1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/config.h> 18#include <linux/kernel.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <asm/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/mm.h> 27#include <linux/highmem.h> 28#include <linux/poll.h> 29#include <linux/net.h> 30#include <linux/textsearch.h> 31#include <net/checksum.h> 32 33#define HAVE_ALLOC_SKB /* For the drivers to know */ 34#define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 35#define SLAB_SKB /* Slabified skbuffs */ 36 37#define CHECKSUM_NONE 0 38#define CHECKSUM_HW 1 39#define CHECKSUM_UNNECESSARY 2 40 41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \ 44 sizeof(struct skb_shared_info)) & \ 45 ~(SMP_CACHE_BYTES - 1)) 46#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 47#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 48 49/* A. Checksumming of received packets by device. 50 * 51 * NONE: device failed to checksum this packet. 52 * skb->csum is undefined. 53 * 54 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 55 * skb->csum is undefined. 56 * It is bad option, but, unfortunately, many of vendors do this. 57 * Apparently with secret goal to sell you new device, when you 58 * will add new protocol to your host. F.e. IPv6. 8) 59 * 60 * HW: the most generic way. Device supplied checksum of _all_ 61 * the packet as seen by netif_rx in skb->csum. 62 * NOTE: Even if device supports only some protocols, but 63 * is able to produce some skb->csum, it MUST use HW, 64 * not UNNECESSARY. 65 * 66 * B. Checksumming on output. 67 * 68 * NONE: skb is checksummed by protocol or csum is not required. 69 * 70 * HW: device is required to csum packet as seen by hard_start_xmit 71 * from skb->h.raw to the end and to record the checksum 72 * at skb->h.raw+skb->csum. 73 * 74 * Device must show its capabilities in dev->features, set 75 * at device setup time. 76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 77 * everything. 78 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 80 * TCP/UDP over IPv4. Sigh. Vendors like this 81 * way by an unknown reason. Though, see comment above 82 * about CHECKSUM_UNNECESSARY. 8) 83 * 84 * Any questions? No questions, good. --ANK 85 */ 86 87struct net_device; 88 89#ifdef CONFIG_NETFILTER 90struct nf_conntrack { 91 atomic_t use; 92 void (*destroy)(struct nf_conntrack *); 93}; 94 95#ifdef CONFIG_BRIDGE_NETFILTER 96struct nf_bridge_info { 97 atomic_t use; 98 struct net_device *physindev; 99 struct net_device *physoutdev; 100#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 101 struct net_device *netoutdev; 102#endif 103 unsigned int mask; 104 unsigned long data[32 / sizeof(unsigned long)]; 105}; 106#endif 107 108#endif 109 110struct sk_buff_head { 111 /* These two members must be first. */ 112 struct sk_buff *next; 113 struct sk_buff *prev; 114 115 __u32 qlen; 116 spinlock_t lock; 117}; 118 119struct sk_buff; 120 121/* To allow 64K frame to be packed as single skb without frag_list */ 122#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 123 124typedef struct skb_frag_struct skb_frag_t; 125 126struct skb_frag_struct { 127 struct page *page; 128 __u16 page_offset; 129 __u16 size; 130}; 131 132/* This data is invariant across clones and lives at 133 * the end of the header data, ie. at skb->end. 134 */ 135struct skb_shared_info { 136 atomic_t dataref; 137 unsigned int nr_frags; 138 unsigned short tso_size; 139 unsigned short tso_segs; 140 struct sk_buff *frag_list; 141 skb_frag_t frags[MAX_SKB_FRAGS]; 142}; 143 144/* We divide dataref into two halves. The higher 16 bits hold references 145 * to the payload part of skb->data. The lower 16 bits hold references to 146 * the entire skb->data. It is up to the users of the skb to agree on 147 * where the payload starts. 148 * 149 * All users must obey the rule that the skb->data reference count must be 150 * greater than or equal to the payload reference count. 151 * 152 * Holding a reference to the payload part means that the user does not 153 * care about modifications to the header part of skb->data. 154 */ 155#define SKB_DATAREF_SHIFT 16 156#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 157 158extern struct timeval skb_tv_base; 159 160struct skb_timeval { 161 u32 off_sec; 162 u32 off_usec; 163}; 164 165 166enum { 167 SKB_FCLONE_UNAVAILABLE, 168 SKB_FCLONE_ORIG, 169 SKB_FCLONE_CLONE, 170}; 171 172/** 173 * struct sk_buff - socket buffer 174 * @next: Next buffer in list 175 * @prev: Previous buffer in list 176 * @list: List we are on 177 * @sk: Socket we are owned by 178 * @tstamp: Time we arrived stored as offset to skb_tv_base 179 * @dev: Device we arrived on/are leaving by 180 * @input_dev: Device we arrived on 181 * @h: Transport layer header 182 * @nh: Network layer header 183 * @mac: Link layer header 184 * @dst: destination entry 185 * @sp: the security path, used for xfrm 186 * @cb: Control buffer. Free for use by every layer. Put private vars here 187 * @len: Length of actual data 188 * @data_len: Data length 189 * @mac_len: Length of link layer header 190 * @csum: Checksum 191 * @local_df: allow local fragmentation 192 * @cloned: Head may be cloned (check refcnt to be sure) 193 * @nohdr: Payload reference only, must not modify header 194 * @pkt_type: Packet class 195 * @ip_summed: Driver fed us an IP checksum 196 * @priority: Packet queueing priority 197 * @users: User count - see {datagram,tcp}.c 198 * @protocol: Packet protocol from driver 199 * @truesize: Buffer size 200 * @head: Head of buffer 201 * @data: Data head pointer 202 * @tail: Tail pointer 203 * @end: End pointer 204 * @destructor: Destruct function 205 * @nfmark: Can be used for communication between hooks 206 * @nfct: Associated connection, if any 207 * @nfctinfo: Relationship of this skb to the connection 208 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 209 * @tc_index: Traffic control index 210 * @tc_verd: traffic control verdict 211 */ 212 213struct sk_buff { 214 /* These two members must be first. */ 215 struct sk_buff *next; 216 struct sk_buff *prev; 217 218 struct sock *sk; 219 struct skb_timeval tstamp; 220 struct net_device *dev; 221 struct net_device *input_dev; 222 223 union { 224 struct tcphdr *th; 225 struct udphdr *uh; 226 struct icmphdr *icmph; 227 struct igmphdr *igmph; 228 struct iphdr *ipiph; 229 struct ipv6hdr *ipv6h; 230 unsigned char *raw; 231 } h; 232 233 union { 234 struct iphdr *iph; 235 struct ipv6hdr *ipv6h; 236 struct arphdr *arph; 237 unsigned char *raw; 238 } nh; 239 240 union { 241 unsigned char *raw; 242 } mac; 243 244 struct dst_entry *dst; 245 struct sec_path *sp; 246 247 /* 248 * This is the control buffer. It is free to use for every 249 * layer. Please put your private variables there. If you 250 * want to keep them across layers you have to do a skb_clone() 251 * first. This is owned by whoever has the skb queued ATM. 252 */ 253 char cb[40]; 254 255 unsigned int len, 256 data_len, 257 mac_len, 258 csum; 259 __u32 priority; 260 __u8 local_df:1, 261 cloned:1, 262 ip_summed:2, 263 nohdr:1, 264 nfctinfo:3; 265 __u8 pkt_type:3, 266 fclone:2; 267 __be16 protocol; 268 269 void (*destructor)(struct sk_buff *skb); 270#ifdef CONFIG_NETFILTER 271 __u32 nfmark; 272 struct nf_conntrack *nfct; 273#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 274 __u8 ipvs_property:1; 275#endif 276#ifdef CONFIG_BRIDGE_NETFILTER 277 struct nf_bridge_info *nf_bridge; 278#endif 279#endif /* CONFIG_NETFILTER */ 280#ifdef CONFIG_NET_SCHED 281 __u16 tc_index; /* traffic control index */ 282#ifdef CONFIG_NET_CLS_ACT 283 __u16 tc_verd; /* traffic control verdict */ 284#endif 285#endif 286 287 288 /* These elements must be at the end, see alloc_skb() for details. */ 289 unsigned int truesize; 290 atomic_t users; 291 unsigned char *head, 292 *data, 293 *tail, 294 *end; 295}; 296 297#ifdef __KERNEL__ 298/* 299 * Handling routines are only of interest to the kernel 300 */ 301#include <linux/slab.h> 302 303#include <asm/system.h> 304 305extern void __kfree_skb(struct sk_buff *skb); 306extern struct sk_buff *__alloc_skb(unsigned int size, 307 unsigned int __nocast priority, int fclone); 308static inline struct sk_buff *alloc_skb(unsigned int size, 309 unsigned int __nocast priority) 310{ 311 return __alloc_skb(size, priority, 0); 312} 313 314static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 315 unsigned int __nocast priority) 316{ 317 return __alloc_skb(size, priority, 1); 318} 319 320extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 321 unsigned int size, 322 unsigned int __nocast priority); 323extern void kfree_skbmem(struct sk_buff *skb); 324extern struct sk_buff *skb_clone(struct sk_buff *skb, 325 unsigned int __nocast priority); 326extern struct sk_buff *skb_copy(const struct sk_buff *skb, 327 unsigned int __nocast priority); 328extern struct sk_buff *pskb_copy(struct sk_buff *skb, 329 unsigned int __nocast gfp_mask); 330extern int pskb_expand_head(struct sk_buff *skb, 331 int nhead, int ntail, 332 unsigned int __nocast gfp_mask); 333extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 334 unsigned int headroom); 335extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 336 int newheadroom, int newtailroom, 337 unsigned int __nocast priority); 338extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad); 339#define dev_kfree_skb(a) kfree_skb(a) 340extern void skb_over_panic(struct sk_buff *skb, int len, 341 void *here); 342extern void skb_under_panic(struct sk_buff *skb, int len, 343 void *here); 344 345struct skb_seq_state 346{ 347 __u32 lower_offset; 348 __u32 upper_offset; 349 __u32 frag_idx; 350 __u32 stepped_offset; 351 struct sk_buff *root_skb; 352 struct sk_buff *cur_skb; 353 __u8 *frag_data; 354}; 355 356extern void skb_prepare_seq_read(struct sk_buff *skb, 357 unsigned int from, unsigned int to, 358 struct skb_seq_state *st); 359extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 360 struct skb_seq_state *st); 361extern void skb_abort_seq_read(struct skb_seq_state *st); 362 363extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 364 unsigned int to, struct ts_config *config, 365 struct ts_state *state); 366 367/* Internal */ 368#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end)) 369 370/** 371 * skb_queue_empty - check if a queue is empty 372 * @list: queue head 373 * 374 * Returns true if the queue is empty, false otherwise. 375 */ 376static inline int skb_queue_empty(const struct sk_buff_head *list) 377{ 378 return list->next == (struct sk_buff *)list; 379} 380 381/** 382 * skb_get - reference buffer 383 * @skb: buffer to reference 384 * 385 * Makes another reference to a socket buffer and returns a pointer 386 * to the buffer. 387 */ 388static inline struct sk_buff *skb_get(struct sk_buff *skb) 389{ 390 atomic_inc(&skb->users); 391 return skb; 392} 393 394/* 395 * If users == 1, we are the only owner and are can avoid redundant 396 * atomic change. 397 */ 398 399/** 400 * kfree_skb - free an sk_buff 401 * @skb: buffer to free 402 * 403 * Drop a reference to the buffer and free it if the usage count has 404 * hit zero. 405 */ 406static inline void kfree_skb(struct sk_buff *skb) 407{ 408 if (likely(atomic_read(&skb->users) == 1)) 409 smp_rmb(); 410 else if (likely(!atomic_dec_and_test(&skb->users))) 411 return; 412 __kfree_skb(skb); 413} 414 415/** 416 * skb_cloned - is the buffer a clone 417 * @skb: buffer to check 418 * 419 * Returns true if the buffer was generated with skb_clone() and is 420 * one of multiple shared copies of the buffer. Cloned buffers are 421 * shared data so must not be written to under normal circumstances. 422 */ 423static inline int skb_cloned(const struct sk_buff *skb) 424{ 425 return skb->cloned && 426 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 427} 428 429/** 430 * skb_header_cloned - is the header a clone 431 * @skb: buffer to check 432 * 433 * Returns true if modifying the header part of the buffer requires 434 * the data to be copied. 435 */ 436static inline int skb_header_cloned(const struct sk_buff *skb) 437{ 438 int dataref; 439 440 if (!skb->cloned) 441 return 0; 442 443 dataref = atomic_read(&skb_shinfo(skb)->dataref); 444 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 445 return dataref != 1; 446} 447 448/** 449 * skb_header_release - release reference to header 450 * @skb: buffer to operate on 451 * 452 * Drop a reference to the header part of the buffer. This is done 453 * by acquiring a payload reference. You must not read from the header 454 * part of skb->data after this. 455 */ 456static inline void skb_header_release(struct sk_buff *skb) 457{ 458 BUG_ON(skb->nohdr); 459 skb->nohdr = 1; 460 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 461} 462 463/** 464 * skb_shared - is the buffer shared 465 * @skb: buffer to check 466 * 467 * Returns true if more than one person has a reference to this 468 * buffer. 469 */ 470static inline int skb_shared(const struct sk_buff *skb) 471{ 472 return atomic_read(&skb->users) != 1; 473} 474 475/** 476 * skb_share_check - check if buffer is shared and if so clone it 477 * @skb: buffer to check 478 * @pri: priority for memory allocation 479 * 480 * If the buffer is shared the buffer is cloned and the old copy 481 * drops a reference. A new clone with a single reference is returned. 482 * If the buffer is not shared the original buffer is returned. When 483 * being called from interrupt status or with spinlocks held pri must 484 * be GFP_ATOMIC. 485 * 486 * NULL is returned on a memory allocation failure. 487 */ 488static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 489 unsigned int __nocast pri) 490{ 491 might_sleep_if(pri & __GFP_WAIT); 492 if (skb_shared(skb)) { 493 struct sk_buff *nskb = skb_clone(skb, pri); 494 kfree_skb(skb); 495 skb = nskb; 496 } 497 return skb; 498} 499 500/* 501 * Copy shared buffers into a new sk_buff. We effectively do COW on 502 * packets to handle cases where we have a local reader and forward 503 * and a couple of other messy ones. The normal one is tcpdumping 504 * a packet thats being forwarded. 505 */ 506 507/** 508 * skb_unshare - make a copy of a shared buffer 509 * @skb: buffer to check 510 * @pri: priority for memory allocation 511 * 512 * If the socket buffer is a clone then this function creates a new 513 * copy of the data, drops a reference count on the old copy and returns 514 * the new copy with the reference count at 1. If the buffer is not a clone 515 * the original buffer is returned. When called with a spinlock held or 516 * from interrupt state @pri must be %GFP_ATOMIC 517 * 518 * %NULL is returned on a memory allocation failure. 519 */ 520static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 521 unsigned int __nocast pri) 522{ 523 might_sleep_if(pri & __GFP_WAIT); 524 if (skb_cloned(skb)) { 525 struct sk_buff *nskb = skb_copy(skb, pri); 526 kfree_skb(skb); /* Free our shared copy */ 527 skb = nskb; 528 } 529 return skb; 530} 531 532/** 533 * skb_peek 534 * @list_: list to peek at 535 * 536 * Peek an &sk_buff. Unlike most other operations you _MUST_ 537 * be careful with this one. A peek leaves the buffer on the 538 * list and someone else may run off with it. You must hold 539 * the appropriate locks or have a private queue to do this. 540 * 541 * Returns %NULL for an empty list or a pointer to the head element. 542 * The reference count is not incremented and the reference is therefore 543 * volatile. Use with caution. 544 */ 545static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 546{ 547 struct sk_buff *list = ((struct sk_buff *)list_)->next; 548 if (list == (struct sk_buff *)list_) 549 list = NULL; 550 return list; 551} 552 553/** 554 * skb_peek_tail 555 * @list_: list to peek at 556 * 557 * Peek an &sk_buff. Unlike most other operations you _MUST_ 558 * be careful with this one. A peek leaves the buffer on the 559 * list and someone else may run off with it. You must hold 560 * the appropriate locks or have a private queue to do this. 561 * 562 * Returns %NULL for an empty list or a pointer to the tail element. 563 * The reference count is not incremented and the reference is therefore 564 * volatile. Use with caution. 565 */ 566static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 567{ 568 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 569 if (list == (struct sk_buff *)list_) 570 list = NULL; 571 return list; 572} 573 574/** 575 * skb_queue_len - get queue length 576 * @list_: list to measure 577 * 578 * Return the length of an &sk_buff queue. 579 */ 580static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 581{ 582 return list_->qlen; 583} 584 585static inline void skb_queue_head_init(struct sk_buff_head *list) 586{ 587 spin_lock_init(&list->lock); 588 list->prev = list->next = (struct sk_buff *)list; 589 list->qlen = 0; 590} 591 592/* 593 * Insert an sk_buff at the start of a list. 594 * 595 * The "__skb_xxxx()" functions are the non-atomic ones that 596 * can only be called with interrupts disabled. 597 */ 598 599/** 600 * __skb_queue_head - queue a buffer at the list head 601 * @list: list to use 602 * @newsk: buffer to queue 603 * 604 * Queue a buffer at the start of a list. This function takes no locks 605 * and you must therefore hold required locks before calling it. 606 * 607 * A buffer cannot be placed on two lists at the same time. 608 */ 609extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 610static inline void __skb_queue_head(struct sk_buff_head *list, 611 struct sk_buff *newsk) 612{ 613 struct sk_buff *prev, *next; 614 615 list->qlen++; 616 prev = (struct sk_buff *)list; 617 next = prev->next; 618 newsk->next = next; 619 newsk->prev = prev; 620 next->prev = prev->next = newsk; 621} 622 623/** 624 * __skb_queue_tail - queue a buffer at the list tail 625 * @list: list to use 626 * @newsk: buffer to queue 627 * 628 * Queue a buffer at the end of a list. This function takes no locks 629 * and you must therefore hold required locks before calling it. 630 * 631 * A buffer cannot be placed on two lists at the same time. 632 */ 633extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 634static inline void __skb_queue_tail(struct sk_buff_head *list, 635 struct sk_buff *newsk) 636{ 637 struct sk_buff *prev, *next; 638 639 list->qlen++; 640 next = (struct sk_buff *)list; 641 prev = next->prev; 642 newsk->next = next; 643 newsk->prev = prev; 644 next->prev = prev->next = newsk; 645} 646 647 648/** 649 * __skb_dequeue - remove from the head of the queue 650 * @list: list to dequeue from 651 * 652 * Remove the head of the list. This function does not take any locks 653 * so must be used with appropriate locks held only. The head item is 654 * returned or %NULL if the list is empty. 655 */ 656extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 657static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 658{ 659 struct sk_buff *next, *prev, *result; 660 661 prev = (struct sk_buff *) list; 662 next = prev->next; 663 result = NULL; 664 if (next != prev) { 665 result = next; 666 next = next->next; 667 list->qlen--; 668 next->prev = prev; 669 prev->next = next; 670 result->next = result->prev = NULL; 671 } 672 return result; 673} 674 675 676/* 677 * Insert a packet on a list. 678 */ 679extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 680static inline void __skb_insert(struct sk_buff *newsk, 681 struct sk_buff *prev, struct sk_buff *next, 682 struct sk_buff_head *list) 683{ 684 newsk->next = next; 685 newsk->prev = prev; 686 next->prev = prev->next = newsk; 687 list->qlen++; 688} 689 690/* 691 * Place a packet after a given packet in a list. 692 */ 693extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 694static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 695{ 696 __skb_insert(newsk, old, old->next, list); 697} 698 699/* 700 * remove sk_buff from list. _Must_ be called atomically, and with 701 * the list known.. 702 */ 703extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 704static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 705{ 706 struct sk_buff *next, *prev; 707 708 list->qlen--; 709 next = skb->next; 710 prev = skb->prev; 711 skb->next = skb->prev = NULL; 712 next->prev = prev; 713 prev->next = next; 714} 715 716 717/* XXX: more streamlined implementation */ 718 719/** 720 * __skb_dequeue_tail - remove from the tail of the queue 721 * @list: list to dequeue from 722 * 723 * Remove the tail of the list. This function does not take any locks 724 * so must be used with appropriate locks held only. The tail item is 725 * returned or %NULL if the list is empty. 726 */ 727extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 728static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 729{ 730 struct sk_buff *skb = skb_peek_tail(list); 731 if (skb) 732 __skb_unlink(skb, list); 733 return skb; 734} 735 736 737static inline int skb_is_nonlinear(const struct sk_buff *skb) 738{ 739 return skb->data_len; 740} 741 742static inline unsigned int skb_headlen(const struct sk_buff *skb) 743{ 744 return skb->len - skb->data_len; 745} 746 747static inline int skb_pagelen(const struct sk_buff *skb) 748{ 749 int i, len = 0; 750 751 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 752 len += skb_shinfo(skb)->frags[i].size; 753 return len + skb_headlen(skb); 754} 755 756static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 757 struct page *page, int off, int size) 758{ 759 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 760 761 frag->page = page; 762 frag->page_offset = off; 763 frag->size = size; 764 skb_shinfo(skb)->nr_frags = i + 1; 765} 766 767#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 768#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 769#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 770 771/* 772 * Add data to an sk_buff 773 */ 774static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 775{ 776 unsigned char *tmp = skb->tail; 777 SKB_LINEAR_ASSERT(skb); 778 skb->tail += len; 779 skb->len += len; 780 return tmp; 781} 782 783/** 784 * skb_put - add data to a buffer 785 * @skb: buffer to use 786 * @len: amount of data to add 787 * 788 * This function extends the used data area of the buffer. If this would 789 * exceed the total buffer size the kernel will panic. A pointer to the 790 * first byte of the extra data is returned. 791 */ 792static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 793{ 794 unsigned char *tmp = skb->tail; 795 SKB_LINEAR_ASSERT(skb); 796 skb->tail += len; 797 skb->len += len; 798 if (unlikely(skb->tail>skb->end)) 799 skb_over_panic(skb, len, current_text_addr()); 800 return tmp; 801} 802 803static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 804{ 805 skb->data -= len; 806 skb->len += len; 807 return skb->data; 808} 809 810/** 811 * skb_push - add data to the start of a buffer 812 * @skb: buffer to use 813 * @len: amount of data to add 814 * 815 * This function extends the used data area of the buffer at the buffer 816 * start. If this would exceed the total buffer headroom the kernel will 817 * panic. A pointer to the first byte of the extra data is returned. 818 */ 819static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 820{ 821 skb->data -= len; 822 skb->len += len; 823 if (unlikely(skb->data<skb->head)) 824 skb_under_panic(skb, len, current_text_addr()); 825 return skb->data; 826} 827 828static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 829{ 830 skb->len -= len; 831 BUG_ON(skb->len < skb->data_len); 832 return skb->data += len; 833} 834 835/** 836 * skb_pull - remove data from the start of a buffer 837 * @skb: buffer to use 838 * @len: amount of data to remove 839 * 840 * This function removes data from the start of a buffer, returning 841 * the memory to the headroom. A pointer to the next data in the buffer 842 * is returned. Once the data has been pulled future pushes will overwrite 843 * the old data. 844 */ 845static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 846{ 847 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 848} 849 850extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 851 852static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 853{ 854 if (len > skb_headlen(skb) && 855 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 856 return NULL; 857 skb->len -= len; 858 return skb->data += len; 859} 860 861static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 862{ 863 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 864} 865 866static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 867{ 868 if (likely(len <= skb_headlen(skb))) 869 return 1; 870 if (unlikely(len > skb->len)) 871 return 0; 872 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 873} 874 875/** 876 * skb_headroom - bytes at buffer head 877 * @skb: buffer to check 878 * 879 * Return the number of bytes of free space at the head of an &sk_buff. 880 */ 881static inline int skb_headroom(const struct sk_buff *skb) 882{ 883 return skb->data - skb->head; 884} 885 886/** 887 * skb_tailroom - bytes at buffer end 888 * @skb: buffer to check 889 * 890 * Return the number of bytes of free space at the tail of an sk_buff 891 */ 892static inline int skb_tailroom(const struct sk_buff *skb) 893{ 894 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 895} 896 897/** 898 * skb_reserve - adjust headroom 899 * @skb: buffer to alter 900 * @len: bytes to move 901 * 902 * Increase the headroom of an empty &sk_buff by reducing the tail 903 * room. This is only allowed for an empty buffer. 904 */ 905static inline void skb_reserve(struct sk_buff *skb, unsigned int len) 906{ 907 skb->data += len; 908 skb->tail += len; 909} 910 911/* 912 * CPUs often take a performance hit when accessing unaligned memory 913 * locations. The actual performance hit varies, it can be small if the 914 * hardware handles it or large if we have to take an exception and fix it 915 * in software. 916 * 917 * Since an ethernet header is 14 bytes network drivers often end up with 918 * the IP header at an unaligned offset. The IP header can be aligned by 919 * shifting the start of the packet by 2 bytes. Drivers should do this 920 * with: 921 * 922 * skb_reserve(NET_IP_ALIGN); 923 * 924 * The downside to this alignment of the IP header is that the DMA is now 925 * unaligned. On some architectures the cost of an unaligned DMA is high 926 * and this cost outweighs the gains made by aligning the IP header. 927 * 928 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 929 * to be overridden. 930 */ 931#ifndef NET_IP_ALIGN 932#define NET_IP_ALIGN 2 933#endif 934 935extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc); 936 937static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 938{ 939 if (!skb->data_len) { 940 skb->len = len; 941 skb->tail = skb->data + len; 942 } else 943 ___pskb_trim(skb, len, 0); 944} 945 946/** 947 * skb_trim - remove end from a buffer 948 * @skb: buffer to alter 949 * @len: new length 950 * 951 * Cut the length of a buffer down by removing data from the tail. If 952 * the buffer is already under the length specified it is not modified. 953 */ 954static inline void skb_trim(struct sk_buff *skb, unsigned int len) 955{ 956 if (skb->len > len) 957 __skb_trim(skb, len); 958} 959 960 961static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 962{ 963 if (!skb->data_len) { 964 skb->len = len; 965 skb->tail = skb->data+len; 966 return 0; 967 } 968 return ___pskb_trim(skb, len, 1); 969} 970 971static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 972{ 973 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 974} 975 976/** 977 * skb_orphan - orphan a buffer 978 * @skb: buffer to orphan 979 * 980 * If a buffer currently has an owner then we call the owner's 981 * destructor function and make the @skb unowned. The buffer continues 982 * to exist but is no longer charged to its former owner. 983 */ 984static inline void skb_orphan(struct sk_buff *skb) 985{ 986 if (skb->destructor) 987 skb->destructor(skb); 988 skb->destructor = NULL; 989 skb->sk = NULL; 990} 991 992/** 993 * __skb_queue_purge - empty a list 994 * @list: list to empty 995 * 996 * Delete all buffers on an &sk_buff list. Each buffer is removed from 997 * the list and one reference dropped. This function does not take the 998 * list lock and the caller must hold the relevant locks to use it. 999 */ 1000extern void skb_queue_purge(struct sk_buff_head *list); 1001static inline void __skb_queue_purge(struct sk_buff_head *list) 1002{ 1003 struct sk_buff *skb; 1004 while ((skb = __skb_dequeue(list)) != NULL) 1005 kfree_skb(skb); 1006} 1007 1008#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB 1009/** 1010 * __dev_alloc_skb - allocate an skbuff for sending 1011 * @length: length to allocate 1012 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1013 * 1014 * Allocate a new &sk_buff and assign it a usage count of one. The 1015 * buffer has unspecified headroom built in. Users should allocate 1016 * the headroom they think they need without accounting for the 1017 * built in space. The built in space is used for optimisations. 1018 * 1019 * %NULL is returned in there is no free memory. 1020 */ 1021static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1022 unsigned int __nocast gfp_mask) 1023{ 1024 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask); 1025 if (likely(skb)) 1026 skb_reserve(skb, 16); 1027 return skb; 1028} 1029#else 1030extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask); 1031#endif 1032 1033/** 1034 * dev_alloc_skb - allocate an skbuff for sending 1035 * @length: length to allocate 1036 * 1037 * Allocate a new &sk_buff and assign it a usage count of one. The 1038 * buffer has unspecified headroom built in. Users should allocate 1039 * the headroom they think they need without accounting for the 1040 * built in space. The built in space is used for optimisations. 1041 * 1042 * %NULL is returned in there is no free memory. Although this function 1043 * allocates memory it can be called from an interrupt. 1044 */ 1045static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1046{ 1047 return __dev_alloc_skb(length, GFP_ATOMIC); 1048} 1049 1050/** 1051 * skb_cow - copy header of skb when it is required 1052 * @skb: buffer to cow 1053 * @headroom: needed headroom 1054 * 1055 * If the skb passed lacks sufficient headroom or its data part 1056 * is shared, data is reallocated. If reallocation fails, an error 1057 * is returned and original skb is not changed. 1058 * 1059 * The result is skb with writable area skb->head...skb->tail 1060 * and at least @headroom of space at head. 1061 */ 1062static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1063{ 1064 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb); 1065 1066 if (delta < 0) 1067 delta = 0; 1068 1069 if (delta || skb_cloned(skb)) 1070 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC); 1071 return 0; 1072} 1073 1074/** 1075 * skb_padto - pad an skbuff up to a minimal size 1076 * @skb: buffer to pad 1077 * @len: minimal length 1078 * 1079 * Pads up a buffer to ensure the trailing bytes exist and are 1080 * blanked. If the buffer already contains sufficient data it 1081 * is untouched. Returns the buffer, which may be a replacement 1082 * for the original, or NULL for out of memory - in which case 1083 * the original buffer is still freed. 1084 */ 1085 1086static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len) 1087{ 1088 unsigned int size = skb->len; 1089 if (likely(size >= len)) 1090 return skb; 1091 return skb_pad(skb, len-size); 1092} 1093 1094static inline int skb_add_data(struct sk_buff *skb, 1095 char __user *from, int copy) 1096{ 1097 const int off = skb->len; 1098 1099 if (skb->ip_summed == CHECKSUM_NONE) { 1100 int err = 0; 1101 unsigned int csum = csum_and_copy_from_user(from, 1102 skb_put(skb, copy), 1103 copy, 0, &err); 1104 if (!err) { 1105 skb->csum = csum_block_add(skb->csum, csum, off); 1106 return 0; 1107 } 1108 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1109 return 0; 1110 1111 __skb_trim(skb, off); 1112 return -EFAULT; 1113} 1114 1115static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1116 struct page *page, int off) 1117{ 1118 if (i) { 1119 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1120 1121 return page == frag->page && 1122 off == frag->page_offset + frag->size; 1123 } 1124 return 0; 1125} 1126 1127/** 1128 * skb_linearize - convert paged skb to linear one 1129 * @skb: buffer to linarize 1130 * @gfp: allocation mode 1131 * 1132 * If there is no free memory -ENOMEM is returned, otherwise zero 1133 * is returned and the old skb data released. 1134 */ 1135extern int __skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp); 1136static inline int skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp) 1137{ 1138 return __skb_linearize(skb, gfp); 1139} 1140 1141/** 1142 * skb_postpull_rcsum - update checksum for received skb after pull 1143 * @skb: buffer to update 1144 * @start: start of data before pull 1145 * @len: length of data pulled 1146 * 1147 * After doing a pull on a received packet, you need to call this to 1148 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE 1149 * so that it can be recomputed from scratch. 1150 */ 1151 1152static inline void skb_postpull_rcsum(struct sk_buff *skb, 1153 const void *start, int len) 1154{ 1155 if (skb->ip_summed == CHECKSUM_HW) 1156 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1157} 1158 1159/** 1160 * pskb_trim_rcsum - trim received skb and update checksum 1161 * @skb: buffer to trim 1162 * @len: new length 1163 * 1164 * This is exactly the same as pskb_trim except that it ensures the 1165 * checksum of received packets are still valid after the operation. 1166 */ 1167 1168static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1169{ 1170 if (likely(len >= skb->len)) 1171 return 0; 1172 if (skb->ip_summed == CHECKSUM_HW) 1173 skb->ip_summed = CHECKSUM_NONE; 1174 return __pskb_trim(skb, len); 1175} 1176 1177static inline void *kmap_skb_frag(const skb_frag_t *frag) 1178{ 1179#ifdef CONFIG_HIGHMEM 1180 BUG_ON(in_irq()); 1181 1182 local_bh_disable(); 1183#endif 1184 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ); 1185} 1186 1187static inline void kunmap_skb_frag(void *vaddr) 1188{ 1189 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 1190#ifdef CONFIG_HIGHMEM 1191 local_bh_enable(); 1192#endif 1193} 1194 1195#define skb_queue_walk(queue, skb) \ 1196 for (skb = (queue)->next; \ 1197 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1198 skb = skb->next) 1199 1200 1201extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1202 int noblock, int *err); 1203extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1204 struct poll_table_struct *wait); 1205extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1206 int offset, struct iovec *to, 1207 int size); 1208extern int skb_copy_and_csum_datagram_iovec(const 1209 struct sk_buff *skb, 1210 int hlen, 1211 struct iovec *iov); 1212extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1213extern unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1214 int len, unsigned int csum); 1215extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1216 void *to, int len); 1217extern int skb_store_bits(const struct sk_buff *skb, int offset, 1218 void *from, int len); 1219extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, 1220 int offset, u8 *to, int len, 1221 unsigned int csum); 1222extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1223extern void skb_split(struct sk_buff *skb, 1224 struct sk_buff *skb1, const u32 len); 1225 1226extern void skb_release_data(struct sk_buff *skb); 1227 1228static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1229 int len, void *buffer) 1230{ 1231 int hlen = skb_headlen(skb); 1232 1233 if (hlen - offset >= len) 1234 return skb->data + offset; 1235 1236 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1237 return NULL; 1238 1239 return buffer; 1240} 1241 1242extern void skb_init(void); 1243extern void skb_add_mtu(int mtu); 1244 1245/** 1246 * skb_get_timestamp - get timestamp from a skb 1247 * @skb: skb to get stamp from 1248 * @stamp: pointer to struct timeval to store stamp in 1249 * 1250 * Timestamps are stored in the skb as offsets to a base timestamp. 1251 * This function converts the offset back to a struct timeval and stores 1252 * it in stamp. 1253 */ 1254static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1255{ 1256 stamp->tv_sec = skb->tstamp.off_sec; 1257 stamp->tv_usec = skb->tstamp.off_usec; 1258 if (skb->tstamp.off_sec) { 1259 stamp->tv_sec += skb_tv_base.tv_sec; 1260 stamp->tv_usec += skb_tv_base.tv_usec; 1261 } 1262} 1263 1264/** 1265 * skb_set_timestamp - set timestamp of a skb 1266 * @skb: skb to set stamp of 1267 * @stamp: pointer to struct timeval to get stamp from 1268 * 1269 * Timestamps are stored in the skb as offsets to a base timestamp. 1270 * This function converts a struct timeval to an offset and stores 1271 * it in the skb. 1272 */ 1273static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp) 1274{ 1275 skb->tstamp.off_sec = stamp->tv_sec - skb_tv_base.tv_sec; 1276 skb->tstamp.off_usec = stamp->tv_usec - skb_tv_base.tv_usec; 1277} 1278 1279extern void __net_timestamp(struct sk_buff *skb); 1280 1281#ifdef CONFIG_NETFILTER 1282static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1283{ 1284 if (nfct && atomic_dec_and_test(&nfct->use)) 1285 nfct->destroy(nfct); 1286} 1287static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1288{ 1289 if (nfct) 1290 atomic_inc(&nfct->use); 1291} 1292static inline void nf_reset(struct sk_buff *skb) 1293{ 1294 nf_conntrack_put(skb->nfct); 1295 skb->nfct = NULL; 1296} 1297 1298#ifdef CONFIG_BRIDGE_NETFILTER 1299static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1300{ 1301 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1302 kfree(nf_bridge); 1303} 1304static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1305{ 1306 if (nf_bridge) 1307 atomic_inc(&nf_bridge->use); 1308} 1309#endif /* CONFIG_BRIDGE_NETFILTER */ 1310#else /* CONFIG_NETFILTER */ 1311static inline void nf_reset(struct sk_buff *skb) {} 1312#endif /* CONFIG_NETFILTER */ 1313 1314#endif /* __KERNEL__ */ 1315#endif /* _LINUX_SKBUFF_H */