1/* 2 * linux/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * This file contains the interface functions for the various 7 * time related system calls: time, stime, gettimeofday, settimeofday, 8 * adjtime 9 */ 10/* 11 * Modification history kernel/time.c 12 * 13 * 1993-09-02 Philip Gladstone 14 * Created file with time related functions from sched.c and adjtimex() 15 * 1993-10-08 Torsten Duwe 16 * adjtime interface update and CMOS clock write code 17 * 1995-08-13 Torsten Duwe 18 * kernel PLL updated to 1994-12-13 specs (rfc-1589) 19 * 1999-01-16 Ulrich Windl 20 * Introduced error checking for many cases in adjtimex(). 21 * Updated NTP code according to technical memorandum Jan '96 22 * "A Kernel Model for Precision Timekeeping" by Dave Mills 23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) 24 * (Even though the technical memorandum forbids it) 25 * 2004-07-14 Christoph Lameter 26 * Added getnstimeofday to allow the posix timer functions to return 27 * with nanosecond accuracy 28 */ 29 30#include <linux/module.h> 31#include <linux/timex.h> 32#include <linux/capability.h> 33#include <linux/clocksource.h> 34#include <linux/errno.h> 35#include <linux/syscalls.h> 36#include <linux/security.h> 37#include <linux/fs.h> 38#include <linux/slab.h> 39#include <linux/math64.h> 40 41#include <asm/uaccess.h> 42#include <asm/unistd.h> 43 44#include "timeconst.h" 45 46/* 47 * The timezone where the local system is located. Used as a default by some 48 * programs who obtain this value by using gettimeofday. 49 */ 50struct timezone sys_tz; 51 52EXPORT_SYMBOL(sys_tz); 53 54#ifdef __ARCH_WANT_SYS_TIME 55 56/* 57 * sys_time() can be implemented in user-level using 58 * sys_gettimeofday(). Is this for backwards compatibility? If so, 59 * why not move it into the appropriate arch directory (for those 60 * architectures that need it). 61 */ 62asmlinkage long sys_time(time_t __user * tloc) 63{ 64 time_t i = get_seconds(); 65 66 if (tloc) { 67 if (put_user(i,tloc)) 68 i = -EFAULT; 69 } 70 return i; 71} 72 73/* 74 * sys_stime() can be implemented in user-level using 75 * sys_settimeofday(). Is this for backwards compatibility? If so, 76 * why not move it into the appropriate arch directory (for those 77 * architectures that need it). 78 */ 79 80asmlinkage long sys_stime(time_t __user *tptr) 81{ 82 struct timespec tv; 83 int err; 84 85 if (get_user(tv.tv_sec, tptr)) 86 return -EFAULT; 87 88 tv.tv_nsec = 0; 89 90 err = security_settime(&tv, NULL); 91 if (err) 92 return err; 93 94 do_settimeofday(&tv); 95 return 0; 96} 97 98#endif /* __ARCH_WANT_SYS_TIME */ 99 100asmlinkage long sys_gettimeofday(struct timeval __user *tv, 101 struct timezone __user *tz) 102{ 103 if (likely(tv != NULL)) { 104 struct timeval ktv; 105 do_gettimeofday(&ktv); 106 if (copy_to_user(tv, &ktv, sizeof(ktv))) 107 return -EFAULT; 108 } 109 if (unlikely(tz != NULL)) { 110 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 111 return -EFAULT; 112 } 113 return 0; 114} 115 116/* 117 * Adjust the time obtained from the CMOS to be UTC time instead of 118 * local time. 119 * 120 * This is ugly, but preferable to the alternatives. Otherwise we 121 * would either need to write a program to do it in /etc/rc (and risk 122 * confusion if the program gets run more than once; it would also be 123 * hard to make the program warp the clock precisely n hours) or 124 * compile in the timezone information into the kernel. Bad, bad.... 125 * 126 * - TYT, 1992-01-01 127 * 128 * The best thing to do is to keep the CMOS clock in universal time (UTC) 129 * as real UNIX machines always do it. This avoids all headaches about 130 * daylight saving times and warping kernel clocks. 131 */ 132static inline void warp_clock(void) 133{ 134 write_seqlock_irq(&xtime_lock); 135 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; 136 xtime.tv_sec += sys_tz.tz_minuteswest * 60; 137 update_xtime_cache(0); 138 write_sequnlock_irq(&xtime_lock); 139 clock_was_set(); 140} 141 142/* 143 * In case for some reason the CMOS clock has not already been running 144 * in UTC, but in some local time: The first time we set the timezone, 145 * we will warp the clock so that it is ticking UTC time instead of 146 * local time. Presumably, if someone is setting the timezone then we 147 * are running in an environment where the programs understand about 148 * timezones. This should be done at boot time in the /etc/rc script, 149 * as soon as possible, so that the clock can be set right. Otherwise, 150 * various programs will get confused when the clock gets warped. 151 */ 152 153int do_sys_settimeofday(struct timespec *tv, struct timezone *tz) 154{ 155 static int firsttime = 1; 156 int error = 0; 157 158 if (tv && !timespec_valid(tv)) 159 return -EINVAL; 160 161 error = security_settime(tv, tz); 162 if (error) 163 return error; 164 165 if (tz) { 166 /* SMP safe, global irq locking makes it work. */ 167 sys_tz = *tz; 168 update_vsyscall_tz(); 169 if (firsttime) { 170 firsttime = 0; 171 if (!tv) 172 warp_clock(); 173 } 174 } 175 if (tv) 176 { 177 /* SMP safe, again the code in arch/foo/time.c should 178 * globally block out interrupts when it runs. 179 */ 180 return do_settimeofday(tv); 181 } 182 return 0; 183} 184 185asmlinkage long sys_settimeofday(struct timeval __user *tv, 186 struct timezone __user *tz) 187{ 188 struct timeval user_tv; 189 struct timespec new_ts; 190 struct timezone new_tz; 191 192 if (tv) { 193 if (copy_from_user(&user_tv, tv, sizeof(*tv))) 194 return -EFAULT; 195 new_ts.tv_sec = user_tv.tv_sec; 196 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 197 } 198 if (tz) { 199 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 200 return -EFAULT; 201 } 202 203 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 204} 205 206asmlinkage long sys_adjtimex(struct timex __user *txc_p) 207{ 208 struct timex txc; /* Local copy of parameter */ 209 int ret; 210 211 /* Copy the user data space into the kernel copy 212 * structure. But bear in mind that the structures 213 * may change 214 */ 215 if(copy_from_user(&txc, txc_p, sizeof(struct timex))) 216 return -EFAULT; 217 ret = do_adjtimex(&txc); 218 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; 219} 220 221/** 222 * current_fs_time - Return FS time 223 * @sb: Superblock. 224 * 225 * Return the current time truncated to the time granularity supported by 226 * the fs. 227 */ 228struct timespec current_fs_time(struct super_block *sb) 229{ 230 struct timespec now = current_kernel_time(); 231 return timespec_trunc(now, sb->s_time_gran); 232} 233EXPORT_SYMBOL(current_fs_time); 234 235/* 236 * Convert jiffies to milliseconds and back. 237 * 238 * Avoid unnecessary multiplications/divisions in the 239 * two most common HZ cases: 240 */ 241unsigned int inline jiffies_to_msecs(const unsigned long j) 242{ 243#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 244 return (MSEC_PER_SEC / HZ) * j; 245#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 246 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); 247#else 248# if BITS_PER_LONG == 32 249 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; 250# else 251 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; 252# endif 253#endif 254} 255EXPORT_SYMBOL(jiffies_to_msecs); 256 257unsigned int inline jiffies_to_usecs(const unsigned long j) 258{ 259#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) 260 return (USEC_PER_SEC / HZ) * j; 261#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) 262 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); 263#else 264# if BITS_PER_LONG == 32 265 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; 266# else 267 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; 268# endif 269#endif 270} 271EXPORT_SYMBOL(jiffies_to_usecs); 272 273/** 274 * timespec_trunc - Truncate timespec to a granularity 275 * @t: Timespec 276 * @gran: Granularity in ns. 277 * 278 * Truncate a timespec to a granularity. gran must be smaller than a second. 279 * Always rounds down. 280 * 281 * This function should be only used for timestamps returned by 282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because 283 * it doesn't handle the better resolution of the latter. 284 */ 285struct timespec timespec_trunc(struct timespec t, unsigned gran) 286{ 287 /* 288 * Division is pretty slow so avoid it for common cases. 289 * Currently current_kernel_time() never returns better than 290 * jiffies resolution. Exploit that. 291 */ 292 if (gran <= jiffies_to_usecs(1) * 1000) { 293 /* nothing */ 294 } else if (gran == 1000000000) { 295 t.tv_nsec = 0; 296 } else { 297 t.tv_nsec -= t.tv_nsec % gran; 298 } 299 return t; 300} 301EXPORT_SYMBOL(timespec_trunc); 302 303#ifndef CONFIG_GENERIC_TIME 304/* 305 * Simulate gettimeofday using do_gettimeofday which only allows a timeval 306 * and therefore only yields usec accuracy 307 */ 308void getnstimeofday(struct timespec *tv) 309{ 310 struct timeval x; 311 312 do_gettimeofday(&x); 313 tv->tv_sec = x.tv_sec; 314 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC; 315} 316EXPORT_SYMBOL_GPL(getnstimeofday); 317#endif 318 319/* Converts Gregorian date to seconds since 1970-01-01 00:00:00. 320 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 321 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. 322 * 323 * [For the Julian calendar (which was used in Russia before 1917, 324 * Britain & colonies before 1752, anywhere else before 1582, 325 * and is still in use by some communities) leave out the 326 * -year/100+year/400 terms, and add 10.] 327 * 328 * This algorithm was first published by Gauss (I think). 329 * 330 * WARNING: this function will overflow on 2106-02-07 06:28:16 on 331 * machines where long is 32-bit! (However, as time_t is signed, we 332 * will already get problems at other places on 2038-01-19 03:14:08) 333 */ 334unsigned long 335mktime(const unsigned int year0, const unsigned int mon0, 336 const unsigned int day, const unsigned int hour, 337 const unsigned int min, const unsigned int sec) 338{ 339 unsigned int mon = mon0, year = year0; 340 341 /* 1..12 -> 11,12,1..10 */ 342 if (0 >= (int) (mon -= 2)) { 343 mon += 12; /* Puts Feb last since it has leap day */ 344 year -= 1; 345 } 346 347 return ((((unsigned long) 348 (year/4 - year/100 + year/400 + 367*mon/12 + day) + 349 year*365 - 719499 350 )*24 + hour /* now have hours */ 351 )*60 + min /* now have minutes */ 352 )*60 + sec; /* finally seconds */ 353} 354 355EXPORT_SYMBOL(mktime); 356 357/** 358 * set_normalized_timespec - set timespec sec and nsec parts and normalize 359 * 360 * @ts: pointer to timespec variable to be set 361 * @sec: seconds to set 362 * @nsec: nanoseconds to set 363 * 364 * Set seconds and nanoseconds field of a timespec variable and 365 * normalize to the timespec storage format 366 * 367 * Note: The tv_nsec part is always in the range of 368 * 0 <= tv_nsec < NSEC_PER_SEC 369 * For negative values only the tv_sec field is negative ! 370 */ 371void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) 372{ 373 while (nsec >= NSEC_PER_SEC) { 374 nsec -= NSEC_PER_SEC; 375 ++sec; 376 } 377 while (nsec < 0) { 378 nsec += NSEC_PER_SEC; 379 --sec; 380 } 381 ts->tv_sec = sec; 382 ts->tv_nsec = nsec; 383} 384EXPORT_SYMBOL(set_normalized_timespec); 385 386/** 387 * ns_to_timespec - Convert nanoseconds to timespec 388 * @nsec: the nanoseconds value to be converted 389 * 390 * Returns the timespec representation of the nsec parameter. 391 */ 392struct timespec ns_to_timespec(const s64 nsec) 393{ 394 struct timespec ts; 395 s32 rem; 396 397 if (!nsec) 398 return (struct timespec) {0, 0}; 399 400 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); 401 if (unlikely(rem < 0)) { 402 ts.tv_sec--; 403 rem += NSEC_PER_SEC; 404 } 405 ts.tv_nsec = rem; 406 407 return ts; 408} 409EXPORT_SYMBOL(ns_to_timespec); 410 411/** 412 * ns_to_timeval - Convert nanoseconds to timeval 413 * @nsec: the nanoseconds value to be converted 414 * 415 * Returns the timeval representation of the nsec parameter. 416 */ 417struct timeval ns_to_timeval(const s64 nsec) 418{ 419 struct timespec ts = ns_to_timespec(nsec); 420 struct timeval tv; 421 422 tv.tv_sec = ts.tv_sec; 423 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; 424 425 return tv; 426} 427EXPORT_SYMBOL(ns_to_timeval); 428 429/* 430 * When we convert to jiffies then we interpret incoming values 431 * the following way: 432 * 433 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 434 * 435 * - 'too large' values [that would result in larger than 436 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 437 * 438 * - all other values are converted to jiffies by either multiplying 439 * the input value by a factor or dividing it with a factor 440 * 441 * We must also be careful about 32-bit overflows. 442 */ 443unsigned long msecs_to_jiffies(const unsigned int m) 444{ 445 /* 446 * Negative value, means infinite timeout: 447 */ 448 if ((int)m < 0) 449 return MAX_JIFFY_OFFSET; 450 451#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 452 /* 453 * HZ is equal to or smaller than 1000, and 1000 is a nice 454 * round multiple of HZ, divide with the factor between them, 455 * but round upwards: 456 */ 457 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); 458#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 459 /* 460 * HZ is larger than 1000, and HZ is a nice round multiple of 461 * 1000 - simply multiply with the factor between them. 462 * 463 * But first make sure the multiplication result cannot 464 * overflow: 465 */ 466 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 467 return MAX_JIFFY_OFFSET; 468 469 return m * (HZ / MSEC_PER_SEC); 470#else 471 /* 472 * Generic case - multiply, round and divide. But first 473 * check that if we are doing a net multiplication, that 474 * we wouldn't overflow: 475 */ 476 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 477 return MAX_JIFFY_OFFSET; 478 479 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) 480 >> MSEC_TO_HZ_SHR32; 481#endif 482} 483EXPORT_SYMBOL(msecs_to_jiffies); 484 485unsigned long usecs_to_jiffies(const unsigned int u) 486{ 487 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 488 return MAX_JIFFY_OFFSET; 489#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) 490 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); 491#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) 492 return u * (HZ / USEC_PER_SEC); 493#else 494 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) 495 >> USEC_TO_HZ_SHR32; 496#endif 497} 498EXPORT_SYMBOL(usecs_to_jiffies); 499 500/* 501 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 502 * that a remainder subtract here would not do the right thing as the 503 * resolution values don't fall on second boundries. I.e. the line: 504 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 505 * 506 * Rather, we just shift the bits off the right. 507 * 508 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 509 * value to a scaled second value. 510 */ 511unsigned long 512timespec_to_jiffies(const struct timespec *value) 513{ 514 unsigned long sec = value->tv_sec; 515 long nsec = value->tv_nsec + TICK_NSEC - 1; 516 517 if (sec >= MAX_SEC_IN_JIFFIES){ 518 sec = MAX_SEC_IN_JIFFIES; 519 nsec = 0; 520 } 521 return (((u64)sec * SEC_CONVERSION) + 522 (((u64)nsec * NSEC_CONVERSION) >> 523 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 524 525} 526EXPORT_SYMBOL(timespec_to_jiffies); 527 528void 529jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) 530{ 531 /* 532 * Convert jiffies to nanoseconds and separate with 533 * one divide. 534 */ 535 u32 rem; 536 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 537 NSEC_PER_SEC, &rem); 538 value->tv_nsec = rem; 539} 540EXPORT_SYMBOL(jiffies_to_timespec); 541 542/* Same for "timeval" 543 * 544 * Well, almost. The problem here is that the real system resolution is 545 * in nanoseconds and the value being converted is in micro seconds. 546 * Also for some machines (those that use HZ = 1024, in-particular), 547 * there is a LARGE error in the tick size in microseconds. 548 549 * The solution we use is to do the rounding AFTER we convert the 550 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. 551 * Instruction wise, this should cost only an additional add with carry 552 * instruction above the way it was done above. 553 */ 554unsigned long 555timeval_to_jiffies(const struct timeval *value) 556{ 557 unsigned long sec = value->tv_sec; 558 long usec = value->tv_usec; 559 560 if (sec >= MAX_SEC_IN_JIFFIES){ 561 sec = MAX_SEC_IN_JIFFIES; 562 usec = 0; 563 } 564 return (((u64)sec * SEC_CONVERSION) + 565 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> 566 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 567} 568EXPORT_SYMBOL(timeval_to_jiffies); 569 570void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 571{ 572 /* 573 * Convert jiffies to nanoseconds and separate with 574 * one divide. 575 */ 576 u32 rem; 577 578 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, 579 NSEC_PER_SEC, &rem); 580 value->tv_usec = rem / NSEC_PER_USEC; 581} 582EXPORT_SYMBOL(jiffies_to_timeval); 583 584/* 585 * Convert jiffies/jiffies_64 to clock_t and back. 586 */ 587clock_t jiffies_to_clock_t(long x) 588{ 589#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 590# if HZ < USER_HZ 591 return x * (USER_HZ / HZ); 592# else 593 return x / (HZ / USER_HZ); 594# endif 595#else 596 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); 597#endif 598} 599EXPORT_SYMBOL(jiffies_to_clock_t); 600 601unsigned long clock_t_to_jiffies(unsigned long x) 602{ 603#if (HZ % USER_HZ)==0 604 if (x >= ~0UL / (HZ / USER_HZ)) 605 return ~0UL; 606 return x * (HZ / USER_HZ); 607#else 608 /* Don't worry about loss of precision here .. */ 609 if (x >= ~0UL / HZ * USER_HZ) 610 return ~0UL; 611 612 /* .. but do try to contain it here */ 613 return div_u64((u64)x * HZ, USER_HZ); 614#endif 615} 616EXPORT_SYMBOL(clock_t_to_jiffies); 617 618u64 jiffies_64_to_clock_t(u64 x) 619{ 620#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 621# if HZ < USER_HZ 622 x = div_u64(x * USER_HZ, HZ); 623# elif HZ > USER_HZ 624 x = div_u64(x, HZ / USER_HZ); 625# else 626 /* Nothing to do */ 627# endif 628#else 629 /* 630 * There are better ways that don't overflow early, 631 * but even this doesn't overflow in hundreds of years 632 * in 64 bits, so.. 633 */ 634 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); 635#endif 636 return x; 637} 638EXPORT_SYMBOL(jiffies_64_to_clock_t); 639 640u64 nsec_to_clock_t(u64 x) 641{ 642#if (NSEC_PER_SEC % USER_HZ) == 0 643 return div_u64(x, NSEC_PER_SEC / USER_HZ); 644#elif (USER_HZ % 512) == 0 645 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); 646#else 647 /* 648 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 649 * overflow after 64.99 years. 650 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 651 */ 652 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); 653#endif 654} 655 656#if (BITS_PER_LONG < 64) 657u64 get_jiffies_64(void) 658{ 659 unsigned long seq; 660 u64 ret; 661 662 do { 663 seq = read_seqbegin(&xtime_lock); 664 ret = jiffies_64; 665 } while (read_seqretry(&xtime_lock, seq)); 666 return ret; 667} 668EXPORT_SYMBOL(get_jiffies_64); 669#endif 670 671EXPORT_SYMBOL(jiffies);