after 290 * the 14 byte MAC header is removed 291 */ 292 skb_reserve(skb, NET_IP_ALIGN); 293 294 buffer_info->skb = skb; 295 buffer_info->dma = pci_map_single(pdev, skb->data, 296 adapter->rx_ps_bsize0, 297 PCI_DMA_FROMDEVICE); 298 if (pci_dma_mapping_error(buffer_info->dma)) { 299 dev_err(&pdev->dev, "RX DMA map failed\n"); 300 adapter->rx_dma_failed++; 301 /* cleanup skb */ 302 dev_kfree_skb_any(skb); 303 buffer_info->skb = NULL; 304 break; 305 } 306 307 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 308 309 i++; 310 if (i == rx_ring->count) 311 i = 0; 312 buffer_info = &rx_ring->buffer_info[i]; 313 } 314 315no_buffers: 316 if (rx_ring->next_to_use != i) { 317 rx_ring->next_to_use = i; 318 319 if (!(i--)) 320 i = (rx_ring->count - 1); 321 322 /* Force memory writes to complete before letting h/w 323 * know there are new descriptors to fetch. (Only 324 * applicable for weak-ordered memory model archs, 325 * such as IA-64). */ 326 wmb(); 327 /* Hardware increments by 16 bytes, but packet split 328 * descriptors are 32 bytes...so we increment tail 329 * twice as much. 330 */ 331 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); 332 } 333} 334 335/** 336 * e1000_clean_rx_irq - Send received data up the network stack; legacy 337 * @adapter: board private structure 338 * 339 * the return value indicates whether actual cleaning was done, there 340 * is no guarantee that everything was cleaned 341 **/ 342static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 343 int *work_done, int work_to_do) 344{ 345 struct net_device *netdev = adapter->netdev; 346 struct pci_dev *pdev = adapter->pdev; 347 struct e1000_ring *rx_ring = adapter->rx_ring; 348 struct e1000_rx_desc *rx_desc, *next_rxd; 349 struct e1000_buffer *buffer_info, *next_buffer; 350 u32 length; 351 unsigned int i; 352 int cleaned_count = 0; 353 bool cleaned = 0; 354 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 355 356 i = rx_ring->next_to_clean; 357 rx_desc = E1000_RX_DESC(*rx_ring, i); 358 buffer_info = &rx_ring->buffer_info[i]; 359 360 while (rx_desc->status & E1000_RXD_STAT_DD) { 361 struct sk_buff *skb; 362 u8 status; 363 364 if (*work_done >= work_to_do) 365 break; 366 (*work_done)++; 367 368 status = rx_desc->status; 369 skb = buffer_info->skb; 370 buffer_info->skb = NULL; 371 372 prefetch(skb->data - NET_IP_ALIGN); 373 374 i++; 375 if (i == rx_ring->count) 376 i = 0; 377 next_rxd = E1000_RX_DESC(*rx_ring, i); 378 prefetch(next_rxd); 379 380 next_buffer = &rx_ring->buffer_info[i]; 381 382 cleaned = 1; 383 cleaned_count++; 384 pci_unmap_single(pdev, 385 buffer_info->dma, 386 adapter->rx_buffer_len, 387 PCI_DMA_FROMDEVICE); 388 buffer_info->dma = 0; 389 390 length = le16_to_cpu(rx_desc->length); 391 392 /* !EOP means multiple descriptors were used to store a single 393 * packet, also make sure the frame isn't just CRC only */ 394 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { 395 /* All receives must fit into a single buffer */ 396 ndev_dbg(netdev, "%s: Receive packet consumed " 397 "multiple buffers\n", netdev->name); 398 /* recycle */ 399 buffer_info->skb = skb; 400 goto next_desc; 401 } 402 403 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { 404 /* recycle */ 405 buffer_info->skb = skb; 406 goto next_desc; 407 } 408 409 total_rx_bytes += length; 410 total_rx_packets++; 411 412 /* code added for copybreak, this should improve 413 * performance for small packets with large amounts 414 * of reassembly being done in the stack */ 415 if (length < copybreak) { 416 struct sk_buff *new_skb = 417 netdev_alloc_skb(netdev, length + NET_IP_ALIGN); 418 if (new_skb) { 419 skb_reserve(new_skb, NET_IP_ALIGN); 420 memcpy(new_skb->data - NET_IP_ALIGN, 421 skb->data - NET_IP_ALIGN, 422 length + NET_IP_ALIGN); 423 /* save the skb in buffer_info as good */ 424 buffer_info->skb = skb; 425 skb = new_skb; 426 } 427 /* else just continue with the old one */ 428 } 429 /* end copybreak code */ 430 skb_put(skb, length); 431 432 /* Receive Checksum Offload */ 433 e1000_rx_checksum(adapter, 434 (u32)(status) | 435 ((u32)(rx_desc->errors) << 24), 436 le16_to_cpu(rx_desc->csum), skb); 437 438 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); 439 440next_desc: 441 rx_desc->status = 0; 442 443 /* return some buffers to hardware, one at a time is too slow */ 444 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 445 adapter->alloc_rx_buf(adapter, cleaned_count); 446 cleaned_count = 0; 447 } 448 449 /* use prefetched values */ 450 rx_desc = next_rxd; 451 buffer_info = next_buffer; 452 } 453 rx_ring->next_to_clean = i; 454 455 cleaned_count = e1000_desc_unused(rx_ring); 456 if (cleaned_count) 457 adapter->alloc_rx_buf(adapter, cleaned_count); 458 459 adapter->total_rx_packets += total_rx_packets; 460 adapter->total_rx_bytes += total_rx_bytes; 461 adapter->net_stats.rx_packets += total_rx_packets; 462 adapter->net_stats.rx_bytes += total_rx_bytes; 463 return cleaned; 464} 465 466static void e1000_put_txbuf(struct e1000_adapter *adapter, 467 struct e1000_buffer *buffer_info) 468{ 469 if (buffer_info->dma) { 470 pci_unmap_page(adapter->pdev, buffer_info->dma, 471 buffer_info->length, PCI_DMA_TODEVICE); 472 buffer_info->dma = 0; 473 } 474 if (buffer_info->skb) { 475 dev_kfree_skb_any(buffer_info->skb); 476 buffer_info->skb = NULL; 477 } 478} 479 480static void e1000_print_tx_hang(struct e1000_adapter *adapter) 481{ 482 struct e1000_ring *tx_ring = adapter->tx_ring; 483 unsigned int i = tx_ring->next_to_clean; 484 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 485 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 486 struct net_device *netdev = adapter->netdev; 487 488 /* detected Tx unit hang */ 489 ndev_err(netdev, 490 "Detected Tx Unit Hang:\n" 491 " TDH <%x>\n" 492 " TDT <%x>\n" 493 " next_to_use <%x>\n" 494 " next_to_clean <%x>\n" 495 "buffer_info[next_to_clean]:\n" 496 " time_stamp <%lx>\n" 497 " next_to_watch <%x>\n" 498 " jiffies <%lx>\n" 499 " next_to_watch.status <%x>\n", 500 readl(adapter->hw.hw_addr + tx_ring->head), 501 readl(adapter->hw.hw_addr + tx_ring->tail), 502 tx_ring->next_to_use, 503 tx_ring->next_to_clean, 504 tx_ring->buffer_info[eop].time_stamp, 505 eop, 506 jiffies, 507 eop_desc->upper.fields.status); 508} 509 510/** 511 * e1000_clean_tx_irq - Reclaim resources after transmit completes 512 * @adapter: board private structure 513 * 514 * the return value indicates whether actual cleaning was done, there 515 * is no guarantee that everything was cleaned 516 **/ 517static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) 518{ 519 struct net_device *netdev = adapter->netdev; 520 struct e1000_hw *hw = &adapter->hw; 521 struct e1000_ring *tx_ring = adapter->tx_ring; 522 struct e1000_tx_desc *tx_desc, *eop_desc; 523 struct e1000_buffer *buffer_info; 524 unsigned int i, eop; 525 unsigned int count = 0; 526 bool cleaned = 0; 527 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 528 529 i = tx_ring->next_to_clean; 530 eop = tx_ring->buffer_info[i].next_to_watch; 531 eop_desc = E1000_TX_DESC(*tx_ring, eop); 532 533 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { 534 for (cleaned = 0; !cleaned; ) { 535 tx_desc = E1000_TX_DESC(*tx_ring, i); 536 buffer_info = &tx_ring->buffer_info[i]; 537 cleaned = (i == eop); 538 539 if (cleaned) { 540 struct sk_buff *skb = buffer_info->skb; 541 unsigned int segs, bytecount; 542 segs = skb_shinfo(skb)->gso_segs ?: 1; 543 /* multiply data chunks by size of headers */ 544 bytecount = ((segs - 1) * skb_headlen(skb)) + 545 skb->len; 546 total_tx_packets += segs; 547 total_tx_bytes += bytecount; 548 } 549 550 e1000_put_txbuf(adapter, buffer_info); 551 tx_desc->upper.data = 0; 552 553 i++; 554 if (i == tx_ring->count) 555 i = 0; 556 } 557 558 eop = tx_ring->buffer_info[i].next_to_watch; 559 eop_desc = E1000_TX_DESC(*tx_ring, eop); 560#define E1000_TX_WEIGHT 64 561 /* weight of a sort for tx, to avoid endless transmit cleanup */ 562 if (count++ == E1000_TX_WEIGHT) 563 break; 564 } 565 566 tx_ring->next_to_clean = i; 567 568#define TX_WAKE_THRESHOLD 32 569 if (cleaned && netif_carrier_ok(netdev) && 570 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 571 /* Make sure that anybody stopping the queue after this 572 * sees the new next_to_clean. 573 */ 574 smp_mb(); 575 576 if (netif_queue_stopped(netdev) && 577 !(test_bit(__E1000_DOWN, &adapter->state))) { 578 netif_wake_queue(netdev); 579 ++adapter->restart_queue; 580 } 581 } 582 583 if (adapter->detect_tx_hung) { 584 /* Detect a transmit hang in hardware, this serializes the 585 * check with the clearing of time_stamp and movement of i */ 586 adapter->detect_tx_hung = 0; 587 if (tx_ring->buffer_info[eop].dma && 588 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp 589 + (adapter->tx_timeout_factor * HZ)) 590 && !(er32(STATUS) & 591 E1000_STATUS_TXOFF)) { 592 e1000_print_tx_hang(adapter); 593 netif_stop_queue(netdev); 594 } 595 } 596 adapter->total_tx_bytes += total_tx_bytes; 597 adapter->total_tx_packets += total_tx_packets; 598 adapter->net_stats.tx_packets += total_tx_packets; 599 adapter->net_stats.tx_bytes += total_tx_bytes; 600 return cleaned; 601} 602 603/** 604 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 605 * @adapter: board private structure 606 * 607 * the return value indicates whether actual cleaning was done, there 608 * is no guarantee that everything was cleaned 609 **/ 610static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, 611 int *work_done, int work_to_do) 612{ 613 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 614 struct net_device *netdev = adapter->netdev; 615 struct pci_dev *pdev = adapter->pdev; 616 struct e1000_ring *rx_ring = adapter->rx_ring; 617 struct e1000_buffer *buffer_info, *next_buffer; 618 struct e1000_ps_page *ps_page; 619 struct sk_buff *skb; 620 unsigned int i, j; 621 u32 length, staterr; 622 int cleaned_count = 0; 623 bool cleaned = 0; 624 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 625 626 i = rx_ring->next_to_clean; 627 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 628 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 629 buffer_info = &rx_ring->buffer_info[i]; 630 631 while (staterr & E1000_RXD_STAT_DD) { 632 if (*work_done >= work_to_do) 633 break; 634 (*work_done)++; 635 skb = buffer_info->skb; 636 637 /* in the packet split case this is header only */ 638 prefetch(skb->data - NET_IP_ALIGN); 639 640 i++; 641 if (i == rx_ring->count) 642 i = 0; 643 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 644 prefetch(next_rxd); 645 646 next_buffer = &rx_ring->buffer_info[i]; 647 648 cleaned = 1; 649 cleaned_count++; 650 pci_unmap_single(pdev, buffer_info->dma, 651 adapter->rx_ps_bsize0, 652 PCI_DMA_FROMDEVICE); 653 buffer_info->dma = 0; 654 655 if (!(staterr & E1000_RXD_STAT_EOP)) { 656 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick " 657 "up the full packet\n", netdev->name); 658 dev_kfree_skb_irq(skb); 659 goto next_desc; 660 } 661 662 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 663 dev_kfree_skb_irq(skb); 664 goto next_desc; 665 } 666 667 length = le16_to_cpu(rx_desc->wb.middle.length0); 668 669 if (!length) { 670 ndev_dbg(netdev, "%s: Last part of the packet spanning" 671 " multiple descriptors\n", netdev->name); 672 dev_kfree_skb_irq(skb); 673 goto next_desc; 674 } 675 676 /* Good Receive */ 677 skb_put(skb, length); 678 679 { 680 /* this looks ugly, but it seems compiler issues make it 681 more efficient than reusing j */ 682 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 683 684 /* page alloc/put takes too long and effects small packet 685 * throughput, so unsplit small packets and save the alloc/put*/ 686 if (l1 && (l1 <= copybreak) && 687 ((length + l1) <= adapter->rx_ps_bsize0)) { 688 u8 *vaddr; 689 690 ps_page = &buffer_info->ps_pages[0]; 691 692 /* there is no documentation about how to call 693 * kmap_atomic, so we can't hold the mapping 694 * very long */ 695 pci_dma_sync_single_for_cpu(pdev, ps_page->dma, 696 PAGE_SIZE, PCI_DMA_FROMDEVICE); 697 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); 698 memcpy(skb_tail_pointer(skb), vaddr, l1); 699 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 700 pci_dma_sync_single_for_device(pdev, ps_page->dma, 701 PAGE_SIZE, PCI_DMA_FROMDEVICE); 702 703 skb_put(skb, l1); 704 goto copydone; 705 } /* if */ 706 } 707 708 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 709 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 710 if (!length) 711 break; 712 713 ps_page = &buffer_info->ps_pages[j]; 714 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, 715 PCI_DMA_FROMDEVICE); 716 ps_page->dma = 0; 717 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 718 ps_page->page = NULL; 719 skb->len += length; 720 skb->data_len += length; 721 skb->truesize += length; 722 } 723 724copydone: 725 total_rx_bytes += skb->len; 726 total_rx_packets++; 727 728 e1000_rx_checksum(adapter, staterr, le16_to_cpu( 729 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); 730 731 if (rx_desc->wb.upper.header_status & 732 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 733 adapter->rx_hdr_split++; 734 735 e1000_receive_skb(adapter, netdev, skb, 736 staterr, rx_desc->wb.middle.vlan); 737 738next_desc: 739 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 740 buffer_info->skb = NULL; 741 742 /* return some buffers to hardware, one at a time is too slow */ 743 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 744 adapter->alloc_rx_buf(adapter, cleaned_count); 745 cleaned_count = 0; 746 } 747 748 /* use prefetched values */ 749 rx_desc = next_rxd; 750 buffer_info = next_buffer; 751 752 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 753 } 754 rx_ring->next_to_clean = i; 755 756 cleaned_count = e1000_desc_unused(rx_ring); 757 if (cleaned_count) 758 adapter->alloc_rx_buf(adapter, cleaned_count); 759 760 adapter->total_rx_packets += total_rx_packets; 761 adapter->total_rx_bytes += total_rx_bytes; 762 adapter->net_stats.rx_packets += total_rx_packets; 763 adapter->net_stats.rx_bytes += total_rx_bytes; 764 return cleaned; 765} 766 767/** 768 * e1000_clean_rx_ring - Free Rx Buffers per Queue 769 * @adapter: board private structure 770 **/ 771static void e1000_clean_rx_ring(struct e1000_adapter *adapter) 772{ 773 struct e1000_ring *rx_ring = adapter->rx_ring; 774 struct e1000_buffer *buffer_info; 775 struct e1000_ps_page *ps_page; 776 struct pci_dev *pdev = adapter->pdev; 777 unsigned int i, j; 778 779 /* Free all the Rx ring sk_buffs */ 780 for (i = 0; i < rx_ring->count; i++) { 781 buffer_info = &rx_ring->buffer_info[i]; 782 if (buffer_info->dma) { 783 if (adapter->clean_rx == e1000_clean_rx_irq) 784 pci_unmap_single(pdev, buffer_info->dma, 785 adapter->rx_buffer_len, 786 PCI_DMA_FROMDEVICE); 787 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 788 pci_unmap_single(pdev, buffer_info->dma, 789 adapter->rx_ps_bsize0, 790 PCI_DMA_FROMDEVICE); 791 buffer_info->dma = 0; 792 } 793 794 if (buffer_info->skb) { 795 dev_kfree_skb(buffer_info->skb); 796 buffer_info->skb = NULL; 797 } 798 799 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 800 ps_page = &buffer_info->ps_pages[j]; 801 if (!ps_page->page) 802 break; 803 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, 804 PCI_DMA_FROMDEVICE); 805 ps_page->dma = 0; 806 put_page(ps_page->page); 807 ps_page->page = NULL; 808 } 809 } 810 811 /* there also may be some cached data from a chained receive */ 812 if (rx_ring->rx_skb_top) { 813 dev_kfree_skb(rx_ring->rx_skb_top); 814 rx_ring->rx_skb_top = NULL; 815 } 816 817 /* Zero out the descriptor ring */ 818 memset(rx_ring->desc, 0, rx_ring->size); 819 820 rx_ring->next_to_clean = 0; 821 rx_ring->next_to_use = 0; 822 823 writel(0, adapter->hw.hw_addr + rx_ring->head); 824 writel(0, adapter->hw.hw_addr + rx_ring->tail); 825} 826 827/** 828 * e1000_intr_msi - Interrupt Handler 829 * @irq: interrupt number 830 * @data: pointer to a network interface device structure 831 **/ 832static irqreturn_t e1000_intr_msi(int irq, void *data) 833{ 834 struct net_device *netdev = data; 835 struct e1000_adapter *adapter = netdev_priv(netdev); 836 struct e1000_hw *hw = &adapter->hw; 837 u32 icr = er32(ICR); 838 839 /* read ICR disables interrupts using IAM, so keep up with our 840 * enable/disable accounting */ 841 atomic_inc(&adapter->irq_sem); 842 843 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 844 hw->mac.get_link_status = 1; 845 /* ICH8 workaround-- Call gig speed drop workaround on cable 846 * disconnect (LSC) before accessing any PHY registers */ 847 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 848 (!(er32(STATUS) & E1000_STATUS_LU))) 849 e1000e_gig_downshift_workaround_ich8lan(hw); 850 851 /* 80003ES2LAN workaround-- For packet buffer work-around on 852 * link down event; disable receives here in the ISR and reset 853 * adapter in watchdog */ 854 if (netif_carrier_ok(netdev) && 855 adapter->flags & FLAG_RX_NEEDS_RESTART) { 856 /* disable receives */ 857 u32 rctl = er32(RCTL); 858 ew32(RCTL, rctl & ~E1000_RCTL_EN); 859 } 860 /* guard against interrupt when we're going down */ 861 if (!test_bit(__E1000_DOWN, &adapter->state)) 862 mod_timer(&adapter->watchdog_timer, jiffies + 1); 863 } 864 865 if (netif_rx_schedule_prep(netdev, &adapter->napi)) { 866 adapter->total_tx_bytes = 0; 867 adapter->total_tx_packets = 0; 868 adapter->total_rx_bytes = 0; 869 adapter->total_rx_packets = 0; 870 __netif_rx_schedule(netdev, &adapter->napi); 871 } else { 872 atomic_dec(&adapter->irq_sem); 873 } 874 875 return IRQ_HANDLED; 876} 877 878/** 879 * e1000_intr - Interrupt Handler 880 * @irq: interrupt number 881 * @data: pointer to a network interface device structure 882 **/ 883static irqreturn_t e1000_intr(int irq, void *data) 884{ 885 struct net_device *netdev = data; 886 struct e1000_adapter *adapter = netdev_priv(netdev); 887 struct e1000_hw *hw = &adapter->hw; 888 889 u32 rctl, icr = er32(ICR); 890 if (!icr) 891 return IRQ_NONE; /* Not our interrupt */ 892 893 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 894 * not set, then the adapter didn't send an interrupt */ 895 if (!(icr & E1000_ICR_INT_ASSERTED)) 896 return IRQ_NONE; 897 898 /* Interrupt Auto-Mask...upon reading ICR, 899 * interrupts are masked. No need for the 900 * IMC write, but it does mean we should 901 * account for it ASAP. */ 902 atomic_inc(&adapter->irq_sem); 903 904 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 905 hw->mac.get_link_status = 1; 906 /* ICH8 workaround-- Call gig speed drop workaround on cable 907 * disconnect (LSC) before accessing any PHY registers */ 908 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 909 (!(er32(STATUS) & E1000_STATUS_LU))) 910 e1000e_gig_downshift_workaround_ich8lan(hw); 911 912 /* 80003ES2LAN workaround-- 913 * For packet buffer work-around on link down event; 914 * disable receives here in the ISR and 915 * reset adapter in watchdog 916 */ 917 if (netif_carrier_ok(netdev) && 918 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 919 /* disable receives */ 920 rctl = er32(RCTL); 921 ew32(RCTL, rctl & ~E1000_RCTL_EN); 922 } 923 /* guard against interrupt when we're going down */ 924 if (!test_bit(__E1000_DOWN, &adapter->state)) 925 mod_timer(&adapter->watchdog_timer, jiffies + 1); 926 } 927 928 if (netif_rx_schedule_prep(netdev, &adapter->napi)) { 929 adapter->total_tx_bytes = 0; 930 adapter->total_tx_packets = 0; 931 adapter->total_rx_bytes = 0; 932 adapter->total_rx_packets = 0; 933 __netif_rx_schedule(netdev, &adapter->napi); 934 } else { 935 atomic_dec(&adapter->irq_sem); 936 } 937 938 return IRQ_HANDLED; 939} 940 941static int e1000_request_irq(struct e1000_adapter *adapter) 942{ 943 struct net_device *netdev = adapter->netdev; 944 irq_handler_t handler = e1000_intr; 945 int irq_flags = IRQF_SHARED; 946 int err; 947 948 err = pci_enable_msi(adapter->pdev); 949 if (err) { 950 ndev_warn(netdev, 951 "Unable to allocate MSI interrupt Error: %d\n", err); 952 } else { 953 adapter->flags |= FLAG_MSI_ENABLED; 954 handler = e1000_intr_msi; 955 irq_flags = 0; 956 } 957 958 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 959 netdev); 960 if (err) { 961 if (adapter->flags & FLAG_MSI_ENABLED) 962 pci_disable_msi(adapter->pdev); 963 ndev_err(netdev, 964 "Unable to allocate interrupt Error: %d\n", err); 965 } 966 967 return err; 968} 969 970static void e1000_free_irq(struct e1000_adapter *adapter) 971{ 972 struct net_device *netdev = adapter->netdev; 973 974 free_irq(adapter->pdev->irq, netdev); 975 if (adapter->flags & FLAG_MSI_ENABLED) { 976 pci_disable_msi(adapter->pdev); 977 adapter->flags &= ~FLAG_MSI_ENABLED; 978 } 979} 980 981/** 982 * e1000_irq_disable - Mask off interrupt generation on the NIC 983 **/ 984static void e1000_irq_disable(struct e1000_adapter *adapter) 985{ 986 struct e1000_hw *hw = &adapter->hw; 987 988 atomic_inc(&adapter->irq_sem); 989 ew32(IMC, ~0); 990 e1e_flush(); 991 synchronize_irq(adapter->pdev->irq); 992} 993 994/** 995 * e1000_irq_enable - Enable default interrupt generation settings 996 **/ 997static void e1000_irq_enable(struct e1000_adapter *adapter) 998{ 999 struct e1000_hw *hw = &adapter->hw; 1000 1001 if (atomic_dec_and_test(&adapter->irq_sem)) { 1002 ew32(IMS, IMS_ENABLE_MASK); 1003 e1e_flush(); 1004 } 1005} 1006 1007/** 1008 * e1000_get_hw_control - get control of the h/w from f/w 1009 * @adapter: address of board private structure 1010 * 1011 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. 1012 * For ASF and Pass Through versions of f/w this means that 1013 * the driver is loaded. For AMT version (only with 82573) 1014 * of the f/w this means that the network i/f is open. 1015 **/ 1016static void e1000_get_hw_control(struct e1000_adapter *adapter) 1017{ 1018 struct e1000_hw *hw = &adapter->hw; 1019 u32 ctrl_ext; 1020 u32 swsm; 1021 1022 /* Let firmware know the driver has taken over */ 1023 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 1024 swsm = er32(SWSM); 1025 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 1026 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 1027 ctrl_ext = er32(CTRL_EXT); 1028 ew32(CTRL_EXT, 1029 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1030 } 1031} 1032 1033/** 1034 * e1000_release_hw_control - release control of the h/w to f/w 1035 * @adapter: address of board private structure 1036 * 1037 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 1038 * For ASF and Pass Through versions of f/w this means that the 1039 * driver is no longer loaded. For AMT version (only with 82573) i 1040 * of the f/w this means that the network i/f is closed. 1041 * 1042 **/ 1043static void e1000_release_hw_control(struct e1000_adapter *adapter) 1044{ 1045 struct e1000_hw *hw = &adapter->hw; 1046 u32 ctrl_ext; 1047 u32 swsm; 1048 1049 /* Let firmware taken over control of h/w */ 1050 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 1051 swsm = er32(SWSM); 1052 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 1053 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 1054 ctrl_ext = er32(CTRL_EXT); 1055 ew32(CTRL_EXT, 1056 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1057 } 1058} 1059 1060static void e1000_release_manageability(struct e1000_adapter *adapter) 1061{ 1062 if (adapter->flags & FLAG_MNG_PT_ENABLED) { 1063 struct e1000_hw *hw = &adapter->hw; 1064 1065 u32 manc = er32(MANC); 1066 1067 /* re-enable hardware interception of ARP */ 1068 manc |= E1000_MANC_ARP_EN; 1069 manc &= ~E1000_MANC_EN_MNG2HOST; 1070 1071 /* don't explicitly have to mess with MANC2H since 1072 * MANC has an enable disable that gates MANC2H */ 1073 ew32(MANC, manc); 1074 } 1075} 1076 1077/** 1078 * @e1000_alloc_ring - allocate memory for a ring structure 1079 **/ 1080static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 1081 struct e1000_ring *ring) 1082{ 1083 struct pci_dev *pdev = adapter->pdev; 1084 1085 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 1086 GFP_KERNEL); 1087 if (!ring->desc) 1088 return -ENOMEM; 1089 1090 return 0; 1091} 1092 1093/** 1094 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 1095 * @adapter: board private structure 1096 * 1097 * Return 0 on success, negative on failure 1098 **/ 1099int e1000e_setup_tx_resources(struct e1000_adapter *adapter) 1100{ 1101 struct e1000_ring *tx_ring = adapter->tx_ring; 1102 int err = -ENOMEM, size; 1103 1104 size = sizeof(struct e1000_buffer) * tx_ring->count; 1105 tx_ring->buffer_info = vmalloc(size); 1106 if (!tx_ring->buffer_info) 1107 goto err; 1108 memset(tx_ring->buffer_info, 0, size); 1109 1110 /* round up to nearest 4K */ 1111 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1112 tx_ring->size = ALIGN(tx_ring->size, 4096); 1113 1114 err = e1000_alloc_ring_dma(adapter, tx_ring); 1115 if (err) 1116 goto err; 1117 1118 tx_ring->next_to_use = 0; 1119 tx_ring->next_to_clean = 0; 1120 spin_lock_init(&adapter->tx_queue_lock); 1121 1122 return 0; 1123err: 1124 vfree(tx_ring->buffer_info); 1125 ndev_err(adapter->netdev, 1126 "Unable to allocate memory for the transmit descriptor ring\n"); 1127 return err; 1128} 1129 1130/** 1131 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 1132 * @adapter: board private structure 1133 * 1134 * Returns 0 on success, negative on failure 1135 **/ 1136int e1000e_setup_rx_resources(struct e1000_adapter *adapter) 1137{ 1138 struct e1000_ring *rx_ring = adapter->rx_ring; 1139 struct e1000_buffer *buffer_info; 1140 int i, size, desc_len, err = -ENOMEM; 1141 1142 size = sizeof(struct e1000_buffer) * rx_ring->count; 1143 rx_ring->buffer_info = vmalloc(size); 1144 if (!rx_ring->buffer_info) 1145 goto err; 1146 memset(rx_ring->buffer_info, 0, size); 1147 1148 for (i = 0; i < rx_ring->count; i++) { 1149 buffer_info = &rx_ring->buffer_info[i]; 1150 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 1151 sizeof(struct e1000_ps_page), 1152 GFP_KERNEL); 1153 if (!buffer_info->ps_pages) 1154 goto err_pages; 1155 } 1156 1157 desc_len = sizeof(union e1000_rx_desc_packet_split); 1158 1159 /* Round up to nearest 4K */ 1160 rx_ring->size = rx_ring->count * desc_len; 1161 rx_ring->size = ALIGN(rx_ring->size, 4096); 1162 1163 err = e1000_alloc_ring_dma(adapter, rx_ring); 1164 if (err) 1165 goto err_pages; 1166 1167 rx_ring->next_to_clean = 0; 1168 rx_ring->next_to_use = 0; 1169 rx_ring->rx_skb_top = NULL; 1170 1171 return 0; 1172 1173err_pages: 1174 for (i = 0; i < rx_ring->count; i++) { 1175 buffer_info = &rx_ring->buffer_info[i]; 1176 kfree(buffer_info->ps_pages); 1177 } 1178err: 1179 vfree(rx_ring->buffer_info); 1180 ndev_err(adapter->netdev, 1181 "Unable to allocate memory for the transmit descriptor ring\n"); 1182 return err; 1183} 1184 1185/** 1186 * e1000_clean_tx_ring - Free Tx Buffers 1187 * @adapter: board private structure 1188 **/ 1189static void e1000_clean_tx_ring(struct e1000_adapter *adapter) 1190{ 1191 struct e1000_ring *tx_ring = adapter->tx_ring; 1192 struct e1000_buffer *buffer_info; 1193 unsigned long size; 1194 unsigned int i; 1195 1196 for (i = 0; i < tx_ring->count; i++) { 1197 buffer_info = &tx_ring->buffer_info[i]; 1198 e1000_put_txbuf(adapter, buffer_info); 1199 } 1200 1201 size = sizeof(struct e1000_buffer) * tx_ring->count; 1202 memset(tx_ring->buffer_info, 0, size); 1203 1204 memset(tx_ring->desc, 0, tx_ring->size); 1205 1206 tx_ring->next_to_use = 0; 1207 tx_ring->next_to_clean = 0; 1208 1209 writel(0, adapter->hw.hw_addr + tx_ring->head); 1210 writel(0, adapter->hw.hw_addr + tx_ring->tail); 1211} 1212 1213/** 1214 * e1000e_free_tx_resources - Free Tx Resources per Queue 1215 * @adapter: board private structure 1216 * 1217 * Free all transmit software resources 1218 **/ 1219void e1000e_free_tx_resources(struct e1000_adapter *adapter) 1220{ 1221 struct pci_dev *pdev = adapter->pdev; 1222 struct e1000_ring *tx_ring = adapter->tx_ring; 1223 1224 e1000_clean_tx_ring(adapter); 1225 1226 vfree(tx_ring->buffer_info); 1227 tx_ring->buffer_info = NULL; 1228 1229 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1230 tx_ring->dma); 1231 tx_ring->desc = NULL; 1232} 1233 1234/** 1235 * e1000e_free_rx_resources - Free Rx Resources 1236 * @adapter: board private structure 1237 * 1238 * Free all receive software resources 1239 **/ 1240 1241void e1000e_free_rx_resources(struct e1000_adapter *adapter) 1242{ 1243 struct pci_dev *pdev = adapter->pdev; 1244 struct e1000_ring *rx_ring = adapter->rx_ring; 1245 int i; 1246 1247 e1000_clean_rx_ring(adapter); 1248 1249 for (i = 0; i < rx_ring->count; i++) { 1250 kfree(rx_ring->buffer_info[i].ps_pages); 1251 } 1252 1253 vfree(rx_ring->buffer_info); 1254 rx_ring->buffer_info = NULL; 1255 1256 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1257 rx_ring->dma); 1258 rx_ring->desc = NULL; 1259} 1260 1261/** 1262 * e1000_update_itr - update the dynamic ITR value based on statistics 1263 * Stores a new ITR value based on packets and byte 1264 * counts during the last interrupt. The advantage of per interrupt 1265 * computation is faster updates and more accurate ITR for the current 1266 * traffic pattern. Constants in this function were computed 1267 * based on theoretical maximum wire speed and thresholds were set based 1268 * on testing data as well as attempting to minimize response time 1269 * while increasing bulk throughput. 1270 * this functionality is controlled by the InterruptThrottleRate module 1271 * parameter (see e1000_param.c) 1272 * @adapter: pointer to adapter 1273 * @itr_setting: current adapter->itr 1274 * @packets: the number of packets during this measurement interval 1275 * @bytes: the number of bytes during this measurement interval 1276 **/ 1277static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 1278 u16 itr_setting, int packets, 1279 int bytes) 1280{ 1281 unsigned int retval = itr_setting; 1282 1283 if (packets == 0) 1284 goto update_itr_done; 1285 1286 switch (itr_setting) { 1287 case lowest_latency: 1288 /* handle TSO and jumbo frames */ 1289 if (bytes/packets > 8000) 1290 retval = bulk_latency; 1291 else if ((packets < 5) && (bytes > 512)) { 1292 retval = low_latency; 1293 } 1294 break; 1295 case low_latency: /* 50 usec aka 20000 ints/s */ 1296 if (bytes > 10000) { 1297 /* this if handles the TSO accounting */ 1298 if (bytes/packets > 8000) { 1299 retval = bulk_latency; 1300 } else if ((packets < 10) || ((bytes/packets) > 1200)) { 1301 retval = bulk_latency; 1302 } else if ((packets > 35)) { 1303 retval = lowest_latency; 1304 } 1305 } else if (bytes/packets > 2000) { 1306 retval = bulk_latency; 1307 } else if (packets <= 2 && bytes < 512) { 1308 retval = lowest_latency; 1309 } 1310 break; 1311 case bulk_latency: /* 250 usec aka 4000 ints/s */ 1312 if (bytes > 25000) { 1313 if (packets > 35) { 1314 retval = low_latency; 1315 } 1316 } else if (bytes < 6000) { 1317 retval = low_latency; 1318 } 1319 break; 1320 } 1321 1322update_itr_done: 1323 return retval; 1324} 1325 1326static void e1000_set_itr(struct e1000_adapter *adapter) 1327{ 1328 struct e1000_hw *hw = &adapter->hw; 1329 u16 current_itr; 1330 u32 new_itr = adapter->itr; 1331 1332 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 1333 if (adapter->link_speed != SPEED_1000) { 1334 current_itr = 0; 1335 new_itr = 4000; 1336 goto set_itr_now; 1337 } 1338 1339 adapter->tx_itr = e1000_update_itr(adapter, 1340 adapter->tx_itr, 1341 adapter->total_tx_packets, 1342 adapter->total_tx_bytes); 1343 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 1344 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 1345 adapter->tx_itr = low_latency; 1346 1347 adapter->rx_itr = e1000_update_itr(adapter, 1348 adapter->rx_itr, 1349 adapter->total_rx_packets, 1350 adapter->total_rx_bytes); 1351 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 1352 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 1353 adapter->rx_itr = low_latency; 1354 1355 current_itr = max(adapter->rx_itr, adapter->tx_itr); 1356 1357 switch (current_itr) { 1358 /* counts and packets in update_itr are dependent on these numbers */ 1359 case lowest_latency: 1360 new_itr = 70000; 1361 break; 1362 case low_latency: 1363 new_itr = 20000; /* aka hwitr = ~200 */ 1364 break; 1365 case bulk_latency: 1366 new_itr = 4000; 1367 break; 1368 default: 1369 break; 1370 } 1371 1372set_itr_now: 1373 if (new_itr != adapter->itr) { 1374 /* this attempts to bias the interrupt rate towards Bulk 1375 * by adding intermediate steps when interrupt rate is 1376 * increasing */ 1377 new_itr = new_itr > adapter->itr ? 1378 min(adapter->itr + (new_itr >> 2), new_itr) : 1379 new_itr; 1380 adapter->itr = new_itr; 1381 ew32(ITR, 1000000000 / (new_itr * 256)); 1382 } 1383} 1384 1385/** 1386 * e1000_clean - NAPI Rx polling callback 1387 * @adapter: board private structure 1388 **/ 1389static int e1000_clean(struct napi_struct *napi, int budget) 1390{ 1391 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); 1392 struct net_device *poll_dev = adapter->netdev; 1393 int tx_cleaned = 0, work_done = 0; 1394 1395 /* Must NOT use netdev_priv macro here. */ 1396 adapter = poll_dev->priv; 1397 1398 /* e1000_clean is called per-cpu. This lock protects 1399 * tx_ring from being cleaned by multiple cpus 1400 * simultaneously. A failure obtaining the lock means 1401 * tx_ring is currently being cleaned anyway. */ 1402 if (spin_trylock(&adapter->tx_queue_lock)) { 1403 tx_cleaned = e1000_clean_tx_irq(adapter); 1404 spin_unlock(&adapter->tx_queue_lock); 1405 } 1406 1407 adapter->clean_rx(adapter, &work_done, budget); 1408 1409 if (tx_cleaned) 1410 work_done = budget; 1411 1412 /* If budget not fully consumed, exit the polling mode */ 1413 if (work_done < budget) { 1414 if (adapter->itr_setting & 3) 1415 e1000_set_itr(adapter); 1416 netif_rx_complete(poll_dev, napi); 1417 e1000_irq_enable(adapter); 1418 } 1419 1420 return work_done; 1421} 1422 1423static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 1424{ 1425 struct e1000_adapter *adapter = netdev_priv(netdev); 1426 struct e1000_hw *hw = &adapter->hw; 1427 u32 vfta, index; 1428 1429 /* don't update vlan cookie if already programmed */ 1430 if ((adapter->hw.mng_cookie.status & 1431 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 1432 (vid == adapter->mng_vlan_id)) 1433 return; 1434 /* add VID to filter table */ 1435 index = (vid >> 5) & 0x7F; 1436 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 1437 vfta |= (1 << (vid & 0x1F)); 1438 e1000e_write_vfta(hw, index, vfta); 1439} 1440 1441static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 1442{ 1443 struct e1000_adapter *adapter = netdev_priv(netdev); 1444 struct e1000_hw *hw = &adapter->hw; 1445 u32 vfta, index; 1446 1447 e1000_irq_disable(adapter); 1448 vlan_group_set_device(adapter->vlgrp, vid, NULL); 1449 e1000_irq_enable(adapter); 1450 1451 if ((adapter->hw.mng_cookie.status & 1452 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 1453 (vid == adapter->mng_vlan_id)) { 1454 /* release control to f/w */ 1455 e1000_release_hw_control(adapter); 1456 return; 1457 } 1458 1459 /* remove VID from filter table */ 1460 index = (vid >> 5) & 0x7F; 1461 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 1462 vfta &= ~(1 << (vid & 0x1F)); 1463 e1000e_write_vfta(hw, index, vfta); 1464} 1465 1466static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 1467{ 1468 struct net_device *netdev = adapter->netdev; 1469 u16 vid = adapter->hw.mng_cookie.vlan_id; 1470 u16 old_vid = adapter->mng_vlan_id; 1471 1472 if (!adapter->vlgrp) 1473 return; 1474 1475 if (!vlan_group_get_device(adapter->vlgrp, vid)) { 1476 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1477 if (adapter->hw.mng_cookie.status & 1478 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1479 e1000_vlan_rx_add_vid(netdev, vid); 1480 adapter->mng_vlan_id = vid; 1481 } 1482 1483 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 1484 (vid != old_vid) && 1485 !vlan_group_get_device(adapter->vlgrp, old_vid)) 1486 e1000_vlan_rx_kill_vid(netdev, old_vid); 1487 } else { 1488 adapter->mng_vlan_id = vid; 1489 } 1490} 1491 1492 1493static void e1000_vlan_rx_register(struct net_device *netdev, 1494 struct vlan_group *grp) 1495{ 1496 struct e1000_adapter *adapter = netdev_priv(netdev); 1497 struct e1000_hw *hw = &adapter->hw; 1498 u32 ctrl, rctl; 1499 1500 e1000_irq_disable(adapter); 1501 adapter->vlgrp = grp; 1502 1503 if (grp) { 1504 /* enable VLAN tag insert/strip */ 1505 ctrl = er32(CTRL); 1506 ctrl |= E1000_CTRL_VME; 1507 ew32(CTRL, ctrl); 1508 1509 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 1510 /* enable VLAN receive filtering */ 1511 rctl = er32(RCTL); 1512 rctl |= E1000_RCTL_VFE; 1513 rctl &= ~E1000_RCTL_CFIEN; 1514 ew32(RCTL, rctl); 1515 e1000_update_mng_vlan(adapter); 1516 } 1517 } else { 1518 /* disable VLAN tag insert/strip */ 1519 ctrl = er32(CTRL); 1520 ctrl &= ~E1000_CTRL_VME; 1521 ew32(CTRL, ctrl); 1522 1523 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 1524 /* disable VLAN filtering */ 1525 rctl = er32(RCTL); 1526 rctl &= ~E1000_RCTL_VFE; 1527 ew32(RCTL, rctl); 1528 if (adapter->mng_vlan_id != 1529 (u16)E1000_MNG_VLAN_NONE) { 1530 e1000_vlan_rx_kill_vid(netdev, 1531 adapter->mng_vlan_id); 1532 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1533 } 1534 } 1535 } 1536 1537 e1000_irq_enable(adapter); 1538} 1539 1540static void e1000_restore_vlan(struct e1000_adapter *adapter) 1541{ 1542 u16 vid; 1543 1544 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); 1545 1546 if (!adapter->vlgrp) 1547 return; 1548 1549 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { 1550 if (!vlan_group_get_device(adapter->vlgrp, vid)) 1551 continue; 1552 e1000_vlan_rx_add_vid(adapter->netdev, vid); 1553 } 1554} 1555 1556static void e1000_init_manageability(struct e1000_adapter *adapter) 1557{ 1558 struct e1000_hw *hw = &adapter->hw; 1559 u32 manc, manc2h; 1560 1561 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 1562 return; 1563 1564 manc = er32(MANC); 1565 1566 /* disable hardware interception of ARP */ 1567 manc &= ~(E1000_MANC_ARP_EN); 1568 1569 /* enable receiving management packets to the host. this will probably 1570 * generate destination unreachable messages from the host OS, but 1571 * the packets will be handled on SMBUS */ 1572 manc |= E1000_MANC_EN_MNG2HOST; 1573 manc2h = er32(MANC2H); 1574#define E1000_MNG2HOST_PORT_623 (1 << 5) 1575#define E1000_MNG2HOST_PORT_664 (1 << 6) 1576 manc2h |= E1000_MNG2HOST_PORT_623; 1577 manc2h |= E1000_MNG2HOST_PORT_664; 1578 ew32(MANC2H, manc2h); 1579 ew32(MANC, manc); 1580} 1581 1582/** 1583 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1584 * @adapter: board private structure 1585 * 1586 * Configure the Tx unit of the MAC after a reset. 1587 **/ 1588static void e1000_configure_tx(struct e1000_adapter *adapter) 1589{ 1590 struct e1000_hw *hw = &adapter->hw; 1591 struct e1000_ring *tx_ring = adapter->tx_ring; 1592 u64 tdba; 1593 u32 tdlen, tctl, tipg, tarc; 1594 u32 ipgr1, ipgr2; 1595 1596 /* Setup the HW Tx Head and Tail descriptor pointers */ 1597 tdba = tx_ring->dma; 1598 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 1599 ew32(TDBAL, (tdba & DMA_32BIT_MASK)); 1600 ew32(TDBAH, (tdba >> 32)); 1601 ew32(TDLEN, tdlen); 1602 ew32(TDH, 0); 1603 ew32(TDT, 0); 1604 tx_ring->head = E1000_TDH; 1605 tx_ring->tail = E1000_TDT; 1606 1607 /* Set the default values for the Tx Inter Packet Gap timer */ 1608 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ 1609 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ 1610 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ 1611 1612 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) 1613 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ 1614 1615 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1616 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1617 ew32(TIPG, tipg); 1618 1619 /* Set the Tx Interrupt Delay register */ 1620 ew32(TIDV, adapter->tx_int_delay); 1621 /* tx irq moderation */ 1622 ew32(TADV, adapter->tx_abs_int_delay); 1623 1624 /* Program the Transmit Control Register */ 1625 tctl = er32(TCTL); 1626 tctl &= ~E1000_TCTL_CT; 1627 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1628 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1629 1630 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 1631 tarc = er32(TARC0); 1632 /* set the speed mode bit, we'll clear it if we're not at 1633 * gigabit link later */ 1634#define SPEED_MODE_BIT (1 << 21) 1635 tarc |= SPEED_MODE_BIT; 1636 ew32(TARC0, tarc); 1637 } 1638 1639 /* errata: program both queues to unweighted RR */ 1640 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 1641 tarc = er32(TARC0); 1642 tarc |= 1; 1643 ew32(TARC0, tarc); 1644 tarc = er32(TARC1); 1645 tarc |= 1; 1646 ew32(TARC1, tarc); 1647 } 1648 1649 e1000e_config_collision_dist(hw); 1650 1651 /* Setup Transmit Descriptor Settings for eop descriptor */ 1652 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1653 1654 /* only set IDE if we are delaying interrupts using the timers */ 1655 if (adapter->tx_int_delay) 1656 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1657 1658 /* enable Report Status bit */ 1659 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1660 1661 ew32(TCTL, tctl); 1662 1663 adapter->tx_queue_len = adapter->netdev->tx_queue_len; 1664} 1665 1666/** 1667 * e1000_setup_rctl - configure the receive control registers 1668 * @adapter: Board private structure 1669 **/ 1670#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 1671 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 1672static void e1000_setup_rctl(struct e1000_adapter *adapter) 1673{ 1674 struct e1000_hw *hw = &adapter->hw; 1675 u32 rctl, rfctl; 1676 u32 psrctl = 0; 1677 u32 pages = 0; 1678 1679 /* Program MC offset vector base */ 1680 rctl = er32(RCTL); 1681 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1682 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 1683 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1684 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1685 1686 /* Do not Store bad packets */ 1687 rctl &= ~E1000_RCTL_SBP; 1688 1689 /* Enable Long Packet receive */ 1690 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1691 rctl &= ~E1000_RCTL_LPE; 1692 else 1693 rctl |= E1000_RCTL_LPE; 1694 1695 /* Setup buffer sizes */ 1696 rctl &= ~E1000_RCTL_SZ_4096; 1697 rctl |= E1000_RCTL_BSEX; 1698 switch (adapter->rx_buffer_len) { 1699 case 256: 1700 rctl |= E1000_RCTL_SZ_256; 1701 rctl &= ~E1000_RCTL_BSEX; 1702 break; 1703 case 512: 1704 rctl |= E1000_RCTL_SZ_512; 1705 rctl &= ~E1000_RCTL_BSEX; 1706 break; 1707 case 1024: 1708 rctl |= E1000_RCTL_SZ_1024; 1709 rctl &= ~E1000_RCTL_BSEX; 1710 break; 1711 case 2048: 1712 default: 1713 rctl |= E1000_RCTL_SZ_2048; 1714 rctl &= ~E1000_RCTL_BSEX; 1715 break; 1716 case 4096: 1717 rctl |= E1000_RCTL_SZ_4096; 1718 break; 1719 case 8192: 1720 rctl |= E1000_RCTL_SZ_8192; 1721 break; 1722 case 16384: 1723 rctl |= E1000_RCTL_SZ_16384; 1724 break; 1725 } 1726 1727 /* 1728 * 82571 and greater support packet-split where the protocol 1729 * header is placed in skb->data and the packet data is 1730 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 1731 * In the case of a non-split, skb->data is linearly filled, 1732 * followed by the page buffers. Therefore, skb->data is 1733 * sized to hold the largest protocol header. 1734 * 1735 * allocations using alloc_page take too long for regular MTU 1736 * so only enable packet split for jumbo frames 1737 * 1738 * Using pages when the page size is greater than 16k wastes 1739 * a lot of memory, since we allocate 3 pages at all times 1740 * per packet. 1741 */ 1742 adapter->rx_ps_pages = 0; 1743 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 1744 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 1745 adapter->rx_ps_pages = pages; 1746 1747 if (adapter->rx_ps_pages) { 1748 /* Configure extra packet-split registers */ 1749 rfctl = er32(RFCTL); 1750 rfctl |= E1000_RFCTL_EXTEN; 1751 /* disable packet split support for IPv6 extension headers, 1752 * because some malformed IPv6 headers can hang the RX */ 1753 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | 1754 E1000_RFCTL_NEW_IPV6_EXT_DIS); 1755 1756 ew32(RFCTL, rfctl); 1757 1758 /* Enable Packet split descriptors */ 1759 rctl |= E1000_RCTL_DTYP_PS; 1760 1761 /* Enable hardware CRC frame stripping */ 1762 rctl |= E1000_RCTL_SECRC; 1763 1764 psrctl |= adapter->rx_ps_bsize0 >> 1765 E1000_PSRCTL_BSIZE0_SHIFT; 1766 1767 switch (adapter->rx_ps_pages) { 1768 case 3: 1769 psrctl |= PAGE_SIZE << 1770 E1000_PSRCTL_BSIZE3_SHIFT; 1771 case 2: 1772 psrctl |= PAGE_SIZE << 1773 E1000_PSRCTL_BSIZE2_SHIFT; 1774 case 1: 1775 psrctl |= PAGE_SIZE >> 1776 E1000_PSRCTL_BSIZE1_SHIFT; 1777 break; 1778 } 1779 1780 ew32(PSRCTL, psrctl); 1781 } 1782 1783 ew32(RCTL, rctl); 1784} 1785 1786/** 1787 * e1000_configure_rx - Configure Receive Unit after Reset 1788 * @adapter: board private structure 1789 * 1790 * Configure the Rx unit of the MAC after a reset. 1791 **/ 1792static void e1000_configure_rx(struct e1000_adapter *adapter) 1793{ 1794 struct e1000_hw *hw = &adapter->hw; 1795 struct e1000_ring *rx_ring = adapter->rx_ring; 1796 u64 rdba; 1797 u32 rdlen, rctl, rxcsum, ctrl_ext; 1798 1799 if (adapter->rx_ps_pages) { 1800 /* this is a 32 byte descriptor */ 1801 rdlen = rx_ring->count * 1802 sizeof(union e1000_rx_desc_packet_split); 1803 adapter->clean_rx = e1000_clean_rx_irq_ps; 1804 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 1805 } else { 1806 rdlen = rx_ring->count * 1807 sizeof(struct e1000_rx_desc); 1808 adapter->clean_rx = e1000_clean_rx_irq; 1809 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1810 } 1811 1812 /* disable receives while setting up the descriptors */ 1813 rctl = er32(RCTL); 1814 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1815 e1e_flush(); 1816 msleep(10); 1817 1818 /* set the Receive Delay Timer Register */ 1819 ew32(RDTR, adapter->rx_int_delay); 1820 1821 /* irq moderation */ 1822 ew32(RADV, adapter->rx_abs_int_delay); 1823 if (adapter->itr_setting != 0) 1824 ew32(ITR, 1825 1000000000 / (adapter->itr * 256)); 1826 1827 ctrl_ext = er32(CTRL_EXT); 1828 /* Reset delay timers after every interrupt */ 1829 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; 1830 /* Auto-Mask interrupts upon ICR access */ 1831 ctrl_ext |= E1000_CTRL_EXT_IAME; 1832 ew32(IAM, 0xffffffff); 1833 ew32(CTRL_EXT, ctrl_ext); 1834 e1e_flush(); 1835 1836 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1837 * the Base and Length of the Rx Descriptor Ring */ 1838 rdba = rx_ring->dma; 1839 ew32(RDBAL, (rdba & DMA_32BIT_MASK)); 1840 ew32(RDBAH, (rdba >> 32)); 1841 ew32(RDLEN, rdlen); 1842 ew32(RDH, 0); 1843 ew32(RDT, 0); 1844 rx_ring->head = E1000_RDH; 1845 rx_ring->tail = E1000_RDT; 1846 1847 /* Enable Receive Checksum Offload for TCP and UDP */ 1848 rxcsum = er32(RXCSUM); 1849 if (adapter->flags & FLAG_RX_CSUM_ENABLED) { 1850 rxcsum |= E1000_RXCSUM_TUOFL; 1851 1852 /* IPv4 payload checksum for UDP fragments must be 1853 * used in conjunction with packet-split. */ 1854 if (adapter->rx_ps_pages) 1855 rxcsum |= E1000_RXCSUM_IPPCSE; 1856 } else { 1857 rxcsum &= ~E1000_RXCSUM_TUOFL; 1858 /* no need to clear IPPCSE as it defaults to 0 */ 1859 } 1860 ew32(RXCSUM, rxcsum); 1861 1862 /* Enable early receives on supported devices, only takes effect when 1863 * packet size is equal or larger than the specified value (in 8 byte 1864 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */ 1865 if ((adapter->flags & FLAG_HAS_ERT) && 1866 (adapter->netdev->mtu > ETH_DATA_LEN)) 1867 ew32(ERT, E1000_ERT_2048); 1868 1869 /* Enable Receives */ 1870 ew32(RCTL, rctl); 1871} 1872 1873/** 1874 * e1000_mc_addr_list_update - Update Multicast addresses 1875 * @hw: pointer to the HW structure 1876 * @mc_addr_list: array of multicast addresses to program 1877 * @mc_addr_count: number of multicast addresses to program 1878 * @rar_used_count: the first RAR register free to program 1879 * @rar_count: total number of supported Receive Address Registers 1880 * 1881 * Updates the Receive Address Registers and Multicast Table Array. 1882 * The caller must have a packed mc_addr_list of multicast addresses. 1883 * The parameter rar_count will usually be hw->mac.rar_entry_count 1884 * unless there are workarounds that change this. Currently no func pointer 1885 * exists and all implementations are handled in the generic version of this 1886 * function. 1887 **/ 1888static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list, 1889 u32 mc_addr_count, u32 rar_used_count, 1890 u32 rar_count) 1891{ 1892 hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count, 1893 rar_used_count, rar_count); 1894} 1895 1896/** 1897 * e1000_set_multi - Multicast and Promiscuous mode set 1898 * @netdev: network interface device structure 1899 * 1900 * The set_multi entry point is called whenever the multicast address 1901 * list or the network interface flags are updated. This routine is 1902 * responsible for configuring the hardware for proper multicast, 1903 * promiscuous mode, and all-multi behavior. 1904 **/ 1905static void e1000_set_multi(struct net_device *netdev) 1906{ 1907 struct e1000_adapter *adapter = netdev_priv(netdev); 1908 struct e1000_hw *hw = &adapter->hw; 1909 struct e1000_mac_info *mac = &hw->mac; 1910 struct dev_mc_list *mc_ptr; 1911 u8 *mta_list; 1912 u32 rctl; 1913 int i; 1914 1915 /* Check for Promiscuous and All Multicast modes */ 1916 1917 rctl = er32(RCTL); 1918 1919 if (netdev->flags & IFF_PROMISC) { 1920 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1921 } else if (netdev->flags & IFF_ALLMULTI) { 1922 rctl |= E1000_RCTL_MPE; 1923 rctl &= ~E1000_RCTL_UPE; 1924 } else { 1925 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 1926 } 1927 1928 ew32(RCTL, rctl); 1929 1930 if (netdev->mc_count) { 1931 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); 1932 if (!mta_list) 1933 return; 1934 1935 /* prepare a packed array of only addresses. */ 1936 mc_ptr = netdev->mc_list; 1937 1938 for (i = 0; i < netdev->mc_count; i++) { 1939 if (!mc_ptr) 1940 break; 1941 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, 1942 ETH_ALEN); 1943 mc_ptr = mc_ptr->next; 1944 } 1945 1946 e1000_mc_addr_list_update(hw, mta_list, i, 1, 1947 mac->rar_entry_count); 1948 kfree(mta_list); 1949 } else { 1950 /* 1951 * if we're called from probe, we might not have 1952 * anything to do here, so clear out the list 1953 */ 1954 e1000_mc_addr_list_update(hw, NULL, 0, 1, 1955 mac->rar_entry_count); 1956 } 1957} 1958 1959/** 1960 * e1000_configure - configure the hardware for RX and TX 1961 * @adapter: private board structure 1962 **/ 1963static void e1000_configure(struct e1000_adapter *adapter) 1964{ 1965 e1000_set_multi(adapter->netdev); 1966 1967 e1000_restore_vlan(adapter); 1968 e1000_init_manageability(adapter); 1969 1970 e1000_configure_tx(adapter); 1971 e1000_setup_rctl(adapter); 1972 e1000_configure_rx(adapter); 1973 adapter->alloc_rx_buf(adapter, 1974 e1000_desc_unused(adapter->rx_ring)); 1975} 1976 1977/** 1978 * e1000e_power_up_phy - restore link in case the phy was powered down 1979 * @adapter: address of board private structure 1980 * 1981 * The phy may be powered down to save power and turn off link when the 1982 * driver is unloaded and wake on lan is not enabled (among others) 1983 * *** this routine MUST be followed by a call to e1000e_reset *** 1984 **/ 1985void e1000e_power_up_phy(struct e1000_adapter *adapter) 1986{ 1987 u16 mii_reg = 0; 1988 1989 /* Just clear the power down bit to wake the phy back up */ 1990 if (adapter->hw.media_type == e1000_media_type_copper) { 1991 /* according to the manual, the phy will retain its 1992 * settings across a power-down/up cycle */ 1993 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); 1994 mii_reg &= ~MII_CR_POWER_DOWN; 1995 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); 1996 } 1997 1998 adapter->hw.mac.ops.setup_link(&adapter->hw); 1999} 2000 2001/** 2002 * e1000_power_down_phy - Power down the PHY 2003 * 2004 * Power down the PHY so no link is implied when interface is down 2005 * The PHY cannot be powered down is management or WoL is active 2006 */ 2007static void e1000_power_down_phy(struct e1000_adapter *adapter) 2008{ 2009 struct e1000_hw *hw = &adapter->hw; 2010 u16 mii_reg; 2011 2012 /* WoL is enabled */ 2013 if (!adapter->wol) 2014 return; 2015 2016 /* non-copper PHY? */ 2017 if (adapter->hw.media_type != e1000_media_type_copper) 2018 return; 2019 2020 /* reset is blocked because of a SoL/IDER session */ 2021 if (e1000e_check_mng_mode(hw) || 2022 e1000_check_reset_block(hw)) 2023 return; 2024 2025 /* managebility (AMT) is enabled */ 2026 if (er32(MANC) & E1000_MANC_SMBUS_EN) 2027 return; 2028 2029 /* power down the PHY */ 2030 e1e_rphy(hw, PHY_CONTROL, &mii_reg); 2031 mii_reg |= MII_CR_POWER_DOWN; 2032 e1e_wphy(hw, PHY_CONTROL, mii_reg); 2033 mdelay(1); 2034} 2035 2036/** 2037 * e1000e_reset - bring the hardware into a known good state 2038 * 2039 * This function boots the hardware and enables some settings that 2040 * require a configuration cycle of the hardware - those cannot be 2041 * set/changed during runtime. After reset the device needs to be 2042 * properly configured for rx, tx etc. 2043 */ 2044void e1000e_reset(struct e1000_adapter *adapter) 2045{ 2046 struct e1000_mac_info *mac = &adapter->hw.mac; 2047 struct e1000_hw *hw = &adapter->hw; 2048 u32 tx_space, min_tx_space, min_rx_space; 2049 u32 pba; 2050 u16 hwm; 2051 2052 ew32(PBA, adapter->pba); 2053 2054 if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) { 2055 /* To maintain wire speed transmits, the Tx FIFO should be 2056 * large enough to accommodate two full transmit packets, 2057 * rounded up to the next 1KB and expressed in KB. Likewise, 2058 * the Rx FIFO should be large enough to accommodate at least 2059 * one full receive packet and is similarly rounded up and 2060 * expressed in KB. */ 2061 pba = er32(PBA); 2062 /* upper 16 bits has Tx packet buffer allocation size in KB */ 2063 tx_space = pba >> 16; 2064 /* lower 16 bits has Rx packet buffer allocation size in KB */ 2065 pba &= 0xffff; 2066 /* the tx fifo also stores 16 bytes of information about the tx 2067 * but don't include ethernet FCS because hardware appends it */ 2068 min_tx_space = (mac->max_frame_size + 2069 sizeof(struct e1000_tx_desc) - 2070 ETH_FCS_LEN) * 2; 2071 min_tx_space = ALIGN(min_tx_space, 1024); 2072 min_tx_space >>= 10; 2073 /* software strips receive CRC, so leave room for it */ 2074 min_rx_space = mac->max_frame_size; 2075 min_rx_space = ALIGN(min_rx_space, 1024); 2076 min_rx_space >>= 10; 2077 2078 /* If current Tx allocation is less than the min Tx FIFO size, 2079 * and the min Tx FIFO size is less than the current Rx FIFO 2080 * allocation, take space away from current Rx allocation */ 2081 if ((tx_space < min_tx_space) && 2082 ((min_tx_space - tx_space) < pba)) { 2083 pba -= min_tx_space - tx_space; 2084 2085 /* if short on rx space, rx wins and must trump tx 2086 * adjustment or use Early Receive if available */ 2087 if ((pba < min_rx_space) && 2088 (!(adapter->flags & FLAG_HAS_ERT))) 2089 /* ERT enabled in e1000_configure_rx */ 2090 pba = min_rx_space; 2091 } 2092 2093 ew32(PBA, pba); 2094 } 2095 2096 2097 /* flow control settings */ 2098 /* The high water mark must be low enough to fit one full frame 2099 * (or the size used for early receive) above it in the Rx FIFO. 2100 * Set it to the lower of: 2101 * - 90% of the Rx FIFO size, and 2102 * - the full Rx FIFO size minus the early receive size (for parts 2103 * with ERT support assuming ERT set to E1000_ERT_2048), or 2104 * - the full Rx FIFO size minus one full frame */ 2105 if (adapter->flags & FLAG_HAS_ERT) 2106 hwm = min(((adapter->pba << 10) * 9 / 10), 2107 ((adapter->pba << 10) - (E1000_ERT_2048 << 3))); 2108 else 2109 hwm = min(((adapter->pba << 10) * 9 / 10), 2110 ((adapter->pba << 10) - mac->max_frame_size)); 2111 2112 mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 2113 mac->fc_low_water = mac->fc_high_water - 8; 2114 2115 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 2116 mac->fc_pause_time = 0xFFFF; 2117 else 2118 mac->fc_pause_time = E1000_FC_PAUSE_TIME; 2119 mac->fc = mac->original_fc; 2120 2121 /* Allow time for pending master requests to run */ 2122 mac->ops.reset_hw(hw); 2123 ew32(WUC, 0); 2124 2125 if (mac->ops.init_hw(hw)) 2126 ndev_err(adapter->netdev, "Hardware Error\n"); 2127 2128 e1000_update_mng_vlan(adapter); 2129 2130 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2131 ew32(VET, ETH_P_8021Q); 2132 2133 e1000e_reset_adaptive(hw); 2134 e1000_get_phy_info(hw); 2135 2136 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { 2137 u16 phy_data = 0; 2138 /* speed up time to link by disabling smart power down, ignore 2139 * the return value of this function because there is nothing 2140 * different we would do if it failed */ 2141 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 2142 phy_data &= ~IGP02E1000_PM_SPD; 2143 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 2144 } 2145 2146 e1000_release_manageability(adapter); 2147} 2148 2149int e1000e_up(struct e1000_adapter *adapter) 2150{ 2151 struct e1000_hw *hw = &adapter->hw; 2152 2153 /* hardware has been reset, we need to reload some things */ 2154 e1000_configure(adapter); 2155 2156 clear_bit(__E1000_DOWN, &adapter->state); 2157 2158 napi_enable(&adapter->napi); 2159 e1000_irq_enable(adapter); 2160 2161 /* fire a link change interrupt to start the watchdog */ 2162 ew32(ICS, E1000_ICS_LSC); 2163 return 0; 2164} 2165 2166void e1000e_down(struct e1000_adapter *adapter) 2167{ 2168 struct net_device *netdev = adapter->netdev; 2169 struct e1000_hw *hw = &adapter->hw; 2170 u32 tctl, rctl; 2171 2172 /* signal that we're down so the interrupt handler does not 2173 * reschedule our watchdog timer */ 2174 set_bit(__E1000_DOWN, &adapter->state); 2175 2176 /* disable receives in the hardware */ 2177 rctl = er32(RCTL); 2178 ew32(RCTL, rctl & ~E1000_RCTL_EN); 2179 /* flush and sleep below */ 2180 2181 netif_stop_queue(netdev); 2182 2183 /* disable transmits in the hardware */ 2184 tctl = er32(TCTL); 2185 tctl &= ~E1000_TCTL_EN; 2186 ew32(TCTL, tctl); 2187 /* flush both disables and wait for them to finish */ 2188 e1e_flush(); 2189 msleep(10); 2190 2191 napi_disable(&adapter->napi); 2192 atomic_set(&adapter->irq_sem, 0); 2193 e1000_irq_disable(adapter); 2194 2195 del_timer_sync(&adapter->watchdog_timer); 2196 del_timer_sync(&adapter->phy_info_timer); 2197 2198 netdev->tx_queue_len = adapter->tx_queue_len; 2199 netif_carrier_off(netdev); 2200 adapter->link_speed = 0; 2201 adapter->link_duplex = 0; 2202 2203 e1000e_reset(adapter); 2204 e1000_clean_tx_ring(adapter); 2205 e1000_clean_rx_ring(adapter); 2206 2207 /* 2208 * TODO: for power management, we could drop the link and 2209 * pci_disable_device here. 2210 */ 2211} 2212 2213void e1000e_reinit_locked(struct e1000_adapter *adapter) 2214{ 2215 might_sleep(); 2216 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 2217 msleep(1); 2218 e1000e_down(adapter); 2219 e1000e_up(adapter); 2220 clear_bit(__E1000_RESETTING, &adapter->state); 2221} 2222 2223/** 2224 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 2225 * @adapter: board private structure to initialize 2226 * 2227 * e1000_sw_init initializes the Adapter private data structure. 2228 * Fields are initialized based on PCI device information and 2229 * OS network device settings (MTU size). 2230 **/ 2231static int __devinit e1000_sw_init(struct e1000_adapter *adapter) 2232{ 2233 struct e1000_hw *hw = &adapter->hw; 2234 struct net_device *netdev = adapter->netdev; 2235 2236 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 2237 adapter->rx_ps_bsize0 = 128; 2238 hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 2239 hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2240 2241 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2242 if (!adapter->tx_ring) 2243 goto err; 2244 2245 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2246 if (!adapter->rx_ring) 2247 goto err; 2248 2249 spin_lock_init(&adapter->tx_queue_lock); 2250 2251 /* Explicitly disable IRQ since the NIC can be in any state. */ 2252 atomic_set(&adapter->irq_sem, 0); 2253 e1000_irq_disable(adapter); 2254 2255 spin_lock_init(&adapter->stats_lock); 2256 2257 set_bit(__E1000_DOWN, &adapter->state); 2258 return 0; 2259 2260err: 2261 ndev_err(netdev, "Unable to allocate memory for queues\n"); 2262 kfree(adapter->rx_ring); 2263 kfree(adapter->tx_ring); 2264 return -ENOMEM; 2265} 2266 2267/** 2268 * e1000_open - Called when a network interface is made active 2269 * @netdev: network interface device structure 2270 * 2271 * Returns 0 on success, negative value on failure 2272 * 2273 * The open entry point is called when a network interface is made 2274 * active by the system (IFF_UP). At this point all resources needed 2275 * for transmit and receive operations are allocated, the interrupt 2276 * handler is registered with the OS, the watchdog timer is started, 2277 * and the stack is notified that the interface is ready. 2278 **/ 2279static int e1000_open(struct net_device *netdev) 2280{ 2281 struct e1000_adapter *adapter = netdev_priv(netdev); 2282 struct e1000_hw *hw = &adapter->hw; 2283 int err; 2284 2285 /* disallow open during test */ 2286 if (test_bit(__E1000_TESTING, &adapter->state)) 2287 return -EBUSY; 2288 2289 /* allocate transmit descriptors */ 2290 err = e1000e_setup_tx_resources(adapter); 2291 if (err) 2292 goto err_setup_tx; 2293 2294 /* allocate receive descriptors */ 2295 err = e1000e_setup_rx_resources(adapter); 2296 if (err) 2297 goto err_setup_rx; 2298 2299 e1000e_power_up_phy(adapter); 2300 2301 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2302 if ((adapter->hw.mng_cookie.status & 2303 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 2304 e1000_update_mng_vlan(adapter); 2305 2306 /* If AMT is enabled, let the firmware know that the network 2307 * interface is now open */ 2308 if ((adapter->flags & FLAG_HAS_AMT) && 2309 e1000e_check_mng_mode(&adapter->hw)) 2310 e1000_get_hw_control(adapter); 2311 2312 /* before we allocate an interrupt, we must be ready to handle it. 2313 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 2314 * as soon as we call pci_request_irq, so we have to setup our 2315 * clean_rx handler before we do so. */ 2316 e1000_configure(adapter); 2317 2318 err = e1000_request_irq(adapter); 2319 if (err) 2320 goto err_req_irq; 2321 2322 /* From here on the code is the same as e1000e_up() */ 2323 clear_bit(__E1000_DOWN, &adapter->state); 2324 2325 napi_enable(&adapter->napi); 2326 2327 e1000_irq_enable(adapter); 2328 2329 /* fire a link status change interrupt to start the watchdog */ 2330 ew32(ICS, E1000_ICS_LSC); 2331 2332 return 0; 2333 2334err_req_irq: 2335 e1000_release_hw_control(adapter); 2336 e1000_power_down_phy(adapter); 2337 e1000e_free_rx_resources(adapter); 2338err_setup_rx: 2339 e1000e_free_tx_resources(adapter); 2340err_setup_tx: 2341 e1000e_reset(adapter); 2342 2343 return err; 2344} 2345 2346/** 2347 * e1000_close - Disables a network interface 2348 * @netdev: network interface device structure 2349 * 2350 * Returns 0, this is not allowed to fail 2351 * 2352 * The close entry point is called when an interface is de-activated 2353 * by the OS. The hardware is still under the drivers control, but 2354 * needs to be disabled. A global MAC reset is issued to stop the 2355 * hardware, and all transmit and receive resources are freed. 2356 **/ 2357static int e1000_close(struct net_device *netdev) 2358{ 2359 struct e1000_adapter *adapter = netdev_priv(netdev); 2360 2361 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 2362 e1000e_down(adapter); 2363 e1000_power_down_phy(adapter); 2364 e1000_free_irq(adapter); 2365 2366 e1000e_free_tx_resources(adapter); 2367 e1000e_free_rx_resources(adapter); 2368 2369 /* kill manageability vlan ID if supported, but not if a vlan with 2370 * the same ID is registered on the host OS (let 8021q kill it) */ 2371 if ((adapter->hw.mng_cookie.status & 2372 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2373 !(adapter->vlgrp && 2374 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) 2375 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); 2376 2377 /* If AMT is enabled, let the firmware know that the network 2378 * interface is now closed */ 2379 if ((adapter->flags & FLAG_HAS_AMT) && 2380 e1000e_check_mng_mode(&adapter->hw)) 2381 e1000_release_hw_control(adapter); 2382 2383 return 0; 2384} 2385/** 2386 * e1000_set_mac - Change the Ethernet Address of the NIC 2387 * @netdev: network interface device structure 2388 * @p: pointer to an address structure 2389 * 2390 * Returns 0 on success, negative on failure 2391 **/ 2392static int e1000_set_mac(struct net_device *netdev, void *p) 2393{ 2394 struct e1000_adapter *adapter = netdev_priv(netdev); 2395 struct sockaddr *addr = p; 2396 2397 if (!is_valid_ether_addr(addr->sa_data)) 2398 return -EADDRNOTAVAIL; 2399 2400 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2401 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 2402 2403 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 2404 2405 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 2406 /* activate the work around */ 2407 e1000e_set_laa_state_82571(&adapter->hw, 1); 2408 2409 /* Hold a copy of the LAA in RAR[14] This is done so that 2410 * between the time RAR[0] gets clobbered and the time it 2411 * gets fixed (in e1000_watchdog), the actual LAA is in one 2412 * of the RARs and no incoming packets directed to this port 2413 * are dropped. Eventually the LAA will be in RAR[0] and 2414 * RAR[14] */ 2415 e1000e_rar_set(&adapter->hw, 2416 adapter->hw.mac.addr, 2417 adapter->hw.mac.rar_entry_count - 1); 2418 } 2419 2420 return 0; 2421} 2422 2423/* Need to wait a few seconds after link up to get diagnostic information from 2424 * the phy */ 2425static void e1000_update_phy_info(unsigned long data) 2426{ 2427 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 2428 e1000_get_phy_info(&adapter->hw); 2429} 2430 2431/** 2432 * e1000e_update_stats - Update the board statistics counters 2433 * @adapter: board private structure 2434 **/ 2435void e1000e_update_stats(struct e1000_adapter *adapter) 2436{ 2437 struct e1000_hw *hw = &adapter->hw; 2438 struct pci_dev *pdev = adapter->pdev; 2439 unsigned long irq_flags; 2440 u16 phy_tmp; 2441 2442#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 2443 2444 /* 2445 * Prevent stats update while adapter is being reset, or if the pci 2446 * connection is down. 2447 */ 2448 if (adapter->link_speed == 0) 2449 return; 2450 if (pci_channel_offline(pdev)) 2451 return; 2452 2453 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 2454 2455 /* these counters are modified from e1000_adjust_tbi_stats, 2456 * called from the interrupt context, so they must only 2457 * be written while holding adapter->stats_lock 2458 */ 2459 2460 adapter->stats.crcerrs += er32(CRCERRS); 2461 adapter->stats.gprc += er32(GPRC); 2462 adapter->stats.gorcl += er32(GORCL); 2463 adapter->stats.gorch += er32(GORCH); 2464 adapter->stats.bprc += er32(BPRC); 2465 adapter->stats.mprc += er32(MPRC); 2466 adapter->stats.roc += er32(ROC); 2467 2468 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { 2469 adapter->stats.prc64 += er32(PRC64); 2470 adapter->stats.prc127 += er32(PRC127); 2471 adapter->stats.prc255 += er32(PRC255); 2472 adapter->stats.prc511 += er32(PRC511); 2473 adapter->stats.prc1023 += er32(PRC1023); 2474 adapter->stats.prc1522 += er32(PRC1522); 2475 adapter->stats.symerrs += er32(SYMERRS); 2476 adapter->stats.sec += er32(SEC); 2477 } 2478 2479 adapter->stats.mpc += er32(MPC); 2480 adapter->stats.scc += er32(SCC); 2481 adapter->stats.ecol += er32(ECOL); 2482 adapter->stats.mcc += er32(MCC); 2483 adapter->stats.latecol += er32(LATECOL); 2484 adapter->stats.dc += er32(DC); 2485 adapter->stats.rlec += er32(RLEC); 2486 adapter->stats.xonrxc += er32(XONRXC); 2487 adapter->stats.xontxc += er32(XONTXC); 2488 adapter->stats.xoffrxc += er32(XOFFRXC); 2489 adapter->stats.xofftxc += er32(XOFFTXC); 2490 adapter->stats.fcruc += er32(FCRUC); 2491 adapter->stats.gptc += er32(GPTC); 2492 adapter->stats.gotcl += er32(GOTCL); 2493 adapter->stats.gotch += er32(GOTCH); 2494 adapter->stats.rnbc += er32(RNBC); 2495 adapter->stats.ruc += er32(RUC); 2496 adapter->stats.rfc += er32(RFC); 2497 adapter->stats.rjc += er32(RJC); 2498 adapter->stats.torl += er32(TORL); 2499 adapter->stats.torh += er32(TORH); 2500 adapter->stats.totl += er32(TOTL); 2501 adapter->stats.toth += er32(TOTH); 2502 adapter->stats.tpr += er32(TPR); 2503 2504 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { 2505 adapter->stats.ptc64 += er32(PTC64); 2506 adapter->stats.ptc127 += er32(PTC127); 2507 adapter->stats.ptc255 += er32(PTC255); 2508 adapter->stats.ptc511 += er32(PTC511); 2509 adapter->stats.ptc1023 += er32(PTC1023); 2510 adapter->stats.ptc1522 += er32(PTC1522); 2511 } 2512 2513 adapter->stats.mptc += er32(MPTC); 2514 adapter->stats.bptc += er32(BPTC); 2515 2516 /* used for adaptive IFS */ 2517 2518 hw->mac.tx_packet_delta = er32(TPT); 2519 adapter->stats.tpt += hw->mac.tx_packet_delta; 2520 hw->mac.collision_delta = er32(COLC); 2521 adapter->stats.colc += hw->mac.collision_delta; 2522 2523 adapter->stats.algnerrc += er32(ALGNERRC); 2524 adapter->stats.rxerrc += er32(RXERRC); 2525 adapter->stats.tncrs += er32(TNCRS); 2526 adapter->stats.cexterr += er32(CEXTERR); 2527 adapter->stats.tsctc += er32(TSCTC); 2528 adapter->stats.tsctfc += er32(TSCTFC); 2529 2530 adapter->stats.iac += er32(IAC); 2531 2532 if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) { 2533 adapter->stats.icrxoc += er32(ICRXOC); 2534 adapter->stats.icrxptc += er32(ICRXPTC); 2535 adapter->stats.icrxatc += er32(ICRXATC); 2536 adapter->stats.ictxptc += er32(ICTXPTC); 2537 adapter->stats.ictxatc += er32(ICTXATC); 2538 adapter->stats.ictxqec += er32(ICTXQEC); 2539 adapter->stats.ictxqmtc += er32(ICTXQMTC); 2540 adapter->stats.icrxdmtc += er32(ICRXDMTC); 2541 } 2542 2543 /* Fill out the OS statistics structure */ 2544 adapter->net_stats.multicast = adapter->stats.mprc; 2545 adapter->net_stats.collisions = adapter->stats.colc; 2546 2547 /* Rx Errors */ 2548 2549 /* RLEC on some newer hardware can be incorrect so build 2550 * our own version based on RUC and ROC */ 2551 adapter->net_stats.rx_errors = adapter->stats.rxerrc + 2552 adapter->stats.crcerrs + adapter->stats.algnerrc + 2553 adapter->stats.ruc + adapter->stats.roc + 2554 adapter->stats.cexterr; 2555 adapter->net_stats.rx_length_errors = adapter->stats.ruc + 2556 adapter->stats.roc; 2557 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; 2558 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; 2559 adapter->net_stats.rx_missed_errors = adapter->stats.mpc; 2560 2561 /* Tx Errors */ 2562 adapter->net_stats.tx_errors = adapter->stats.ecol + 2563 adapter->stats.latecol; 2564 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; 2565 adapter->net_stats.tx_window_errors = adapter->stats.latecol; 2566 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; 2567 2568 /* Tx Dropped needs to be maintained elsewhere */ 2569 2570 /* Phy Stats */ 2571 if (hw->media_type == e1000_media_type_copper) { 2572 if ((adapter->link_speed == SPEED_1000) && 2573 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) { 2574 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 2575 adapter->phy_stats.idle_errors += phy_tmp; 2576 } 2577 } 2578 2579 /* Management Stats */ 2580 adapter->stats.mgptc += er32(MGTPTC); 2581 adapter->stats.mgprc += er32(MGTPRC); 2582 adapter->stats.mgpdc += er32(MGTPDC); 2583 2584 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 2585} 2586 2587static void e1000_print_link_info(struct e1000_adapter *adapter) 2588{ 2589 struct net_device *netdev = adapter->netdev; 2590 struct e1000_hw *hw = &adapter->hw; 2591 u32 ctrl = er32(CTRL); 2592 2593 ndev_info(netdev, 2594 "Link is Up %d Mbps %s, Flow Control: %s\n", 2595 adapter->link_speed, 2596 (adapter->link_duplex == FULL_DUPLEX) ? 2597 "Full Duplex" : "Half Duplex", 2598 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? 2599 "RX/TX" : 2600 ((ctrl & E1000_CTRL_RFCE) ? "RX" : 2601 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); 2602} 2603 2604/** 2605 * e1000_watchdog - Timer Call-back 2606 * @data: pointer to adapter cast into an unsigned long 2607 **/ 2608static void e1000_watchdog(unsigned long data) 2609{ 2610 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 2611 2612 /* Do the rest outside of interrupt context */ 2613 schedule_work(&adapter->watchdog_task); 2614 2615 /* TODO: make this use queue_delayed_work() */ 2616} 2617 2618static void e1000_watchdog_task(struct work_struct *work) 2619{ 2620 struct e1000_adapter *adapter = container_of(work, 2621 struct e1000_adapter, watchdog_task); 2622 2623 struct net_device *netdev = adapter->netdev; 2624 struct e1000_mac_info *mac = &adapter->hw.mac; 2625 struct e1000_ring *tx_ring = adapter->tx_ring; 2626 struct e1000_hw *hw = &adapter->hw; 2627 u32 link, tctl; 2628 s32 ret_val; 2629 int tx_pending = 0; 2630 2631 if ((netif_carrier_ok(netdev)) && 2632 (er32(STATUS) & E1000_STATUS_LU)) 2633 goto link_up; 2634 2635 ret_val = mac->ops.check_for_link(hw); 2636 if ((ret_val == E1000_ERR_PHY) && 2637 (adapter->hw.phy.type == e1000_phy_igp_3) && 2638 (er32(CTRL) & 2639 E1000_PHY_CTRL_GBE_DISABLE)) { 2640 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 2641 ndev_info(netdev, 2642 "Gigabit has been disabled, downgrading speed\n"); 2643 } 2644 2645 if ((e1000e_enable_tx_pkt_filtering(hw)) && 2646 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 2647 e1000_update_mng_vlan(adapter); 2648 2649 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) && 2650 !(er32(TXCW) & E1000_TXCW_ANE)) 2651 link = adapter->hw.mac.serdes_has_link; 2652 else 2653 link = er32(STATUS) & E1000_STATUS_LU; 2654 2655 if (link) { 2656 if (!netif_carrier_ok(netdev)) { 2657 bool txb2b = 1; 2658 mac->ops.get_link_up_info(&adapter->hw, 2659 &adapter->link_speed, 2660 &adapter->link_duplex); 2661 e1000_print_link_info(adapter); 2662 /* tweak tx_queue_len according to speed/duplex 2663 * and adjust the timeout factor */ 2664 netdev->tx_queue_len = adapter->tx_queue_len; 2665 adapter->tx_timeout_factor = 1; 2666 switch (adapter->link_speed) { 2667 case SPEED_10: 2668 txb2b = 0; 2669 netdev->tx_queue_len = 10; 2670 adapter->tx_timeout_factor = 14; 2671 break; 2672 case SPEED_100: 2673 txb2b = 0; 2674 netdev->tx_queue_len = 100; 2675 /* maybe add some timeout factor ? */ 2676 break; 2677 } 2678 2679 /* workaround: re-program speed mode bit after 2680 * link-up event */ 2681 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 2682 !txb2b) { 2683 u32 tarc0; 2684 tarc0 = er32(TARC0); 2685 tarc0 &= ~SPEED_MODE_BIT; 2686 ew32(TARC0, tarc0); 2687 } 2688 2689 /* disable TSO for pcie and 10/100 speeds, to avoid 2690 * some hardware issues */ 2691 if (!(adapter->flags & FLAG_TSO_FORCE)) { 2692 switch (adapter->link_speed) { 2693 case SPEED_10: 2694 case SPEED_100: 2695 ndev_info(netdev, 2696 "10/100 speed: disabling TSO\n"); 2697 netdev->features &= ~NETIF_F_TSO; 2698 netdev->features &= ~NETIF_F_TSO6; 2699 break; 2700 case SPEED_1000: 2701 netdev->features |= NETIF_F_TSO; 2702 netdev->features |= NETIF_F_TSO6; 2703 break; 2704 default: 2705 /* oops */ 2706 break; 2707 } 2708 } 2709 2710 /* enable transmits in the hardware, need to do this 2711 * after setting TARC0 */ 2712 tctl = er32(TCTL); 2713 tctl |= E1000_TCTL_EN; 2714 ew32(TCTL, tctl); 2715 2716 netif_carrier_on(netdev); 2717 netif_wake_queue(netdev); 2718 2719 if (!test_bit(__E1000_DOWN, &adapter->state)) 2720 mod_timer(&adapter->phy_info_timer, 2721 round_jiffies(jiffies + 2 * HZ)); 2722 } else { 2723 /* make sure the receive unit is started */ 2724 if (adapter->flags & FLAG_RX_NEEDS_RESTART) { 2725 u32 rctl = er32(RCTL); 2726 ew32(RCTL, rctl | 2727 E1000_RCTL_EN); 2728 } 2729 } 2730 } else { 2731 if (netif_carrier_ok(netdev)) { 2732 adapter->link_speed = 0; 2733 adapter->link_duplex = 0; 2734 ndev_info(netdev, "Link is Down\n"); 2735 netif_carrier_off(netdev); 2736 netif_stop_queue(netdev); 2737 if (!test_bit(__E1000_DOWN, &adapter->state)) 2738 mod_timer(&adapter->phy_info_timer, 2739 round_jiffies(jiffies + 2 * HZ)); 2740 2741 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 2742 schedule_work(&adapter->reset_task); 2743 } 2744 } 2745 2746link_up: 2747 e1000e_update_stats(adapter); 2748 2749 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2750 adapter->tpt_old = adapter->stats.tpt; 2751 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 2752 adapter->colc_old = adapter->stats.colc; 2753 2754 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2755 adapter->gorcl_old = adapter->stats.gorcl; 2756 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2757 adapter->gotcl_old = adapter->stats.gotcl; 2758 2759 e1000e_update_adaptive(&adapter->hw); 2760 2761 if (!netif_carrier_ok(netdev)) { 2762 tx_pending = (e1000_desc_unused(tx_ring) + 1 < 2763 tx_ring->count); 2764 if (tx_pending) { 2765 /* We've lost link, so the controller stops DMA, 2766 * but we've got queued Tx work that's never going 2767 * to get done, so reset controller to flush Tx. 2768 * (Do the reset outside of interrupt context). */ 2769 adapter->tx_timeout_count++; 2770 schedule_work(&adapter->reset_task); 2771 } 2772 } 2773 2774 /* Cause software interrupt to ensure rx ring is cleaned */ 2775 ew32(ICS, E1000_ICS_RXDMT0); 2776 2777 /* Force detection of hung controller every watchdog period */ 2778 adapter->detect_tx_hung = 1; 2779 2780 /* With 82571 controllers, LAA may be overwritten due to controller 2781 * reset from the other port. Set the appropriate LAA in RAR[0] */ 2782 if (e1000e_get_laa_state_82571(hw)) 2783 e1000e_rar_set(hw, adapter->hw.mac.addr, 0); 2784 2785 /* Reset the timer */ 2786 if (!test_bit(__E1000_DOWN, &adapter->state)) 2787 mod_timer(&adapter->watchdog_timer, 2788 round_jiffies(jiffies + 2 * HZ)); 2789} 2790 2791#define E1000_TX_FLAGS_CSUM 0x00000001 2792#define E1000_TX_FLAGS_VLAN 0x00000002 2793#define E1000_TX_FLAGS_TSO 0x00000004 2794#define E1000_TX_FLAGS_IPV4 0x00000008 2795#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2796#define E1000_TX_FLAGS_VLAN_SHIFT 16 2797 2798static int e1000_tso(struct e1000_adapter *adapter, 2799 struct sk_buff *skb) 2800{ 2801 struct e1000_ring *tx_ring = adapter->tx_ring; 2802 struct e1000_context_desc *context_desc; 2803 struct e1000_buffer *buffer_info; 2804 unsigned int i; 2805 u32 cmd_length = 0; 2806 u16 ipcse = 0, tucse, mss; 2807 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2808 int err; 2809 2810 if (skb_is_gso(skb)) { 2811 if (skb_header_cloned(skb)) { 2812 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2813 if (err) 2814 return err; 2815 } 2816 2817 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2818 mss = skb_shinfo(skb)->gso_size; 2819 if (skb->protocol == htons(ETH_P_IP)) { 2820 struct iphdr *iph = ip_hdr(skb); 2821 iph->tot_len = 0; 2822 iph->check = 0; 2823 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2824 iph->daddr, 0, 2825 IPPROTO_TCP, 2826 0); 2827 cmd_length = E1000_TXD_CMD_IP; 2828 ipcse = skb_transport_offset(skb) - 1; 2829 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { 2830 ipv6_hdr(skb)->payload_len = 0; 2831 tcp_hdr(skb)->check = 2832 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2833 &ipv6_hdr(skb)->daddr, 2834 0, IPPROTO_TCP, 0); 2835 ipcse = 0; 2836 } 2837 ipcss = skb_network_offset(skb); 2838 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2839 tucss = skb_transport_offset(skb); 2840 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2841 tucse = 0; 2842 2843 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2844 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2845 2846 i = tx_ring->next_to_use; 2847 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2848 buffer_info = &tx_ring->buffer_info[i]; 2849 2850 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2851 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2852 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2853 context_desc->upper_setup.tcp_fields.tucss = tucss; 2854 context_desc->upper_setup.tcp_fields.tucso = tucso; 2855 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2856 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2857 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2858 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2859 2860 buffer_info->time_stamp = jiffies; 2861 buffer_info->next_to_watch = i; 2862 2863 i++; 2864 if (i == tx_ring->count) 2865 i = 0; 2866 tx_ring->next_to_use = i; 2867 2868 return 1; 2869 } 2870 2871 return 0; 2872} 2873 2874static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) 2875{ 2876 struct e1000_ring *tx_ring = adapter->tx_ring; 2877 struct e1000_context_desc *context_desc; 2878 struct e1000_buffer *buffer_info; 2879 unsigned int i; 2880 u8 css; 2881 2882 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2883 css = skb_transport_offset(skb); 2884 2885 i = tx_ring->next_to_use; 2886 buffer_info = &tx_ring->buffer_info[i]; 2887 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2888 2889 context_desc->lower_setup.ip_config = 0; 2890 context_desc->upper_setup.tcp_fields.tucss = css; 2891 context_desc->upper_setup.tcp_fields.tucso = 2892 css + skb->csum_offset; 2893 context_desc->upper_setup.tcp_fields.tucse = 0; 2894 context_desc->tcp_seg_setup.data = 0; 2895 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); 2896 2897 buffer_info->time_stamp = jiffies; 2898 buffer_info->next_to_watch = i; 2899 2900 i++; 2901 if (i == tx_ring->count) 2902 i = 0; 2903 tx_ring->next_to_use = i; 2904 2905 return 1; 2906 } 2907 2908 return 0; 2909} 2910 2911#define E1000_MAX_PER_TXD 8192 2912#define E1000_MAX_TXD_PWR 12 2913 2914static int e1000_tx_map(struct e1000_adapter *adapter, 2915 struct sk_buff *skb, unsigned int first, 2916 unsigned int max_per_txd, unsigned int nr_frags, 2917 unsigned int mss) 2918{ 2919 struct e1000_ring *tx_ring = adapter->tx_ring; 2920 struct e1000_buffer *buffer_info; 2921 unsigned int len = skb->len - skb->data_len; 2922 unsigned int offset = 0, size, count = 0, i; 2923 unsigned int f; 2924 2925 i = tx_ring->next_to_use; 2926 2927 while (len) { 2928 buffer_info = &tx_ring->buffer_info[i]; 2929 size = min(len, max_per_txd); 2930 2931 /* Workaround for premature desc write-backs 2932 * in TSO mode. Append 4-byte sentinel desc */ 2933 if (mss && !nr_frags && size == len && size > 8) 2934 size -= 4; 2935 2936 buffer_info->length = size; 2937 /* set time_stamp *before* dma to help avoid a possible race */ 2938 buffer_info->time_stamp = jiffies; 2939 buffer_info->dma = 2940 pci_map_single(adapter->pdev, 2941 skb->data + offset, 2942 size, 2943 PCI_DMA_TODEVICE); 2944 if (pci_dma_mapping_error(buffer_info->dma)) { 2945 dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); 2946 adapter->tx_dma_failed++; 2947 return -1; 2948 } 2949 buffer_info->next_to_watch = i; 2950 2951 len -= size; 2952 offset += size; 2953 count++; 2954 i++; 2955 if (i == tx_ring->count) 2956 i = 0; 2957 } 2958 2959 for (f = 0; f < nr_frags; f++) { 2960 struct skb_frag_struct *frag; 2961 2962 frag = &skb_shinfo(skb)->frags[f]; 2963 len = frag->size; 2964 offset = frag->page_offset; 2965 2966 while (len) { 2967 buffer_info = &tx_ring->buffer_info[i]; 2968 size = min(len, max_per_txd); 2969 /* Workaround for premature desc write-backs 2970 * in TSO mode. Append 4-byte sentinel desc */ 2971 if (mss && f == (nr_frags-1) && size == len && size > 8) 2972 size -= 4; 2973 2974 buffer_info->length = size; 2975 buffer_info->time_stamp = jiffies; 2976 buffer_info->dma = 2977 pci_map_page(adapter->pdev, 2978 frag->page, 2979 offset, 2980 size, 2981 PCI_DMA_TODEVICE); 2982 if (pci_dma_mapping_error(buffer_info->dma)) { 2983 dev_err(&adapter->pdev->dev, 2984 "TX DMA page map failed\n"); 2985 adapter->tx_dma_failed++; 2986 return -1; 2987 } 2988 2989 buffer_info->next_to_watch = i; 2990 2991 len -= size; 2992 offset += size; 2993 count++; 2994 2995 i++; 2996 if (i == tx_ring->count) 2997 i = 0; 2998 } 2999 } 3000 3001 if (i == 0) 3002 i = tx_ring->count - 1; 3003 else 3004 i--; 3005 3006 tx_ring->buffer_info[i].skb = skb; 3007 tx_ring->buffer_info[first].next_to_watch = i; 3008 3009 return count; 3010} 3011 3012static void e1000_tx_queue(struct e1000_adapter *adapter, 3013 int tx_flags, int count) 3014{ 3015 struct e1000_ring *tx_ring = adapter->tx_ring; 3016 struct e1000_tx_desc *tx_desc = NULL; 3017 struct e1000_buffer *buffer_info; 3018 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 3019 unsigned int i; 3020 3021 if (tx_flags & E1000_TX_FLAGS_TSO) { 3022 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 3023 E1000_TXD_CMD_TSE; 3024 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3025 3026 if (tx_flags & E1000_TX_FLAGS_IPV4) 3027 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 3028 } 3029 3030 if (tx_flags & E1000_TX_FLAGS_CSUM) { 3031 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 3032 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3033 } 3034 3035 if (tx_flags & E1000_TX_FLAGS_VLAN) { 3036 txd_lower |= E1000_TXD_CMD_VLE; 3037 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3038 } 3039 3040 i = tx_ring->next_to_use; 3041 3042 while (count--) { 3043 buffer_info = &tx_ring->buffer_info[i]; 3044 tx_desc = E1000_TX_DESC(*tx_ring, i); 3045 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3046 tx_desc->lower.data = 3047 cpu_to_le32(txd_lower | buffer_info->length); 3048 tx_desc->upper.data = cpu_to_le32(txd_upper); 3049 3050 i++; 3051 if (i == tx_ring->count) 3052 i = 0; 3053 } 3054 3055 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3056 3057 /* Force memory writes to complete before letting h/w 3058 * know there are new descriptors to fetch. (Only 3059 * applicable for weak-ordered memory model archs, 3060 * such as IA-64). */ 3061 wmb(); 3062 3063 tx_ring->next_to_use = i; 3064 writel(i, adapter->hw.hw_addr + tx_ring->tail); 3065 /* we need this if more than one processor can write to our tail 3066 * at a time, it synchronizes IO on IA64/Altix systems */ 3067 mmiowb(); 3068} 3069 3070#define MINIMUM_DHCP_PACKET_SIZE 282 3071static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 3072 struct sk_buff *skb) 3073{ 3074 struct e1000_hw *hw = &adapter->hw; 3075 u16 length, offset; 3076 3077 if (vlan_tx_tag_present(skb)) { 3078 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) 3079 && (adapter->hw.mng_cookie.status & 3080 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 3081 return 0; 3082 } 3083 3084 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 3085 return 0; 3086 3087 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) 3088 return 0; 3089 3090 { 3091 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); 3092 struct udphdr *udp; 3093 3094 if (ip->protocol != IPPROTO_UDP) 3095 return 0; 3096 3097 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 3098 if (ntohs(udp->dest) != 67) 3099 return 0; 3100 3101 offset = (u8 *)udp + 8 - skb->data; 3102 length = skb->len - offset; 3103 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 3104 } 3105 3106 return 0; 3107} 3108 3109static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3110{ 3111 struct e1000_adapter *adapter = netdev_priv(netdev); 3112 3113 netif_stop_queue(netdev); 3114 /* Herbert's original patch had: 3115 * smp_mb__after_netif_stop_queue(); 3116 * but since that doesn't exist yet, just open code it. */ 3117 smp_mb(); 3118 3119 /* We need to check again in a case another CPU has just 3120 * made room available. */ 3121 if (e1000_desc_unused(adapter->tx_ring) < size) 3122 return -EBUSY; 3123 3124 /* A reprieve! */ 3125 netif_start_queue(netdev); 3126 ++adapter->restart_queue; 3127 return 0; 3128} 3129 3130static int e1000_maybe_stop_tx(struct net_device *netdev, int size) 3131{ 3132 struct e1000_adapter *adapter = netdev_priv(netdev); 3133 3134 if (e1000_desc_unused(adapter->tx_ring) >= size) 3135 return 0; 3136 return __e1000_maybe_stop_tx(netdev, size); 3137} 3138 3139#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 3140static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3141{ 3142 struct e1000_adapter *adapter = netdev_priv(netdev); 3143 struct e1000_ring *tx_ring = adapter->tx_ring; 3144 unsigned int first; 3145 unsigned int max_per_txd = E1000_MAX_PER_TXD; 3146 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3147 unsigned int tx_flags = 0; 3148 unsigned int len = skb->len - skb->data_len; 3149 unsigned long irq_flags; 3150 unsigned int nr_frags; 3151 unsigned int mss; 3152 int count = 0; 3153 int tso; 3154 unsigned int f; 3155 3156 if (test_bit(__E1000_DOWN, &adapter->state)) { 3157 dev_kfree_skb_any(skb); 3158 return NETDEV_TX_OK; 3159 } 3160 3161 if (skb->len <= 0) { 3162 dev_kfree_skb_any(skb); 3163 return NETDEV_TX_OK; 3164 } 3165 3166 mss = skb_shinfo(skb)->gso_size; 3167 /* The controller does a simple calculation to 3168 * make sure there is enough room in the FIFO before 3169 * initiating the DMA for each buffer. The calc is: 3170 * 4 = ceil(buffer len/mss). To make sure we don't 3171 * overrun the FIFO, adjust the max buffer len if mss 3172 * drops. */ 3173 if (mss) { 3174 u8 hdr_len; 3175 max_per_txd = min(mss << 2, max_per_txd); 3176 max_txd_pwr = fls(max_per_txd) - 1; 3177 3178 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data 3179 * points to just header, pull a few bytes of payload from 3180 * frags into skb->data */ 3181 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3182 if (skb->data_len && (hdr_len == len)) { 3183 unsigned int pull_size; 3184 3185 pull_size = min((unsigned int)4, skb->data_len); 3186 if (!__pskb_pull_tail(skb, pull_size)) { 3187 ndev_err(netdev, 3188 "__pskb_pull_tail failed.\n"); 3189 dev_kfree_skb_any(skb); 3190 return NETDEV_TX_OK; 3191 } 3192 len = skb->len - skb->data_len; 3193 } 3194 } 3195 3196 /* reserve a descriptor for the offload context */ 3197 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3198 count++; 3199 count++; 3200 3201 count += TXD_USE_COUNT(len, max_txd_pwr); 3202 3203 nr_frags = skb_shinfo(skb)->nr_frags; 3204 for (f = 0; f < nr_frags; f++) 3205 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, 3206 max_txd_pwr); 3207 3208 if (adapter->hw.mac.tx_pkt_filtering) 3209 e1000_transfer_dhcp_info(adapter, skb); 3210 3211 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags)) 3212 /* Collision - tell upper layer to requeue */ 3213 return NETDEV_TX_LOCKED; 3214 3215 /* need: count + 2 desc gap to keep tail from touching 3216 * head, otherwise try next time */ 3217 if (e1000_maybe_stop_tx(netdev, count + 2)) { 3218 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3219 return NETDEV_TX_BUSY; 3220 } 3221 3222 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { 3223 tx_flags |= E1000_TX_FLAGS_VLAN; 3224 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 3225 } 3226 3227 first = tx_ring->next_to_use; 3228 3229 tso = e1000_tso(adapter, skb); 3230 if (tso < 0) { 3231 dev_kfree_skb_any(skb); 3232 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3233 return NETDEV_TX_OK; 3234 } 3235 3236 if (tso) 3237 tx_flags |= E1000_TX_FLAGS_TSO; 3238 else if (e1000_tx_csum(adapter, skb)) 3239 tx_flags |= E1000_TX_FLAGS_CSUM; 3240 3241 /* Old method was to assume IPv4 packet by default if TSO was enabled. 3242 * 82571 hardware supports TSO capabilities for IPv6 as well... 3243 * no longer assume, we must. */ 3244 if (skb->protocol == htons(ETH_P_IP)) 3245 tx_flags |= E1000_TX_FLAGS_IPV4; 3246 3247 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); 3248 if (count < 0) { 3249 /* handle pci_map_single() error in e1000_tx_map */ 3250 dev_kfree_skb_any(skb); 3251 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3252 return NETDEV_TX_OK; 3253 } 3254 3255 e1000_tx_queue(adapter, tx_flags, count); 3256 3257 netdev->trans_start = jiffies; 3258 3259 /* Make sure there is space in the ring for the next send. */ 3260 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); 3261 3262 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3263 return NETDEV_TX_OK; 3264} 3265 3266/** 3267 * e1000_tx_timeout - Respond to a Tx Hang 3268 * @netdev: network interface device structure 3269 **/ 3270static void e1000_tx_timeout(struct net_device *netdev) 3271{ 3272 struct e1000_adapter *adapter = netdev_priv(netdev); 3273 3274 /* Do the reset outside of interrupt context */ 3275 adapter->tx_timeout_count++; 3276 schedule_work(&adapter->reset_task); 3277} 3278 3279static void e1000_reset_task(struct work_struct *work) 3280{ 3281 struct e1000_adapter *adapter; 3282 adapter = container_of(work, struct e1000_adapter, reset_task); 3283 3284 e1000e_reinit_locked(adapter); 3285} 3286 3287/** 3288 * e1000_get_stats - Get System Network Statistics 3289 * @netdev: network interface device structure 3290 * 3291 * Returns the address of the device statistics structure. 3292 * The statistics are actually updated from the timer callback. 3293 **/ 3294static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3295{ 3296 struct e1000_adapter *adapter = netdev_priv(netdev); 3297 3298 /* only return the current stats */ 3299 return &adapter->net_stats; 3300} 3301 3302/** 3303 * e1000_change_mtu - Change the Maximum Transfer Unit 3304 * @netdev: network interface device structure 3305 * @new_mtu: new value for maximum frame size 3306 * 3307 * Returns 0 on success, negative on failure 3308 **/ 3309static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3310{ 3311 struct e1000_adapter *adapter = netdev_priv(netdev); 3312 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3313 3314 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || 3315 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3316 ndev_err(netdev, "Invalid MTU setting\n"); 3317 return -EINVAL; 3318 } 3319 3320 /* Jumbo frame size limits */ 3321 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { 3322 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 3323 ndev_err(netdev, "Jumbo Frames not supported.\n"); 3324 return -EINVAL; 3325 } 3326 if (adapter->hw.phy.type == e1000_phy_ife) { 3327 ndev_err(netdev, "Jumbo Frames not supported.\n"); 3328 return -EINVAL; 3329 } 3330 } 3331 3332#define MAX_STD_JUMBO_FRAME_SIZE 9234 3333 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 3334 ndev_err(netdev, "MTU > 9216 not supported.\n"); 3335 return -EINVAL; 3336 } 3337 3338 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 3339 msleep(1); 3340 /* e1000e_down has a dependency on max_frame_size */ 3341 adapter->hw.mac.max_frame_size = max_frame; 3342 if (netif_running(netdev)) 3343 e1000e_down(adapter); 3344 3345 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3346 * means we reserve 2 more, this pushes us to allocate from the next 3347 * larger slab size. 3348 * i.e. RXBUFFER_2048 --> size-4096 slab */ 3349 3350 if (max_frame <= 256) 3351 adapter->rx_buffer_len = 256; 3352 else if (max_frame <= 512) 3353 adapter->rx_buffer_len = 512; 3354 else if (max_frame <= 1024) 3355 adapter->rx_buffer_len = 1024; 3356 else if (max_frame <= 2048) 3357 adapter->rx_buffer_len = 2048; 3358 else 3359 adapter->rx_buffer_len = 4096; 3360 3361 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3362 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 3363 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 3364 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN 3365 + ETH_FCS_LEN ; 3366 3367 ndev_info(netdev, "changing MTU from %d to %d\n", 3368 netdev->mtu, new_mtu); 3369 netdev->mtu = new_mtu; 3370 3371 if (netif_running(netdev)) 3372 e1000e_up(adapter); 3373 else 3374 e1000e_reset(adapter); 3375 3376 clear_bit(__E1000_RESETTING, &adapter->state); 3377 3378 return 0; 3379} 3380 3381static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 3382 int cmd) 3383{ 3384 struct e1000_adapter *adapter = netdev_priv(netdev); 3385 struct mii_ioctl_data *data = if_mii(ifr); 3386 unsigned long irq_flags; 3387 3388 if (adapter->hw.media_type != e1000_media_type_copper) 3389 return -EOPNOTSUPP; 3390 3391 switch (cmd) { 3392 case SIOCGMIIPHY: 3393 data->phy_id = adapter->hw.phy.addr; 3394 break; 3395 case SIOCGMIIREG: 3396 if (!capable(CAP_NET_ADMIN)) 3397 return -EPERM; 3398 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 3399 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F, 3400 &data->val_out)) { 3401 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 3402 return -EIO; 3403 } 3404 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 3405 break; 3406 case SIOCSMIIREG: 3407 default: 3408 return -EOPNOTSUPP; 3409 } 3410 return 0; 3411} 3412 3413static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 3414{ 3415 switch (cmd) { 3416 case SIOCGMIIPHY: 3417 case SIOCGMIIREG: 3418 case SIOCSMIIREG: 3419 return e1000_mii_ioctl(netdev, ifr, cmd); 3420 default: 3421 return -EOPNOTSUPP; 3422 } 3423} 3424 3425static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 3426{ 3427 struct net_device *netdev = pci_get_drvdata(pdev); 3428 struct e1000_adapter *adapter = netdev_priv(netdev); 3429 struct e1000_hw *hw = &adapter->hw; 3430 u32 ctrl, ctrl_ext, rctl, status; 3431 u32 wufc = adapter->wol; 3432 int retval = 0; 3433 3434 netif_device_detach(netdev); 3435 3436 if (netif_running(netdev)) { 3437 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 3438 e1000e_down(adapter); 3439 e1000_free_irq(adapter); 3440 } 3441 3442 retval = pci_save_state(pdev); 3443 if (retval) 3444 return retval; 3445 3446 status = er32(STATUS); 3447 if (status & E1000_STATUS_LU) 3448 wufc &= ~E1000_WUFC_LNKC; 3449 3450 if (wufc) { 3451 e1000_setup_rctl(adapter); 3452 e1000_set_multi(netdev); 3453 3454 /* turn on all-multi mode if wake on multicast is enabled */ 3455 if (wufc & E1000_WUFC_MC) { 3456 rctl = er32(RCTL); 3457 rctl |= E1000_RCTL_MPE; 3458 ew32(RCTL, rctl); 3459 } 3460 3461 ctrl = er32(CTRL); 3462 /* advertise wake from D3Cold */ 3463 #define E1000_CTRL_ADVD3WUC 0x00100000 3464 /* phy power management enable */ 3465 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 3466 ctrl |= E1000_CTRL_ADVD3WUC | 3467 E1000_CTRL_EN_PHY_PWR_MGMT; 3468 ew32(CTRL, ctrl); 3469 3470 if (adapter->hw.media_type == e1000_media_type_fiber || 3471 adapter->hw.media_type == e1000_media_type_internal_serdes) { 3472 /* keep the laser running in D3 */ 3473 ctrl_ext = er32(CTRL_EXT); 3474 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 3475 ew32(CTRL_EXT, ctrl_ext); 3476 } 3477 3478 /* Allow time for pending master requests to run */ 3479 e1000e_disable_pcie_master(&adapter->hw); 3480 3481 ew32(WUC, E1000_WUC_PME_EN); 3482 ew32(WUFC, wufc); 3483 pci_enable_wake(pdev, PCI_D3hot, 1); 3484 pci_enable_wake(pdev, PCI_D3cold, 1); 3485 } else { 3486 ew32(WUC, 0); 3487 ew32(WUFC, 0); 3488 pci_enable_wake(pdev, PCI_D3hot, 0); 3489 pci_enable_wake(pdev, PCI_D3cold, 0); 3490 } 3491 3492 e1000_release_manageability(adapter); 3493 3494 /* make sure adapter isn't asleep if manageability is enabled */ 3495 if (adapter->flags & FLAG_MNG_PT_ENABLED) { 3496 pci_enable_wake(pdev, PCI_D3hot, 1); 3497 pci_enable_wake(pdev, PCI_D3cold, 1); 3498 } 3499 3500 if (adapter->hw.phy.type == e1000_phy_igp_3) 3501 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3502 3503 /* Release control of h/w to f/w. If f/w is AMT enabled, this 3504 * would have already happened in close and is redundant. */ 3505 e1000_release_hw_control(adapter); 3506 3507 pci_disable_device(pdev); 3508 3509 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 3510 3511 return 0; 3512} 3513 3514static void e1000e_disable_l1aspm(struct pci_dev *pdev) 3515{ 3516 int pos; 3517 u32 cap; 3518 u16 val; 3519 3520 /* 3521 * 82573 workaround - disable L1 ASPM on mobile chipsets 3522 * 3523 * L1 ASPM on various mobile (ich7) chipsets do not behave properly 3524 * resulting in lost data or garbage information on the pci-e link 3525 * level. This could result in (false) bad EEPROM checksum errors, 3526 * long ping times (up to 2s) or even a system freeze/hang. 3527 * 3528 * Unfortunately this feature saves about 1W power consumption when 3529 * active. 3530 */ 3531 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); 3532 pci_read_config_dword(pdev, pos + PCI_EXP_LNKCAP, &cap); 3533 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); 3534 if (val & 0x2) { 3535 dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); 3536 val &= ~0x2; 3537 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); 3538 } 3539} 3540 3541#ifdef CONFIG_PM 3542static int e1000_resume(struct pci_dev *pdev) 3543{ 3544 struct net_device *netdev = pci_get_drvdata(pdev); 3545 struct e1000_adapter *adapter = netdev_priv(netdev); 3546 struct e1000_hw *hw = &adapter->hw; 3547 u32 err; 3548 3549 pci_set_power_state(pdev, PCI_D0); 3550 pci_restore_state(pdev); 3551 e1000e_disable_l1aspm(pdev); 3552 err = pci_enable_device(pdev); 3553 if (err) { 3554 dev_err(&pdev->dev, 3555 "Cannot enable PCI device from suspend\n"); 3556 return err; 3557 } 3558 3559 pci_set_master(pdev); 3560 3561 pci_enable_wake(pdev, PCI_D3hot, 0); 3562 pci_enable_wake(pdev, PCI_D3cold, 0); 3563 3564 if (netif_running(netdev)) { 3565 err = e1000_request_irq(adapter); 3566 if (err) 3567 return err; 3568 } 3569 3570 e1000e_power_up_phy(adapter); 3571 e1000e_reset(adapter); 3572 ew32(WUS, ~0); 3573 3574 e1000_init_manageability(adapter); 3575 3576 if (netif_running(netdev)) 3577 e1000e_up(adapter); 3578 3579 netif_device_attach(netdev); 3580 3581 /* If the controller has AMT, do not set DRV_LOAD until the interface 3582 * is up. For all other cases, let the f/w know that the h/w is now 3583 * under the control of the driver. */ 3584 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw)) 3585 e1000_get_hw_control(adapter); 3586 3587 return 0; 3588} 3589#endif 3590 3591static void e1000_shutdown(struct pci_dev *pdev) 3592{ 3593 e1000_suspend(pdev, PMSG_SUSPEND); 3594} 3595 3596#ifdef CONFIG_NET_POLL_CONTROLLER 3597/* 3598 * Polling 'interrupt' - used by things like netconsole to send skbs 3599 * without having to re-enable interrupts. It's not called while 3600 * the interrupt routine is executing. 3601 */ 3602static void e1000_netpoll(struct net_device *netdev) 3603{ 3604 struct e1000_adapter *adapter = netdev_priv(netdev); 3605 3606 disable_irq(adapter->pdev->irq); 3607 e1000_intr(adapter->pdev->irq, netdev); 3608 3609 e1000_clean_tx_irq(adapter); 3610 3611 enable_irq(adapter->pdev->irq); 3612} 3613#endif 3614 3615/** 3616 * e1000_io_error_detected - called when PCI error is detected 3617 * @pdev: Pointer to PCI device 3618 * @state: The current pci connection state 3619 * 3620 * This function is called after a PCI bus error affecting 3621 * this device has been detected. 3622 */ 3623static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 3624 pci_channel_state_t state) 3625{ 3626 struct net_device *netdev = pci_get_drvdata(pdev); 3627 struct e1000_adapter *adapter = netdev_priv(netdev); 3628 3629 netif_device_detach(netdev); 3630 3631 if (netif_running(netdev)) 3632 e1000e_down(adapter); 3633 pci_disable_device(pdev); 3634 3635 /* Request a slot slot reset. */ 3636 return PCI_ERS_RESULT_NEED_RESET; 3637} 3638 3639/** 3640 * e1000_io_slot_reset - called after the pci bus has been reset. 3641 * @pdev: Pointer to PCI device 3642 * 3643 * Restart the card from scratch, as if from a cold-boot. Implementation 3644 * resembles the first-half of the e1000_resume routine. 3645 */ 3646static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 3647{ 3648 struct net_device *netdev = pci_get_drvdata(pdev); 3649 struct e1000_adapter *adapter = netdev_priv(netdev); 3650 struct e1000_hw *hw = &adapter->hw; 3651 3652 e1000e_disable_l1aspm(pdev); 3653 if (pci_enable_device(pdev)) { 3654 dev_err(&pdev->dev, 3655 "Cannot re-enable PCI device after reset.\n"); 3656 return PCI_ERS_RESULT_DISCONNECT; 3657 } 3658 pci_set_master(pdev); 3659 3660 pci_enable_wake(pdev, PCI_D3hot, 0); 3661 pci_enable_wake(pdev, PCI_D3cold, 0); 3662 3663 e1000e_reset(adapter); 3664 ew32(WUS, ~0); 3665 3666 return PCI_ERS_RESULT_RECOVERED; 3667} 3668 3669/** 3670 * e1000_io_resume - called when traffic can start flowing again. 3671 * @pdev: Pointer to PCI device 3672 * 3673 * This callback is called when the error recovery driver tells us that 3674 * its OK to resume normal operation. Implementation resembles the 3675 * second-half of the e1000_resume routine. 3676 */ 3677static void e1000_io_resume(struct pci_dev *pdev) 3678{ 3679 struct net_device *netdev = pci_get_drvdata(pdev); 3680 struct e1000_adapter *adapter = netdev_priv(netdev); 3681 3682 e1000_init_manageability(adapter); 3683 3684 if (netif_running(netdev)) { 3685 if (e1000e_up(adapter)) { 3686 dev_err(&pdev->dev, 3687 "can't bring device back up after reset\n"); 3688 return; 3689 } 3690 } 3691 3692 netif_device_attach(netdev); 3693 3694 /* If the controller has AMT, do not set DRV_LOAD until the interface 3695 * is up. For all other cases, let the f/w know that the h/w is now 3696 * under the control of the driver. */ 3697 if (!(adapter->flags & FLAG_HAS_AMT) || 3698 !e1000e_check_mng_mode(&adapter->hw)) 3699 e1000_get_hw_control(adapter); 3700 3701} 3702 3703static void e1000_print_device_info(struct e1000_adapter *adapter) 3704{ 3705 struct e1000_hw *hw = &adapter->hw; 3706 struct net_device *netdev = adapter->netdev; 3707 u32 part_num; 3708 3709 /* print bus type/speed/width info */ 3710 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) " 3711 "%02x:%02x:%02x:%02x:%02x:%02x\n", 3712 /* bus width */ 3713 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 3714 "Width x1"), 3715 /* MAC address */ 3716 netdev->dev_addr[0], netdev->dev_addr[1], 3717 netdev->dev_addr[2], netdev->dev_addr[3], 3718 netdev->dev_addr[4], netdev->dev_addr[5]); 3719 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n", 3720 (hw->phy.type == e1000_phy_ife) 3721 ? "10/100" : "1000"); 3722 e1000e_read_part_num(hw, &part_num); 3723 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n", 3724 hw->mac.type, hw->phy.type, 3725 (part_num >> 8), (part_num & 0xff)); 3726} 3727 3728/** 3729 * e1000_probe - Device Initialization Routine 3730 * @pdev: PCI device information struct 3731 * @ent: entry in e1000_pci_tbl 3732 * 3733 * Returns 0 on success, negative on failure 3734 * 3735 * e1000_probe initializes an adapter identified by a pci_dev structure. 3736 * The OS initialization, configuring of the adapter private structure, 3737 * and a hardware reset occur. 3738 **/ 3739static int __devinit e1000_probe(struct pci_dev *pdev, 3740 const struct pci_device_id *ent) 3741{ 3742 struct net_device *netdev; 3743 struct e1000_adapter *adapter; 3744 struct e1000_hw *hw; 3745 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 3746 unsigned long mmio_start, mmio_len; 3747 unsigned long flash_start, flash_len; 3748 3749 static int cards_found; 3750 int i, err, pci_using_dac; 3751 u16 eeprom_data = 0; 3752 u16 eeprom_apme_mask = E1000_EEPROM_APME; 3753 3754 e1000e_disable_l1aspm(pdev); 3755 err = pci_enable_device(pdev); 3756 if (err) 3757 return err; 3758 3759 pci_using_dac = 0; 3760 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); 3761 if (!err) { 3762 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); 3763 if (!err) 3764 pci_using_dac = 1; 3765 } else { 3766 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 3767 if (err) { 3768 err = pci_set_consistent_dma_mask(pdev, 3769 DMA_32BIT_MASK); 3770 if (err) { 3771 dev_err(&pdev->dev, "No usable DMA " 3772 "configuration, aborting\n"); 3773 goto err_dma; 3774 } 3775 } 3776 } 3777 3778 err = pci_request_regions(pdev, e1000e_driver_name); 3779 if (err) 3780 goto err_pci_reg; 3781 3782 pci_set_master(pdev); 3783 3784 err = -ENOMEM; 3785 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 3786 if (!netdev) 3787 goto err_alloc_etherdev; 3788 3789 SET_NETDEV_DEV(netdev, &pdev->dev); 3790 3791 pci_set_drvdata(pdev, netdev); 3792 adapter = netdev_priv(netdev); 3793 hw = &adapter->hw; 3794 adapter->netdev = netdev; 3795 adapter->pdev = pdev; 3796 adapter->ei = ei; 3797 adapter->pba = ei->pba; 3798 adapter->flags = ei->flags; 3799 adapter->hw.adapter = adapter; 3800 adapter->hw.mac.type = ei->mac; 3801 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; 3802 3803 mmio_start = pci_resource_start(pdev, 0); 3804 mmio_len = pci_resource_len(pdev, 0); 3805 3806 err = -EIO; 3807 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 3808 if (!adapter->hw.hw_addr) 3809 goto err_ioremap; 3810 3811 if ((adapter->flags & FLAG_HAS_FLASH) && 3812 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { 3813 flash_start = pci_resource_start(pdev, 1); 3814 flash_len = pci_resource_len(pdev, 1); 3815 adapter->hw.flash_address = ioremap(flash_start, flash_len); 3816 if (!adapter->hw.flash_address) 3817 goto err_flashmap; 3818 } 3819 3820 /* construct the net_device struct */ 3821 netdev->open = &e1000_open; 3822 netdev->stop = &e1000_close; 3823 netdev->hard_start_xmit = &e1000_xmit_frame; 3824 netdev->get_stats = &e1000_get_stats; 3825 netdev->set_multicast_list = &e1000_set_multi; 3826 netdev->set_mac_address = &e1000_set_mac; 3827 netdev->change_mtu = &e1000_change_mtu; 3828 netdev->do_ioctl = &e1000_ioctl; 3829 e1000e_set_ethtool_ops(netdev); 3830 netdev->tx_timeout = &e1000_tx_timeout; 3831 netdev->watchdog_timeo = 5 * HZ; 3832 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 3833 netdev->vlan_rx_register = e1000_vlan_rx_register; 3834 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; 3835 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; 3836#ifdef CONFIG_NET_POLL_CONTROLLER 3837 netdev->poll_controller = e1000_netpoll; 3838#endif 3839 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 3840 3841 netdev->mem_start = mmio_start; 3842 netdev->mem_end = mmio_start + mmio_len; 3843 3844 adapter->bd_number = cards_found++; 3845 3846 /* setup adapter struct */ 3847 err = e1000_sw_init(adapter); 3848 if (err) 3849 goto err_sw_init; 3850 3851 err = -EIO; 3852 3853 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 3854 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 3855 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 3856 3857 err = ei->get_invariants(adapter); 3858 if (err) 3859 goto err_hw_init; 3860 3861 hw->mac.ops.get_bus_info(&adapter->hw); 3862 3863 adapter->hw.phy.wait_for_link = 0; 3864 3865 /* Copper options */ 3866 if (adapter->hw.media_type == e1000_media_type_copper) { 3867 adapter->hw.phy.mdix = AUTO_ALL_MODES; 3868 adapter->hw.phy.disable_polarity_correction = 0; 3869 adapter->hw.phy.ms_type = e1000_ms_hw_default; 3870 } 3871 3872 if (e1000_check_reset_block(&adapter->hw)) 3873 ndev_info(netdev, 3874 "PHY reset is blocked due to SOL/IDER session.\n"); 3875 3876 netdev->features = NETIF_F_SG | 3877 NETIF_F_HW_CSUM | 3878 NETIF_F_HW_VLAN_TX | 3879 NETIF_F_HW_VLAN_RX; 3880 3881 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 3882 netdev->features |= NETIF_F_HW_VLAN_FILTER; 3883 3884 netdev->features |= NETIF_F_TSO; 3885 netdev->features |= NETIF_F_TSO6; 3886 3887 if (pci_using_dac) 3888 netdev->features |= NETIF_F_HIGHDMA; 3889 3890 /* We should not be using LLTX anymore, but we are still TX faster with 3891 * it. */ 3892 netdev->features |= NETIF_F_LLTX; 3893 3894 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 3895 adapter->flags |= FLAG_MNG_PT_ENABLED; 3896 3897 /* before reading the NVM, reset the controller to 3898 * put the device in a known good starting state */ 3899 adapter->hw.mac.ops.reset_hw(&adapter->hw); 3900 3901 /* 3902 * systems with ASPM and others may see the checksum fail on the first 3903 * attempt. Let's give it a few tries 3904 */ 3905 for (i = 0;; i++) { 3906 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 3907 break; 3908 if (i == 2) { 3909 ndev_err(netdev, "The NVM Checksum Is Not Valid\n"); 3910 err = -EIO; 3911 goto err_eeprom; 3912 } 3913 } 3914 3915 /* copy the MAC address out of the NVM */ 3916 if (e1000e_read_mac_addr(&adapter->hw)) 3917 ndev_err(netdev, "NVM Read Error while reading MAC address\n"); 3918 3919 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 3920 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); 3921 3922 if (!is_valid_ether_addr(netdev->perm_addr)) { 3923 ndev_err(netdev, "Invalid MAC Address: " 3924 "%02x:%02x:%02x:%02x:%02x:%02x\n", 3925 netdev->perm_addr[0], netdev->perm_addr[1], 3926 netdev->perm_addr[2], netdev->perm_addr[3], 3927 netdev->perm_addr[4], netdev->perm_addr[5]); 3928 err = -EIO; 3929 goto err_eeprom; 3930 } 3931 3932 init_timer(&adapter->watchdog_timer); 3933 adapter->watchdog_timer.function = &e1000_watchdog; 3934 adapter->watchdog_timer.data = (unsigned long) adapter; 3935 3936 init_timer(&adapter->phy_info_timer); 3937 adapter->phy_info_timer.function = &e1000_update_phy_info; 3938 adapter->phy_info_timer.data = (unsigned long) adapter; 3939 3940 INIT_WORK(&adapter->reset_task, e1000_reset_task); 3941 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 3942 3943 e1000e_check_options(adapter); 3944 3945 /* Initialize link parameters. User can change them with ethtool */ 3946 adapter->hw.mac.autoneg = 1; 3947 adapter->fc_autoneg = 1; 3948 adapter->hw.mac.original_fc = e1000_fc_default; 3949 adapter->hw.mac.fc = e1000_fc_default; 3950 adapter->hw.phy.autoneg_advertised = 0x2f; 3951 3952 /* ring size defaults */ 3953 adapter->rx_ring->count = 256; 3954 adapter->tx_ring->count = 256; 3955 3956 /* 3957 * Initial Wake on LAN setting - If APM wake is enabled in 3958 * the EEPROM, enable the ACPI Magic Packet filter 3959 */ 3960 if (adapter->flags & FLAG_APME_IN_WUC) { 3961 /* APME bit in EEPROM is mapped to WUC.APME */ 3962 eeprom_data = er32(WUC); 3963 eeprom_apme_mask = E1000_WUC_APME; 3964 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 3965 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 3966 (adapter->hw.bus.func == 1)) 3967 e1000_read_nvm(&adapter->hw, 3968 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3969 else 3970 e1000_read_nvm(&adapter->hw, 3971 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3972 } 3973 3974 /* fetch WoL from EEPROM */ 3975 if (eeprom_data & eeprom_apme_mask) 3976 adapter->eeprom_wol |= E1000_WUFC_MAG; 3977 3978 /* 3979 * now that we have the eeprom settings, apply the special cases 3980 * where the eeprom may be wrong or the board simply won't support 3981 * wake on lan on a particular port 3982 */ 3983 if (!(adapter->flags & FLAG_HAS_WOL)) 3984 adapter->eeprom_wol = 0; 3985 3986 /* initialize the wol settings based on the eeprom settings */ 3987 adapter->wol = adapter->eeprom_wol; 3988 3989 /* reset the hardware with the new settings */ 3990 e1000e_reset(adapter); 3991 3992 /* If the controller has AMT, do not set DRV_LOAD until the interface 3993 * is up. For all other cases, let the f/w know that the h/w is now 3994 * under the control of the driver. */ 3995 if (!(adapter->flags & FLAG_HAS_AMT) || 3996 !e1000e_check_mng_mode(&adapter->hw)) 3997 e1000_get_hw_control(adapter); 3998 3999 /* tell the stack to leave us alone until e1000_open() is called */ 4000 netif_carrier_off(netdev); 4001 netif_stop_queue(netdev); 4002 4003 strcpy(netdev->name, "eth%d"); 4004 err = register_netdev(netdev); 4005 if (err) 4006 goto err_register; 4007 4008 e1000_print_device_info(adapter); 4009 4010 return 0; 4011 4012err_register: 4013err_hw_init: 4014 e1000_release_hw_control(adapter); 4015err_eeprom: 4016 if (!e1000_check_reset_block(&adapter->hw)) 4017 e1000_phy_hw_reset(&adapter->hw); 4018 4019 if (adapter->hw.flash_address) 4020 iounmap(adapter->hw.flash_address); 4021 4022err_flashmap: 4023 kfree(adapter->tx_ring); 4024 kfree(adapter->rx_ring); 4025err_sw_init: 4026 iounmap(adapter->hw.hw_addr); 4027err_ioremap: 4028 free_netdev(netdev); 4029err_alloc_etherdev: 4030 pci_release_regions(pdev); 4031err_pci_reg: 4032err_dma: 4033 pci_disable_device(pdev); 4034 return err; 4035} 4036 4037/** 4038 * e1000_remove - Device Removal Routine 4039 * @pdev: PCI device information struct 4040 * 4041 * e1000_remove is called by the PCI subsystem to alert the driver 4042 * that it should release a PCI device. The could be caused by a 4043 * Hot-Plug event, or because the driver is going to be removed from 4044 * memory. 4045 **/ 4046static void __devexit e1000_remove(struct pci_dev *pdev) 4047{ 4048 struct net_device *netdev = pci_get_drvdata(pdev); 4049 struct e1000_adapter *adapter = netdev_priv(netdev); 4050 4051 /* flush_scheduled work may reschedule our watchdog task, so 4052 * explicitly disable watchdog tasks from being rescheduled */ 4053 set_bit(__E1000_DOWN, &adapter->state); 4054 del_timer_sync(&adapter->watchdog_timer); 4055 del_timer_sync(&adapter->phy_info_timer); 4056 4057 flush_scheduled_work(); 4058 4059 e1000_release_manageability(adapter); 4060 4061 /* Release control of h/w to f/w. If f/w is AMT enabled, this 4062 * would have already happened in close and is redundant. */ 4063 e1000_release_hw_control(adapter); 4064 4065 unregister_netdev(netdev); 4066 4067 if (!e1000_check_reset_block(&adapter->hw)) 4068 e1000_phy_hw_reset(&adapter->hw); 4069 4070 kfree(adapter->tx_ring); 4071 kfree(adapter->rx_ring); 4072 4073 iounmap(adapter->hw.hw_addr); 4074 if (adapter->hw.flash_address) 4075 iounmap(adapter->hw.flash_address); 4076 pci_release_regions(pdev); 4077 4078 free_netdev(netdev); 4079 4080 pci_disable_device(pdev); 4081} 4082 4083/* PCI Error Recovery (ERS) */ 4084static struct pci_error_handlers e1000_err_handler = { 4085 .error_detected = e1000_io_error_detected, 4086 .slot_reset = e1000_io_slot_reset, 4087 .resume = e1000_io_resume, 4088}; 4089 4090static struct pci_device_id e1000_pci_tbl[] = { 4091 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 4092 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 4093 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 4094 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, 4095 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 4096 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 4097 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 4098 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 4099 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 4100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 4101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 4102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 4103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 4104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 4105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 4106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 4107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 4108 board_80003es2lan }, 4109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 4110 board_80003es2lan }, 4111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 4112 board_80003es2lan }, 4113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 4114 board_80003es2lan }, 4115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 4116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 4117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 4118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 4119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 4120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 4121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 4122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 4123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 4124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 4125 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 4126 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 4127 4128 { } /* terminate list */ 4129}; 4130MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 4131 4132/* PCI Device API Driver */ 4133static struct pci_driver e1000_driver = { 4134 .name = e1000e_driver_name, 4135 .id_table = e1000_pci_tbl, 4136 .probe = e1000_probe, 4137 .remove = __devexit_p(e1000_remove), 4138#ifdef CONFIG_PM 4139 /* Power Managment Hooks */ 4140 .suspend = e1000_suspend, 4141 .resume = e1000_resume, 4142#endif 4143 .shutdown = e1000_shutdown, 4144 .err_handler = &e1000_err_handler 4145}; 4146 4147/** 4148 * e1000_init_module - Driver Registration Routine 4149 * 4150 * e1000_init_module is the first routine called when the driver is 4151 * loaded. All it does is register with the PCI subsystem. 4152 **/ 4153static int __init e1000_init_module(void) 4154{ 4155 int ret; 4156 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", 4157 e1000e_driver_name, e1000e_driver_version); 4158 printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n", 4159 e1000e_driver_name); 4160 ret = pci_register_driver(&e1000_driver); 4161 4162 return ret; 4163} 4164module_init(e1000_init_module); 4165 4166/** 4167 * e1000_exit_module - Driver Exit Cleanup Routine 4168 * 4169 * e1000_exit_module is called just before the driver is removed 4170 * from memory. 4171 **/ 4172static void __exit e1000_exit_module(void) 4173{ 4174 pci_unregister_driver(&e1000_driver); 4175} 4176module_exit(e1000_exit_module); 4177 4178 4179MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 4180MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 4181MODULE_LICENSE("GPL"); 4182MODULE_VERSION(DRV_VERSION); 4183 4184/* e1000_main.c */