Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15
16struct mempolicy;
17struct anon_vma;
18struct file_ra_state;
19struct user_struct;
20struct writeback_control;
21struct rlimit;
22
23#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24extern unsigned long max_mapnr;
25#endif
26
27extern unsigned long num_physpages;
28extern void * high_memory;
29extern int page_cluster;
30
31#ifdef CONFIG_SYSCTL
32extern int sysctl_legacy_va_layout;
33#else
34#define sysctl_legacy_va_layout 0
35#endif
36
37extern unsigned long mmap_min_addr;
38
39#include <asm/page.h>
40#include <asm/pgtable.h>
41#include <asm/processor.h>
42
43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
45/* to align the pointer to the (next) page boundary */
46#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
47
48/*
49 * Linux kernel virtual memory manager primitives.
50 * The idea being to have a "virtual" mm in the same way
51 * we have a virtual fs - giving a cleaner interface to the
52 * mm details, and allowing different kinds of memory mappings
53 * (from shared memory to executable loading to arbitrary
54 * mmap() functions).
55 */
56
57extern struct kmem_cache *vm_area_cachep;
58
59#ifndef CONFIG_MMU
60extern struct rb_root nommu_region_tree;
61extern struct rw_semaphore nommu_region_sem;
62
63extern unsigned int kobjsize(const void *objp);
64#endif
65
66/*
67 * vm_flags in vm_area_struct, see mm_types.h.
68 */
69#define VM_READ 0x00000001 /* currently active flags */
70#define VM_WRITE 0x00000002
71#define VM_EXEC 0x00000004
72#define VM_SHARED 0x00000008
73
74/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
75#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
76#define VM_MAYWRITE 0x00000020
77#define VM_MAYEXEC 0x00000040
78#define VM_MAYSHARE 0x00000080
79
80#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
81#define VM_GROWSUP 0x00000200
82#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
83#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
84
85#define VM_EXECUTABLE 0x00001000
86#define VM_LOCKED 0x00002000
87#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
88
89 /* Used by sys_madvise() */
90#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
91#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
92
93#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
94#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
95#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
96#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
97#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
98#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
99#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
100#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
101#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
102#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
103
104#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
105#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
106#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
107#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
108
109#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
110#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
111#endif
112
113#ifdef CONFIG_STACK_GROWSUP
114#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
115#else
116#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117#endif
118
119#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
120#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
121#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
122#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
123#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
124
125/*
126 * special vmas that are non-mergable, non-mlock()able
127 */
128#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
129
130/*
131 * mapping from the currently active vm_flags protection bits (the
132 * low four bits) to a page protection mask..
133 */
134extern pgprot_t protection_map[16];
135
136#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
137#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
138#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
139
140/*
141 * This interface is used by x86 PAT code to identify a pfn mapping that is
142 * linear over entire vma. This is to optimize PAT code that deals with
143 * marking the physical region with a particular prot. This is not for generic
144 * mm use. Note also that this check will not work if the pfn mapping is
145 * linear for a vma starting at physical address 0. In which case PAT code
146 * falls back to slow path of reserving physical range page by page.
147 */
148static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
149{
150 return (vma->vm_flags & VM_PFN_AT_MMAP);
151}
152
153static inline int is_pfn_mapping(struct vm_area_struct *vma)
154{
155 return (vma->vm_flags & VM_PFNMAP);
156}
157
158/*
159 * vm_fault is filled by the the pagefault handler and passed to the vma's
160 * ->fault function. The vma's ->fault is responsible for returning a bitmask
161 * of VM_FAULT_xxx flags that give details about how the fault was handled.
162 *
163 * pgoff should be used in favour of virtual_address, if possible. If pgoff
164 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
165 * mapping support.
166 */
167struct vm_fault {
168 unsigned int flags; /* FAULT_FLAG_xxx flags */
169 pgoff_t pgoff; /* Logical page offset based on vma */
170 void __user *virtual_address; /* Faulting virtual address */
171
172 struct page *page; /* ->fault handlers should return a
173 * page here, unless VM_FAULT_NOPAGE
174 * is set (which is also implied by
175 * VM_FAULT_ERROR).
176 */
177};
178
179/*
180 * These are the virtual MM functions - opening of an area, closing and
181 * unmapping it (needed to keep files on disk up-to-date etc), pointer
182 * to the functions called when a no-page or a wp-page exception occurs.
183 */
184struct vm_operations_struct {
185 void (*open)(struct vm_area_struct * area);
186 void (*close)(struct vm_area_struct * area);
187 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
188
189 /* notification that a previously read-only page is about to become
190 * writable, if an error is returned it will cause a SIGBUS */
191 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
192
193 /* called by access_process_vm when get_user_pages() fails, typically
194 * for use by special VMAs that can switch between memory and hardware
195 */
196 int (*access)(struct vm_area_struct *vma, unsigned long addr,
197 void *buf, int len, int write);
198#ifdef CONFIG_NUMA
199 /*
200 * set_policy() op must add a reference to any non-NULL @new mempolicy
201 * to hold the policy upon return. Caller should pass NULL @new to
202 * remove a policy and fall back to surrounding context--i.e. do not
203 * install a MPOL_DEFAULT policy, nor the task or system default
204 * mempolicy.
205 */
206 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
207
208 /*
209 * get_policy() op must add reference [mpol_get()] to any policy at
210 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
211 * in mm/mempolicy.c will do this automatically.
212 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
213 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
214 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
215 * must return NULL--i.e., do not "fallback" to task or system default
216 * policy.
217 */
218 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
219 unsigned long addr);
220 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
221 const nodemask_t *to, unsigned long flags);
222#endif
223};
224
225struct mmu_gather;
226struct inode;
227
228#define page_private(page) ((page)->private)
229#define set_page_private(page, v) ((page)->private = (v))
230
231/*
232 * FIXME: take this include out, include page-flags.h in
233 * files which need it (119 of them)
234 */
235#include <linux/page-flags.h>
236
237/*
238 * Methods to modify the page usage count.
239 *
240 * What counts for a page usage:
241 * - cache mapping (page->mapping)
242 * - private data (page->private)
243 * - page mapped in a task's page tables, each mapping
244 * is counted separately
245 *
246 * Also, many kernel routines increase the page count before a critical
247 * routine so they can be sure the page doesn't go away from under them.
248 */
249
250/*
251 * Drop a ref, return true if the refcount fell to zero (the page has no users)
252 */
253static inline int put_page_testzero(struct page *page)
254{
255 VM_BUG_ON(atomic_read(&page->_count) == 0);
256 return atomic_dec_and_test(&page->_count);
257}
258
259/*
260 * Try to grab a ref unless the page has a refcount of zero, return false if
261 * that is the case.
262 */
263static inline int get_page_unless_zero(struct page *page)
264{
265 return atomic_inc_not_zero(&page->_count);
266}
267
268/* Support for virtually mapped pages */
269struct page *vmalloc_to_page(const void *addr);
270unsigned long vmalloc_to_pfn(const void *addr);
271
272/*
273 * Determine if an address is within the vmalloc range
274 *
275 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
276 * is no special casing required.
277 */
278static inline int is_vmalloc_addr(const void *x)
279{
280#ifdef CONFIG_MMU
281 unsigned long addr = (unsigned long)x;
282
283 return addr >= VMALLOC_START && addr < VMALLOC_END;
284#else
285 return 0;
286#endif
287}
288
289static inline struct page *compound_head(struct page *page)
290{
291 if (unlikely(PageTail(page)))
292 return page->first_page;
293 return page;
294}
295
296static inline int page_count(struct page *page)
297{
298 return atomic_read(&compound_head(page)->_count);
299}
300
301static inline void get_page(struct page *page)
302{
303 page = compound_head(page);
304 VM_BUG_ON(atomic_read(&page->_count) == 0);
305 atomic_inc(&page->_count);
306}
307
308static inline struct page *virt_to_head_page(const void *x)
309{
310 struct page *page = virt_to_page(x);
311 return compound_head(page);
312}
313
314/*
315 * Setup the page count before being freed into the page allocator for
316 * the first time (boot or memory hotplug)
317 */
318static inline void init_page_count(struct page *page)
319{
320 atomic_set(&page->_count, 1);
321}
322
323void put_page(struct page *page);
324void put_pages_list(struct list_head *pages);
325
326void split_page(struct page *page, unsigned int order);
327
328/*
329 * Compound pages have a destructor function. Provide a
330 * prototype for that function and accessor functions.
331 * These are _only_ valid on the head of a PG_compound page.
332 */
333typedef void compound_page_dtor(struct page *);
334
335static inline void set_compound_page_dtor(struct page *page,
336 compound_page_dtor *dtor)
337{
338 page[1].lru.next = (void *)dtor;
339}
340
341static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
342{
343 return (compound_page_dtor *)page[1].lru.next;
344}
345
346static inline int compound_order(struct page *page)
347{
348 if (!PageHead(page))
349 return 0;
350 return (unsigned long)page[1].lru.prev;
351}
352
353static inline void set_compound_order(struct page *page, unsigned long order)
354{
355 page[1].lru.prev = (void *)order;
356}
357
358/*
359 * Multiple processes may "see" the same page. E.g. for untouched
360 * mappings of /dev/null, all processes see the same page full of
361 * zeroes, and text pages of executables and shared libraries have
362 * only one copy in memory, at most, normally.
363 *
364 * For the non-reserved pages, page_count(page) denotes a reference count.
365 * page_count() == 0 means the page is free. page->lru is then used for
366 * freelist management in the buddy allocator.
367 * page_count() > 0 means the page has been allocated.
368 *
369 * Pages are allocated by the slab allocator in order to provide memory
370 * to kmalloc and kmem_cache_alloc. In this case, the management of the
371 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
372 * unless a particular usage is carefully commented. (the responsibility of
373 * freeing the kmalloc memory is the caller's, of course).
374 *
375 * A page may be used by anyone else who does a __get_free_page().
376 * In this case, page_count still tracks the references, and should only
377 * be used through the normal accessor functions. The top bits of page->flags
378 * and page->virtual store page management information, but all other fields
379 * are unused and could be used privately, carefully. The management of this
380 * page is the responsibility of the one who allocated it, and those who have
381 * subsequently been given references to it.
382 *
383 * The other pages (we may call them "pagecache pages") are completely
384 * managed by the Linux memory manager: I/O, buffers, swapping etc.
385 * The following discussion applies only to them.
386 *
387 * A pagecache page contains an opaque `private' member, which belongs to the
388 * page's address_space. Usually, this is the address of a circular list of
389 * the page's disk buffers. PG_private must be set to tell the VM to call
390 * into the filesystem to release these pages.
391 *
392 * A page may belong to an inode's memory mapping. In this case, page->mapping
393 * is the pointer to the inode, and page->index is the file offset of the page,
394 * in units of PAGE_CACHE_SIZE.
395 *
396 * If pagecache pages are not associated with an inode, they are said to be
397 * anonymous pages. These may become associated with the swapcache, and in that
398 * case PG_swapcache is set, and page->private is an offset into the swapcache.
399 *
400 * In either case (swapcache or inode backed), the pagecache itself holds one
401 * reference to the page. Setting PG_private should also increment the
402 * refcount. The each user mapping also has a reference to the page.
403 *
404 * The pagecache pages are stored in a per-mapping radix tree, which is
405 * rooted at mapping->page_tree, and indexed by offset.
406 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
407 * lists, we instead now tag pages as dirty/writeback in the radix tree.
408 *
409 * All pagecache pages may be subject to I/O:
410 * - inode pages may need to be read from disk,
411 * - inode pages which have been modified and are MAP_SHARED may need
412 * to be written back to the inode on disk,
413 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
414 * modified may need to be swapped out to swap space and (later) to be read
415 * back into memory.
416 */
417
418/*
419 * The zone field is never updated after free_area_init_core()
420 * sets it, so none of the operations on it need to be atomic.
421 */
422
423
424/*
425 * page->flags layout:
426 *
427 * There are three possibilities for how page->flags get
428 * laid out. The first is for the normal case, without
429 * sparsemem. The second is for sparsemem when there is
430 * plenty of space for node and section. The last is when
431 * we have run out of space and have to fall back to an
432 * alternate (slower) way of determining the node.
433 *
434 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
435 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
436 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
437 */
438#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
439#define SECTIONS_WIDTH SECTIONS_SHIFT
440#else
441#define SECTIONS_WIDTH 0
442#endif
443
444#define ZONES_WIDTH ZONES_SHIFT
445
446#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
447#define NODES_WIDTH NODES_SHIFT
448#else
449#ifdef CONFIG_SPARSEMEM_VMEMMAP
450#error "Vmemmap: No space for nodes field in page flags"
451#endif
452#define NODES_WIDTH 0
453#endif
454
455/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
456#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
457#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
458#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
459
460/*
461 * We are going to use the flags for the page to node mapping if its in
462 * there. This includes the case where there is no node, so it is implicit.
463 */
464#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
465#define NODE_NOT_IN_PAGE_FLAGS
466#endif
467
468#ifndef PFN_SECTION_SHIFT
469#define PFN_SECTION_SHIFT 0
470#endif
471
472/*
473 * Define the bit shifts to access each section. For non-existant
474 * sections we define the shift as 0; that plus a 0 mask ensures
475 * the compiler will optimise away reference to them.
476 */
477#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
478#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
479#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
480
481/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
482#ifdef NODE_NOT_IN_PAGEFLAGS
483#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
484#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
485 SECTIONS_PGOFF : ZONES_PGOFF)
486#else
487#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
488#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
489 NODES_PGOFF : ZONES_PGOFF)
490#endif
491
492#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
493
494#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
495#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
496#endif
497
498#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
499#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
500#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
501#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
502
503static inline enum zone_type page_zonenum(struct page *page)
504{
505 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
506}
507
508/*
509 * The identification function is only used by the buddy allocator for
510 * determining if two pages could be buddies. We are not really
511 * identifying a zone since we could be using a the section number
512 * id if we have not node id available in page flags.
513 * We guarantee only that it will return the same value for two
514 * combinable pages in a zone.
515 */
516static inline int page_zone_id(struct page *page)
517{
518 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
519}
520
521static inline int zone_to_nid(struct zone *zone)
522{
523#ifdef CONFIG_NUMA
524 return zone->node;
525#else
526 return 0;
527#endif
528}
529
530#ifdef NODE_NOT_IN_PAGE_FLAGS
531extern int page_to_nid(struct page *page);
532#else
533static inline int page_to_nid(struct page *page)
534{
535 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
536}
537#endif
538
539static inline struct zone *page_zone(struct page *page)
540{
541 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
542}
543
544#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
545static inline unsigned long page_to_section(struct page *page)
546{
547 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
548}
549#endif
550
551static inline void set_page_zone(struct page *page, enum zone_type zone)
552{
553 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
554 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
555}
556
557static inline void set_page_node(struct page *page, unsigned long node)
558{
559 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
560 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
561}
562
563static inline void set_page_section(struct page *page, unsigned long section)
564{
565 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
566 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
567}
568
569static inline void set_page_links(struct page *page, enum zone_type zone,
570 unsigned long node, unsigned long pfn)
571{
572 set_page_zone(page, zone);
573 set_page_node(page, node);
574 set_page_section(page, pfn_to_section_nr(pfn));
575}
576
577/*
578 * If a hint addr is less than mmap_min_addr change hint to be as
579 * low as possible but still greater than mmap_min_addr
580 */
581static inline unsigned long round_hint_to_min(unsigned long hint)
582{
583 hint &= PAGE_MASK;
584 if (((void *)hint != NULL) &&
585 (hint < mmap_min_addr))
586 return PAGE_ALIGN(mmap_min_addr);
587 return hint;
588}
589
590/*
591 * Some inline functions in vmstat.h depend on page_zone()
592 */
593#include <linux/vmstat.h>
594
595static __always_inline void *lowmem_page_address(struct page *page)
596{
597 return __va(page_to_pfn(page) << PAGE_SHIFT);
598}
599
600#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
601#define HASHED_PAGE_VIRTUAL
602#endif
603
604#if defined(WANT_PAGE_VIRTUAL)
605#define page_address(page) ((page)->virtual)
606#define set_page_address(page, address) \
607 do { \
608 (page)->virtual = (address); \
609 } while(0)
610#define page_address_init() do { } while(0)
611#endif
612
613#if defined(HASHED_PAGE_VIRTUAL)
614void *page_address(struct page *page);
615void set_page_address(struct page *page, void *virtual);
616void page_address_init(void);
617#endif
618
619#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
620#define page_address(page) lowmem_page_address(page)
621#define set_page_address(page, address) do { } while(0)
622#define page_address_init() do { } while(0)
623#endif
624
625/*
626 * On an anonymous page mapped into a user virtual memory area,
627 * page->mapping points to its anon_vma, not to a struct address_space;
628 * with the PAGE_MAPPING_ANON bit set to distinguish it.
629 *
630 * Please note that, confusingly, "page_mapping" refers to the inode
631 * address_space which maps the page from disk; whereas "page_mapped"
632 * refers to user virtual address space into which the page is mapped.
633 */
634#define PAGE_MAPPING_ANON 1
635
636extern struct address_space swapper_space;
637static inline struct address_space *page_mapping(struct page *page)
638{
639 struct address_space *mapping = page->mapping;
640
641 VM_BUG_ON(PageSlab(page));
642#ifdef CONFIG_SWAP
643 if (unlikely(PageSwapCache(page)))
644 mapping = &swapper_space;
645 else
646#endif
647 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
648 mapping = NULL;
649 return mapping;
650}
651
652static inline int PageAnon(struct page *page)
653{
654 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
655}
656
657/*
658 * Return the pagecache index of the passed page. Regular pagecache pages
659 * use ->index whereas swapcache pages use ->private
660 */
661static inline pgoff_t page_index(struct page *page)
662{
663 if (unlikely(PageSwapCache(page)))
664 return page_private(page);
665 return page->index;
666}
667
668/*
669 * The atomic page->_mapcount, like _count, starts from -1:
670 * so that transitions both from it and to it can be tracked,
671 * using atomic_inc_and_test and atomic_add_negative(-1).
672 */
673static inline void reset_page_mapcount(struct page *page)
674{
675 atomic_set(&(page)->_mapcount, -1);
676}
677
678static inline int page_mapcount(struct page *page)
679{
680 return atomic_read(&(page)->_mapcount) + 1;
681}
682
683/*
684 * Return true if this page is mapped into pagetables.
685 */
686static inline int page_mapped(struct page *page)
687{
688 return atomic_read(&(page)->_mapcount) >= 0;
689}
690
691/*
692 * Different kinds of faults, as returned by handle_mm_fault().
693 * Used to decide whether a process gets delivered SIGBUS or
694 * just gets major/minor fault counters bumped up.
695 */
696
697#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
698
699#define VM_FAULT_OOM 0x0001
700#define VM_FAULT_SIGBUS 0x0002
701#define VM_FAULT_MAJOR 0x0004
702#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
703
704#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
705#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
706
707#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
708
709/*
710 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
711 */
712extern void pagefault_out_of_memory(void);
713
714#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
715
716extern void show_free_areas(void);
717
718#ifdef CONFIG_SHMEM
719extern int shmem_lock(struct file *file, int lock, struct user_struct *user);
720#else
721static inline int shmem_lock(struct file *file, int lock,
722 struct user_struct *user)
723{
724 return 0;
725}
726#endif
727struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
728
729int shmem_zero_setup(struct vm_area_struct *);
730
731#ifndef CONFIG_MMU
732extern unsigned long shmem_get_unmapped_area(struct file *file,
733 unsigned long addr,
734 unsigned long len,
735 unsigned long pgoff,
736 unsigned long flags);
737#endif
738
739extern int can_do_mlock(void);
740extern int user_shm_lock(size_t, struct user_struct *);
741extern void user_shm_unlock(size_t, struct user_struct *);
742
743/*
744 * Parameter block passed down to zap_pte_range in exceptional cases.
745 */
746struct zap_details {
747 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
748 struct address_space *check_mapping; /* Check page->mapping if set */
749 pgoff_t first_index; /* Lowest page->index to unmap */
750 pgoff_t last_index; /* Highest page->index to unmap */
751 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
752 unsigned long truncate_count; /* Compare vm_truncate_count */
753};
754
755struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
756 pte_t pte);
757
758int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
759 unsigned long size);
760unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
761 unsigned long size, struct zap_details *);
762unsigned long unmap_vmas(struct mmu_gather **tlb,
763 struct vm_area_struct *start_vma, unsigned long start_addr,
764 unsigned long end_addr, unsigned long *nr_accounted,
765 struct zap_details *);
766
767/**
768 * mm_walk - callbacks for walk_page_range
769 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
770 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
771 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
772 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
773 * @pte_hole: if set, called for each hole at all levels
774 *
775 * (see walk_page_range for more details)
776 */
777struct mm_walk {
778 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
779 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
780 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
781 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
782 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
783 struct mm_struct *mm;
784 void *private;
785};
786
787int walk_page_range(unsigned long addr, unsigned long end,
788 struct mm_walk *walk);
789void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
790 unsigned long end, unsigned long floor, unsigned long ceiling);
791int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
792 struct vm_area_struct *vma);
793void unmap_mapping_range(struct address_space *mapping,
794 loff_t const holebegin, loff_t const holelen, int even_cows);
795int follow_pfn(struct vm_area_struct *vma, unsigned long address,
796 unsigned long *pfn);
797int follow_phys(struct vm_area_struct *vma, unsigned long address,
798 unsigned int flags, unsigned long *prot, resource_size_t *phys);
799int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
800 void *buf, int len, int write);
801
802static inline void unmap_shared_mapping_range(struct address_space *mapping,
803 loff_t const holebegin, loff_t const holelen)
804{
805 unmap_mapping_range(mapping, holebegin, holelen, 0);
806}
807
808extern int vmtruncate(struct inode * inode, loff_t offset);
809extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
810
811#ifdef CONFIG_MMU
812extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
813 unsigned long address, unsigned int flags);
814#else
815static inline int handle_mm_fault(struct mm_struct *mm,
816 struct vm_area_struct *vma, unsigned long address,
817 unsigned int flags)
818{
819 /* should never happen if there's no MMU */
820 BUG();
821 return VM_FAULT_SIGBUS;
822}
823#endif
824
825extern int make_pages_present(unsigned long addr, unsigned long end);
826extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
827
828int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
829 unsigned long start, int nr_pages, int write, int force,
830 struct page **pages, struct vm_area_struct **vmas);
831int get_user_pages_fast(unsigned long start, int nr_pages, int write,
832 struct page **pages);
833
834extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
835extern void do_invalidatepage(struct page *page, unsigned long offset);
836
837int __set_page_dirty_nobuffers(struct page *page);
838int __set_page_dirty_no_writeback(struct page *page);
839int redirty_page_for_writepage(struct writeback_control *wbc,
840 struct page *page);
841void account_page_dirtied(struct page *page, struct address_space *mapping);
842int set_page_dirty(struct page *page);
843int set_page_dirty_lock(struct page *page);
844int clear_page_dirty_for_io(struct page *page);
845
846extern unsigned long move_page_tables(struct vm_area_struct *vma,
847 unsigned long old_addr, struct vm_area_struct *new_vma,
848 unsigned long new_addr, unsigned long len);
849extern unsigned long do_mremap(unsigned long addr,
850 unsigned long old_len, unsigned long new_len,
851 unsigned long flags, unsigned long new_addr);
852extern int mprotect_fixup(struct vm_area_struct *vma,
853 struct vm_area_struct **pprev, unsigned long start,
854 unsigned long end, unsigned long newflags);
855
856/*
857 * doesn't attempt to fault and will return short.
858 */
859int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
860 struct page **pages);
861
862/*
863 * A callback you can register to apply pressure to ageable caches.
864 *
865 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
866 * look through the least-recently-used 'nr_to_scan' entries and
867 * attempt to free them up. It should return the number of objects
868 * which remain in the cache. If it returns -1, it means it cannot do
869 * any scanning at this time (eg. there is a risk of deadlock).
870 *
871 * The 'gfpmask' refers to the allocation we are currently trying to
872 * fulfil.
873 *
874 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
875 * querying the cache size, so a fastpath for that case is appropriate.
876 */
877struct shrinker {
878 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
879 int seeks; /* seeks to recreate an obj */
880
881 /* These are for internal use */
882 struct list_head list;
883 long nr; /* objs pending delete */
884};
885#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
886extern void register_shrinker(struct shrinker *);
887extern void unregister_shrinker(struct shrinker *);
888
889int vma_wants_writenotify(struct vm_area_struct *vma);
890
891extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
892
893#ifdef __PAGETABLE_PUD_FOLDED
894static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
895 unsigned long address)
896{
897 return 0;
898}
899#else
900int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
901#endif
902
903#ifdef __PAGETABLE_PMD_FOLDED
904static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
905 unsigned long address)
906{
907 return 0;
908}
909#else
910int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
911#endif
912
913int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
914int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
915
916/*
917 * The following ifdef needed to get the 4level-fixup.h header to work.
918 * Remove it when 4level-fixup.h has been removed.
919 */
920#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
921static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
922{
923 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
924 NULL: pud_offset(pgd, address);
925}
926
927static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
928{
929 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
930 NULL: pmd_offset(pud, address);
931}
932#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
933
934#if USE_SPLIT_PTLOCKS
935/*
936 * We tuck a spinlock to guard each pagetable page into its struct page,
937 * at page->private, with BUILD_BUG_ON to make sure that this will not
938 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
939 * When freeing, reset page->mapping so free_pages_check won't complain.
940 */
941#define __pte_lockptr(page) &((page)->ptl)
942#define pte_lock_init(_page) do { \
943 spin_lock_init(__pte_lockptr(_page)); \
944} while (0)
945#define pte_lock_deinit(page) ((page)->mapping = NULL)
946#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
947#else /* !USE_SPLIT_PTLOCKS */
948/*
949 * We use mm->page_table_lock to guard all pagetable pages of the mm.
950 */
951#define pte_lock_init(page) do {} while (0)
952#define pte_lock_deinit(page) do {} while (0)
953#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
954#endif /* USE_SPLIT_PTLOCKS */
955
956static inline void pgtable_page_ctor(struct page *page)
957{
958 pte_lock_init(page);
959 inc_zone_page_state(page, NR_PAGETABLE);
960}
961
962static inline void pgtable_page_dtor(struct page *page)
963{
964 pte_lock_deinit(page);
965 dec_zone_page_state(page, NR_PAGETABLE);
966}
967
968#define pte_offset_map_lock(mm, pmd, address, ptlp) \
969({ \
970 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
971 pte_t *__pte = pte_offset_map(pmd, address); \
972 *(ptlp) = __ptl; \
973 spin_lock(__ptl); \
974 __pte; \
975})
976
977#define pte_unmap_unlock(pte, ptl) do { \
978 spin_unlock(ptl); \
979 pte_unmap(pte); \
980} while (0)
981
982#define pte_alloc_map(mm, pmd, address) \
983 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
984 NULL: pte_offset_map(pmd, address))
985
986#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
987 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
988 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
989
990#define pte_alloc_kernel(pmd, address) \
991 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
992 NULL: pte_offset_kernel(pmd, address))
993
994extern void free_area_init(unsigned long * zones_size);
995extern void free_area_init_node(int nid, unsigned long * zones_size,
996 unsigned long zone_start_pfn, unsigned long *zholes_size);
997#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
998/*
999 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1000 * zones, allocate the backing mem_map and account for memory holes in a more
1001 * architecture independent manner. This is a substitute for creating the
1002 * zone_sizes[] and zholes_size[] arrays and passing them to
1003 * free_area_init_node()
1004 *
1005 * An architecture is expected to register range of page frames backed by
1006 * physical memory with add_active_range() before calling
1007 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1008 * usage, an architecture is expected to do something like
1009 *
1010 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1011 * max_highmem_pfn};
1012 * for_each_valid_physical_page_range()
1013 * add_active_range(node_id, start_pfn, end_pfn)
1014 * free_area_init_nodes(max_zone_pfns);
1015 *
1016 * If the architecture guarantees that there are no holes in the ranges
1017 * registered with add_active_range(), free_bootmem_active_regions()
1018 * will call free_bootmem_node() for each registered physical page range.
1019 * Similarly sparse_memory_present_with_active_regions() calls
1020 * memory_present() for each range when SPARSEMEM is enabled.
1021 *
1022 * See mm/page_alloc.c for more information on each function exposed by
1023 * CONFIG_ARCH_POPULATES_NODE_MAP
1024 */
1025extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1026extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1027 unsigned long end_pfn);
1028extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1029 unsigned long end_pfn);
1030extern void remove_all_active_ranges(void);
1031extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1032 unsigned long end_pfn);
1033extern void get_pfn_range_for_nid(unsigned int nid,
1034 unsigned long *start_pfn, unsigned long *end_pfn);
1035extern unsigned long find_min_pfn_with_active_regions(void);
1036extern void free_bootmem_with_active_regions(int nid,
1037 unsigned long max_low_pfn);
1038typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1039extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1040extern void sparse_memory_present_with_active_regions(int nid);
1041#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1042
1043#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1044 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1045static inline int __early_pfn_to_nid(unsigned long pfn)
1046{
1047 return 0;
1048}
1049#else
1050/* please see mm/page_alloc.c */
1051extern int __meminit early_pfn_to_nid(unsigned long pfn);
1052#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1053/* there is a per-arch backend function. */
1054extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1055#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1056#endif
1057
1058extern void set_dma_reserve(unsigned long new_dma_reserve);
1059extern void memmap_init_zone(unsigned long, int, unsigned long,
1060 unsigned long, enum memmap_context);
1061extern void setup_per_zone_wmarks(void);
1062extern void calculate_zone_inactive_ratio(struct zone *zone);
1063extern void mem_init(void);
1064extern void __init mmap_init(void);
1065extern void show_mem(void);
1066extern void si_meminfo(struct sysinfo * val);
1067extern void si_meminfo_node(struct sysinfo *val, int nid);
1068extern int after_bootmem;
1069
1070#ifdef CONFIG_NUMA
1071extern void setup_per_cpu_pageset(void);
1072#else
1073static inline void setup_per_cpu_pageset(void) {}
1074#endif
1075
1076/* nommu.c */
1077extern atomic_long_t mmap_pages_allocated;
1078
1079/* prio_tree.c */
1080void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1081void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1082void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1083struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1084 struct prio_tree_iter *iter);
1085
1086#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1087 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1088 (vma = vma_prio_tree_next(vma, iter)); )
1089
1090static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1091 struct list_head *list)
1092{
1093 vma->shared.vm_set.parent = NULL;
1094 list_add_tail(&vma->shared.vm_set.list, list);
1095}
1096
1097/* mmap.c */
1098extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1099extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1100 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1101extern struct vm_area_struct *vma_merge(struct mm_struct *,
1102 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1103 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1104 struct mempolicy *);
1105extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1106extern int split_vma(struct mm_struct *,
1107 struct vm_area_struct *, unsigned long addr, int new_below);
1108extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1109extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1110 struct rb_node **, struct rb_node *);
1111extern void unlink_file_vma(struct vm_area_struct *);
1112extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1113 unsigned long addr, unsigned long len, pgoff_t pgoff);
1114extern void exit_mmap(struct mm_struct *);
1115
1116extern int mm_take_all_locks(struct mm_struct *mm);
1117extern void mm_drop_all_locks(struct mm_struct *mm);
1118
1119#ifdef CONFIG_PROC_FS
1120/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1121extern void added_exe_file_vma(struct mm_struct *mm);
1122extern void removed_exe_file_vma(struct mm_struct *mm);
1123#else
1124static inline void added_exe_file_vma(struct mm_struct *mm)
1125{}
1126
1127static inline void removed_exe_file_vma(struct mm_struct *mm)
1128{}
1129#endif /* CONFIG_PROC_FS */
1130
1131extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1132extern int install_special_mapping(struct mm_struct *mm,
1133 unsigned long addr, unsigned long len,
1134 unsigned long flags, struct page **pages);
1135
1136extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1137
1138extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1139 unsigned long len, unsigned long prot,
1140 unsigned long flag, unsigned long pgoff);
1141extern unsigned long mmap_region(struct file *file, unsigned long addr,
1142 unsigned long len, unsigned long flags,
1143 unsigned int vm_flags, unsigned long pgoff);
1144
1145static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1146 unsigned long len, unsigned long prot,
1147 unsigned long flag, unsigned long offset)
1148{
1149 unsigned long ret = -EINVAL;
1150 if ((offset + PAGE_ALIGN(len)) < offset)
1151 goto out;
1152 if (!(offset & ~PAGE_MASK))
1153 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1154out:
1155 return ret;
1156}
1157
1158extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1159
1160extern unsigned long do_brk(unsigned long, unsigned long);
1161
1162/* filemap.c */
1163extern unsigned long page_unuse(struct page *);
1164extern void truncate_inode_pages(struct address_space *, loff_t);
1165extern void truncate_inode_pages_range(struct address_space *,
1166 loff_t lstart, loff_t lend);
1167
1168/* generic vm_area_ops exported for stackable file systems */
1169extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1170
1171/* mm/page-writeback.c */
1172int write_one_page(struct page *page, int wait);
1173void task_dirty_inc(struct task_struct *tsk);
1174
1175/* readahead.c */
1176#define VM_MAX_READAHEAD 128 /* kbytes */
1177#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1178
1179int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1180 pgoff_t offset, unsigned long nr_to_read);
1181
1182void page_cache_sync_readahead(struct address_space *mapping,
1183 struct file_ra_state *ra,
1184 struct file *filp,
1185 pgoff_t offset,
1186 unsigned long size);
1187
1188void page_cache_async_readahead(struct address_space *mapping,
1189 struct file_ra_state *ra,
1190 struct file *filp,
1191 struct page *pg,
1192 pgoff_t offset,
1193 unsigned long size);
1194
1195unsigned long max_sane_readahead(unsigned long nr);
1196unsigned long ra_submit(struct file_ra_state *ra,
1197 struct address_space *mapping,
1198 struct file *filp);
1199
1200/* Do stack extension */
1201extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1202#ifdef CONFIG_IA64
1203extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1204#endif
1205extern int expand_stack_downwards(struct vm_area_struct *vma,
1206 unsigned long address);
1207
1208/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1209extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1210extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1211 struct vm_area_struct **pprev);
1212
1213/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1214 NULL if none. Assume start_addr < end_addr. */
1215static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1216{
1217 struct vm_area_struct * vma = find_vma(mm,start_addr);
1218
1219 if (vma && end_addr <= vma->vm_start)
1220 vma = NULL;
1221 return vma;
1222}
1223
1224static inline unsigned long vma_pages(struct vm_area_struct *vma)
1225{
1226 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1227}
1228
1229pgprot_t vm_get_page_prot(unsigned long vm_flags);
1230struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1231int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1232 unsigned long pfn, unsigned long size, pgprot_t);
1233int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1234int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1235 unsigned long pfn);
1236int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1237 unsigned long pfn);
1238
1239struct page *follow_page(struct vm_area_struct *, unsigned long address,
1240 unsigned int foll_flags);
1241#define FOLL_WRITE 0x01 /* check pte is writable */
1242#define FOLL_TOUCH 0x02 /* mark page accessed */
1243#define FOLL_GET 0x04 /* do get_page on page */
1244#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1245
1246typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1247 void *data);
1248extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1249 unsigned long size, pte_fn_t fn, void *data);
1250
1251#ifdef CONFIG_PROC_FS
1252void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1253#else
1254static inline void vm_stat_account(struct mm_struct *mm,
1255 unsigned long flags, struct file *file, long pages)
1256{
1257}
1258#endif /* CONFIG_PROC_FS */
1259
1260#ifdef CONFIG_DEBUG_PAGEALLOC
1261extern int debug_pagealloc_enabled;
1262
1263extern void kernel_map_pages(struct page *page, int numpages, int enable);
1264
1265static inline void enable_debug_pagealloc(void)
1266{
1267 debug_pagealloc_enabled = 1;
1268}
1269#ifdef CONFIG_HIBERNATION
1270extern bool kernel_page_present(struct page *page);
1271#endif /* CONFIG_HIBERNATION */
1272#else
1273static inline void
1274kernel_map_pages(struct page *page, int numpages, int enable) {}
1275static inline void enable_debug_pagealloc(void)
1276{
1277}
1278#ifdef CONFIG_HIBERNATION
1279static inline bool kernel_page_present(struct page *page) { return true; }
1280#endif /* CONFIG_HIBERNATION */
1281#endif
1282
1283extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1284#ifdef __HAVE_ARCH_GATE_AREA
1285int in_gate_area_no_task(unsigned long addr);
1286int in_gate_area(struct task_struct *task, unsigned long addr);
1287#else
1288int in_gate_area_no_task(unsigned long addr);
1289#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1290#endif /* __HAVE_ARCH_GATE_AREA */
1291
1292int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1293 void __user *, size_t *, loff_t *);
1294unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1295 unsigned long lru_pages);
1296
1297#ifndef CONFIG_MMU
1298#define randomize_va_space 0
1299#else
1300extern int randomize_va_space;
1301#endif
1302
1303const char * arch_vma_name(struct vm_area_struct *vma);
1304void print_vma_addr(char *prefix, unsigned long rip);
1305
1306struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1307pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1308pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1309pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1310pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1311void *vmemmap_alloc_block(unsigned long size, int node);
1312void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1313int vmemmap_populate_basepages(struct page *start_page,
1314 unsigned long pages, int node);
1315int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1316void vmemmap_populate_print_last(void);
1317
1318extern int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
1319 size_t size);
1320extern void refund_locked_memory(struct mm_struct *mm, size_t size);
1321#endif /* __KERNEL__ */
1322#endif /* _LINUX_MM_H */