1/* 2 * include/linux/ktime.h 3 * 4 * ktime_t - nanosecond-resolution time format. 5 * 6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar 8 * 9 * data type definitions, declarations, prototypes and macros. 10 * 11 * Started by: Thomas Gleixner and Ingo Molnar 12 * 13 * For licencing details see kernel-base/COPYING 14 */ 15#ifndef _LINUX_KTIME_H 16#define _LINUX_KTIME_H 17 18#include <linux/time.h> 19#include <linux/jiffies.h> 20 21/* 22 * ktime_t: 23 * 24 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers 25 * internal representation of time values in scalar nanoseconds. The 26 * design plays out best on 64-bit CPUs, where most conversions are 27 * NOPs and most arithmetic ktime_t operations are plain arithmetic 28 * operations. 29 * 30 * On 32-bit CPUs an optimized representation of the timespec structure 31 * is used to avoid expensive conversions from and to timespecs. The 32 * endian-aware order of the tv struct members is choosen to allow 33 * mathematical operations on the tv64 member of the union too, which 34 * for certain operations produces better code. 35 * 36 * For architectures with efficient support for 64/32-bit conversions the 37 * plain scalar nanosecond based representation can be selected by the 38 * config switch CONFIG_KTIME_SCALAR. 39 */ 40typedef union { 41 s64 tv64; 42#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR) 43 struct { 44# ifdef __BIG_ENDIAN 45 s32 sec, nsec; 46# else 47 s32 nsec, sec; 48# endif 49 } tv; 50#endif 51} ktime_t; 52 53#define KTIME_MAX (~((u64)1 << 63)) 54 55/* 56 * ktime_t definitions when using the 64-bit scalar representation: 57 */ 58 59#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR) 60 61/* Define a ktime_t variable and initialize it to zero: */ 62#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 } 63 64/** 65 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value 66 * 67 * @secs: seconds to set 68 * @nsecs: nanoseconds to set 69 * 70 * Return the ktime_t representation of the value 71 */ 72static inline ktime_t ktime_set(const long secs, const unsigned long nsecs) 73{ 74 return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs }; 75} 76 77/* Subtract two ktime_t variables. rem = lhs -rhs: */ 78#define ktime_sub(lhs, rhs) \ 79 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; }) 80 81/* Add two ktime_t variables. res = lhs + rhs: */ 82#define ktime_add(lhs, rhs) \ 83 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; }) 84 85/* 86 * Add a ktime_t variable and a scalar nanosecond value. 87 * res = kt + nsval: 88 */ 89#define ktime_add_ns(kt, nsval) \ 90 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; }) 91 92/* convert a timespec to ktime_t format: */ 93#define timespec_to_ktime(ts) ktime_set((ts).tv_sec, (ts).tv_nsec) 94 95/* convert a timeval to ktime_t format: */ 96#define timeval_to_ktime(tv) ktime_set((tv).tv_sec, (tv).tv_usec * 1000) 97 98/* Map the ktime_t to timespec conversion to ns_to_timespec function */ 99#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64) 100 101/* Map the ktime_t to timeval conversion to ns_to_timeval function */ 102#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64) 103 104/* Map the ktime_t to clock_t conversion to the inline in jiffies.h: */ 105#define ktime_to_clock_t(kt) nsec_to_clock_t((kt).tv64) 106 107/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */ 108#define ktime_to_ns(kt) ((kt).tv64) 109 110#else 111 112/* 113 * Helper macros/inlines to get the ktime_t math right in the timespec 114 * representation. The macros are sometimes ugly - their actual use is 115 * pretty okay-ish, given the circumstances. We do all this for 116 * performance reasons. The pure scalar nsec_t based code was nice and 117 * simple, but created too many 64-bit / 32-bit conversions and divisions. 118 * 119 * Be especially aware that negative values are represented in a way 120 * that the tv.sec field is negative and the tv.nsec field is greater 121 * or equal to zero but less than nanoseconds per second. This is the 122 * same representation which is used by timespecs. 123 * 124 * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC 125 */ 126 127/* Define a ktime_t variable and initialize it to zero: */ 128#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 } 129 130/* Set a ktime_t variable to a value in sec/nsec representation: */ 131static inline ktime_t ktime_set(const long secs, const unsigned long nsecs) 132{ 133 return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } }; 134} 135 136/** 137 * ktime_sub - subtract two ktime_t variables 138 * 139 * @lhs: minuend 140 * @rhs: subtrahend 141 * 142 * Returns the remainder of the substraction 143 */ 144static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs) 145{ 146 ktime_t res; 147 148 res.tv64 = lhs.tv64 - rhs.tv64; 149 if (res.tv.nsec < 0) 150 res.tv.nsec += NSEC_PER_SEC; 151 152 return res; 153} 154 155/** 156 * ktime_add - add two ktime_t variables 157 * 158 * @add1: addend1 159 * @add2: addend2 160 * 161 * Returns the sum of addend1 and addend2 162 */ 163static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2) 164{ 165 ktime_t res; 166 167 res.tv64 = add1.tv64 + add2.tv64; 168 /* 169 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx 170 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit. 171 * 172 * it's equivalent to: 173 * tv.nsec -= NSEC_PER_SEC 174 * tv.sec ++; 175 */ 176 if (res.tv.nsec >= NSEC_PER_SEC) 177 res.tv64 += (u32)-NSEC_PER_SEC; 178 179 return res; 180} 181 182/** 183 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable 184 * 185 * @kt: addend 186 * @nsec: the scalar nsec value to add 187 * 188 * Returns the sum of kt and nsec in ktime_t format 189 */ 190extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec); 191 192/** 193 * timespec_to_ktime - convert a timespec to ktime_t format 194 * 195 * @ts: the timespec variable to convert 196 * 197 * Returns a ktime_t variable with the converted timespec value 198 */ 199static inline ktime_t timespec_to_ktime(const struct timespec ts) 200{ 201 return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec, 202 .nsec = (s32)ts.tv_nsec } }; 203} 204 205/** 206 * timeval_to_ktime - convert a timeval to ktime_t format 207 * 208 * @tv: the timeval variable to convert 209 * 210 * Returns a ktime_t variable with the converted timeval value 211 */ 212static inline ktime_t timeval_to_ktime(const struct timeval tv) 213{ 214 return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec, 215 .nsec = (s32)tv.tv_usec * 1000 } }; 216} 217 218/** 219 * ktime_to_timespec - convert a ktime_t variable to timespec format 220 * 221 * @kt: the ktime_t variable to convert 222 * 223 * Returns the timespec representation of the ktime value 224 */ 225static inline struct timespec ktime_to_timespec(const ktime_t kt) 226{ 227 return (struct timespec) { .tv_sec = (time_t) kt.tv.sec, 228 .tv_nsec = (long) kt.tv.nsec }; 229} 230 231/** 232 * ktime_to_timeval - convert a ktime_t variable to timeval format 233 * 234 * @kt: the ktime_t variable to convert 235 * 236 * Returns the timeval representation of the ktime value 237 */ 238static inline struct timeval ktime_to_timeval(const ktime_t kt) 239{ 240 return (struct timeval) { 241 .tv_sec = (time_t) kt.tv.sec, 242 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) }; 243} 244 245/** 246 * ktime_to_clock_t - convert a ktime_t variable to clock_t format 247 * @kt: the ktime_t variable to convert 248 * 249 * Returns a clock_t variable with the converted value 250 */ 251static inline clock_t ktime_to_clock_t(const ktime_t kt) 252{ 253 return nsec_to_clock_t( (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec); 254} 255 256/** 257 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds 258 * @kt: the ktime_t variable to convert 259 * 260 * Returns the scalar nanoseconds representation of kt 261 */ 262static inline u64 ktime_to_ns(const ktime_t kt) 263{ 264 return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec; 265} 266 267#endif 268 269/* 270 * The resolution of the clocks. The resolution value is returned in 271 * the clock_getres() system call to give application programmers an 272 * idea of the (in)accuracy of timers. Timer values are rounded up to 273 * this resolution values. 274 */ 275#define KTIME_REALTIME_RES (NSEC_PER_SEC/HZ) 276#define KTIME_MONOTONIC_RES (NSEC_PER_SEC/HZ) 277 278/* Get the monotonic time in timespec format: */ 279extern void ktime_get_ts(struct timespec *ts); 280 281/* Get the real (wall-) time in timespec format: */ 282#define ktime_get_real_ts(ts) getnstimeofday(ts) 283 284#endif