Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8#define CLONE_VM 0x00000100 /* set if VM shared between processes */
9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD 0x00010000 /* Same thread group? */
16#define CLONE_NEWNS 0x00020000 /* New namespace group? */
17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26#define CLONE_NEWIPC 0x08000000 /* New ipcs */
27#define CLONE_NEWUSER 0x10000000 /* New user namespace */
28#define CLONE_NEWPID 0x20000000 /* New pid namespace */
29#define CLONE_NEWNET 0x40000000 /* New network namespace */
30#define CLONE_IO 0x80000000 /* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL 0
36#define SCHED_FIFO 1
37#define SCHED_RR 2
38#define SCHED_BATCH 3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE 5
41
42#ifdef __KERNEL__
43
44struct sched_param {
45 int sched_priority;
46};
47
48#include <asm/param.h> /* for HZ */
49
50#include <linux/capability.h>
51#include <linux/threads.h>
52#include <linux/kernel.h>
53#include <linux/types.h>
54#include <linux/timex.h>
55#include <linux/jiffies.h>
56#include <linux/rbtree.h>
57#include <linux/thread_info.h>
58#include <linux/cpumask.h>
59#include <linux/errno.h>
60#include <linux/nodemask.h>
61#include <linux/mm_types.h>
62
63#include <asm/system.h>
64#include <asm/page.h>
65#include <asm/ptrace.h>
66#include <asm/cputime.h>
67
68#include <linux/smp.h>
69#include <linux/sem.h>
70#include <linux/signal.h>
71#include <linux/path.h>
72#include <linux/compiler.h>
73#include <linux/completion.h>
74#include <linux/pid.h>
75#include <linux/percpu.h>
76#include <linux/topology.h>
77#include <linux/proportions.h>
78#include <linux/seccomp.h>
79#include <linux/rcupdate.h>
80#include <linux/rculist.h>
81#include <linux/rtmutex.h>
82
83#include <linux/time.h>
84#include <linux/param.h>
85#include <linux/resource.h>
86#include <linux/timer.h>
87#include <linux/hrtimer.h>
88#include <linux/task_io_accounting.h>
89#include <linux/kobject.h>
90#include <linux/latencytop.h>
91#include <linux/cred.h>
92
93#include <asm/processor.h>
94
95struct exec_domain;
96struct futex_pi_state;
97struct robust_list_head;
98struct bio;
99struct fs_struct;
100struct bts_context;
101struct perf_counter_context;
102
103/*
104 * List of flags we want to share for kernel threads,
105 * if only because they are not used by them anyway.
106 */
107#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
108
109/*
110 * These are the constant used to fake the fixed-point load-average
111 * counting. Some notes:
112 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
113 * a load-average precision of 10 bits integer + 11 bits fractional
114 * - if you want to count load-averages more often, you need more
115 * precision, or rounding will get you. With 2-second counting freq,
116 * the EXP_n values would be 1981, 2034 and 2043 if still using only
117 * 11 bit fractions.
118 */
119extern unsigned long avenrun[]; /* Load averages */
120extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
121
122#define FSHIFT 11 /* nr of bits of precision */
123#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
124#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
125#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
126#define EXP_5 2014 /* 1/exp(5sec/5min) */
127#define EXP_15 2037 /* 1/exp(5sec/15min) */
128
129#define CALC_LOAD(load,exp,n) \
130 load *= exp; \
131 load += n*(FIXED_1-exp); \
132 load >>= FSHIFT;
133
134extern unsigned long total_forks;
135extern int nr_threads;
136DECLARE_PER_CPU(unsigned long, process_counts);
137extern int nr_processes(void);
138extern unsigned long nr_running(void);
139extern unsigned long nr_uninterruptible(void);
140extern unsigned long nr_iowait(void);
141extern void calc_global_load(void);
142extern u64 cpu_nr_migrations(int cpu);
143
144extern unsigned long get_parent_ip(unsigned long addr);
145
146struct seq_file;
147struct cfs_rq;
148struct task_group;
149#ifdef CONFIG_SCHED_DEBUG
150extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
151extern void proc_sched_set_task(struct task_struct *p);
152extern void
153print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
154#else
155static inline void
156proc_sched_show_task(struct task_struct *p, struct seq_file *m)
157{
158}
159static inline void proc_sched_set_task(struct task_struct *p)
160{
161}
162static inline void
163print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
164{
165}
166#endif
167
168extern unsigned long long time_sync_thresh;
169
170/*
171 * Task state bitmask. NOTE! These bits are also
172 * encoded in fs/proc/array.c: get_task_state().
173 *
174 * We have two separate sets of flags: task->state
175 * is about runnability, while task->exit_state are
176 * about the task exiting. Confusing, but this way
177 * modifying one set can't modify the other one by
178 * mistake.
179 */
180#define TASK_RUNNING 0
181#define TASK_INTERRUPTIBLE 1
182#define TASK_UNINTERRUPTIBLE 2
183#define __TASK_STOPPED 4
184#define __TASK_TRACED 8
185/* in tsk->exit_state */
186#define EXIT_ZOMBIE 16
187#define EXIT_DEAD 32
188/* in tsk->state again */
189#define TASK_DEAD 64
190#define TASK_WAKEKILL 128
191
192/* Convenience macros for the sake of set_task_state */
193#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
194#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
195#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
196
197/* Convenience macros for the sake of wake_up */
198#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
199#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
200
201/* get_task_state() */
202#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
203 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
204 __TASK_TRACED)
205
206#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
207#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
208#define task_is_stopped_or_traced(task) \
209 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
210#define task_contributes_to_load(task) \
211 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
212 (task->flags & PF_FREEZING) == 0)
213
214#define __set_task_state(tsk, state_value) \
215 do { (tsk)->state = (state_value); } while (0)
216#define set_task_state(tsk, state_value) \
217 set_mb((tsk)->state, (state_value))
218
219/*
220 * set_current_state() includes a barrier so that the write of current->state
221 * is correctly serialised wrt the caller's subsequent test of whether to
222 * actually sleep:
223 *
224 * set_current_state(TASK_UNINTERRUPTIBLE);
225 * if (do_i_need_to_sleep())
226 * schedule();
227 *
228 * If the caller does not need such serialisation then use __set_current_state()
229 */
230#define __set_current_state(state_value) \
231 do { current->state = (state_value); } while (0)
232#define set_current_state(state_value) \
233 set_mb(current->state, (state_value))
234
235/* Task command name length */
236#define TASK_COMM_LEN 16
237
238#include <linux/spinlock.h>
239
240/*
241 * This serializes "schedule()" and also protects
242 * the run-queue from deletions/modifications (but
243 * _adding_ to the beginning of the run-queue has
244 * a separate lock).
245 */
246extern rwlock_t tasklist_lock;
247extern spinlock_t mmlist_lock;
248
249struct task_struct;
250
251extern void sched_init(void);
252extern void sched_init_smp(void);
253extern asmlinkage void schedule_tail(struct task_struct *prev);
254extern void init_idle(struct task_struct *idle, int cpu);
255extern void init_idle_bootup_task(struct task_struct *idle);
256
257extern int runqueue_is_locked(void);
258extern void task_rq_unlock_wait(struct task_struct *p);
259
260extern cpumask_var_t nohz_cpu_mask;
261#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
262extern int select_nohz_load_balancer(int cpu);
263extern int get_nohz_load_balancer(void);
264#else
265static inline int select_nohz_load_balancer(int cpu)
266{
267 return 0;
268}
269#endif
270
271/*
272 * Only dump TASK_* tasks. (0 for all tasks)
273 */
274extern void show_state_filter(unsigned long state_filter);
275
276static inline void show_state(void)
277{
278 show_state_filter(0);
279}
280
281extern void show_regs(struct pt_regs *);
282
283/*
284 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
285 * task), SP is the stack pointer of the first frame that should be shown in the back
286 * trace (or NULL if the entire call-chain of the task should be shown).
287 */
288extern void show_stack(struct task_struct *task, unsigned long *sp);
289
290void io_schedule(void);
291long io_schedule_timeout(long timeout);
292
293extern void cpu_init (void);
294extern void trap_init(void);
295extern void update_process_times(int user);
296extern void scheduler_tick(void);
297
298extern void sched_show_task(struct task_struct *p);
299
300#ifdef CONFIG_DETECT_SOFTLOCKUP
301extern void softlockup_tick(void);
302extern void touch_softlockup_watchdog(void);
303extern void touch_all_softlockup_watchdogs(void);
304extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
305 struct file *filp, void __user *buffer,
306 size_t *lenp, loff_t *ppos);
307extern unsigned int softlockup_panic;
308extern int softlockup_thresh;
309#else
310static inline void softlockup_tick(void)
311{
312}
313static inline void touch_softlockup_watchdog(void)
314{
315}
316static inline void touch_all_softlockup_watchdogs(void)
317{
318}
319#endif
320
321#ifdef CONFIG_DETECT_HUNG_TASK
322extern unsigned int sysctl_hung_task_panic;
323extern unsigned long sysctl_hung_task_check_count;
324extern unsigned long sysctl_hung_task_timeout_secs;
325extern unsigned long sysctl_hung_task_warnings;
326extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
327 struct file *filp, void __user *buffer,
328 size_t *lenp, loff_t *ppos);
329#endif
330
331/* Attach to any functions which should be ignored in wchan output. */
332#define __sched __attribute__((__section__(".sched.text")))
333
334/* Linker adds these: start and end of __sched functions */
335extern char __sched_text_start[], __sched_text_end[];
336
337/* Is this address in the __sched functions? */
338extern int in_sched_functions(unsigned long addr);
339
340#define MAX_SCHEDULE_TIMEOUT LONG_MAX
341extern signed long schedule_timeout(signed long timeout);
342extern signed long schedule_timeout_interruptible(signed long timeout);
343extern signed long schedule_timeout_killable(signed long timeout);
344extern signed long schedule_timeout_uninterruptible(signed long timeout);
345asmlinkage void __schedule(void);
346asmlinkage void schedule(void);
347extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
348
349struct nsproxy;
350struct user_namespace;
351
352/*
353 * Default maximum number of active map areas, this limits the number of vmas
354 * per mm struct. Users can overwrite this number by sysctl but there is a
355 * problem.
356 *
357 * When a program's coredump is generated as ELF format, a section is created
358 * per a vma. In ELF, the number of sections is represented in unsigned short.
359 * This means the number of sections should be smaller than 65535 at coredump.
360 * Because the kernel adds some informative sections to a image of program at
361 * generating coredump, we need some margin. The number of extra sections is
362 * 1-3 now and depends on arch. We use "5" as safe margin, here.
363 */
364#define MAPCOUNT_ELF_CORE_MARGIN (5)
365#define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
366
367extern int sysctl_max_map_count;
368
369#include <linux/aio.h>
370
371extern unsigned long
372arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
373 unsigned long, unsigned long);
374extern unsigned long
375arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
376 unsigned long len, unsigned long pgoff,
377 unsigned long flags);
378extern void arch_unmap_area(struct mm_struct *, unsigned long);
379extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
380
381#if USE_SPLIT_PTLOCKS
382/*
383 * The mm counters are not protected by its page_table_lock,
384 * so must be incremented atomically.
385 */
386#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
387#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
388#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
389#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
390#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
391
392#else /* !USE_SPLIT_PTLOCKS */
393/*
394 * The mm counters are protected by its page_table_lock,
395 * so can be incremented directly.
396 */
397#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
398#define get_mm_counter(mm, member) ((mm)->_##member)
399#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
400#define inc_mm_counter(mm, member) (mm)->_##member++
401#define dec_mm_counter(mm, member) (mm)->_##member--
402
403#endif /* !USE_SPLIT_PTLOCKS */
404
405#define get_mm_rss(mm) \
406 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
407#define update_hiwater_rss(mm) do { \
408 unsigned long _rss = get_mm_rss(mm); \
409 if ((mm)->hiwater_rss < _rss) \
410 (mm)->hiwater_rss = _rss; \
411} while (0)
412#define update_hiwater_vm(mm) do { \
413 if ((mm)->hiwater_vm < (mm)->total_vm) \
414 (mm)->hiwater_vm = (mm)->total_vm; \
415} while (0)
416
417static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
418{
419 return max(mm->hiwater_rss, get_mm_rss(mm));
420}
421
422static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
423{
424 return max(mm->hiwater_vm, mm->total_vm);
425}
426
427extern void set_dumpable(struct mm_struct *mm, int value);
428extern int get_dumpable(struct mm_struct *mm);
429
430/* mm flags */
431/* dumpable bits */
432#define MMF_DUMPABLE 0 /* core dump is permitted */
433#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
434#define MMF_DUMPABLE_BITS 2
435
436/* coredump filter bits */
437#define MMF_DUMP_ANON_PRIVATE 2
438#define MMF_DUMP_ANON_SHARED 3
439#define MMF_DUMP_MAPPED_PRIVATE 4
440#define MMF_DUMP_MAPPED_SHARED 5
441#define MMF_DUMP_ELF_HEADERS 6
442#define MMF_DUMP_HUGETLB_PRIVATE 7
443#define MMF_DUMP_HUGETLB_SHARED 8
444#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
445#define MMF_DUMP_FILTER_BITS 7
446#define MMF_DUMP_FILTER_MASK \
447 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
448#define MMF_DUMP_FILTER_DEFAULT \
449 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
450 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
451
452#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
453# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
454#else
455# define MMF_DUMP_MASK_DEFAULT_ELF 0
456#endif
457
458struct sighand_struct {
459 atomic_t count;
460 struct k_sigaction action[_NSIG];
461 spinlock_t siglock;
462 wait_queue_head_t signalfd_wqh;
463};
464
465struct pacct_struct {
466 int ac_flag;
467 long ac_exitcode;
468 unsigned long ac_mem;
469 cputime_t ac_utime, ac_stime;
470 unsigned long ac_minflt, ac_majflt;
471};
472
473/**
474 * struct task_cputime - collected CPU time counts
475 * @utime: time spent in user mode, in &cputime_t units
476 * @stime: time spent in kernel mode, in &cputime_t units
477 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
478 *
479 * This structure groups together three kinds of CPU time that are
480 * tracked for threads and thread groups. Most things considering
481 * CPU time want to group these counts together and treat all three
482 * of them in parallel.
483 */
484struct task_cputime {
485 cputime_t utime;
486 cputime_t stime;
487 unsigned long long sum_exec_runtime;
488};
489/* Alternate field names when used to cache expirations. */
490#define prof_exp stime
491#define virt_exp utime
492#define sched_exp sum_exec_runtime
493
494#define INIT_CPUTIME \
495 (struct task_cputime) { \
496 .utime = cputime_zero, \
497 .stime = cputime_zero, \
498 .sum_exec_runtime = 0, \
499 }
500
501/*
502 * Disable preemption until the scheduler is running.
503 * Reset by start_kernel()->sched_init()->init_idle().
504 *
505 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
506 * before the scheduler is active -- see should_resched().
507 */
508#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
509
510/**
511 * struct thread_group_cputimer - thread group interval timer counts
512 * @cputime: thread group interval timers.
513 * @running: non-zero when there are timers running and
514 * @cputime receives updates.
515 * @lock: lock for fields in this struct.
516 *
517 * This structure contains the version of task_cputime, above, that is
518 * used for thread group CPU timer calculations.
519 */
520struct thread_group_cputimer {
521 struct task_cputime cputime;
522 int running;
523 spinlock_t lock;
524};
525
526/*
527 * NOTE! "signal_struct" does not have it's own
528 * locking, because a shared signal_struct always
529 * implies a shared sighand_struct, so locking
530 * sighand_struct is always a proper superset of
531 * the locking of signal_struct.
532 */
533struct signal_struct {
534 atomic_t count;
535 atomic_t live;
536
537 wait_queue_head_t wait_chldexit; /* for wait4() */
538
539 /* current thread group signal load-balancing target: */
540 struct task_struct *curr_target;
541
542 /* shared signal handling: */
543 struct sigpending shared_pending;
544
545 /* thread group exit support */
546 int group_exit_code;
547 /* overloaded:
548 * - notify group_exit_task when ->count is equal to notify_count
549 * - everyone except group_exit_task is stopped during signal delivery
550 * of fatal signals, group_exit_task processes the signal.
551 */
552 int notify_count;
553 struct task_struct *group_exit_task;
554
555 /* thread group stop support, overloads group_exit_code too */
556 int group_stop_count;
557 unsigned int flags; /* see SIGNAL_* flags below */
558
559 /* POSIX.1b Interval Timers */
560 struct list_head posix_timers;
561
562 /* ITIMER_REAL timer for the process */
563 struct hrtimer real_timer;
564 struct pid *leader_pid;
565 ktime_t it_real_incr;
566
567 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
568 cputime_t it_prof_expires, it_virt_expires;
569 cputime_t it_prof_incr, it_virt_incr;
570
571 /*
572 * Thread group totals for process CPU timers.
573 * See thread_group_cputimer(), et al, for details.
574 */
575 struct thread_group_cputimer cputimer;
576
577 /* Earliest-expiration cache. */
578 struct task_cputime cputime_expires;
579
580 struct list_head cpu_timers[3];
581
582 struct pid *tty_old_pgrp;
583
584 /* boolean value for session group leader */
585 int leader;
586
587 struct tty_struct *tty; /* NULL if no tty */
588
589 /*
590 * Cumulative resource counters for dead threads in the group,
591 * and for reaped dead child processes forked by this group.
592 * Live threads maintain their own counters and add to these
593 * in __exit_signal, except for the group leader.
594 */
595 cputime_t utime, stime, cutime, cstime;
596 cputime_t gtime;
597 cputime_t cgtime;
598 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
599 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
600 unsigned long inblock, oublock, cinblock, coublock;
601 struct task_io_accounting ioac;
602
603 /*
604 * Cumulative ns of schedule CPU time fo dead threads in the
605 * group, not including a zombie group leader, (This only differs
606 * from jiffies_to_ns(utime + stime) if sched_clock uses something
607 * other than jiffies.)
608 */
609 unsigned long long sum_sched_runtime;
610
611 /*
612 * We don't bother to synchronize most readers of this at all,
613 * because there is no reader checking a limit that actually needs
614 * to get both rlim_cur and rlim_max atomically, and either one
615 * alone is a single word that can safely be read normally.
616 * getrlimit/setrlimit use task_lock(current->group_leader) to
617 * protect this instead of the siglock, because they really
618 * have no need to disable irqs.
619 */
620 struct rlimit rlim[RLIM_NLIMITS];
621
622#ifdef CONFIG_BSD_PROCESS_ACCT
623 struct pacct_struct pacct; /* per-process accounting information */
624#endif
625#ifdef CONFIG_TASKSTATS
626 struct taskstats *stats;
627#endif
628#ifdef CONFIG_AUDIT
629 unsigned audit_tty;
630 struct tty_audit_buf *tty_audit_buf;
631#endif
632};
633
634/* Context switch must be unlocked if interrupts are to be enabled */
635#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
636# define __ARCH_WANT_UNLOCKED_CTXSW
637#endif
638
639/*
640 * Bits in flags field of signal_struct.
641 */
642#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
643#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
644#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
645#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
646/*
647 * Pending notifications to parent.
648 */
649#define SIGNAL_CLD_STOPPED 0x00000010
650#define SIGNAL_CLD_CONTINUED 0x00000020
651#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
652
653#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
654
655/* If true, all threads except ->group_exit_task have pending SIGKILL */
656static inline int signal_group_exit(const struct signal_struct *sig)
657{
658 return (sig->flags & SIGNAL_GROUP_EXIT) ||
659 (sig->group_exit_task != NULL);
660}
661
662/*
663 * Some day this will be a full-fledged user tracking system..
664 */
665struct user_struct {
666 atomic_t __count; /* reference count */
667 atomic_t processes; /* How many processes does this user have? */
668 atomic_t files; /* How many open files does this user have? */
669 atomic_t sigpending; /* How many pending signals does this user have? */
670#ifdef CONFIG_INOTIFY_USER
671 atomic_t inotify_watches; /* How many inotify watches does this user have? */
672 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
673#endif
674#ifdef CONFIG_EPOLL
675 atomic_t epoll_watches; /* The number of file descriptors currently watched */
676#endif
677#ifdef CONFIG_POSIX_MQUEUE
678 /* protected by mq_lock */
679 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
680#endif
681 unsigned long locked_shm; /* How many pages of mlocked shm ? */
682
683#ifdef CONFIG_KEYS
684 struct key *uid_keyring; /* UID specific keyring */
685 struct key *session_keyring; /* UID's default session keyring */
686#endif
687
688 /* Hash table maintenance information */
689 struct hlist_node uidhash_node;
690 uid_t uid;
691 struct user_namespace *user_ns;
692
693#ifdef CONFIG_USER_SCHED
694 struct task_group *tg;
695#ifdef CONFIG_SYSFS
696 struct kobject kobj;
697 struct delayed_work work;
698#endif
699#endif
700
701#ifdef CONFIG_PERF_COUNTERS
702 atomic_long_t locked_vm;
703#endif
704};
705
706extern int uids_sysfs_init(void);
707
708extern struct user_struct *find_user(uid_t);
709
710extern struct user_struct root_user;
711#define INIT_USER (&root_user)
712
713
714struct backing_dev_info;
715struct reclaim_state;
716
717#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
718struct sched_info {
719 /* cumulative counters */
720 unsigned long pcount; /* # of times run on this cpu */
721 unsigned long long run_delay; /* time spent waiting on a runqueue */
722
723 /* timestamps */
724 unsigned long long last_arrival,/* when we last ran on a cpu */
725 last_queued; /* when we were last queued to run */
726#ifdef CONFIG_SCHEDSTATS
727 /* BKL stats */
728 unsigned int bkl_count;
729#endif
730};
731#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
732
733#ifdef CONFIG_TASK_DELAY_ACCT
734struct task_delay_info {
735 spinlock_t lock;
736 unsigned int flags; /* Private per-task flags */
737
738 /* For each stat XXX, add following, aligned appropriately
739 *
740 * struct timespec XXX_start, XXX_end;
741 * u64 XXX_delay;
742 * u32 XXX_count;
743 *
744 * Atomicity of updates to XXX_delay, XXX_count protected by
745 * single lock above (split into XXX_lock if contention is an issue).
746 */
747
748 /*
749 * XXX_count is incremented on every XXX operation, the delay
750 * associated with the operation is added to XXX_delay.
751 * XXX_delay contains the accumulated delay time in nanoseconds.
752 */
753 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
754 u64 blkio_delay; /* wait for sync block io completion */
755 u64 swapin_delay; /* wait for swapin block io completion */
756 u32 blkio_count; /* total count of the number of sync block */
757 /* io operations performed */
758 u32 swapin_count; /* total count of the number of swapin block */
759 /* io operations performed */
760
761 struct timespec freepages_start, freepages_end;
762 u64 freepages_delay; /* wait for memory reclaim */
763 u32 freepages_count; /* total count of memory reclaim */
764};
765#endif /* CONFIG_TASK_DELAY_ACCT */
766
767static inline int sched_info_on(void)
768{
769#ifdef CONFIG_SCHEDSTATS
770 return 1;
771#elif defined(CONFIG_TASK_DELAY_ACCT)
772 extern int delayacct_on;
773 return delayacct_on;
774#else
775 return 0;
776#endif
777}
778
779enum cpu_idle_type {
780 CPU_IDLE,
781 CPU_NOT_IDLE,
782 CPU_NEWLY_IDLE,
783 CPU_MAX_IDLE_TYPES
784};
785
786/*
787 * sched-domains (multiprocessor balancing) declarations:
788 */
789
790/*
791 * Increase resolution of nice-level calculations:
792 */
793#define SCHED_LOAD_SHIFT 10
794#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
795
796#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
797
798#ifdef CONFIG_SMP
799#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
800#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
801#define SD_BALANCE_EXEC 4 /* Balance on exec */
802#define SD_BALANCE_FORK 8 /* Balance on fork, clone */
803#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
804#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
805#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
806#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
807#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
808#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
809#define SD_SERIALIZE 1024 /* Only a single load balancing instance */
810#define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
811
812enum powersavings_balance_level {
813 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
814 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
815 * first for long running threads
816 */
817 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
818 * cpu package for power savings
819 */
820 MAX_POWERSAVINGS_BALANCE_LEVELS
821};
822
823extern int sched_mc_power_savings, sched_smt_power_savings;
824
825static inline int sd_balance_for_mc_power(void)
826{
827 if (sched_smt_power_savings)
828 return SD_POWERSAVINGS_BALANCE;
829
830 return 0;
831}
832
833static inline int sd_balance_for_package_power(void)
834{
835 if (sched_mc_power_savings | sched_smt_power_savings)
836 return SD_POWERSAVINGS_BALANCE;
837
838 return 0;
839}
840
841/*
842 * Optimise SD flags for power savings:
843 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
844 * Keep default SD flags if sched_{smt,mc}_power_saving=0
845 */
846
847static inline int sd_power_saving_flags(void)
848{
849 if (sched_mc_power_savings | sched_smt_power_savings)
850 return SD_BALANCE_NEWIDLE;
851
852 return 0;
853}
854
855struct sched_group {
856 struct sched_group *next; /* Must be a circular list */
857
858 /*
859 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
860 * single CPU. This is read only (except for setup, hotplug CPU).
861 * Note : Never change cpu_power without recompute its reciprocal
862 */
863 unsigned int __cpu_power;
864 /*
865 * reciprocal value of cpu_power to avoid expensive divides
866 * (see include/linux/reciprocal_div.h)
867 */
868 u32 reciprocal_cpu_power;
869
870 /*
871 * The CPUs this group covers.
872 *
873 * NOTE: this field is variable length. (Allocated dynamically
874 * by attaching extra space to the end of the structure,
875 * depending on how many CPUs the kernel has booted up with)
876 *
877 * It is also be embedded into static data structures at build
878 * time. (See 'struct static_sched_group' in kernel/sched.c)
879 */
880 unsigned long cpumask[0];
881};
882
883static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
884{
885 return to_cpumask(sg->cpumask);
886}
887
888enum sched_domain_level {
889 SD_LV_NONE = 0,
890 SD_LV_SIBLING,
891 SD_LV_MC,
892 SD_LV_CPU,
893 SD_LV_NODE,
894 SD_LV_ALLNODES,
895 SD_LV_MAX
896};
897
898struct sched_domain_attr {
899 int relax_domain_level;
900};
901
902#define SD_ATTR_INIT (struct sched_domain_attr) { \
903 .relax_domain_level = -1, \
904}
905
906struct sched_domain {
907 /* These fields must be setup */
908 struct sched_domain *parent; /* top domain must be null terminated */
909 struct sched_domain *child; /* bottom domain must be null terminated */
910 struct sched_group *groups; /* the balancing groups of the domain */
911 unsigned long min_interval; /* Minimum balance interval ms */
912 unsigned long max_interval; /* Maximum balance interval ms */
913 unsigned int busy_factor; /* less balancing by factor if busy */
914 unsigned int imbalance_pct; /* No balance until over watermark */
915 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
916 unsigned int busy_idx;
917 unsigned int idle_idx;
918 unsigned int newidle_idx;
919 unsigned int wake_idx;
920 unsigned int forkexec_idx;
921 int flags; /* See SD_* */
922 enum sched_domain_level level;
923
924 /* Runtime fields. */
925 unsigned long last_balance; /* init to jiffies. units in jiffies */
926 unsigned int balance_interval; /* initialise to 1. units in ms. */
927 unsigned int nr_balance_failed; /* initialise to 0 */
928
929 u64 last_update;
930
931#ifdef CONFIG_SCHEDSTATS
932 /* load_balance() stats */
933 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
939 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
940 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
941
942 /* Active load balancing */
943 unsigned int alb_count;
944 unsigned int alb_failed;
945 unsigned int alb_pushed;
946
947 /* SD_BALANCE_EXEC stats */
948 unsigned int sbe_count;
949 unsigned int sbe_balanced;
950 unsigned int sbe_pushed;
951
952 /* SD_BALANCE_FORK stats */
953 unsigned int sbf_count;
954 unsigned int sbf_balanced;
955 unsigned int sbf_pushed;
956
957 /* try_to_wake_up() stats */
958 unsigned int ttwu_wake_remote;
959 unsigned int ttwu_move_affine;
960 unsigned int ttwu_move_balance;
961#endif
962#ifdef CONFIG_SCHED_DEBUG
963 char *name;
964#endif
965
966 /*
967 * Span of all CPUs in this domain.
968 *
969 * NOTE: this field is variable length. (Allocated dynamically
970 * by attaching extra space to the end of the structure,
971 * depending on how many CPUs the kernel has booted up with)
972 *
973 * It is also be embedded into static data structures at build
974 * time. (See 'struct static_sched_domain' in kernel/sched.c)
975 */
976 unsigned long span[0];
977};
978
979static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
980{
981 return to_cpumask(sd->span);
982}
983
984extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
985 struct sched_domain_attr *dattr_new);
986
987/* Test a flag in parent sched domain */
988static inline int test_sd_parent(struct sched_domain *sd, int flag)
989{
990 if (sd->parent && (sd->parent->flags & flag))
991 return 1;
992
993 return 0;
994}
995
996#else /* CONFIG_SMP */
997
998struct sched_domain_attr;
999
1000static inline void
1001partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1002 struct sched_domain_attr *dattr_new)
1003{
1004}
1005#endif /* !CONFIG_SMP */
1006
1007struct io_context; /* See blkdev.h */
1008
1009
1010#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1011extern void prefetch_stack(struct task_struct *t);
1012#else
1013static inline void prefetch_stack(struct task_struct *t) { }
1014#endif
1015
1016struct audit_context; /* See audit.c */
1017struct mempolicy;
1018struct pipe_inode_info;
1019struct uts_namespace;
1020
1021struct rq;
1022struct sched_domain;
1023
1024struct sched_class {
1025 const struct sched_class *next;
1026
1027 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1028 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1029 void (*yield_task) (struct rq *rq);
1030
1031 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1032
1033 struct task_struct * (*pick_next_task) (struct rq *rq);
1034 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1035
1036#ifdef CONFIG_SMP
1037 int (*select_task_rq)(struct task_struct *p, int sync);
1038
1039 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1040 struct rq *busiest, unsigned long max_load_move,
1041 struct sched_domain *sd, enum cpu_idle_type idle,
1042 int *all_pinned, int *this_best_prio);
1043
1044 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1045 struct rq *busiest, struct sched_domain *sd,
1046 enum cpu_idle_type idle);
1047 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1048 int (*needs_post_schedule) (struct rq *this_rq);
1049 void (*post_schedule) (struct rq *this_rq);
1050 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1051
1052 void (*set_cpus_allowed)(struct task_struct *p,
1053 const struct cpumask *newmask);
1054
1055 void (*rq_online)(struct rq *rq);
1056 void (*rq_offline)(struct rq *rq);
1057#endif
1058
1059 void (*set_curr_task) (struct rq *rq);
1060 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1061 void (*task_new) (struct rq *rq, struct task_struct *p);
1062
1063 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1064 int running);
1065 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1066 int running);
1067 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1068 int oldprio, int running);
1069
1070#ifdef CONFIG_FAIR_GROUP_SCHED
1071 void (*moved_group) (struct task_struct *p);
1072#endif
1073};
1074
1075struct load_weight {
1076 unsigned long weight, inv_weight;
1077};
1078
1079/*
1080 * CFS stats for a schedulable entity (task, task-group etc)
1081 *
1082 * Current field usage histogram:
1083 *
1084 * 4 se->block_start
1085 * 4 se->run_node
1086 * 4 se->sleep_start
1087 * 6 se->load.weight
1088 */
1089struct sched_entity {
1090 struct load_weight load; /* for load-balancing */
1091 struct rb_node run_node;
1092 struct list_head group_node;
1093 unsigned int on_rq;
1094
1095 u64 exec_start;
1096 u64 sum_exec_runtime;
1097 u64 vruntime;
1098 u64 prev_sum_exec_runtime;
1099
1100 u64 last_wakeup;
1101 u64 avg_overlap;
1102
1103 u64 nr_migrations;
1104
1105 u64 start_runtime;
1106 u64 avg_wakeup;
1107
1108#ifdef CONFIG_SCHEDSTATS
1109 u64 wait_start;
1110 u64 wait_max;
1111 u64 wait_count;
1112 u64 wait_sum;
1113
1114 u64 sleep_start;
1115 u64 sleep_max;
1116 s64 sum_sleep_runtime;
1117
1118 u64 block_start;
1119 u64 block_max;
1120 u64 exec_max;
1121 u64 slice_max;
1122
1123 u64 nr_migrations_cold;
1124 u64 nr_failed_migrations_affine;
1125 u64 nr_failed_migrations_running;
1126 u64 nr_failed_migrations_hot;
1127 u64 nr_forced_migrations;
1128 u64 nr_forced2_migrations;
1129
1130 u64 nr_wakeups;
1131 u64 nr_wakeups_sync;
1132 u64 nr_wakeups_migrate;
1133 u64 nr_wakeups_local;
1134 u64 nr_wakeups_remote;
1135 u64 nr_wakeups_affine;
1136 u64 nr_wakeups_affine_attempts;
1137 u64 nr_wakeups_passive;
1138 u64 nr_wakeups_idle;
1139#endif
1140
1141#ifdef CONFIG_FAIR_GROUP_SCHED
1142 struct sched_entity *parent;
1143 /* rq on which this entity is (to be) queued: */
1144 struct cfs_rq *cfs_rq;
1145 /* rq "owned" by this entity/group: */
1146 struct cfs_rq *my_q;
1147#endif
1148};
1149
1150struct sched_rt_entity {
1151 struct list_head run_list;
1152 unsigned long timeout;
1153 unsigned int time_slice;
1154 int nr_cpus_allowed;
1155
1156 struct sched_rt_entity *back;
1157#ifdef CONFIG_RT_GROUP_SCHED
1158 struct sched_rt_entity *parent;
1159 /* rq on which this entity is (to be) queued: */
1160 struct rt_rq *rt_rq;
1161 /* rq "owned" by this entity/group: */
1162 struct rt_rq *my_q;
1163#endif
1164};
1165
1166struct task_struct {
1167 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1168 void *stack;
1169 atomic_t usage;
1170 unsigned int flags; /* per process flags, defined below */
1171 unsigned int ptrace;
1172
1173 int lock_depth; /* BKL lock depth */
1174
1175#ifdef CONFIG_SMP
1176#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1177 int oncpu;
1178#endif
1179#endif
1180
1181 int prio, static_prio, normal_prio;
1182 unsigned int rt_priority;
1183 const struct sched_class *sched_class;
1184 struct sched_entity se;
1185 struct sched_rt_entity rt;
1186
1187#ifdef CONFIG_PREEMPT_NOTIFIERS
1188 /* list of struct preempt_notifier: */
1189 struct hlist_head preempt_notifiers;
1190#endif
1191
1192 /*
1193 * fpu_counter contains the number of consecutive context switches
1194 * that the FPU is used. If this is over a threshold, the lazy fpu
1195 * saving becomes unlazy to save the trap. This is an unsigned char
1196 * so that after 256 times the counter wraps and the behavior turns
1197 * lazy again; this to deal with bursty apps that only use FPU for
1198 * a short time
1199 */
1200 unsigned char fpu_counter;
1201#ifdef CONFIG_BLK_DEV_IO_TRACE
1202 unsigned int btrace_seq;
1203#endif
1204
1205 unsigned int policy;
1206 cpumask_t cpus_allowed;
1207
1208#ifdef CONFIG_PREEMPT_RCU
1209 int rcu_read_lock_nesting;
1210 int rcu_flipctr_idx;
1211#endif /* #ifdef CONFIG_PREEMPT_RCU */
1212
1213#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1214 struct sched_info sched_info;
1215#endif
1216
1217 struct list_head tasks;
1218 struct plist_node pushable_tasks;
1219
1220 struct mm_struct *mm, *active_mm;
1221
1222/* task state */
1223 struct linux_binfmt *binfmt;
1224 int exit_state;
1225 int exit_code, exit_signal;
1226 int pdeath_signal; /* The signal sent when the parent dies */
1227 /* ??? */
1228 unsigned int personality;
1229 unsigned did_exec:1;
1230 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1231 * execve */
1232 pid_t pid;
1233 pid_t tgid;
1234
1235 /* Canary value for the -fstack-protector gcc feature */
1236 unsigned long stack_canary;
1237
1238 /*
1239 * pointers to (original) parent process, youngest child, younger sibling,
1240 * older sibling, respectively. (p->father can be replaced with
1241 * p->real_parent->pid)
1242 */
1243 struct task_struct *real_parent; /* real parent process */
1244 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1245 /*
1246 * children/sibling forms the list of my natural children
1247 */
1248 struct list_head children; /* list of my children */
1249 struct list_head sibling; /* linkage in my parent's children list */
1250 struct task_struct *group_leader; /* threadgroup leader */
1251
1252 /*
1253 * ptraced is the list of tasks this task is using ptrace on.
1254 * This includes both natural children and PTRACE_ATTACH targets.
1255 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1256 */
1257 struct list_head ptraced;
1258 struct list_head ptrace_entry;
1259
1260 /*
1261 * This is the tracer handle for the ptrace BTS extension.
1262 * This field actually belongs to the ptracer task.
1263 */
1264 struct bts_context *bts;
1265
1266 /* PID/PID hash table linkage. */
1267 struct pid_link pids[PIDTYPE_MAX];
1268 struct list_head thread_group;
1269
1270 struct completion *vfork_done; /* for vfork() */
1271 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1272 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1273
1274 cputime_t utime, stime, utimescaled, stimescaled;
1275 cputime_t gtime;
1276 cputime_t prev_utime, prev_stime;
1277 unsigned long nvcsw, nivcsw; /* context switch counts */
1278 struct timespec start_time; /* monotonic time */
1279 struct timespec real_start_time; /* boot based time */
1280/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1281 unsigned long min_flt, maj_flt;
1282
1283 struct task_cputime cputime_expires;
1284 struct list_head cpu_timers[3];
1285
1286/* process credentials */
1287 const struct cred *real_cred; /* objective and real subjective task
1288 * credentials (COW) */
1289 const struct cred *cred; /* effective (overridable) subjective task
1290 * credentials (COW) */
1291 struct mutex cred_guard_mutex; /* guard against foreign influences on
1292 * credential calculations
1293 * (notably. ptrace) */
1294
1295 char comm[TASK_COMM_LEN]; /* executable name excluding path
1296 - access with [gs]et_task_comm (which lock
1297 it with task_lock())
1298 - initialized normally by flush_old_exec */
1299/* file system info */
1300 int link_count, total_link_count;
1301#ifdef CONFIG_SYSVIPC
1302/* ipc stuff */
1303 struct sysv_sem sysvsem;
1304#endif
1305#ifdef CONFIG_DETECT_HUNG_TASK
1306/* hung task detection */
1307 unsigned long last_switch_count;
1308#endif
1309/* CPU-specific state of this task */
1310 struct thread_struct thread;
1311/* filesystem information */
1312 struct fs_struct *fs;
1313/* open file information */
1314 struct files_struct *files;
1315/* namespaces */
1316 struct nsproxy *nsproxy;
1317/* signal handlers */
1318 struct signal_struct *signal;
1319 struct sighand_struct *sighand;
1320
1321 sigset_t blocked, real_blocked;
1322 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1323 struct sigpending pending;
1324
1325 unsigned long sas_ss_sp;
1326 size_t sas_ss_size;
1327 int (*notifier)(void *priv);
1328 void *notifier_data;
1329 sigset_t *notifier_mask;
1330 struct audit_context *audit_context;
1331#ifdef CONFIG_AUDITSYSCALL
1332 uid_t loginuid;
1333 unsigned int sessionid;
1334#endif
1335 seccomp_t seccomp;
1336
1337/* Thread group tracking */
1338 u32 parent_exec_id;
1339 u32 self_exec_id;
1340/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1341 * mempolicy */
1342 spinlock_t alloc_lock;
1343
1344#ifdef CONFIG_GENERIC_HARDIRQS
1345 /* IRQ handler threads */
1346 struct irqaction *irqaction;
1347#endif
1348
1349 /* Protection of the PI data structures: */
1350 spinlock_t pi_lock;
1351
1352#ifdef CONFIG_RT_MUTEXES
1353 /* PI waiters blocked on a rt_mutex held by this task */
1354 struct plist_head pi_waiters;
1355 /* Deadlock detection and priority inheritance handling */
1356 struct rt_mutex_waiter *pi_blocked_on;
1357#endif
1358
1359#ifdef CONFIG_DEBUG_MUTEXES
1360 /* mutex deadlock detection */
1361 struct mutex_waiter *blocked_on;
1362#endif
1363#ifdef CONFIG_TRACE_IRQFLAGS
1364 unsigned int irq_events;
1365 int hardirqs_enabled;
1366 unsigned long hardirq_enable_ip;
1367 unsigned int hardirq_enable_event;
1368 unsigned long hardirq_disable_ip;
1369 unsigned int hardirq_disable_event;
1370 int softirqs_enabled;
1371 unsigned long softirq_disable_ip;
1372 unsigned int softirq_disable_event;
1373 unsigned long softirq_enable_ip;
1374 unsigned int softirq_enable_event;
1375 int hardirq_context;
1376 int softirq_context;
1377#endif
1378#ifdef CONFIG_LOCKDEP
1379# define MAX_LOCK_DEPTH 48UL
1380 u64 curr_chain_key;
1381 int lockdep_depth;
1382 unsigned int lockdep_recursion;
1383 struct held_lock held_locks[MAX_LOCK_DEPTH];
1384 gfp_t lockdep_reclaim_gfp;
1385#endif
1386
1387/* journalling filesystem info */
1388 void *journal_info;
1389
1390/* stacked block device info */
1391 struct bio *bio_list, **bio_tail;
1392
1393/* VM state */
1394 struct reclaim_state *reclaim_state;
1395
1396 struct backing_dev_info *backing_dev_info;
1397
1398 struct io_context *io_context;
1399
1400 unsigned long ptrace_message;
1401 siginfo_t *last_siginfo; /* For ptrace use. */
1402 struct task_io_accounting ioac;
1403#if defined(CONFIG_TASK_XACCT)
1404 u64 acct_rss_mem1; /* accumulated rss usage */
1405 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1406 cputime_t acct_timexpd; /* stime + utime since last update */
1407#endif
1408#ifdef CONFIG_CPUSETS
1409 nodemask_t mems_allowed; /* Protected by alloc_lock */
1410 int cpuset_mem_spread_rotor;
1411#endif
1412#ifdef CONFIG_CGROUPS
1413 /* Control Group info protected by css_set_lock */
1414 struct css_set *cgroups;
1415 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1416 struct list_head cg_list;
1417#endif
1418#ifdef CONFIG_FUTEX
1419 struct robust_list_head __user *robust_list;
1420#ifdef CONFIG_COMPAT
1421 struct compat_robust_list_head __user *compat_robust_list;
1422#endif
1423 struct list_head pi_state_list;
1424 struct futex_pi_state *pi_state_cache;
1425#endif
1426#ifdef CONFIG_PERF_COUNTERS
1427 struct perf_counter_context *perf_counter_ctxp;
1428 struct mutex perf_counter_mutex;
1429 struct list_head perf_counter_list;
1430#endif
1431#ifdef CONFIG_NUMA
1432 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1433 short il_next;
1434#endif
1435 atomic_t fs_excl; /* holding fs exclusive resources */
1436 struct rcu_head rcu;
1437
1438 /*
1439 * cache last used pipe for splice
1440 */
1441 struct pipe_inode_info *splice_pipe;
1442#ifdef CONFIG_TASK_DELAY_ACCT
1443 struct task_delay_info *delays;
1444#endif
1445#ifdef CONFIG_FAULT_INJECTION
1446 int make_it_fail;
1447#endif
1448 struct prop_local_single dirties;
1449#ifdef CONFIG_LATENCYTOP
1450 int latency_record_count;
1451 struct latency_record latency_record[LT_SAVECOUNT];
1452#endif
1453 /*
1454 * time slack values; these are used to round up poll() and
1455 * select() etc timeout values. These are in nanoseconds.
1456 */
1457 unsigned long timer_slack_ns;
1458 unsigned long default_timer_slack_ns;
1459
1460 struct list_head *scm_work_list;
1461#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1462 /* Index of current stored adress in ret_stack */
1463 int curr_ret_stack;
1464 /* Stack of return addresses for return function tracing */
1465 struct ftrace_ret_stack *ret_stack;
1466 /* time stamp for last schedule */
1467 unsigned long long ftrace_timestamp;
1468 /*
1469 * Number of functions that haven't been traced
1470 * because of depth overrun.
1471 */
1472 atomic_t trace_overrun;
1473 /* Pause for the tracing */
1474 atomic_t tracing_graph_pause;
1475#endif
1476#ifdef CONFIG_TRACING
1477 /* state flags for use by tracers */
1478 unsigned long trace;
1479 /* bitmask of trace recursion */
1480 unsigned long trace_recursion;
1481#endif /* CONFIG_TRACING */
1482};
1483
1484/* Future-safe accessor for struct task_struct's cpus_allowed. */
1485#define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1486
1487/*
1488 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1489 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1490 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1491 * values are inverted: lower p->prio value means higher priority.
1492 *
1493 * The MAX_USER_RT_PRIO value allows the actual maximum
1494 * RT priority to be separate from the value exported to
1495 * user-space. This allows kernel threads to set their
1496 * priority to a value higher than any user task. Note:
1497 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1498 */
1499
1500#define MAX_USER_RT_PRIO 100
1501#define MAX_RT_PRIO MAX_USER_RT_PRIO
1502
1503#define MAX_PRIO (MAX_RT_PRIO + 40)
1504#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1505
1506static inline int rt_prio(int prio)
1507{
1508 if (unlikely(prio < MAX_RT_PRIO))
1509 return 1;
1510 return 0;
1511}
1512
1513static inline int rt_task(struct task_struct *p)
1514{
1515 return rt_prio(p->prio);
1516}
1517
1518static inline struct pid *task_pid(struct task_struct *task)
1519{
1520 return task->pids[PIDTYPE_PID].pid;
1521}
1522
1523static inline struct pid *task_tgid(struct task_struct *task)
1524{
1525 return task->group_leader->pids[PIDTYPE_PID].pid;
1526}
1527
1528/*
1529 * Without tasklist or rcu lock it is not safe to dereference
1530 * the result of task_pgrp/task_session even if task == current,
1531 * we can race with another thread doing sys_setsid/sys_setpgid.
1532 */
1533static inline struct pid *task_pgrp(struct task_struct *task)
1534{
1535 return task->group_leader->pids[PIDTYPE_PGID].pid;
1536}
1537
1538static inline struct pid *task_session(struct task_struct *task)
1539{
1540 return task->group_leader->pids[PIDTYPE_SID].pid;
1541}
1542
1543struct pid_namespace;
1544
1545/*
1546 * the helpers to get the task's different pids as they are seen
1547 * from various namespaces
1548 *
1549 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1550 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1551 * current.
1552 * task_xid_nr_ns() : id seen from the ns specified;
1553 *
1554 * set_task_vxid() : assigns a virtual id to a task;
1555 *
1556 * see also pid_nr() etc in include/linux/pid.h
1557 */
1558pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1559 struct pid_namespace *ns);
1560
1561static inline pid_t task_pid_nr(struct task_struct *tsk)
1562{
1563 return tsk->pid;
1564}
1565
1566static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1567 struct pid_namespace *ns)
1568{
1569 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1570}
1571
1572static inline pid_t task_pid_vnr(struct task_struct *tsk)
1573{
1574 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1575}
1576
1577
1578static inline pid_t task_tgid_nr(struct task_struct *tsk)
1579{
1580 return tsk->tgid;
1581}
1582
1583pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1584
1585static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1586{
1587 return pid_vnr(task_tgid(tsk));
1588}
1589
1590
1591static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1592 struct pid_namespace *ns)
1593{
1594 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1595}
1596
1597static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1598{
1599 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1600}
1601
1602
1603static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1604 struct pid_namespace *ns)
1605{
1606 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1607}
1608
1609static inline pid_t task_session_vnr(struct task_struct *tsk)
1610{
1611 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1612}
1613
1614/* obsolete, do not use */
1615static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1616{
1617 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1618}
1619
1620/**
1621 * pid_alive - check that a task structure is not stale
1622 * @p: Task structure to be checked.
1623 *
1624 * Test if a process is not yet dead (at most zombie state)
1625 * If pid_alive fails, then pointers within the task structure
1626 * can be stale and must not be dereferenced.
1627 */
1628static inline int pid_alive(struct task_struct *p)
1629{
1630 return p->pids[PIDTYPE_PID].pid != NULL;
1631}
1632
1633/**
1634 * is_global_init - check if a task structure is init
1635 * @tsk: Task structure to be checked.
1636 *
1637 * Check if a task structure is the first user space task the kernel created.
1638 */
1639static inline int is_global_init(struct task_struct *tsk)
1640{
1641 return tsk->pid == 1;
1642}
1643
1644/*
1645 * is_container_init:
1646 * check whether in the task is init in its own pid namespace.
1647 */
1648extern int is_container_init(struct task_struct *tsk);
1649
1650extern struct pid *cad_pid;
1651
1652extern void free_task(struct task_struct *tsk);
1653#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1654
1655extern void __put_task_struct(struct task_struct *t);
1656
1657static inline void put_task_struct(struct task_struct *t)
1658{
1659 if (atomic_dec_and_test(&t->usage))
1660 __put_task_struct(t);
1661}
1662
1663extern cputime_t task_utime(struct task_struct *p);
1664extern cputime_t task_stime(struct task_struct *p);
1665extern cputime_t task_gtime(struct task_struct *p);
1666
1667/*
1668 * Per process flags
1669 */
1670#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1671 /* Not implemented yet, only for 486*/
1672#define PF_STARTING 0x00000002 /* being created */
1673#define PF_EXITING 0x00000004 /* getting shut down */
1674#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1675#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1676#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1677#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1678#define PF_DUMPCORE 0x00000200 /* dumped core */
1679#define PF_SIGNALED 0x00000400 /* killed by a signal */
1680#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1681#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1682#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1683#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1684#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1685#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1686#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1687#define PF_KSWAPD 0x00040000 /* I am kswapd */
1688#define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1689#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1690#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1691#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1692#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1693#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1694#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1695#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1696#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1697#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1698#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1699#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1700
1701/*
1702 * Only the _current_ task can read/write to tsk->flags, but other
1703 * tasks can access tsk->flags in readonly mode for example
1704 * with tsk_used_math (like during threaded core dumping).
1705 * There is however an exception to this rule during ptrace
1706 * or during fork: the ptracer task is allowed to write to the
1707 * child->flags of its traced child (same goes for fork, the parent
1708 * can write to the child->flags), because we're guaranteed the
1709 * child is not running and in turn not changing child->flags
1710 * at the same time the parent does it.
1711 */
1712#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1713#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1714#define clear_used_math() clear_stopped_child_used_math(current)
1715#define set_used_math() set_stopped_child_used_math(current)
1716#define conditional_stopped_child_used_math(condition, child) \
1717 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1718#define conditional_used_math(condition) \
1719 conditional_stopped_child_used_math(condition, current)
1720#define copy_to_stopped_child_used_math(child) \
1721 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1722/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1723#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1724#define used_math() tsk_used_math(current)
1725
1726#ifdef CONFIG_SMP
1727extern int set_cpus_allowed_ptr(struct task_struct *p,
1728 const struct cpumask *new_mask);
1729#else
1730static inline int set_cpus_allowed_ptr(struct task_struct *p,
1731 const struct cpumask *new_mask)
1732{
1733 if (!cpumask_test_cpu(0, new_mask))
1734 return -EINVAL;
1735 return 0;
1736}
1737#endif
1738static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1739{
1740 return set_cpus_allowed_ptr(p, &new_mask);
1741}
1742
1743/*
1744 * Architectures can set this to 1 if they have specified
1745 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1746 * but then during bootup it turns out that sched_clock()
1747 * is reliable after all:
1748 */
1749#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1750extern int sched_clock_stable;
1751#endif
1752
1753extern unsigned long long sched_clock(void);
1754
1755extern void sched_clock_init(void);
1756extern u64 sched_clock_cpu(int cpu);
1757
1758#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1759static inline void sched_clock_tick(void)
1760{
1761}
1762
1763static inline void sched_clock_idle_sleep_event(void)
1764{
1765}
1766
1767static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1768{
1769}
1770#else
1771extern void sched_clock_tick(void);
1772extern void sched_clock_idle_sleep_event(void);
1773extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1774#endif
1775
1776/*
1777 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1778 * clock constructed from sched_clock():
1779 */
1780extern unsigned long long cpu_clock(int cpu);
1781
1782extern unsigned long long
1783task_sched_runtime(struct task_struct *task);
1784extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1785
1786/* sched_exec is called by processes performing an exec */
1787#ifdef CONFIG_SMP
1788extern void sched_exec(void);
1789#else
1790#define sched_exec() {}
1791#endif
1792
1793extern void sched_clock_idle_sleep_event(void);
1794extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1795
1796#ifdef CONFIG_HOTPLUG_CPU
1797extern void idle_task_exit(void);
1798#else
1799static inline void idle_task_exit(void) {}
1800#endif
1801
1802extern void sched_idle_next(void);
1803
1804#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1805extern void wake_up_idle_cpu(int cpu);
1806#else
1807static inline void wake_up_idle_cpu(int cpu) { }
1808#endif
1809
1810extern unsigned int sysctl_sched_latency;
1811extern unsigned int sysctl_sched_min_granularity;
1812extern unsigned int sysctl_sched_wakeup_granularity;
1813extern unsigned int sysctl_sched_shares_ratelimit;
1814extern unsigned int sysctl_sched_shares_thresh;
1815#ifdef CONFIG_SCHED_DEBUG
1816extern unsigned int sysctl_sched_child_runs_first;
1817extern unsigned int sysctl_sched_features;
1818extern unsigned int sysctl_sched_migration_cost;
1819extern unsigned int sysctl_sched_nr_migrate;
1820extern unsigned int sysctl_timer_migration;
1821
1822int sched_nr_latency_handler(struct ctl_table *table, int write,
1823 struct file *file, void __user *buffer, size_t *length,
1824 loff_t *ppos);
1825#endif
1826#ifdef CONFIG_SCHED_DEBUG
1827static inline unsigned int get_sysctl_timer_migration(void)
1828{
1829 return sysctl_timer_migration;
1830}
1831#else
1832static inline unsigned int get_sysctl_timer_migration(void)
1833{
1834 return 1;
1835}
1836#endif
1837extern unsigned int sysctl_sched_rt_period;
1838extern int sysctl_sched_rt_runtime;
1839
1840int sched_rt_handler(struct ctl_table *table, int write,
1841 struct file *filp, void __user *buffer, size_t *lenp,
1842 loff_t *ppos);
1843
1844extern unsigned int sysctl_sched_compat_yield;
1845
1846#ifdef CONFIG_RT_MUTEXES
1847extern int rt_mutex_getprio(struct task_struct *p);
1848extern void rt_mutex_setprio(struct task_struct *p, int prio);
1849extern void rt_mutex_adjust_pi(struct task_struct *p);
1850#else
1851static inline int rt_mutex_getprio(struct task_struct *p)
1852{
1853 return p->normal_prio;
1854}
1855# define rt_mutex_adjust_pi(p) do { } while (0)
1856#endif
1857
1858extern void set_user_nice(struct task_struct *p, long nice);
1859extern int task_prio(const struct task_struct *p);
1860extern int task_nice(const struct task_struct *p);
1861extern int can_nice(const struct task_struct *p, const int nice);
1862extern int task_curr(const struct task_struct *p);
1863extern int idle_cpu(int cpu);
1864extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1865extern int sched_setscheduler_nocheck(struct task_struct *, int,
1866 struct sched_param *);
1867extern struct task_struct *idle_task(int cpu);
1868extern struct task_struct *curr_task(int cpu);
1869extern void set_curr_task(int cpu, struct task_struct *p);
1870
1871void yield(void);
1872
1873/*
1874 * The default (Linux) execution domain.
1875 */
1876extern struct exec_domain default_exec_domain;
1877
1878union thread_union {
1879 struct thread_info thread_info;
1880 unsigned long stack[THREAD_SIZE/sizeof(long)];
1881};
1882
1883#ifndef __HAVE_ARCH_KSTACK_END
1884static inline int kstack_end(void *addr)
1885{
1886 /* Reliable end of stack detection:
1887 * Some APM bios versions misalign the stack
1888 */
1889 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1890}
1891#endif
1892
1893extern union thread_union init_thread_union;
1894extern struct task_struct init_task;
1895
1896extern struct mm_struct init_mm;
1897
1898extern struct pid_namespace init_pid_ns;
1899
1900/*
1901 * find a task by one of its numerical ids
1902 *
1903 * find_task_by_pid_ns():
1904 * finds a task by its pid in the specified namespace
1905 * find_task_by_vpid():
1906 * finds a task by its virtual pid
1907 *
1908 * see also find_vpid() etc in include/linux/pid.h
1909 */
1910
1911extern struct task_struct *find_task_by_vpid(pid_t nr);
1912extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1913 struct pid_namespace *ns);
1914
1915extern void __set_special_pids(struct pid *pid);
1916
1917/* per-UID process charging. */
1918extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1919static inline struct user_struct *get_uid(struct user_struct *u)
1920{
1921 atomic_inc(&u->__count);
1922 return u;
1923}
1924extern void free_uid(struct user_struct *);
1925extern void release_uids(struct user_namespace *ns);
1926
1927#include <asm/current.h>
1928
1929extern void do_timer(unsigned long ticks);
1930
1931extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1932extern int wake_up_process(struct task_struct *tsk);
1933extern void wake_up_new_task(struct task_struct *tsk,
1934 unsigned long clone_flags);
1935#ifdef CONFIG_SMP
1936 extern void kick_process(struct task_struct *tsk);
1937#else
1938 static inline void kick_process(struct task_struct *tsk) { }
1939#endif
1940extern void sched_fork(struct task_struct *p, int clone_flags);
1941extern void sched_dead(struct task_struct *p);
1942
1943extern void proc_caches_init(void);
1944extern void flush_signals(struct task_struct *);
1945extern void __flush_signals(struct task_struct *);
1946extern void ignore_signals(struct task_struct *);
1947extern void flush_signal_handlers(struct task_struct *, int force_default);
1948extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1949
1950static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1951{
1952 unsigned long flags;
1953 int ret;
1954
1955 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1956 ret = dequeue_signal(tsk, mask, info);
1957 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1958
1959 return ret;
1960}
1961
1962extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1963 sigset_t *mask);
1964extern void unblock_all_signals(void);
1965extern void release_task(struct task_struct * p);
1966extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1967extern int force_sigsegv(int, struct task_struct *);
1968extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1969extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1970extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1971extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1972extern int kill_pgrp(struct pid *pid, int sig, int priv);
1973extern int kill_pid(struct pid *pid, int sig, int priv);
1974extern int kill_proc_info(int, struct siginfo *, pid_t);
1975extern int do_notify_parent(struct task_struct *, int);
1976extern void force_sig(int, struct task_struct *);
1977extern void force_sig_specific(int, struct task_struct *);
1978extern int send_sig(int, struct task_struct *, int);
1979extern void zap_other_threads(struct task_struct *p);
1980extern struct sigqueue *sigqueue_alloc(void);
1981extern void sigqueue_free(struct sigqueue *);
1982extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1983extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1984extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1985
1986static inline int kill_cad_pid(int sig, int priv)
1987{
1988 return kill_pid(cad_pid, sig, priv);
1989}
1990
1991/* These can be the second arg to send_sig_info/send_group_sig_info. */
1992#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1993#define SEND_SIG_PRIV ((struct siginfo *) 1)
1994#define SEND_SIG_FORCED ((struct siginfo *) 2)
1995
1996static inline int is_si_special(const struct siginfo *info)
1997{
1998 return info <= SEND_SIG_FORCED;
1999}
2000
2001/* True if we are on the alternate signal stack. */
2002
2003static inline int on_sig_stack(unsigned long sp)
2004{
2005 return (sp - current->sas_ss_sp < current->sas_ss_size);
2006}
2007
2008static inline int sas_ss_flags(unsigned long sp)
2009{
2010 return (current->sas_ss_size == 0 ? SS_DISABLE
2011 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2012}
2013
2014/*
2015 * Routines for handling mm_structs
2016 */
2017extern struct mm_struct * mm_alloc(void);
2018
2019/* mmdrop drops the mm and the page tables */
2020extern void __mmdrop(struct mm_struct *);
2021static inline void mmdrop(struct mm_struct * mm)
2022{
2023 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2024 __mmdrop(mm);
2025}
2026
2027/* mmput gets rid of the mappings and all user-space */
2028extern void mmput(struct mm_struct *);
2029/* Grab a reference to a task's mm, if it is not already going away */
2030extern struct mm_struct *get_task_mm(struct task_struct *task);
2031/* Remove the current tasks stale references to the old mm_struct */
2032extern void mm_release(struct task_struct *, struct mm_struct *);
2033/* Allocate a new mm structure and copy contents from tsk->mm */
2034extern struct mm_struct *dup_mm(struct task_struct *tsk);
2035
2036extern int copy_thread(unsigned long, unsigned long, unsigned long,
2037 struct task_struct *, struct pt_regs *);
2038extern void flush_thread(void);
2039extern void exit_thread(void);
2040
2041extern void exit_files(struct task_struct *);
2042extern void __cleanup_signal(struct signal_struct *);
2043extern void __cleanup_sighand(struct sighand_struct *);
2044
2045extern void exit_itimers(struct signal_struct *);
2046extern void flush_itimer_signals(void);
2047
2048extern NORET_TYPE void do_group_exit(int);
2049
2050extern void daemonize(const char *, ...);
2051extern int allow_signal(int);
2052extern int disallow_signal(int);
2053
2054extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2055extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2056struct task_struct *fork_idle(int);
2057
2058extern void set_task_comm(struct task_struct *tsk, char *from);
2059extern char *get_task_comm(char *to, struct task_struct *tsk);
2060
2061#ifdef CONFIG_SMP
2062extern void wait_task_context_switch(struct task_struct *p);
2063extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2064#else
2065static inline void wait_task_context_switch(struct task_struct *p) {}
2066static inline unsigned long wait_task_inactive(struct task_struct *p,
2067 long match_state)
2068{
2069 return 1;
2070}
2071#endif
2072
2073#define next_task(p) \
2074 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2075
2076#define for_each_process(p) \
2077 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2078
2079extern bool is_single_threaded(struct task_struct *);
2080
2081/*
2082 * Careful: do_each_thread/while_each_thread is a double loop so
2083 * 'break' will not work as expected - use goto instead.
2084 */
2085#define do_each_thread(g, t) \
2086 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2087
2088#define while_each_thread(g, t) \
2089 while ((t = next_thread(t)) != g)
2090
2091/* de_thread depends on thread_group_leader not being a pid based check */
2092#define thread_group_leader(p) (p == p->group_leader)
2093
2094/* Do to the insanities of de_thread it is possible for a process
2095 * to have the pid of the thread group leader without actually being
2096 * the thread group leader. For iteration through the pids in proc
2097 * all we care about is that we have a task with the appropriate
2098 * pid, we don't actually care if we have the right task.
2099 */
2100static inline int has_group_leader_pid(struct task_struct *p)
2101{
2102 return p->pid == p->tgid;
2103}
2104
2105static inline
2106int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2107{
2108 return p1->tgid == p2->tgid;
2109}
2110
2111static inline struct task_struct *next_thread(const struct task_struct *p)
2112{
2113 return list_entry_rcu(p->thread_group.next,
2114 struct task_struct, thread_group);
2115}
2116
2117static inline int thread_group_empty(struct task_struct *p)
2118{
2119 return list_empty(&p->thread_group);
2120}
2121
2122#define delay_group_leader(p) \
2123 (thread_group_leader(p) && !thread_group_empty(p))
2124
2125static inline int task_detached(struct task_struct *p)
2126{
2127 return p->exit_signal == -1;
2128}
2129
2130/*
2131 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2132 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2133 * pins the final release of task.io_context. Also protects ->cpuset and
2134 * ->cgroup.subsys[].
2135 *
2136 * Nests both inside and outside of read_lock(&tasklist_lock).
2137 * It must not be nested with write_lock_irq(&tasklist_lock),
2138 * neither inside nor outside.
2139 */
2140static inline void task_lock(struct task_struct *p)
2141{
2142 spin_lock(&p->alloc_lock);
2143}
2144
2145static inline void task_unlock(struct task_struct *p)
2146{
2147 spin_unlock(&p->alloc_lock);
2148}
2149
2150extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2151 unsigned long *flags);
2152
2153static inline void unlock_task_sighand(struct task_struct *tsk,
2154 unsigned long *flags)
2155{
2156 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2157}
2158
2159#ifndef __HAVE_THREAD_FUNCTIONS
2160
2161#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2162#define task_stack_page(task) ((task)->stack)
2163
2164static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2165{
2166 *task_thread_info(p) = *task_thread_info(org);
2167 task_thread_info(p)->task = p;
2168}
2169
2170static inline unsigned long *end_of_stack(struct task_struct *p)
2171{
2172 return (unsigned long *)(task_thread_info(p) + 1);
2173}
2174
2175#endif
2176
2177static inline int object_is_on_stack(void *obj)
2178{
2179 void *stack = task_stack_page(current);
2180
2181 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2182}
2183
2184extern void thread_info_cache_init(void);
2185
2186#ifdef CONFIG_DEBUG_STACK_USAGE
2187static inline unsigned long stack_not_used(struct task_struct *p)
2188{
2189 unsigned long *n = end_of_stack(p);
2190
2191 do { /* Skip over canary */
2192 n++;
2193 } while (!*n);
2194
2195 return (unsigned long)n - (unsigned long)end_of_stack(p);
2196}
2197#endif
2198
2199/* set thread flags in other task's structures
2200 * - see asm/thread_info.h for TIF_xxxx flags available
2201 */
2202static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2203{
2204 set_ti_thread_flag(task_thread_info(tsk), flag);
2205}
2206
2207static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2208{
2209 clear_ti_thread_flag(task_thread_info(tsk), flag);
2210}
2211
2212static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2213{
2214 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2215}
2216
2217static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2218{
2219 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2220}
2221
2222static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2223{
2224 return test_ti_thread_flag(task_thread_info(tsk), flag);
2225}
2226
2227static inline void set_tsk_need_resched(struct task_struct *tsk)
2228{
2229 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2230}
2231
2232static inline void clear_tsk_need_resched(struct task_struct *tsk)
2233{
2234 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2235}
2236
2237static inline int test_tsk_need_resched(struct task_struct *tsk)
2238{
2239 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2240}
2241
2242static inline int restart_syscall(void)
2243{
2244 set_tsk_thread_flag(current, TIF_SIGPENDING);
2245 return -ERESTARTNOINTR;
2246}
2247
2248static inline int signal_pending(struct task_struct *p)
2249{
2250 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2251}
2252
2253extern int __fatal_signal_pending(struct task_struct *p);
2254
2255static inline int fatal_signal_pending(struct task_struct *p)
2256{
2257 return signal_pending(p) && __fatal_signal_pending(p);
2258}
2259
2260static inline int signal_pending_state(long state, struct task_struct *p)
2261{
2262 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2263 return 0;
2264 if (!signal_pending(p))
2265 return 0;
2266
2267 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2268}
2269
2270static inline int need_resched(void)
2271{
2272 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2273}
2274
2275/*
2276 * cond_resched() and cond_resched_lock(): latency reduction via
2277 * explicit rescheduling in places that are safe. The return
2278 * value indicates whether a reschedule was done in fact.
2279 * cond_resched_lock() will drop the spinlock before scheduling,
2280 * cond_resched_softirq() will enable bhs before scheduling.
2281 */
2282extern int _cond_resched(void);
2283#ifdef CONFIG_PREEMPT_BKL
2284static inline int cond_resched(void)
2285{
2286 return 0;
2287}
2288#else
2289static inline int cond_resched(void)
2290{
2291 return _cond_resched();
2292}
2293#endif
2294extern int cond_resched_lock(spinlock_t * lock);
2295extern int cond_resched_softirq(void);
2296static inline int cond_resched_bkl(void)
2297{
2298 return _cond_resched();
2299}
2300
2301/*
2302 * Does a critical section need to be broken due to another
2303 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2304 * but a general need for low latency)
2305 */
2306static inline int spin_needbreak(spinlock_t *lock)
2307{
2308#ifdef CONFIG_PREEMPT
2309 return spin_is_contended(lock);
2310#else
2311 return 0;
2312#endif
2313}
2314
2315/*
2316 * Thread group CPU time accounting.
2317 */
2318void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2319void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2320
2321static inline void thread_group_cputime_init(struct signal_struct *sig)
2322{
2323 sig->cputimer.cputime = INIT_CPUTIME;
2324 spin_lock_init(&sig->cputimer.lock);
2325 sig->cputimer.running = 0;
2326}
2327
2328static inline void thread_group_cputime_free(struct signal_struct *sig)
2329{
2330}
2331
2332/*
2333 * Reevaluate whether the task has signals pending delivery.
2334 * Wake the task if so.
2335 * This is required every time the blocked sigset_t changes.
2336 * callers must hold sighand->siglock.
2337 */
2338extern void recalc_sigpending_and_wake(struct task_struct *t);
2339extern void recalc_sigpending(void);
2340
2341extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2342
2343/*
2344 * Wrappers for p->thread_info->cpu access. No-op on UP.
2345 */
2346#ifdef CONFIG_SMP
2347
2348static inline unsigned int task_cpu(const struct task_struct *p)
2349{
2350 return task_thread_info(p)->cpu;
2351}
2352
2353extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2354
2355#else
2356
2357static inline unsigned int task_cpu(const struct task_struct *p)
2358{
2359 return 0;
2360}
2361
2362static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2363{
2364}
2365
2366#endif /* CONFIG_SMP */
2367
2368extern void arch_pick_mmap_layout(struct mm_struct *mm);
2369
2370#ifdef CONFIG_TRACING
2371extern void
2372__trace_special(void *__tr, void *__data,
2373 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2374#else
2375static inline void
2376__trace_special(void *__tr, void *__data,
2377 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2378{
2379}
2380#endif
2381
2382extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2383extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2384
2385extern void normalize_rt_tasks(void);
2386
2387#ifdef CONFIG_GROUP_SCHED
2388
2389extern struct task_group init_task_group;
2390#ifdef CONFIG_USER_SCHED
2391extern struct task_group root_task_group;
2392extern void set_tg_uid(struct user_struct *user);
2393#endif
2394
2395extern struct task_group *sched_create_group(struct task_group *parent);
2396extern void sched_destroy_group(struct task_group *tg);
2397extern void sched_move_task(struct task_struct *tsk);
2398#ifdef CONFIG_FAIR_GROUP_SCHED
2399extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2400extern unsigned long sched_group_shares(struct task_group *tg);
2401#endif
2402#ifdef CONFIG_RT_GROUP_SCHED
2403extern int sched_group_set_rt_runtime(struct task_group *tg,
2404 long rt_runtime_us);
2405extern long sched_group_rt_runtime(struct task_group *tg);
2406extern int sched_group_set_rt_period(struct task_group *tg,
2407 long rt_period_us);
2408extern long sched_group_rt_period(struct task_group *tg);
2409extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2410#endif
2411#endif
2412
2413extern int task_can_switch_user(struct user_struct *up,
2414 struct task_struct *tsk);
2415
2416#ifdef CONFIG_TASK_XACCT
2417static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2418{
2419 tsk->ioac.rchar += amt;
2420}
2421
2422static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2423{
2424 tsk->ioac.wchar += amt;
2425}
2426
2427static inline void inc_syscr(struct task_struct *tsk)
2428{
2429 tsk->ioac.syscr++;
2430}
2431
2432static inline void inc_syscw(struct task_struct *tsk)
2433{
2434 tsk->ioac.syscw++;
2435}
2436#else
2437static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2438{
2439}
2440
2441static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2442{
2443}
2444
2445static inline void inc_syscr(struct task_struct *tsk)
2446{
2447}
2448
2449static inline void inc_syscw(struct task_struct *tsk)
2450{
2451}
2452#endif
2453
2454#ifndef TASK_SIZE_OF
2455#define TASK_SIZE_OF(tsk) TASK_SIZE
2456#endif
2457
2458/*
2459 * Call the function if the target task is executing on a CPU right now:
2460 */
2461extern void task_oncpu_function_call(struct task_struct *p,
2462 void (*func) (void *info), void *info);
2463
2464
2465#ifdef CONFIG_MM_OWNER
2466extern void mm_update_next_owner(struct mm_struct *mm);
2467extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2468#else
2469static inline void mm_update_next_owner(struct mm_struct *mm)
2470{
2471}
2472
2473static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2474{
2475}
2476#endif /* CONFIG_MM_OWNER */
2477
2478#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2479
2480#endif /* __KERNEL__ */
2481
2482#endif