1/* 2 * sparse memory mappings. 3 */ 4#include <linux/mm.h> 5#include <linux/mmzone.h> 6#include <linux/bootmem.h> 7#include <linux/highmem.h> 8#include <linux/module.h> 9#include <linux/spinlock.h> 10#include <linux/vmalloc.h> 11#include "internal.h" 12#include <asm/dma.h> 13#include <asm/pgalloc.h> 14#include <asm/pgtable.h> 15#include "internal.h" 16 17/* 18 * Permanent SPARSEMEM data: 19 * 20 * 1) mem_section - memory sections, mem_map's for valid memory 21 */ 22#ifdef CONFIG_SPARSEMEM_EXTREME 23struct mem_section *mem_section[NR_SECTION_ROOTS] 24 ____cacheline_internodealigned_in_smp; 25#else 26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 27 ____cacheline_internodealigned_in_smp; 28#endif 29EXPORT_SYMBOL(mem_section); 30 31#ifdef NODE_NOT_IN_PAGE_FLAGS 32/* 33 * If we did not store the node number in the page then we have to 34 * do a lookup in the section_to_node_table in order to find which 35 * node the page belongs to. 36 */ 37#if MAX_NUMNODES <= 256 38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 39#else 40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41#endif 42 43int page_to_nid(struct page *page) 44{ 45 return section_to_node_table[page_to_section(page)]; 46} 47EXPORT_SYMBOL(page_to_nid); 48 49static void set_section_nid(unsigned long section_nr, int nid) 50{ 51 section_to_node_table[section_nr] = nid; 52} 53#else /* !NODE_NOT_IN_PAGE_FLAGS */ 54static inline void set_section_nid(unsigned long section_nr, int nid) 55{ 56} 57#endif 58 59#ifdef CONFIG_SPARSEMEM_EXTREME 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 61{ 62 struct mem_section *section = NULL; 63 unsigned long array_size = SECTIONS_PER_ROOT * 64 sizeof(struct mem_section); 65 66 if (slab_is_available()) 67 section = kmalloc_node(array_size, GFP_KERNEL, nid); 68 else 69 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 70 71 if (section) 72 memset(section, 0, array_size); 73 74 return section; 75} 76 77static int __meminit sparse_index_init(unsigned long section_nr, int nid) 78{ 79 static DEFINE_SPINLOCK(index_init_lock); 80 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 81 struct mem_section *section; 82 int ret = 0; 83 84 if (mem_section[root]) 85 return -EEXIST; 86 87 section = sparse_index_alloc(nid); 88 if (!section) 89 return -ENOMEM; 90 /* 91 * This lock keeps two different sections from 92 * reallocating for the same index 93 */ 94 spin_lock(&index_init_lock); 95 96 if (mem_section[root]) { 97 ret = -EEXIST; 98 goto out; 99 } 100 101 mem_section[root] = section; 102out: 103 spin_unlock(&index_init_lock); 104 return ret; 105} 106#else /* !SPARSEMEM_EXTREME */ 107static inline int sparse_index_init(unsigned long section_nr, int nid) 108{ 109 return 0; 110} 111#endif 112 113/* 114 * Although written for the SPARSEMEM_EXTREME case, this happens 115 * to also work for the flat array case because 116 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 117 */ 118int __section_nr(struct mem_section* ms) 119{ 120 unsigned long root_nr; 121 struct mem_section* root; 122 123 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 124 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 125 if (!root) 126 continue; 127 128 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 129 break; 130 } 131 132 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 133} 134 135/* 136 * During early boot, before section_mem_map is used for an actual 137 * mem_map, we use section_mem_map to store the section's NUMA 138 * node. This keeps us from having to use another data structure. The 139 * node information is cleared just before we store the real mem_map. 140 */ 141static inline unsigned long sparse_encode_early_nid(int nid) 142{ 143 return (nid << SECTION_NID_SHIFT); 144} 145 146static inline int sparse_early_nid(struct mem_section *section) 147{ 148 return (section->section_mem_map >> SECTION_NID_SHIFT); 149} 150 151/* Validate the physical addressing limitations of the model */ 152void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 153 unsigned long *end_pfn) 154{ 155 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 156 157 /* 158 * Sanity checks - do not allow an architecture to pass 159 * in larger pfns than the maximum scope of sparsemem: 160 */ 161 if (*start_pfn > max_sparsemem_pfn) { 162 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 163 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 164 *start_pfn, *end_pfn, max_sparsemem_pfn); 165 WARN_ON_ONCE(1); 166 *start_pfn = max_sparsemem_pfn; 167 *end_pfn = max_sparsemem_pfn; 168 } 169 170 if (*end_pfn > max_sparsemem_pfn) { 171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 173 *start_pfn, *end_pfn, max_sparsemem_pfn); 174 WARN_ON_ONCE(1); 175 *end_pfn = max_sparsemem_pfn; 176 } 177} 178 179/* Record a memory area against a node. */ 180void __init memory_present(int nid, unsigned long start, unsigned long end) 181{ 182 unsigned long pfn; 183 184 start &= PAGE_SECTION_MASK; 185 mminit_validate_memmodel_limits(&start, &end); 186 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 187 unsigned long section = pfn_to_section_nr(pfn); 188 struct mem_section *ms; 189 190 sparse_index_init(section, nid); 191 set_section_nid(section, nid); 192 193 ms = __nr_to_section(section); 194 if (!ms->section_mem_map) 195 ms->section_mem_map = sparse_encode_early_nid(nid) | 196 SECTION_MARKED_PRESENT; 197 } 198} 199 200/* 201 * Only used by the i386 NUMA architecures, but relatively 202 * generic code. 203 */ 204unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 205 unsigned long end_pfn) 206{ 207 unsigned long pfn; 208 unsigned long nr_pages = 0; 209 210 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 211 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 212 if (nid != early_pfn_to_nid(pfn)) 213 continue; 214 215 if (pfn_present(pfn)) 216 nr_pages += PAGES_PER_SECTION; 217 } 218 219 return nr_pages * sizeof(struct page); 220} 221 222/* 223 * Subtle, we encode the real pfn into the mem_map such that 224 * the identity pfn - section_mem_map will return the actual 225 * physical page frame number. 226 */ 227static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 228{ 229 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 230} 231 232/* 233 * Decode mem_map from the coded memmap 234 */ 235struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 236{ 237 /* mask off the extra low bits of information */ 238 coded_mem_map &= SECTION_MAP_MASK; 239 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 240} 241 242static int __meminit sparse_init_one_section(struct mem_section *ms, 243 unsigned long pnum, struct page *mem_map, 244 unsigned long *pageblock_bitmap) 245{ 246 if (!present_section(ms)) 247 return -EINVAL; 248 249 ms->section_mem_map &= ~SECTION_MAP_MASK; 250 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 251 SECTION_HAS_MEM_MAP; 252 ms->pageblock_flags = pageblock_bitmap; 253 254 return 1; 255} 256 257unsigned long usemap_size(void) 258{ 259 unsigned long size_bytes; 260 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 261 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 262 return size_bytes; 263} 264 265#ifdef CONFIG_MEMORY_HOTPLUG 266static unsigned long *__kmalloc_section_usemap(void) 267{ 268 return kmalloc(usemap_size(), GFP_KERNEL); 269} 270#endif /* CONFIG_MEMORY_HOTPLUG */ 271 272#ifdef CONFIG_MEMORY_HOTREMOVE 273static unsigned long * __init 274sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) 275{ 276 unsigned long section_nr; 277 278 /* 279 * A page may contain usemaps for other sections preventing the 280 * page being freed and making a section unremovable while 281 * other sections referencing the usemap retmain active. Similarly, 282 * a pgdat can prevent a section being removed. If section A 283 * contains a pgdat and section B contains the usemap, both 284 * sections become inter-dependent. This allocates usemaps 285 * from the same section as the pgdat where possible to avoid 286 * this problem. 287 */ 288 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 289 return alloc_bootmem_section(usemap_size(), section_nr); 290} 291 292static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 293{ 294 unsigned long usemap_snr, pgdat_snr; 295 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 296 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 297 struct pglist_data *pgdat = NODE_DATA(nid); 298 int usemap_nid; 299 300 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 301 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 302 if (usemap_snr == pgdat_snr) 303 return; 304 305 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 306 /* skip redundant message */ 307 return; 308 309 old_usemap_snr = usemap_snr; 310 old_pgdat_snr = pgdat_snr; 311 312 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 313 if (usemap_nid != nid) { 314 printk(KERN_INFO 315 "node %d must be removed before remove section %ld\n", 316 nid, usemap_snr); 317 return; 318 } 319 /* 320 * There is a circular dependency. 321 * Some platforms allow un-removable section because they will just 322 * gather other removable sections for dynamic partitioning. 323 * Just notify un-removable section's number here. 324 */ 325 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, 326 pgdat_snr, nid); 327 printk(KERN_CONT 328 " have a circular dependency on usemap and pgdat allocations\n"); 329} 330#else 331static unsigned long * __init 332sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) 333{ 334 return NULL; 335} 336 337static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 338{ 339} 340#endif /* CONFIG_MEMORY_HOTREMOVE */ 341 342static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum) 343{ 344 unsigned long *usemap; 345 struct mem_section *ms = __nr_to_section(pnum); 346 int nid = sparse_early_nid(ms); 347 348 usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid)); 349 if (usemap) 350 return usemap; 351 352 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); 353 if (usemap) { 354 check_usemap_section_nr(nid, usemap); 355 return usemap; 356 } 357 358 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ 359 nid = 0; 360 361 printk(KERN_WARNING "%s: allocation failed\n", __func__); 362 return NULL; 363} 364 365#ifndef CONFIG_SPARSEMEM_VMEMMAP 366struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 367{ 368 struct page *map; 369 370 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 371 if (map) 372 return map; 373 374 map = alloc_bootmem_pages_node(NODE_DATA(nid), 375 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION)); 376 return map; 377} 378#endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 379 380static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 381{ 382 struct page *map; 383 struct mem_section *ms = __nr_to_section(pnum); 384 int nid = sparse_early_nid(ms); 385 386 map = sparse_mem_map_populate(pnum, nid); 387 if (map) 388 return map; 389 390 printk(KERN_ERR "%s: sparsemem memory map backing failed " 391 "some memory will not be available.\n", __func__); 392 ms->section_mem_map = 0; 393 return NULL; 394} 395 396void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) 397{ 398} 399/* 400 * Allocate the accumulated non-linear sections, allocate a mem_map 401 * for each and record the physical to section mapping. 402 */ 403void __init sparse_init(void) 404{ 405 unsigned long pnum; 406 struct page *map; 407 unsigned long *usemap; 408 unsigned long **usemap_map; 409 int size; 410 411 /* 412 * map is using big page (aka 2M in x86 64 bit) 413 * usemap is less one page (aka 24 bytes) 414 * so alloc 2M (with 2M align) and 24 bytes in turn will 415 * make next 2M slip to one more 2M later. 416 * then in big system, the memory will have a lot of holes... 417 * here try to allocate 2M pages continously. 418 * 419 * powerpc need to call sparse_init_one_section right after each 420 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 421 */ 422 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 423 usemap_map = alloc_bootmem(size); 424 if (!usemap_map) 425 panic("can not allocate usemap_map\n"); 426 427 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 428 if (!present_section_nr(pnum)) 429 continue; 430 usemap_map[pnum] = sparse_early_usemap_alloc(pnum); 431 } 432 433 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 434 if (!present_section_nr(pnum)) 435 continue; 436 437 usemap = usemap_map[pnum]; 438 if (!usemap) 439 continue; 440 441 map = sparse_early_mem_map_alloc(pnum); 442 if (!map) 443 continue; 444 445 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 446 usemap); 447 } 448 449 vmemmap_populate_print_last(); 450 451 free_bootmem(__pa(usemap_map), size); 452} 453 454#ifdef CONFIG_MEMORY_HOTPLUG 455#ifdef CONFIG_SPARSEMEM_VMEMMAP 456static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 457 unsigned long nr_pages) 458{ 459 /* This will make the necessary allocations eventually. */ 460 return sparse_mem_map_populate(pnum, nid); 461} 462static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 463{ 464 return; /* XXX: Not implemented yet */ 465} 466static void free_map_bootmem(struct page *page, unsigned long nr_pages) 467{ 468} 469#else 470static struct page *__kmalloc_section_memmap(unsigned long nr_pages) 471{ 472 struct page *page, *ret; 473 unsigned long memmap_size = sizeof(struct page) * nr_pages; 474 475 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 476 if (page) 477 goto got_map_page; 478 479 ret = vmalloc(memmap_size); 480 if (ret) 481 goto got_map_ptr; 482 483 return NULL; 484got_map_page: 485 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 486got_map_ptr: 487 memset(ret, 0, memmap_size); 488 489 return ret; 490} 491 492static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 493 unsigned long nr_pages) 494{ 495 return __kmalloc_section_memmap(nr_pages); 496} 497 498static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 499{ 500 if (is_vmalloc_addr(memmap)) 501 vfree(memmap); 502 else 503 free_pages((unsigned long)memmap, 504 get_order(sizeof(struct page) * nr_pages)); 505} 506 507static void free_map_bootmem(struct page *page, unsigned long nr_pages) 508{ 509 unsigned long maps_section_nr, removing_section_nr, i; 510 int magic; 511 512 for (i = 0; i < nr_pages; i++, page++) { 513 magic = atomic_read(&page->_mapcount); 514 515 BUG_ON(magic == NODE_INFO); 516 517 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 518 removing_section_nr = page->private; 519 520 /* 521 * When this function is called, the removing section is 522 * logical offlined state. This means all pages are isolated 523 * from page allocator. If removing section's memmap is placed 524 * on the same section, it must not be freed. 525 * If it is freed, page allocator may allocate it which will 526 * be removed physically soon. 527 */ 528 if (maps_section_nr != removing_section_nr) 529 put_page_bootmem(page); 530 } 531} 532#endif /* CONFIG_SPARSEMEM_VMEMMAP */ 533 534static void free_section_usemap(struct page *memmap, unsigned long *usemap) 535{ 536 struct page *usemap_page; 537 unsigned long nr_pages; 538 539 if (!usemap) 540 return; 541 542 usemap_page = virt_to_page(usemap); 543 /* 544 * Check to see if allocation came from hot-plug-add 545 */ 546 if (PageSlab(usemap_page)) { 547 kfree(usemap); 548 if (memmap) 549 __kfree_section_memmap(memmap, PAGES_PER_SECTION); 550 return; 551 } 552 553 /* 554 * The usemap came from bootmem. This is packed with other usemaps 555 * on the section which has pgdat at boot time. Just keep it as is now. 556 */ 557 558 if (memmap) { 559 struct page *memmap_page; 560 memmap_page = virt_to_page(memmap); 561 562 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 563 >> PAGE_SHIFT; 564 565 free_map_bootmem(memmap_page, nr_pages); 566 } 567} 568 569/* 570 * returns the number of sections whose mem_maps were properly 571 * set. If this is <=0, then that means that the passed-in 572 * map was not consumed and must be freed. 573 */ 574int sparse_add_one_section(struct zone *zone, unsigned long start_pfn, 575 int nr_pages) 576{ 577 unsigned long section_nr = pfn_to_section_nr(start_pfn); 578 struct pglist_data *pgdat = zone->zone_pgdat; 579 struct mem_section *ms; 580 struct page *memmap; 581 unsigned long *usemap; 582 unsigned long flags; 583 int ret; 584 585 /* 586 * no locking for this, because it does its own 587 * plus, it does a kmalloc 588 */ 589 ret = sparse_index_init(section_nr, pgdat->node_id); 590 if (ret < 0 && ret != -EEXIST) 591 return ret; 592 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); 593 if (!memmap) 594 return -ENOMEM; 595 usemap = __kmalloc_section_usemap(); 596 if (!usemap) { 597 __kfree_section_memmap(memmap, nr_pages); 598 return -ENOMEM; 599 } 600 601 pgdat_resize_lock(pgdat, &flags); 602 603 ms = __pfn_to_section(start_pfn); 604 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 605 ret = -EEXIST; 606 goto out; 607 } 608 609 ms->section_mem_map |= SECTION_MARKED_PRESENT; 610 611 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 612 613out: 614 pgdat_resize_unlock(pgdat, &flags); 615 if (ret <= 0) { 616 kfree(usemap); 617 __kfree_section_memmap(memmap, nr_pages); 618 } 619 return ret; 620} 621 622void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) 623{ 624 struct page *memmap = NULL; 625 unsigned long *usemap = NULL; 626 627 if (ms->section_mem_map) { 628 usemap = ms->pageblock_flags; 629 memmap = sparse_decode_mem_map(ms->section_mem_map, 630 __section_nr(ms)); 631 ms->section_mem_map = 0; 632 ms->pageblock_flags = NULL; 633 } 634 635 free_section_usemap(memmap, usemap); 636} 637#endif