1/* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers, kernel timekeeping, basic process system calls 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22#include <linux/kernel_stat.h> 23#include <linux/module.h> 24#include <linux/interrupt.h> 25#include <linux/percpu.h> 26#include <linux/init.h> 27#include <linux/mm.h> 28#include <linux/swap.h> 29#include <linux/notifier.h> 30#include <linux/thread_info.h> 31#include <linux/time.h> 32#include <linux/jiffies.h> 33#include <linux/posix-timers.h> 34#include <linux/cpu.h> 35#include <linux/syscalls.h> 36 37#include <asm/uaccess.h> 38#include <asm/unistd.h> 39#include <asm/div64.h> 40#include <asm/timex.h> 41#include <asm/io.h> 42 43#ifdef CONFIG_TIME_INTERPOLATION 44static void time_interpolator_update(long delta_nsec); 45#else 46#define time_interpolator_update(x) 47#endif 48 49/* 50 * per-CPU timer vector definitions: 51 */ 52 53#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) 54#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) 55#define TVN_SIZE (1 << TVN_BITS) 56#define TVR_SIZE (1 << TVR_BITS) 57#define TVN_MASK (TVN_SIZE - 1) 58#define TVR_MASK (TVR_SIZE - 1) 59 60struct timer_base_s { 61 spinlock_t lock; 62 struct timer_list *running_timer; 63}; 64 65typedef struct tvec_s { 66 struct list_head vec[TVN_SIZE]; 67} tvec_t; 68 69typedef struct tvec_root_s { 70 struct list_head vec[TVR_SIZE]; 71} tvec_root_t; 72 73struct tvec_t_base_s { 74 struct timer_base_s t_base; 75 unsigned long timer_jiffies; 76 tvec_root_t tv1; 77 tvec_t tv2; 78 tvec_t tv3; 79 tvec_t tv4; 80 tvec_t tv5; 81} ____cacheline_aligned_in_smp; 82 83typedef struct tvec_t_base_s tvec_base_t; 84static DEFINE_PER_CPU(tvec_base_t, tvec_bases); 85 86static inline void set_running_timer(tvec_base_t *base, 87 struct timer_list *timer) 88{ 89#ifdef CONFIG_SMP 90 base->t_base.running_timer = timer; 91#endif 92} 93 94static void check_timer_failed(struct timer_list *timer) 95{ 96 static int whine_count; 97 if (whine_count < 16) { 98 whine_count++; 99 printk("Uninitialised timer!\n"); 100 printk("This is just a warning. Your computer is OK\n"); 101 printk("function=0x%p, data=0x%lx\n", 102 timer->function, timer->data); 103 dump_stack(); 104 } 105 /* 106 * Now fix it up 107 */ 108 timer->magic = TIMER_MAGIC; 109} 110 111static inline void check_timer(struct timer_list *timer) 112{ 113 if (timer->magic != TIMER_MAGIC) 114 check_timer_failed(timer); 115} 116 117 118static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) 119{ 120 unsigned long expires = timer->expires; 121 unsigned long idx = expires - base->timer_jiffies; 122 struct list_head *vec; 123 124 if (idx < TVR_SIZE) { 125 int i = expires & TVR_MASK; 126 vec = base->tv1.vec + i; 127 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { 128 int i = (expires >> TVR_BITS) & TVN_MASK; 129 vec = base->tv2.vec + i; 130 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { 131 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; 132 vec = base->tv3.vec + i; 133 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { 134 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; 135 vec = base->tv4.vec + i; 136 } else if ((signed long) idx < 0) { 137 /* 138 * Can happen if you add a timer with expires == jiffies, 139 * or you set a timer to go off in the past 140 */ 141 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); 142 } else { 143 int i; 144 /* If the timeout is larger than 0xffffffff on 64-bit 145 * architectures then we use the maximum timeout: 146 */ 147 if (idx > 0xffffffffUL) { 148 idx = 0xffffffffUL; 149 expires = idx + base->timer_jiffies; 150 } 151 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; 152 vec = base->tv5.vec + i; 153 } 154 /* 155 * Timers are FIFO: 156 */ 157 list_add_tail(&timer->entry, vec); 158} 159 160typedef struct timer_base_s timer_base_t; 161/* 162 * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases) 163 * at compile time, and we need timer->base to lock the timer. 164 */ 165timer_base_t __init_timer_base 166 ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED }; 167EXPORT_SYMBOL(__init_timer_base); 168 169/*** 170 * init_timer - initialize a timer. 171 * @timer: the timer to be initialized 172 * 173 * init_timer() must be done to a timer prior calling *any* of the 174 * other timer functions. 175 */ 176void fastcall init_timer(struct timer_list *timer) 177{ 178 timer->entry.next = NULL; 179 timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base; 180 timer->magic = TIMER_MAGIC; 181} 182EXPORT_SYMBOL(init_timer); 183 184static inline void detach_timer(struct timer_list *timer, 185 int clear_pending) 186{ 187 struct list_head *entry = &timer->entry; 188 189 __list_del(entry->prev, entry->next); 190 if (clear_pending) 191 entry->next = NULL; 192 entry->prev = LIST_POISON2; 193} 194 195/* 196 * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock 197 * means that all timers which are tied to this base via timer->base are 198 * locked, and the base itself is locked too. 199 * 200 * So __run_timers/migrate_timers can safely modify all timers which could 201 * be found on ->tvX lists. 202 * 203 * When the timer's base is locked, and the timer removed from list, it is 204 * possible to set timer->base = NULL and drop the lock: the timer remains 205 * locked. 206 */ 207static timer_base_t *lock_timer_base(struct timer_list *timer, 208 unsigned long *flags) 209{ 210 timer_base_t *base; 211 212 for (;;) { 213 base = timer->base; 214 if (likely(base != NULL)) { 215 spin_lock_irqsave(&base->lock, *flags); 216 if (likely(base == timer->base)) 217 return base; 218 /* The timer has migrated to another CPU */ 219 spin_unlock_irqrestore(&base->lock, *flags); 220 } 221 cpu_relax(); 222 } 223} 224 225int __mod_timer(struct timer_list *timer, unsigned long expires) 226{ 227 timer_base_t *base; 228 tvec_base_t *new_base; 229 unsigned long flags; 230 int ret = 0; 231 232 BUG_ON(!timer->function); 233 check_timer(timer); 234 235 base = lock_timer_base(timer, &flags); 236 237 if (timer_pending(timer)) { 238 detach_timer(timer, 0); 239 ret = 1; 240 } 241 242 new_base = &__get_cpu_var(tvec_bases); 243 244 if (base != &new_base->t_base) { 245 /* 246 * We are trying to schedule the timer on the local CPU. 247 * However we can't change timer's base while it is running, 248 * otherwise del_timer_sync() can't detect that the timer's 249 * handler yet has not finished. This also guarantees that 250 * the timer is serialized wrt itself. 251 */ 252 if (unlikely(base->running_timer == timer)) { 253 /* The timer remains on a former base */ 254 new_base = container_of(base, tvec_base_t, t_base); 255 } else { 256 /* See the comment in lock_timer_base() */ 257 timer->base = NULL; 258 spin_unlock(&base->lock); 259 spin_lock(&new_base->t_base.lock); 260 timer->base = &new_base->t_base; 261 } 262 } 263 264 timer->expires = expires; 265 internal_add_timer(new_base, timer); 266 spin_unlock_irqrestore(&new_base->t_base.lock, flags); 267 268 return ret; 269} 270 271EXPORT_SYMBOL(__mod_timer); 272 273/*** 274 * add_timer_on - start a timer on a particular CPU 275 * @timer: the timer to be added 276 * @cpu: the CPU to start it on 277 * 278 * This is not very scalable on SMP. Double adds are not possible. 279 */ 280void add_timer_on(struct timer_list *timer, int cpu) 281{ 282 tvec_base_t *base = &per_cpu(tvec_bases, cpu); 283 unsigned long flags; 284 285 BUG_ON(timer_pending(timer) || !timer->function); 286 287 check_timer(timer); 288 289 spin_lock_irqsave(&base->t_base.lock, flags); 290 timer->base = &base->t_base; 291 internal_add_timer(base, timer); 292 spin_unlock_irqrestore(&base->t_base.lock, flags); 293} 294 295 296/*** 297 * mod_timer - modify a timer's timeout 298 * @timer: the timer to be modified 299 * 300 * mod_timer is a more efficient way to update the expire field of an 301 * active timer (if the timer is inactive it will be activated) 302 * 303 * mod_timer(timer, expires) is equivalent to: 304 * 305 * del_timer(timer); timer->expires = expires; add_timer(timer); 306 * 307 * Note that if there are multiple unserialized concurrent users of the 308 * same timer, then mod_timer() is the only safe way to modify the timeout, 309 * since add_timer() cannot modify an already running timer. 310 * 311 * The function returns whether it has modified a pending timer or not. 312 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 313 * active timer returns 1.) 314 */ 315int mod_timer(struct timer_list *timer, unsigned long expires) 316{ 317 BUG_ON(!timer->function); 318 319 check_timer(timer); 320 321 /* 322 * This is a common optimization triggered by the 323 * networking code - if the timer is re-modified 324 * to be the same thing then just return: 325 */ 326 if (timer->expires == expires && timer_pending(timer)) 327 return 1; 328 329 return __mod_timer(timer, expires); 330} 331 332EXPORT_SYMBOL(mod_timer); 333 334/*** 335 * del_timer - deactive a timer. 336 * @timer: the timer to be deactivated 337 * 338 * del_timer() deactivates a timer - this works on both active and inactive 339 * timers. 340 * 341 * The function returns whether it has deactivated a pending timer or not. 342 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 343 * active timer returns 1.) 344 */ 345int del_timer(struct timer_list *timer) 346{ 347 timer_base_t *base; 348 unsigned long flags; 349 int ret = 0; 350 351 check_timer(timer); 352 353 if (timer_pending(timer)) { 354 base = lock_timer_base(timer, &flags); 355 if (timer_pending(timer)) { 356 detach_timer(timer, 1); 357 ret = 1; 358 } 359 spin_unlock_irqrestore(&base->lock, flags); 360 } 361 362 return ret; 363} 364 365EXPORT_SYMBOL(del_timer); 366 367#ifdef CONFIG_SMP 368/* 369 * This function tries to deactivate a timer. Upon successful (ret >= 0) 370 * exit the timer is not queued and the handler is not running on any CPU. 371 * 372 * It must not be called from interrupt contexts. 373 */ 374int try_to_del_timer_sync(struct timer_list *timer) 375{ 376 timer_base_t *base; 377 unsigned long flags; 378 int ret = -1; 379 380 base = lock_timer_base(timer, &flags); 381 382 if (base->running_timer == timer) 383 goto out; 384 385 ret = 0; 386 if (timer_pending(timer)) { 387 detach_timer(timer, 1); 388 ret = 1; 389 } 390out: 391 spin_unlock_irqrestore(&base->lock, flags); 392 393 return ret; 394} 395 396/*** 397 * del_timer_sync - deactivate a timer and wait for the handler to finish. 398 * @timer: the timer to be deactivated 399 * 400 * This function only differs from del_timer() on SMP: besides deactivating 401 * the timer it also makes sure the handler has finished executing on other 402 * CPUs. 403 * 404 * Synchronization rules: callers must prevent restarting of the timer, 405 * otherwise this function is meaningless. It must not be called from 406 * interrupt contexts. The caller must not hold locks which would prevent 407 * completion of the timer's handler. The timer's handler must not call 408 * add_timer_on(). Upon exit the timer is not queued and the handler is 409 * not running on any CPU. 410 * 411 * The function returns whether it has deactivated a pending timer or not. 412 */ 413int del_timer_sync(struct timer_list *timer) 414{ 415 check_timer(timer); 416 417 for (;;) { 418 int ret = try_to_del_timer_sync(timer); 419 if (ret >= 0) 420 return ret; 421 } 422} 423 424EXPORT_SYMBOL(del_timer_sync); 425#endif 426 427static int cascade(tvec_base_t *base, tvec_t *tv, int index) 428{ 429 /* cascade all the timers from tv up one level */ 430 struct list_head *head, *curr; 431 432 head = tv->vec + index; 433 curr = head->next; 434 /* 435 * We are removing _all_ timers from the list, so we don't have to 436 * detach them individually, just clear the list afterwards. 437 */ 438 while (curr != head) { 439 struct timer_list *tmp; 440 441 tmp = list_entry(curr, struct timer_list, entry); 442 BUG_ON(tmp->base != &base->t_base); 443 curr = curr->next; 444 internal_add_timer(base, tmp); 445 } 446 INIT_LIST_HEAD(head); 447 448 return index; 449} 450 451/*** 452 * __run_timers - run all expired timers (if any) on this CPU. 453 * @base: the timer vector to be processed. 454 * 455 * This function cascades all vectors and executes all expired timer 456 * vectors. 457 */ 458#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK 459 460static inline void __run_timers(tvec_base_t *base) 461{ 462 struct timer_list *timer; 463 464 spin_lock_irq(&base->t_base.lock); 465 while (time_after_eq(jiffies, base->timer_jiffies)) { 466 struct list_head work_list = LIST_HEAD_INIT(work_list); 467 struct list_head *head = &work_list; 468 int index = base->timer_jiffies & TVR_MASK; 469 470 /* 471 * Cascade timers: 472 */ 473 if (!index && 474 (!cascade(base, &base->tv2, INDEX(0))) && 475 (!cascade(base, &base->tv3, INDEX(1))) && 476 !cascade(base, &base->tv4, INDEX(2))) 477 cascade(base, &base->tv5, INDEX(3)); 478 ++base->timer_jiffies; 479 list_splice_init(base->tv1.vec + index, &work_list); 480 while (!list_empty(head)) { 481 void (*fn)(unsigned long); 482 unsigned long data; 483 484 timer = list_entry(head->next,struct timer_list,entry); 485 fn = timer->function; 486 data = timer->data; 487 488 set_running_timer(base, timer); 489 detach_timer(timer, 1); 490 spin_unlock_irq(&base->t_base.lock); 491 { 492 int preempt_count = preempt_count(); 493 fn(data); 494 if (preempt_count != preempt_count()) { 495 printk(KERN_WARNING "huh, entered %p " 496 "with preempt_count %08x, exited" 497 " with %08x?\n", 498 fn, preempt_count, 499 preempt_count()); 500 BUG(); 501 } 502 } 503 spin_lock_irq(&base->t_base.lock); 504 } 505 } 506 set_running_timer(base, NULL); 507 spin_unlock_irq(&base->t_base.lock); 508} 509 510#ifdef CONFIG_NO_IDLE_HZ 511/* 512 * Find out when the next timer event is due to happen. This 513 * is used on S/390 to stop all activity when a cpus is idle. 514 * This functions needs to be called disabled. 515 */ 516unsigned long next_timer_interrupt(void) 517{ 518 tvec_base_t *base; 519 struct list_head *list; 520 struct timer_list *nte; 521 unsigned long expires; 522 tvec_t *varray[4]; 523 int i, j; 524 525 base = &__get_cpu_var(tvec_bases); 526 spin_lock(&base->t_base.lock); 527 expires = base->timer_jiffies + (LONG_MAX >> 1); 528 list = 0; 529 530 /* Look for timer events in tv1. */ 531 j = base->timer_jiffies & TVR_MASK; 532 do { 533 list_for_each_entry(nte, base->tv1.vec + j, entry) { 534 expires = nte->expires; 535 if (j < (base->timer_jiffies & TVR_MASK)) 536 list = base->tv2.vec + (INDEX(0)); 537 goto found; 538 } 539 j = (j + 1) & TVR_MASK; 540 } while (j != (base->timer_jiffies & TVR_MASK)); 541 542 /* Check tv2-tv5. */ 543 varray[0] = &base->tv2; 544 varray[1] = &base->tv3; 545 varray[2] = &base->tv4; 546 varray[3] = &base->tv5; 547 for (i = 0; i < 4; i++) { 548 j = INDEX(i); 549 do { 550 if (list_empty(varray[i]->vec + j)) { 551 j = (j + 1) & TVN_MASK; 552 continue; 553 } 554 list_for_each_entry(nte, varray[i]->vec + j, entry) 555 if (time_before(nte->expires, expires)) 556 expires = nte->expires; 557 if (j < (INDEX(i)) && i < 3) 558 list = varray[i + 1]->vec + (INDEX(i + 1)); 559 goto found; 560 } while (j != (INDEX(i))); 561 } 562found: 563 if (list) { 564 /* 565 * The search wrapped. We need to look at the next list 566 * from next tv element that would cascade into tv element 567 * where we found the timer element. 568 */ 569 list_for_each_entry(nte, list, entry) { 570 if (time_before(nte->expires, expires)) 571 expires = nte->expires; 572 } 573 } 574 spin_unlock(&base->t_base.lock); 575 return expires; 576} 577#endif 578 579/******************************************************************/ 580 581/* 582 * Timekeeping variables 583 */ 584unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ 585unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */ 586 587/* 588 * The current time 589 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 590 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 591 * at zero at system boot time, so wall_to_monotonic will be negative, 592 * however, we will ALWAYS keep the tv_nsec part positive so we can use 593 * the usual normalization. 594 */ 595struct timespec xtime __attribute__ ((aligned (16))); 596struct timespec wall_to_monotonic __attribute__ ((aligned (16))); 597 598EXPORT_SYMBOL(xtime); 599 600/* Don't completely fail for HZ > 500. */ 601int tickadj = 500/HZ ? : 1; /* microsecs */ 602 603 604/* 605 * phase-lock loop variables 606 */ 607/* TIME_ERROR prevents overwriting the CMOS clock */ 608int time_state = TIME_OK; /* clock synchronization status */ 609int time_status = STA_UNSYNC; /* clock status bits */ 610long time_offset; /* time adjustment (us) */ 611long time_constant = 2; /* pll time constant */ 612long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ 613long time_precision = 1; /* clock precision (us) */ 614long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ 615long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ 616static long time_phase; /* phase offset (scaled us) */ 617long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; 618 /* frequency offset (scaled ppm)*/ 619static long time_adj; /* tick adjust (scaled 1 / HZ) */ 620long time_reftime; /* time at last adjustment (s) */ 621long time_adjust; 622long time_next_adjust; 623 624/* 625 * this routine handles the overflow of the microsecond field 626 * 627 * The tricky bits of code to handle the accurate clock support 628 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. 629 * They were originally developed for SUN and DEC kernels. 630 * All the kudos should go to Dave for this stuff. 631 * 632 */ 633static void second_overflow(void) 634{ 635 long ltemp; 636 637 /* Bump the maxerror field */ 638 time_maxerror += time_tolerance >> SHIFT_USEC; 639 if ( time_maxerror > NTP_PHASE_LIMIT ) { 640 time_maxerror = NTP_PHASE_LIMIT; 641 time_status |= STA_UNSYNC; 642 } 643 644 /* 645 * Leap second processing. If in leap-insert state at 646 * the end of the day, the system clock is set back one 647 * second; if in leap-delete state, the system clock is 648 * set ahead one second. The microtime() routine or 649 * external clock driver will insure that reported time 650 * is always monotonic. The ugly divides should be 651 * replaced. 652 */ 653 switch (time_state) { 654 655 case TIME_OK: 656 if (time_status & STA_INS) 657 time_state = TIME_INS; 658 else if (time_status & STA_DEL) 659 time_state = TIME_DEL; 660 break; 661 662 case TIME_INS: 663 if (xtime.tv_sec % 86400 == 0) { 664 xtime.tv_sec--; 665 wall_to_monotonic.tv_sec++; 666 /* The timer interpolator will make time change gradually instead 667 * of an immediate jump by one second. 668 */ 669 time_interpolator_update(-NSEC_PER_SEC); 670 time_state = TIME_OOP; 671 clock_was_set(); 672 printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n"); 673 } 674 break; 675 676 case TIME_DEL: 677 if ((xtime.tv_sec + 1) % 86400 == 0) { 678 xtime.tv_sec++; 679 wall_to_monotonic.tv_sec--; 680 /* Use of time interpolator for a gradual change of time */ 681 time_interpolator_update(NSEC_PER_SEC); 682 time_state = TIME_WAIT; 683 clock_was_set(); 684 printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n"); 685 } 686 break; 687 688 case TIME_OOP: 689 time_state = TIME_WAIT; 690 break; 691 692 case TIME_WAIT: 693 if (!(time_status & (STA_INS | STA_DEL))) 694 time_state = TIME_OK; 695 } 696 697 /* 698 * Compute the phase adjustment for the next second. In 699 * PLL mode, the offset is reduced by a fixed factor 700 * times the time constant. In FLL mode the offset is 701 * used directly. In either mode, the maximum phase 702 * adjustment for each second is clamped so as to spread 703 * the adjustment over not more than the number of 704 * seconds between updates. 705 */ 706 if (time_offset < 0) { 707 ltemp = -time_offset; 708 if (!(time_status & STA_FLL)) 709 ltemp >>= SHIFT_KG + time_constant; 710 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 711 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; 712 time_offset += ltemp; 713 time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 714 } else { 715 ltemp = time_offset; 716 if (!(time_status & STA_FLL)) 717 ltemp >>= SHIFT_KG + time_constant; 718 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 719 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; 720 time_offset -= ltemp; 721 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 722 } 723 724 /* 725 * Compute the frequency estimate and additional phase 726 * adjustment due to frequency error for the next 727 * second. When the PPS signal is engaged, gnaw on the 728 * watchdog counter and update the frequency computed by 729 * the pll and the PPS signal. 730 */ 731 pps_valid++; 732 if (pps_valid == PPS_VALID) { /* PPS signal lost */ 733 pps_jitter = MAXTIME; 734 pps_stabil = MAXFREQ; 735 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 736 STA_PPSWANDER | STA_PPSERROR); 737 } 738 ltemp = time_freq + pps_freq; 739 if (ltemp < 0) 740 time_adj -= -ltemp >> 741 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 742 else 743 time_adj += ltemp >> 744 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 745 746#if HZ == 100 747 /* Compensate for (HZ==100) != (1 << SHIFT_HZ). 748 * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14) 749 */ 750 if (time_adj < 0) 751 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 752 else 753 time_adj += (time_adj >> 2) + (time_adj >> 5); 754#endif 755#if HZ == 1000 756 /* Compensate for (HZ==1000) != (1 << SHIFT_HZ). 757 * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14) 758 */ 759 if (time_adj < 0) 760 time_adj -= (-time_adj >> 6) + (-time_adj >> 7); 761 else 762 time_adj += (time_adj >> 6) + (time_adj >> 7); 763#endif 764} 765 766/* in the NTP reference this is called "hardclock()" */ 767static void update_wall_time_one_tick(void) 768{ 769 long time_adjust_step, delta_nsec; 770 771 if ( (time_adjust_step = time_adjust) != 0 ) { 772 /* We are doing an adjtime thing. 773 * 774 * Prepare time_adjust_step to be within bounds. 775 * Note that a positive time_adjust means we want the clock 776 * to run faster. 777 * 778 * Limit the amount of the step to be in the range 779 * -tickadj .. +tickadj 780 */ 781 if (time_adjust > tickadj) 782 time_adjust_step = tickadj; 783 else if (time_adjust < -tickadj) 784 time_adjust_step = -tickadj; 785 786 /* Reduce by this step the amount of time left */ 787 time_adjust -= time_adjust_step; 788 } 789 delta_nsec = tick_nsec + time_adjust_step * 1000; 790 /* 791 * Advance the phase, once it gets to one microsecond, then 792 * advance the tick more. 793 */ 794 time_phase += time_adj; 795 if (time_phase <= -FINENSEC) { 796 long ltemp = -time_phase >> (SHIFT_SCALE - 10); 797 time_phase += ltemp << (SHIFT_SCALE - 10); 798 delta_nsec -= ltemp; 799 } 800 else if (time_phase >= FINENSEC) { 801 long ltemp = time_phase >> (SHIFT_SCALE - 10); 802 time_phase -= ltemp << (SHIFT_SCALE - 10); 803 delta_nsec += ltemp; 804 } 805 xtime.tv_nsec += delta_nsec; 806 time_interpolator_update(delta_nsec); 807 808 /* Changes by adjtime() do not take effect till next tick. */ 809 if (time_next_adjust != 0) { 810 time_adjust = time_next_adjust; 811 time_next_adjust = 0; 812 } 813} 814 815/* 816 * Using a loop looks inefficient, but "ticks" is 817 * usually just one (we shouldn't be losing ticks, 818 * we're doing this this way mainly for interrupt 819 * latency reasons, not because we think we'll 820 * have lots of lost timer ticks 821 */ 822static void update_wall_time(unsigned long ticks) 823{ 824 do { 825 ticks--; 826 update_wall_time_one_tick(); 827 if (xtime.tv_nsec >= 1000000000) { 828 xtime.tv_nsec -= 1000000000; 829 xtime.tv_sec++; 830 second_overflow(); 831 } 832 } while (ticks); 833} 834 835/* 836 * Called from the timer interrupt handler to charge one tick to the current 837 * process. user_tick is 1 if the tick is user time, 0 for system. 838 */ 839void update_process_times(int user_tick) 840{ 841 struct task_struct *p = current; 842 int cpu = smp_processor_id(); 843 844 /* Note: this timer irq context must be accounted for as well. */ 845 if (user_tick) 846 account_user_time(p, jiffies_to_cputime(1)); 847 else 848 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); 849 run_local_timers(); 850 if (rcu_pending(cpu)) 851 rcu_check_callbacks(cpu, user_tick); 852 scheduler_tick(); 853 run_posix_cpu_timers(p); 854} 855 856/* 857 * Nr of active tasks - counted in fixed-point numbers 858 */ 859static unsigned long count_active_tasks(void) 860{ 861 return (nr_running() + nr_uninterruptible()) * FIXED_1; 862} 863 864/* 865 * Hmm.. Changed this, as the GNU make sources (load.c) seems to 866 * imply that avenrun[] is the standard name for this kind of thing. 867 * Nothing else seems to be standardized: the fractional size etc 868 * all seem to differ on different machines. 869 * 870 * Requires xtime_lock to access. 871 */ 872unsigned long avenrun[3]; 873 874EXPORT_SYMBOL(avenrun); 875 876/* 877 * calc_load - given tick count, update the avenrun load estimates. 878 * This is called while holding a write_lock on xtime_lock. 879 */ 880static inline void calc_load(unsigned long ticks) 881{ 882 unsigned long active_tasks; /* fixed-point */ 883 static int count = LOAD_FREQ; 884 885 count -= ticks; 886 if (count < 0) { 887 count += LOAD_FREQ; 888 active_tasks = count_active_tasks(); 889 CALC_LOAD(avenrun[0], EXP_1, active_tasks); 890 CALC_LOAD(avenrun[1], EXP_5, active_tasks); 891 CALC_LOAD(avenrun[2], EXP_15, active_tasks); 892 } 893} 894 895/* jiffies at the most recent update of wall time */ 896unsigned long wall_jiffies = INITIAL_JIFFIES; 897 898/* 899 * This read-write spinlock protects us from races in SMP while 900 * playing with xtime and avenrun. 901 */ 902#ifndef ARCH_HAVE_XTIME_LOCK 903seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; 904 905EXPORT_SYMBOL(xtime_lock); 906#endif 907 908/* 909 * This function runs timers and the timer-tq in bottom half context. 910 */ 911static void run_timer_softirq(struct softirq_action *h) 912{ 913 tvec_base_t *base = &__get_cpu_var(tvec_bases); 914 915 if (time_after_eq(jiffies, base->timer_jiffies)) 916 __run_timers(base); 917} 918 919/* 920 * Called by the local, per-CPU timer interrupt on SMP. 921 */ 922void run_local_timers(void) 923{ 924 raise_softirq(TIMER_SOFTIRQ); 925} 926 927/* 928 * Called by the timer interrupt. xtime_lock must already be taken 929 * by the timer IRQ! 930 */ 931static inline void update_times(void) 932{ 933 unsigned long ticks; 934 935 ticks = jiffies - wall_jiffies; 936 if (ticks) { 937 wall_jiffies += ticks; 938 update_wall_time(ticks); 939 } 940 calc_load(ticks); 941} 942 943/* 944 * The 64-bit jiffies value is not atomic - you MUST NOT read it 945 * without sampling the sequence number in xtime_lock. 946 * jiffies is defined in the linker script... 947 */ 948 949void do_timer(struct pt_regs *regs) 950{ 951 jiffies_64++; 952 update_times(); 953} 954 955#ifdef __ARCH_WANT_SYS_ALARM 956 957/* 958 * For backwards compatibility? This can be done in libc so Alpha 959 * and all newer ports shouldn't need it. 960 */ 961asmlinkage unsigned long sys_alarm(unsigned int seconds) 962{ 963 struct itimerval it_new, it_old; 964 unsigned int oldalarm; 965 966 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; 967 it_new.it_value.tv_sec = seconds; 968 it_new.it_value.tv_usec = 0; 969 do_setitimer(ITIMER_REAL, &it_new, &it_old); 970 oldalarm = it_old.it_value.tv_sec; 971 /* ehhh.. We can't return 0 if we have an alarm pending.. */ 972 /* And we'd better return too much than too little anyway */ 973 if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) 974 oldalarm++; 975 return oldalarm; 976} 977 978#endif 979 980#ifndef __alpha__ 981 982/* 983 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this 984 * should be moved into arch/i386 instead? 985 */ 986 987/** 988 * sys_getpid - return the thread group id of the current process 989 * 990 * Note, despite the name, this returns the tgid not the pid. The tgid and 991 * the pid are identical unless CLONE_THREAD was specified on clone() in 992 * which case the tgid is the same in all threads of the same group. 993 * 994 * This is SMP safe as current->tgid does not change. 995 */ 996asmlinkage long sys_getpid(void) 997{ 998 return current->tgid; 999} 1000 1001/* 1002 * Accessing ->group_leader->real_parent is not SMP-safe, it could 1003 * change from under us. However, rather than getting any lock 1004 * we can use an optimistic algorithm: get the parent 1005 * pid, and go back and check that the parent is still 1006 * the same. If it has changed (which is extremely unlikely 1007 * indeed), we just try again.. 1008 * 1009 * NOTE! This depends on the fact that even if we _do_ 1010 * get an old value of "parent", we can happily dereference 1011 * the pointer (it was and remains a dereferencable kernel pointer 1012 * no matter what): we just can't necessarily trust the result 1013 * until we know that the parent pointer is valid. 1014 * 1015 * NOTE2: ->group_leader never changes from under us. 1016 */ 1017asmlinkage long sys_getppid(void) 1018{ 1019 int pid; 1020 struct task_struct *me = current; 1021 struct task_struct *parent; 1022 1023 parent = me->group_leader->real_parent; 1024 for (;;) { 1025 pid = parent->tgid; 1026#ifdef CONFIG_SMP 1027{ 1028 struct task_struct *old = parent; 1029 1030 /* 1031 * Make sure we read the pid before re-reading the 1032 * parent pointer: 1033 */ 1034 smp_rmb(); 1035 parent = me->group_leader->real_parent; 1036 if (old != parent) 1037 continue; 1038} 1039#endif 1040 break; 1041 } 1042 return pid; 1043} 1044 1045asmlinkage long sys_getuid(void) 1046{ 1047 /* Only we change this so SMP safe */ 1048 return current->uid; 1049} 1050 1051asmlinkage long sys_geteuid(void) 1052{ 1053 /* Only we change this so SMP safe */ 1054 return current->euid; 1055} 1056 1057asmlinkage long sys_getgid(void) 1058{ 1059 /* Only we change this so SMP safe */ 1060 return current->gid; 1061} 1062 1063asmlinkage long sys_getegid(void) 1064{ 1065 /* Only we change this so SMP safe */ 1066 return current->egid; 1067} 1068 1069#endif 1070 1071static void process_timeout(unsigned long __data) 1072{ 1073 wake_up_process((task_t *)__data); 1074} 1075 1076/** 1077 * schedule_timeout - sleep until timeout 1078 * @timeout: timeout value in jiffies 1079 * 1080 * Make the current task sleep until @timeout jiffies have 1081 * elapsed. The routine will return immediately unless 1082 * the current task state has been set (see set_current_state()). 1083 * 1084 * You can set the task state as follows - 1085 * 1086 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1087 * pass before the routine returns. The routine will return 0 1088 * 1089 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1090 * delivered to the current task. In this case the remaining time 1091 * in jiffies will be returned, or 0 if the timer expired in time 1092 * 1093 * The current task state is guaranteed to be TASK_RUNNING when this 1094 * routine returns. 1095 * 1096 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1097 * the CPU away without a bound on the timeout. In this case the return 1098 * value will be %MAX_SCHEDULE_TIMEOUT. 1099 * 1100 * In all cases the return value is guaranteed to be non-negative. 1101 */ 1102fastcall signed long __sched schedule_timeout(signed long timeout) 1103{ 1104 struct timer_list timer; 1105 unsigned long expire; 1106 1107 switch (timeout) 1108 { 1109 case MAX_SCHEDULE_TIMEOUT: 1110 /* 1111 * These two special cases are useful to be comfortable 1112 * in the caller. Nothing more. We could take 1113 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1114 * but I' d like to return a valid offset (>=0) to allow 1115 * the caller to do everything it want with the retval. 1116 */ 1117 schedule(); 1118 goto out; 1119 default: 1120 /* 1121 * Another bit of PARANOID. Note that the retval will be 1122 * 0 since no piece of kernel is supposed to do a check 1123 * for a negative retval of schedule_timeout() (since it 1124 * should never happens anyway). You just have the printk() 1125 * that will tell you if something is gone wrong and where. 1126 */ 1127 if (timeout < 0) 1128 { 1129 printk(KERN_ERR "schedule_timeout: wrong timeout " 1130 "value %lx from %p\n", timeout, 1131 __builtin_return_address(0)); 1132 current->state = TASK_RUNNING; 1133 goto out; 1134 } 1135 } 1136 1137 expire = timeout + jiffies; 1138 1139 init_timer(&timer); 1140 timer.expires = expire; 1141 timer.data = (unsigned long) current; 1142 timer.function = process_timeout; 1143 1144 add_timer(&timer); 1145 schedule(); 1146 del_singleshot_timer_sync(&timer); 1147 1148 timeout = expire - jiffies; 1149 1150 out: 1151 return timeout < 0 ? 0 : timeout; 1152} 1153 1154EXPORT_SYMBOL(schedule_timeout); 1155 1156/* Thread ID - the internal kernel "pid" */ 1157asmlinkage long sys_gettid(void) 1158{ 1159 return current->pid; 1160} 1161 1162static long __sched nanosleep_restart(struct restart_block *restart) 1163{ 1164 unsigned long expire = restart->arg0, now = jiffies; 1165 struct timespec __user *rmtp = (struct timespec __user *) restart->arg1; 1166 long ret; 1167 1168 /* Did it expire while we handled signals? */ 1169 if (!time_after(expire, now)) 1170 return 0; 1171 1172 current->state = TASK_INTERRUPTIBLE; 1173 expire = schedule_timeout(expire - now); 1174 1175 ret = 0; 1176 if (expire) { 1177 struct timespec t; 1178 jiffies_to_timespec(expire, &t); 1179 1180 ret = -ERESTART_RESTARTBLOCK; 1181 if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) 1182 ret = -EFAULT; 1183 /* The 'restart' block is already filled in */ 1184 } 1185 return ret; 1186} 1187 1188asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) 1189{ 1190 struct timespec t; 1191 unsigned long expire; 1192 long ret; 1193 1194 if (copy_from_user(&t, rqtp, sizeof(t))) 1195 return -EFAULT; 1196 1197 if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0)) 1198 return -EINVAL; 1199 1200 expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec); 1201 current->state = TASK_INTERRUPTIBLE; 1202 expire = schedule_timeout(expire); 1203 1204 ret = 0; 1205 if (expire) { 1206 struct restart_block *restart; 1207 jiffies_to_timespec(expire, &t); 1208 if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) 1209 return -EFAULT; 1210 1211 restart = &current_thread_info()->restart_block; 1212 restart->fn = nanosleep_restart; 1213 restart->arg0 = jiffies + expire; 1214 restart->arg1 = (unsigned long) rmtp; 1215 ret = -ERESTART_RESTARTBLOCK; 1216 } 1217 return ret; 1218} 1219 1220/* 1221 * sys_sysinfo - fill in sysinfo struct 1222 */ 1223asmlinkage long sys_sysinfo(struct sysinfo __user *info) 1224{ 1225 struct sysinfo val; 1226 unsigned long mem_total, sav_total; 1227 unsigned int mem_unit, bitcount; 1228 unsigned long seq; 1229 1230 memset((char *)&val, 0, sizeof(struct sysinfo)); 1231 1232 do { 1233 struct timespec tp; 1234 seq = read_seqbegin(&xtime_lock); 1235 1236 /* 1237 * This is annoying. The below is the same thing 1238 * posix_get_clock_monotonic() does, but it wants to 1239 * take the lock which we want to cover the loads stuff 1240 * too. 1241 */ 1242 1243 getnstimeofday(&tp); 1244 tp.tv_sec += wall_to_monotonic.tv_sec; 1245 tp.tv_nsec += wall_to_monotonic.tv_nsec; 1246 if (tp.tv_nsec - NSEC_PER_SEC >= 0) { 1247 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; 1248 tp.tv_sec++; 1249 } 1250 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); 1251 1252 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); 1253 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); 1254 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); 1255 1256 val.procs = nr_threads; 1257 } while (read_seqretry(&xtime_lock, seq)); 1258 1259 si_meminfo(&val); 1260 si_swapinfo(&val); 1261 1262 /* 1263 * If the sum of all the available memory (i.e. ram + swap) 1264 * is less than can be stored in a 32 bit unsigned long then 1265 * we can be binary compatible with 2.2.x kernels. If not, 1266 * well, in that case 2.2.x was broken anyways... 1267 * 1268 * -Erik Andersen <andersee@debian.org> 1269 */ 1270 1271 mem_total = val.totalram + val.totalswap; 1272 if (mem_total < val.totalram || mem_total < val.totalswap) 1273 goto out; 1274 bitcount = 0; 1275 mem_unit = val.mem_unit; 1276 while (mem_unit > 1) { 1277 bitcount++; 1278 mem_unit >>= 1; 1279 sav_total = mem_total; 1280 mem_total <<= 1; 1281 if (mem_total < sav_total) 1282 goto out; 1283 } 1284 1285 /* 1286 * If mem_total did not overflow, multiply all memory values by 1287 * val.mem_unit and set it to 1. This leaves things compatible 1288 * with 2.2.x, and also retains compatibility with earlier 2.4.x 1289 * kernels... 1290 */ 1291 1292 val.mem_unit = 1; 1293 val.totalram <<= bitcount; 1294 val.freeram <<= bitcount; 1295 val.sharedram <<= bitcount; 1296 val.bufferram <<= bitcount; 1297 val.totalswap <<= bitcount; 1298 val.freeswap <<= bitcount; 1299 val.totalhigh <<= bitcount; 1300 val.freehigh <<= bitcount; 1301 1302 out: 1303 if (copy_to_user(info, &val, sizeof(struct sysinfo))) 1304 return -EFAULT; 1305 1306 return 0; 1307} 1308 1309static void __devinit init_timers_cpu(int cpu) 1310{ 1311 int j; 1312 tvec_base_t *base; 1313 1314 base = &per_cpu(tvec_bases, cpu); 1315 spin_lock_init(&base->t_base.lock); 1316 for (j = 0; j < TVN_SIZE; j++) { 1317 INIT_LIST_HEAD(base->tv5.vec + j); 1318 INIT_LIST_HEAD(base->tv4.vec + j); 1319 INIT_LIST_HEAD(base->tv3.vec + j); 1320 INIT_LIST_HEAD(base->tv2.vec + j); 1321 } 1322 for (j = 0; j < TVR_SIZE; j++) 1323 INIT_LIST_HEAD(base->tv1.vec + j); 1324 1325 base->timer_jiffies = jiffies; 1326} 1327 1328#ifdef CONFIG_HOTPLUG_CPU 1329static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) 1330{ 1331 struct timer_list *timer; 1332 1333 while (!list_empty(head)) { 1334 timer = list_entry(head->next, struct timer_list, entry); 1335 detach_timer(timer, 0); 1336 timer->base = &new_base->t_base; 1337 internal_add_timer(new_base, timer); 1338 } 1339} 1340 1341static void __devinit migrate_timers(int cpu) 1342{ 1343 tvec_base_t *old_base; 1344 tvec_base_t *new_base; 1345 int i; 1346 1347 BUG_ON(cpu_online(cpu)); 1348 old_base = &per_cpu(tvec_bases, cpu); 1349 new_base = &get_cpu_var(tvec_bases); 1350 1351 local_irq_disable(); 1352 spin_lock(&new_base->t_base.lock); 1353 spin_lock(&old_base->t_base.lock); 1354 1355 if (old_base->t_base.running_timer) 1356 BUG(); 1357 for (i = 0; i < TVR_SIZE; i++) 1358 migrate_timer_list(new_base, old_base->tv1.vec + i); 1359 for (i = 0; i < TVN_SIZE; i++) { 1360 migrate_timer_list(new_base, old_base->tv2.vec + i); 1361 migrate_timer_list(new_base, old_base->tv3.vec + i); 1362 migrate_timer_list(new_base, old_base->tv4.vec + i); 1363 migrate_timer_list(new_base, old_base->tv5.vec + i); 1364 } 1365 1366 spin_unlock(&old_base->t_base.lock); 1367 spin_unlock(&new_base->t_base.lock); 1368 local_irq_enable(); 1369 put_cpu_var(tvec_bases); 1370} 1371#endif /* CONFIG_HOTPLUG_CPU */ 1372 1373static int __devinit timer_cpu_notify(struct notifier_block *self, 1374 unsigned long action, void *hcpu) 1375{ 1376 long cpu = (long)hcpu; 1377 switch(action) { 1378 case CPU_UP_PREPARE: 1379 init_timers_cpu(cpu); 1380 break; 1381#ifdef CONFIG_HOTPLUG_CPU 1382 case CPU_DEAD: 1383 migrate_timers(cpu); 1384 break; 1385#endif 1386 default: 1387 break; 1388 } 1389 return NOTIFY_OK; 1390} 1391 1392static struct notifier_block __devinitdata timers_nb = { 1393 .notifier_call = timer_cpu_notify, 1394}; 1395 1396 1397void __init init_timers(void) 1398{ 1399 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, 1400 (void *)(long)smp_processor_id()); 1401 register_cpu_notifier(&timers_nb); 1402 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); 1403} 1404 1405#ifdef CONFIG_TIME_INTERPOLATION 1406 1407struct time_interpolator *time_interpolator; 1408static struct time_interpolator *time_interpolator_list; 1409static DEFINE_SPINLOCK(time_interpolator_lock); 1410 1411static inline u64 time_interpolator_get_cycles(unsigned int src) 1412{ 1413 unsigned long (*x)(void); 1414 1415 switch (src) 1416 { 1417 case TIME_SOURCE_FUNCTION: 1418 x = time_interpolator->addr; 1419 return x(); 1420 1421 case TIME_SOURCE_MMIO64 : 1422 return readq((void __iomem *) time_interpolator->addr); 1423 1424 case TIME_SOURCE_MMIO32 : 1425 return readl((void __iomem *) time_interpolator->addr); 1426 1427 default: return get_cycles(); 1428 } 1429} 1430 1431static inline u64 time_interpolator_get_counter(void) 1432{ 1433 unsigned int src = time_interpolator->source; 1434 1435 if (time_interpolator->jitter) 1436 { 1437 u64 lcycle; 1438 u64 now; 1439 1440 do { 1441 lcycle = time_interpolator->last_cycle; 1442 now = time_interpolator_get_cycles(src); 1443 if (lcycle && time_after(lcycle, now)) 1444 return lcycle; 1445 /* Keep track of the last timer value returned. The use of cmpxchg here 1446 * will cause contention in an SMP environment. 1447 */ 1448 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); 1449 return now; 1450 } 1451 else 1452 return time_interpolator_get_cycles(src); 1453} 1454 1455void time_interpolator_reset(void) 1456{ 1457 time_interpolator->offset = 0; 1458 time_interpolator->last_counter = time_interpolator_get_counter(); 1459} 1460 1461#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) 1462 1463unsigned long time_interpolator_get_offset(void) 1464{ 1465 /* If we do not have a time interpolator set up then just return zero */ 1466 if (!time_interpolator) 1467 return 0; 1468 1469 return time_interpolator->offset + 1470 GET_TI_NSECS(time_interpolator_get_counter(), time_interpolator); 1471} 1472 1473#define INTERPOLATOR_ADJUST 65536 1474#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST 1475 1476static void time_interpolator_update(long delta_nsec) 1477{ 1478 u64 counter; 1479 unsigned long offset; 1480 1481 /* If there is no time interpolator set up then do nothing */ 1482 if (!time_interpolator) 1483 return; 1484 1485 /* The interpolator compensates for late ticks by accumulating 1486 * the late time in time_interpolator->offset. A tick earlier than 1487 * expected will lead to a reset of the offset and a corresponding 1488 * jump of the clock forward. Again this only works if the 1489 * interpolator clock is running slightly slower than the regular clock 1490 * and the tuning logic insures that. 1491 */ 1492 1493 counter = time_interpolator_get_counter(); 1494 offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator); 1495 1496 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) 1497 time_interpolator->offset = offset - delta_nsec; 1498 else { 1499 time_interpolator->skips++; 1500 time_interpolator->ns_skipped += delta_nsec - offset; 1501 time_interpolator->offset = 0; 1502 } 1503 time_interpolator->last_counter = counter; 1504 1505 /* Tuning logic for time interpolator invoked every minute or so. 1506 * Decrease interpolator clock speed if no skips occurred and an offset is carried. 1507 * Increase interpolator clock speed if we skip too much time. 1508 */ 1509 if (jiffies % INTERPOLATOR_ADJUST == 0) 1510 { 1511 if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) 1512 time_interpolator->nsec_per_cyc--; 1513 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) 1514 time_interpolator->nsec_per_cyc++; 1515 time_interpolator->skips = 0; 1516 time_interpolator->ns_skipped = 0; 1517 } 1518} 1519 1520static inline int 1521is_better_time_interpolator(struct time_interpolator *new) 1522{ 1523 if (!time_interpolator) 1524 return 1; 1525 return new->frequency > 2*time_interpolator->frequency || 1526 (unsigned long)new->drift < (unsigned long)time_interpolator->drift; 1527} 1528 1529void 1530register_time_interpolator(struct time_interpolator *ti) 1531{ 1532 unsigned long flags; 1533 1534 /* Sanity check */ 1535 if (ti->frequency == 0 || ti->mask == 0) 1536 BUG(); 1537 1538 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; 1539 spin_lock(&time_interpolator_lock); 1540 write_seqlock_irqsave(&xtime_lock, flags); 1541 if (is_better_time_interpolator(ti)) { 1542 time_interpolator = ti; 1543 time_interpolator_reset(); 1544 } 1545 write_sequnlock_irqrestore(&xtime_lock, flags); 1546 1547 ti->next = time_interpolator_list; 1548 time_interpolator_list = ti; 1549 spin_unlock(&time_interpolator_lock); 1550} 1551 1552void 1553unregister_time_interpolator(struct time_interpolator *ti) 1554{ 1555 struct time_interpolator *curr, **prev; 1556 unsigned long flags; 1557 1558 spin_lock(&time_interpolator_lock); 1559 prev = &time_interpolator_list; 1560 for (curr = *prev; curr; curr = curr->next) { 1561 if (curr == ti) { 1562 *prev = curr->next; 1563 break; 1564 } 1565 prev = &curr->next; 1566 } 1567 1568 write_seqlock_irqsave(&xtime_lock, flags); 1569 if (ti == time_interpolator) { 1570 /* we lost the best time-interpolator: */ 1571 time_interpolator = NULL; 1572 /* find the next-best interpolator */ 1573 for (curr = time_interpolator_list; curr; curr = curr->next) 1574 if (is_better_time_interpolator(curr)) 1575 time_interpolator = curr; 1576 time_interpolator_reset(); 1577 } 1578 write_sequnlock_irqrestore(&xtime_lock, flags); 1579 spin_unlock(&time_interpolator_lock); 1580} 1581#endif /* CONFIG_TIME_INTERPOLATION */ 1582 1583/** 1584 * msleep - sleep safely even with waitqueue interruptions 1585 * @msecs: Time in milliseconds to sleep for 1586 */ 1587void msleep(unsigned int msecs) 1588{ 1589 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1590 1591 while (timeout) { 1592 set_current_state(TASK_UNINTERRUPTIBLE); 1593 timeout = schedule_timeout(timeout); 1594 } 1595} 1596 1597EXPORT_SYMBOL(msleep); 1598 1599/** 1600 * msleep_interruptible - sleep waiting for signals 1601 * @msecs: Time in milliseconds to sleep for 1602 */ 1603unsigned long msleep_interruptible(unsigned int msecs) 1604{ 1605 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1606 1607 while (timeout && !signal_pending(current)) { 1608 set_current_state(TASK_INTERRUPTIBLE); 1609 timeout = schedule_timeout(timeout); 1610 } 1611 return jiffies_to_msecs(timeout); 1612} 1613 1614EXPORT_SYMBOL(msleep_interruptible);