1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29#define CLONE_NEWNET 0x40000000 /* New network namespace */ 30#define CLONE_IO 0x80000000 /* Clone io context */ 31 32/* 33 * Scheduling policies 34 */ 35#define SCHED_NORMAL 0 36#define SCHED_FIFO 1 37#define SCHED_RR 2 38#define SCHED_BATCH 3 39/* SCHED_ISO: reserved but not implemented yet */ 40#define SCHED_IDLE 5 41 42#ifdef __KERNEL__ 43 44struct sched_param { 45 int sched_priority; 46}; 47 48#include <asm/param.h> /* for HZ */ 49 50#include <linux/capability.h> 51#include <linux/threads.h> 52#include <linux/kernel.h> 53#include <linux/types.h> 54#include <linux/timex.h> 55#include <linux/jiffies.h> 56#include <linux/rbtree.h> 57#include <linux/thread_info.h> 58#include <linux/cpumask.h> 59#include <linux/errno.h> 60#include <linux/nodemask.h> 61#include <linux/mm_types.h> 62 63#include <asm/system.h> 64#include <asm/semaphore.h> 65#include <asm/page.h> 66#include <asm/ptrace.h> 67#include <asm/cputime.h> 68 69#include <linux/smp.h> 70#include <linux/sem.h> 71#include <linux/signal.h> 72#include <linux/securebits.h> 73#include <linux/fs_struct.h> 74#include <linux/compiler.h> 75#include <linux/completion.h> 76#include <linux/pid.h> 77#include <linux/percpu.h> 78#include <linux/topology.h> 79#include <linux/proportions.h> 80#include <linux/seccomp.h> 81#include <linux/rcupdate.h> 82#include <linux/rtmutex.h> 83 84#include <linux/time.h> 85#include <linux/param.h> 86#include <linux/resource.h> 87#include <linux/timer.h> 88#include <linux/hrtimer.h> 89#include <linux/task_io_accounting.h> 90#include <linux/kobject.h> 91#include <linux/latencytop.h> 92 93#include <asm/processor.h> 94 95struct mem_cgroup; 96struct exec_domain; 97struct futex_pi_state; 98struct robust_list_head; 99struct bio; 100 101/* 102 * List of flags we want to share for kernel threads, 103 * if only because they are not used by them anyway. 104 */ 105#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 106 107/* 108 * These are the constant used to fake the fixed-point load-average 109 * counting. Some notes: 110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 111 * a load-average precision of 10 bits integer + 11 bits fractional 112 * - if you want to count load-averages more often, you need more 113 * precision, or rounding will get you. With 2-second counting freq, 114 * the EXP_n values would be 1981, 2034 and 2043 if still using only 115 * 11 bit fractions. 116 */ 117extern unsigned long avenrun[]; /* Load averages */ 118 119#define FSHIFT 11 /* nr of bits of precision */ 120#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 121#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 122#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 123#define EXP_5 2014 /* 1/exp(5sec/5min) */ 124#define EXP_15 2037 /* 1/exp(5sec/15min) */ 125 126#define CALC_LOAD(load,exp,n) \ 127 load *= exp; \ 128 load += n*(FIXED_1-exp); \ 129 load >>= FSHIFT; 130 131extern unsigned long total_forks; 132extern int nr_threads; 133DECLARE_PER_CPU(unsigned long, process_counts); 134extern int nr_processes(void); 135extern unsigned long nr_running(void); 136extern unsigned long nr_uninterruptible(void); 137extern unsigned long nr_active(void); 138extern unsigned long nr_iowait(void); 139extern unsigned long weighted_cpuload(const int cpu); 140 141struct seq_file; 142struct cfs_rq; 143struct task_group; 144#ifdef CONFIG_SCHED_DEBUG 145extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 146extern void proc_sched_set_task(struct task_struct *p); 147extern void 148print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 149#else 150static inline void 151proc_sched_show_task(struct task_struct *p, struct seq_file *m) 152{ 153} 154static inline void proc_sched_set_task(struct task_struct *p) 155{ 156} 157static inline void 158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 159{ 160} 161#endif 162 163/* 164 * Task state bitmask. NOTE! These bits are also 165 * encoded in fs/proc/array.c: get_task_state(). 166 * 167 * We have two separate sets of flags: task->state 168 * is about runnability, while task->exit_state are 169 * about the task exiting. Confusing, but this way 170 * modifying one set can't modify the other one by 171 * mistake. 172 */ 173#define TASK_RUNNING 0 174#define TASK_INTERRUPTIBLE 1 175#define TASK_UNINTERRUPTIBLE 2 176#define __TASK_STOPPED 4 177#define __TASK_TRACED 8 178/* in tsk->exit_state */ 179#define EXIT_ZOMBIE 16 180#define EXIT_DEAD 32 181/* in tsk->state again */ 182#define TASK_DEAD 64 183#define TASK_WAKEKILL 128 184 185/* Convenience macros for the sake of set_task_state */ 186#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 187#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 188#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 189 190/* Convenience macros for the sake of wake_up */ 191#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 192#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 193 194/* get_task_state() */ 195#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 197 __TASK_TRACED) 198 199#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 200#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 201#define task_is_stopped_or_traced(task) \ 202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 203#define task_contributes_to_load(task) \ 204 ((task->state & TASK_UNINTERRUPTIBLE) != 0) 205 206#define __set_task_state(tsk, state_value) \ 207 do { (tsk)->state = (state_value); } while (0) 208#define set_task_state(tsk, state_value) \ 209 set_mb((tsk)->state, (state_value)) 210 211/* 212 * set_current_state() includes a barrier so that the write of current->state 213 * is correctly serialised wrt the caller's subsequent test of whether to 214 * actually sleep: 215 * 216 * set_current_state(TASK_UNINTERRUPTIBLE); 217 * if (do_i_need_to_sleep()) 218 * schedule(); 219 * 220 * If the caller does not need such serialisation then use __set_current_state() 221 */ 222#define __set_current_state(state_value) \ 223 do { current->state = (state_value); } while (0) 224#define set_current_state(state_value) \ 225 set_mb(current->state, (state_value)) 226 227/* Task command name length */ 228#define TASK_COMM_LEN 16 229 230#include <linux/spinlock.h> 231 232/* 233 * This serializes "schedule()" and also protects 234 * the run-queue from deletions/modifications (but 235 * _adding_ to the beginning of the run-queue has 236 * a separate lock). 237 */ 238extern rwlock_t tasklist_lock; 239extern spinlock_t mmlist_lock; 240 241struct task_struct; 242 243extern void sched_init(void); 244extern void sched_init_smp(void); 245extern asmlinkage void schedule_tail(struct task_struct *prev); 246extern void init_idle(struct task_struct *idle, int cpu); 247extern void init_idle_bootup_task(struct task_struct *idle); 248 249extern cpumask_t nohz_cpu_mask; 250#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 251extern int select_nohz_load_balancer(int cpu); 252#else 253static inline int select_nohz_load_balancer(int cpu) 254{ 255 return 0; 256} 257#endif 258 259extern unsigned long rt_needs_cpu(int cpu); 260 261/* 262 * Only dump TASK_* tasks. (0 for all tasks) 263 */ 264extern void show_state_filter(unsigned long state_filter); 265 266static inline void show_state(void) 267{ 268 show_state_filter(0); 269} 270 271extern void show_regs(struct pt_regs *); 272 273/* 274 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 275 * task), SP is the stack pointer of the first frame that should be shown in the back 276 * trace (or NULL if the entire call-chain of the task should be shown). 277 */ 278extern void show_stack(struct task_struct *task, unsigned long *sp); 279 280void io_schedule(void); 281long io_schedule_timeout(long timeout); 282 283extern void cpu_init (void); 284extern void trap_init(void); 285extern void account_process_tick(struct task_struct *task, int user); 286extern void update_process_times(int user); 287extern void scheduler_tick(void); 288extern void hrtick_resched(void); 289 290extern void sched_show_task(struct task_struct *p); 291 292#ifdef CONFIG_DETECT_SOFTLOCKUP 293extern void softlockup_tick(void); 294extern void spawn_softlockup_task(void); 295extern void touch_softlockup_watchdog(void); 296extern void touch_all_softlockup_watchdogs(void); 297extern unsigned long softlockup_thresh; 298extern unsigned long sysctl_hung_task_check_count; 299extern unsigned long sysctl_hung_task_timeout_secs; 300extern unsigned long sysctl_hung_task_warnings; 301#else 302static inline void softlockup_tick(void) 303{ 304} 305static inline void spawn_softlockup_task(void) 306{ 307} 308static inline void touch_softlockup_watchdog(void) 309{ 310} 311static inline void touch_all_softlockup_watchdogs(void) 312{ 313} 314#endif 315 316 317/* Attach to any functions which should be ignored in wchan output. */ 318#define __sched __attribute__((__section__(".sched.text"))) 319 320/* Linker adds these: start and end of __sched functions */ 321extern char __sched_text_start[], __sched_text_end[]; 322 323/* Is this address in the __sched functions? */ 324extern int in_sched_functions(unsigned long addr); 325 326#define MAX_SCHEDULE_TIMEOUT LONG_MAX 327extern signed long schedule_timeout(signed long timeout); 328extern signed long schedule_timeout_interruptible(signed long timeout); 329extern signed long schedule_timeout_killable(signed long timeout); 330extern signed long schedule_timeout_uninterruptible(signed long timeout); 331asmlinkage void schedule(void); 332 333struct nsproxy; 334struct user_namespace; 335 336/* Maximum number of active map areas.. This is a random (large) number */ 337#define DEFAULT_MAX_MAP_COUNT 65536 338 339extern int sysctl_max_map_count; 340 341#include <linux/aio.h> 342 343extern unsigned long 344arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 345 unsigned long, unsigned long); 346extern unsigned long 347arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 348 unsigned long len, unsigned long pgoff, 349 unsigned long flags); 350extern void arch_unmap_area(struct mm_struct *, unsigned long); 351extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 352 353#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 354/* 355 * The mm counters are not protected by its page_table_lock, 356 * so must be incremented atomically. 357 */ 358#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 359#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 360#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 361#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 362#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 363 364#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 365/* 366 * The mm counters are protected by its page_table_lock, 367 * so can be incremented directly. 368 */ 369#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 370#define get_mm_counter(mm, member) ((mm)->_##member) 371#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 372#define inc_mm_counter(mm, member) (mm)->_##member++ 373#define dec_mm_counter(mm, member) (mm)->_##member-- 374 375#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 376 377#define get_mm_rss(mm) \ 378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 379#define update_hiwater_rss(mm) do { \ 380 unsigned long _rss = get_mm_rss(mm); \ 381 if ((mm)->hiwater_rss < _rss) \ 382 (mm)->hiwater_rss = _rss; \ 383} while (0) 384#define update_hiwater_vm(mm) do { \ 385 if ((mm)->hiwater_vm < (mm)->total_vm) \ 386 (mm)->hiwater_vm = (mm)->total_vm; \ 387} while (0) 388 389extern void set_dumpable(struct mm_struct *mm, int value); 390extern int get_dumpable(struct mm_struct *mm); 391 392/* mm flags */ 393/* dumpable bits */ 394#define MMF_DUMPABLE 0 /* core dump is permitted */ 395#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 396#define MMF_DUMPABLE_BITS 2 397 398/* coredump filter bits */ 399#define MMF_DUMP_ANON_PRIVATE 2 400#define MMF_DUMP_ANON_SHARED 3 401#define MMF_DUMP_MAPPED_PRIVATE 4 402#define MMF_DUMP_MAPPED_SHARED 5 403#define MMF_DUMP_ELF_HEADERS 6 404#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 405#define MMF_DUMP_FILTER_BITS 5 406#define MMF_DUMP_FILTER_MASK \ 407 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 408#define MMF_DUMP_FILTER_DEFAULT \ 409 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED)) 410 411struct sighand_struct { 412 atomic_t count; 413 struct k_sigaction action[_NSIG]; 414 spinlock_t siglock; 415 wait_queue_head_t signalfd_wqh; 416}; 417 418struct pacct_struct { 419 int ac_flag; 420 long ac_exitcode; 421 unsigned long ac_mem; 422 cputime_t ac_utime, ac_stime; 423 unsigned long ac_minflt, ac_majflt; 424}; 425 426/* 427 * NOTE! "signal_struct" does not have it's own 428 * locking, because a shared signal_struct always 429 * implies a shared sighand_struct, so locking 430 * sighand_struct is always a proper superset of 431 * the locking of signal_struct. 432 */ 433struct signal_struct { 434 atomic_t count; 435 atomic_t live; 436 437 wait_queue_head_t wait_chldexit; /* for wait4() */ 438 439 /* current thread group signal load-balancing target: */ 440 struct task_struct *curr_target; 441 442 /* shared signal handling: */ 443 struct sigpending shared_pending; 444 445 /* thread group exit support */ 446 int group_exit_code; 447 /* overloaded: 448 * - notify group_exit_task when ->count is equal to notify_count 449 * - everyone except group_exit_task is stopped during signal delivery 450 * of fatal signals, group_exit_task processes the signal. 451 */ 452 struct task_struct *group_exit_task; 453 int notify_count; 454 455 /* thread group stop support, overloads group_exit_code too */ 456 int group_stop_count; 457 unsigned int flags; /* see SIGNAL_* flags below */ 458 459 /* POSIX.1b Interval Timers */ 460 struct list_head posix_timers; 461 462 /* ITIMER_REAL timer for the process */ 463 struct hrtimer real_timer; 464 struct pid *leader_pid; 465 ktime_t it_real_incr; 466 467 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 468 cputime_t it_prof_expires, it_virt_expires; 469 cputime_t it_prof_incr, it_virt_incr; 470 471 /* job control IDs */ 472 473 /* 474 * pgrp and session fields are deprecated. 475 * use the task_session_Xnr and task_pgrp_Xnr routines below 476 */ 477 478 union { 479 pid_t pgrp __deprecated; 480 pid_t __pgrp; 481 }; 482 483 struct pid *tty_old_pgrp; 484 485 union { 486 pid_t session __deprecated; 487 pid_t __session; 488 }; 489 490 /* boolean value for session group leader */ 491 int leader; 492 493 struct tty_struct *tty; /* NULL if no tty */ 494 495 /* 496 * Cumulative resource counters for dead threads in the group, 497 * and for reaped dead child processes forked by this group. 498 * Live threads maintain their own counters and add to these 499 * in __exit_signal, except for the group leader. 500 */ 501 cputime_t utime, stime, cutime, cstime; 502 cputime_t gtime; 503 cputime_t cgtime; 504 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 505 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 506 unsigned long inblock, oublock, cinblock, coublock; 507 508 /* 509 * Cumulative ns of scheduled CPU time for dead threads in the 510 * group, not including a zombie group leader. (This only differs 511 * from jiffies_to_ns(utime + stime) if sched_clock uses something 512 * other than jiffies.) 513 */ 514 unsigned long long sum_sched_runtime; 515 516 /* 517 * We don't bother to synchronize most readers of this at all, 518 * because there is no reader checking a limit that actually needs 519 * to get both rlim_cur and rlim_max atomically, and either one 520 * alone is a single word that can safely be read normally. 521 * getrlimit/setrlimit use task_lock(current->group_leader) to 522 * protect this instead of the siglock, because they really 523 * have no need to disable irqs. 524 */ 525 struct rlimit rlim[RLIM_NLIMITS]; 526 527 struct list_head cpu_timers[3]; 528 529 /* keep the process-shared keyrings here so that they do the right 530 * thing in threads created with CLONE_THREAD */ 531#ifdef CONFIG_KEYS 532 struct key *session_keyring; /* keyring inherited over fork */ 533 struct key *process_keyring; /* keyring private to this process */ 534#endif 535#ifdef CONFIG_BSD_PROCESS_ACCT 536 struct pacct_struct pacct; /* per-process accounting information */ 537#endif 538#ifdef CONFIG_TASKSTATS 539 struct taskstats *stats; 540#endif 541#ifdef CONFIG_AUDIT 542 unsigned audit_tty; 543 struct tty_audit_buf *tty_audit_buf; 544#endif 545}; 546 547/* Context switch must be unlocked if interrupts are to be enabled */ 548#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 549# define __ARCH_WANT_UNLOCKED_CTXSW 550#endif 551 552/* 553 * Bits in flags field of signal_struct. 554 */ 555#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 556#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 557#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 558#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 559 560/* If true, all threads except ->group_exit_task have pending SIGKILL */ 561static inline int signal_group_exit(const struct signal_struct *sig) 562{ 563 return (sig->flags & SIGNAL_GROUP_EXIT) || 564 (sig->group_exit_task != NULL); 565} 566 567/* 568 * Some day this will be a full-fledged user tracking system.. 569 */ 570struct user_struct { 571 atomic_t __count; /* reference count */ 572 atomic_t processes; /* How many processes does this user have? */ 573 atomic_t files; /* How many open files does this user have? */ 574 atomic_t sigpending; /* How many pending signals does this user have? */ 575#ifdef CONFIG_INOTIFY_USER 576 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 577 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 578#endif 579#ifdef CONFIG_POSIX_MQUEUE 580 /* protected by mq_lock */ 581 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 582#endif 583 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 584 585#ifdef CONFIG_KEYS 586 struct key *uid_keyring; /* UID specific keyring */ 587 struct key *session_keyring; /* UID's default session keyring */ 588#endif 589 590 /* Hash table maintenance information */ 591 struct hlist_node uidhash_node; 592 uid_t uid; 593 594#ifdef CONFIG_USER_SCHED 595 struct task_group *tg; 596#ifdef CONFIG_SYSFS 597 struct kobject kobj; 598 struct work_struct work; 599#endif 600#endif 601}; 602 603extern int uids_sysfs_init(void); 604 605extern struct user_struct *find_user(uid_t); 606 607extern struct user_struct root_user; 608#define INIT_USER (&root_user) 609 610struct backing_dev_info; 611struct reclaim_state; 612 613#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 614struct sched_info { 615 /* cumulative counters */ 616 unsigned long pcount; /* # of times run on this cpu */ 617 unsigned long long cpu_time, /* time spent on the cpu */ 618 run_delay; /* time spent waiting on a runqueue */ 619 620 /* timestamps */ 621 unsigned long long last_arrival,/* when we last ran on a cpu */ 622 last_queued; /* when we were last queued to run */ 623#ifdef CONFIG_SCHEDSTATS 624 /* BKL stats */ 625 unsigned int bkl_count; 626#endif 627}; 628#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 629 630#ifdef CONFIG_SCHEDSTATS 631extern const struct file_operations proc_schedstat_operations; 632#endif /* CONFIG_SCHEDSTATS */ 633 634#ifdef CONFIG_TASK_DELAY_ACCT 635struct task_delay_info { 636 spinlock_t lock; 637 unsigned int flags; /* Private per-task flags */ 638 639 /* For each stat XXX, add following, aligned appropriately 640 * 641 * struct timespec XXX_start, XXX_end; 642 * u64 XXX_delay; 643 * u32 XXX_count; 644 * 645 * Atomicity of updates to XXX_delay, XXX_count protected by 646 * single lock above (split into XXX_lock if contention is an issue). 647 */ 648 649 /* 650 * XXX_count is incremented on every XXX operation, the delay 651 * associated with the operation is added to XXX_delay. 652 * XXX_delay contains the accumulated delay time in nanoseconds. 653 */ 654 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 655 u64 blkio_delay; /* wait for sync block io completion */ 656 u64 swapin_delay; /* wait for swapin block io completion */ 657 u32 blkio_count; /* total count of the number of sync block */ 658 /* io operations performed */ 659 u32 swapin_count; /* total count of the number of swapin block */ 660 /* io operations performed */ 661}; 662#endif /* CONFIG_TASK_DELAY_ACCT */ 663 664static inline int sched_info_on(void) 665{ 666#ifdef CONFIG_SCHEDSTATS 667 return 1; 668#elif defined(CONFIG_TASK_DELAY_ACCT) 669 extern int delayacct_on; 670 return delayacct_on; 671#else 672 return 0; 673#endif 674} 675 676enum cpu_idle_type { 677 CPU_IDLE, 678 CPU_NOT_IDLE, 679 CPU_NEWLY_IDLE, 680 CPU_MAX_IDLE_TYPES 681}; 682 683/* 684 * sched-domains (multiprocessor balancing) declarations: 685 */ 686 687/* 688 * Increase resolution of nice-level calculations: 689 */ 690#define SCHED_LOAD_SHIFT 10 691#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 692 693#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 694 695#ifdef CONFIG_SMP 696#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 697#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 698#define SD_BALANCE_EXEC 4 /* Balance on exec */ 699#define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 700#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 701#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 702#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 703#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 704#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 705#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 706#define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 707 708#define BALANCE_FOR_MC_POWER \ 709 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 710 711#define BALANCE_FOR_PKG_POWER \ 712 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 713 SD_POWERSAVINGS_BALANCE : 0) 714 715#define test_sd_parent(sd, flag) ((sd->parent && \ 716 (sd->parent->flags & flag)) ? 1 : 0) 717 718 719struct sched_group { 720 struct sched_group *next; /* Must be a circular list */ 721 cpumask_t cpumask; 722 723 /* 724 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 725 * single CPU. This is read only (except for setup, hotplug CPU). 726 * Note : Never change cpu_power without recompute its reciprocal 727 */ 728 unsigned int __cpu_power; 729 /* 730 * reciprocal value of cpu_power to avoid expensive divides 731 * (see include/linux/reciprocal_div.h) 732 */ 733 u32 reciprocal_cpu_power; 734}; 735 736struct sched_domain { 737 /* These fields must be setup */ 738 struct sched_domain *parent; /* top domain must be null terminated */ 739 struct sched_domain *child; /* bottom domain must be null terminated */ 740 struct sched_group *groups; /* the balancing groups of the domain */ 741 cpumask_t span; /* span of all CPUs in this domain */ 742 unsigned long min_interval; /* Minimum balance interval ms */ 743 unsigned long max_interval; /* Maximum balance interval ms */ 744 unsigned int busy_factor; /* less balancing by factor if busy */ 745 unsigned int imbalance_pct; /* No balance until over watermark */ 746 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 747 unsigned int busy_idx; 748 unsigned int idle_idx; 749 unsigned int newidle_idx; 750 unsigned int wake_idx; 751 unsigned int forkexec_idx; 752 int flags; /* See SD_* */ 753 754 /* Runtime fields. */ 755 unsigned long last_balance; /* init to jiffies. units in jiffies */ 756 unsigned int balance_interval; /* initialise to 1. units in ms. */ 757 unsigned int nr_balance_failed; /* initialise to 0 */ 758 759#ifdef CONFIG_SCHEDSTATS 760 /* load_balance() stats */ 761 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 762 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 763 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 764 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 765 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 766 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 767 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 768 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 769 770 /* Active load balancing */ 771 unsigned int alb_count; 772 unsigned int alb_failed; 773 unsigned int alb_pushed; 774 775 /* SD_BALANCE_EXEC stats */ 776 unsigned int sbe_count; 777 unsigned int sbe_balanced; 778 unsigned int sbe_pushed; 779 780 /* SD_BALANCE_FORK stats */ 781 unsigned int sbf_count; 782 unsigned int sbf_balanced; 783 unsigned int sbf_pushed; 784 785 /* try_to_wake_up() stats */ 786 unsigned int ttwu_wake_remote; 787 unsigned int ttwu_move_affine; 788 unsigned int ttwu_move_balance; 789#endif 790}; 791 792extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new); 793 794#endif /* CONFIG_SMP */ 795 796/* 797 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of 798 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a 799 * task of nice 0 or enough lower priority tasks to bring up the 800 * weighted_cpuload 801 */ 802static inline int above_background_load(void) 803{ 804 unsigned long cpu; 805 806 for_each_online_cpu(cpu) { 807 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE) 808 return 1; 809 } 810 return 0; 811} 812 813struct io_context; /* See blkdev.h */ 814#define NGROUPS_SMALL 32 815#define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t))) 816struct group_info { 817 int ngroups; 818 atomic_t usage; 819 gid_t small_block[NGROUPS_SMALL]; 820 int nblocks; 821 gid_t *blocks[0]; 822}; 823 824/* 825 * get_group_info() must be called with the owning task locked (via task_lock()) 826 * when task != current. The reason being that the vast majority of callers are 827 * looking at current->group_info, which can not be changed except by the 828 * current task. Changing current->group_info requires the task lock, too. 829 */ 830#define get_group_info(group_info) do { \ 831 atomic_inc(&(group_info)->usage); \ 832} while (0) 833 834#define put_group_info(group_info) do { \ 835 if (atomic_dec_and_test(&(group_info)->usage)) \ 836 groups_free(group_info); \ 837} while (0) 838 839extern struct group_info *groups_alloc(int gidsetsize); 840extern void groups_free(struct group_info *group_info); 841extern int set_current_groups(struct group_info *group_info); 842extern int groups_search(struct group_info *group_info, gid_t grp); 843/* access the groups "array" with this macro */ 844#define GROUP_AT(gi, i) \ 845 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 846 847#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 848extern void prefetch_stack(struct task_struct *t); 849#else 850static inline void prefetch_stack(struct task_struct *t) { } 851#endif 852 853struct audit_context; /* See audit.c */ 854struct mempolicy; 855struct pipe_inode_info; 856struct uts_namespace; 857 858struct rq; 859struct sched_domain; 860 861struct sched_class { 862 const struct sched_class *next; 863 864 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 865 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 866 void (*yield_task) (struct rq *rq); 867 int (*select_task_rq)(struct task_struct *p, int sync); 868 869 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p); 870 871 struct task_struct * (*pick_next_task) (struct rq *rq); 872 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 873 874#ifdef CONFIG_SMP 875 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 876 struct rq *busiest, unsigned long max_load_move, 877 struct sched_domain *sd, enum cpu_idle_type idle, 878 int *all_pinned, int *this_best_prio); 879 880 int (*move_one_task) (struct rq *this_rq, int this_cpu, 881 struct rq *busiest, struct sched_domain *sd, 882 enum cpu_idle_type idle); 883 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 884 void (*post_schedule) (struct rq *this_rq); 885 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 886#endif 887 888 void (*set_curr_task) (struct rq *rq); 889 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 890 void (*task_new) (struct rq *rq, struct task_struct *p); 891 void (*set_cpus_allowed)(struct task_struct *p, cpumask_t *newmask); 892 893 void (*join_domain)(struct rq *rq); 894 void (*leave_domain)(struct rq *rq); 895 896 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 897 int running); 898 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 899 int running); 900 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 901 int oldprio, int running); 902}; 903 904struct load_weight { 905 unsigned long weight, inv_weight; 906}; 907 908/* 909 * CFS stats for a schedulable entity (task, task-group etc) 910 * 911 * Current field usage histogram: 912 * 913 * 4 se->block_start 914 * 4 se->run_node 915 * 4 se->sleep_start 916 * 6 se->load.weight 917 */ 918struct sched_entity { 919 struct load_weight load; /* for load-balancing */ 920 struct rb_node run_node; 921 unsigned int on_rq; 922 923 u64 exec_start; 924 u64 sum_exec_runtime; 925 u64 vruntime; 926 u64 prev_sum_exec_runtime; 927 928#ifdef CONFIG_SCHEDSTATS 929 u64 wait_start; 930 u64 wait_max; 931 u64 wait_count; 932 u64 wait_sum; 933 934 u64 sleep_start; 935 u64 sleep_max; 936 s64 sum_sleep_runtime; 937 938 u64 block_start; 939 u64 block_max; 940 u64 exec_max; 941 u64 slice_max; 942 943 u64 nr_migrations; 944 u64 nr_migrations_cold; 945 u64 nr_failed_migrations_affine; 946 u64 nr_failed_migrations_running; 947 u64 nr_failed_migrations_hot; 948 u64 nr_forced_migrations; 949 u64 nr_forced2_migrations; 950 951 u64 nr_wakeups; 952 u64 nr_wakeups_sync; 953 u64 nr_wakeups_migrate; 954 u64 nr_wakeups_local; 955 u64 nr_wakeups_remote; 956 u64 nr_wakeups_affine; 957 u64 nr_wakeups_affine_attempts; 958 u64 nr_wakeups_passive; 959 u64 nr_wakeups_idle; 960#endif 961 962#ifdef CONFIG_FAIR_GROUP_SCHED 963 struct sched_entity *parent; 964 /* rq on which this entity is (to be) queued: */ 965 struct cfs_rq *cfs_rq; 966 /* rq "owned" by this entity/group: */ 967 struct cfs_rq *my_q; 968#endif 969}; 970 971struct sched_rt_entity { 972 struct list_head run_list; 973 unsigned int time_slice; 974 unsigned long timeout; 975 int nr_cpus_allowed; 976 977#ifdef CONFIG_RT_GROUP_SCHED 978 struct sched_rt_entity *parent; 979 /* rq on which this entity is (to be) queued: */ 980 struct rt_rq *rt_rq; 981 /* rq "owned" by this entity/group: */ 982 struct rt_rq *my_q; 983#endif 984}; 985 986struct task_struct { 987 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 988 void *stack; 989 atomic_t usage; 990 unsigned int flags; /* per process flags, defined below */ 991 unsigned int ptrace; 992 993 int lock_depth; /* BKL lock depth */ 994 995#ifdef CONFIG_SMP 996#ifdef __ARCH_WANT_UNLOCKED_CTXSW 997 int oncpu; 998#endif 999#endif 1000 1001 int prio, static_prio, normal_prio; 1002 const struct sched_class *sched_class; 1003 struct sched_entity se; 1004 struct sched_rt_entity rt; 1005 1006#ifdef CONFIG_PREEMPT_NOTIFIERS 1007 /* list of struct preempt_notifier: */ 1008 struct hlist_head preempt_notifiers; 1009#endif 1010 1011 /* 1012 * fpu_counter contains the number of consecutive context switches 1013 * that the FPU is used. If this is over a threshold, the lazy fpu 1014 * saving becomes unlazy to save the trap. This is an unsigned char 1015 * so that after 256 times the counter wraps and the behavior turns 1016 * lazy again; this to deal with bursty apps that only use FPU for 1017 * a short time 1018 */ 1019 unsigned char fpu_counter; 1020 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1021#ifdef CONFIG_BLK_DEV_IO_TRACE 1022 unsigned int btrace_seq; 1023#endif 1024 1025 unsigned int policy; 1026 cpumask_t cpus_allowed; 1027 1028#ifdef CONFIG_PREEMPT_RCU 1029 int rcu_read_lock_nesting; 1030 int rcu_flipctr_idx; 1031#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1032 1033#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1034 struct sched_info sched_info; 1035#endif 1036 1037 struct list_head tasks; 1038 /* 1039 * ptrace_list/ptrace_children forms the list of my children 1040 * that were stolen by a ptracer. 1041 */ 1042 struct list_head ptrace_children; 1043 struct list_head ptrace_list; 1044 1045 struct mm_struct *mm, *active_mm; 1046 1047/* task state */ 1048 struct linux_binfmt *binfmt; 1049 int exit_state; 1050 int exit_code, exit_signal; 1051 int pdeath_signal; /* The signal sent when the parent dies */ 1052 /* ??? */ 1053 unsigned int personality; 1054 unsigned did_exec:1; 1055 pid_t pid; 1056 pid_t tgid; 1057 1058#ifdef CONFIG_CC_STACKPROTECTOR 1059 /* Canary value for the -fstack-protector gcc feature */ 1060 unsigned long stack_canary; 1061#endif 1062 /* 1063 * pointers to (original) parent process, youngest child, younger sibling, 1064 * older sibling, respectively. (p->father can be replaced with 1065 * p->parent->pid) 1066 */ 1067 struct task_struct *real_parent; /* real parent process (when being debugged) */ 1068 struct task_struct *parent; /* parent process */ 1069 /* 1070 * children/sibling forms the list of my children plus the 1071 * tasks I'm ptracing. 1072 */ 1073 struct list_head children; /* list of my children */ 1074 struct list_head sibling; /* linkage in my parent's children list */ 1075 struct task_struct *group_leader; /* threadgroup leader */ 1076 1077 /* PID/PID hash table linkage. */ 1078 struct pid_link pids[PIDTYPE_MAX]; 1079 struct list_head thread_group; 1080 1081 struct completion *vfork_done; /* for vfork() */ 1082 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1083 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1084 1085 unsigned int rt_priority; 1086 cputime_t utime, stime, utimescaled, stimescaled; 1087 cputime_t gtime; 1088 cputime_t prev_utime, prev_stime; 1089 unsigned long nvcsw, nivcsw; /* context switch counts */ 1090 struct timespec start_time; /* monotonic time */ 1091 struct timespec real_start_time; /* boot based time */ 1092/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1093 unsigned long min_flt, maj_flt; 1094 1095 cputime_t it_prof_expires, it_virt_expires; 1096 unsigned long long it_sched_expires; 1097 struct list_head cpu_timers[3]; 1098 1099/* process credentials */ 1100 uid_t uid,euid,suid,fsuid; 1101 gid_t gid,egid,sgid,fsgid; 1102 struct group_info *group_info; 1103 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset; 1104 unsigned keep_capabilities:1; 1105 struct user_struct *user; 1106#ifdef CONFIG_KEYS 1107 struct key *request_key_auth; /* assumed request_key authority */ 1108 struct key *thread_keyring; /* keyring private to this thread */ 1109 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1110#endif 1111 char comm[TASK_COMM_LEN]; /* executable name excluding path 1112 - access with [gs]et_task_comm (which lock 1113 it with task_lock()) 1114 - initialized normally by flush_old_exec */ 1115/* file system info */ 1116 int link_count, total_link_count; 1117#ifdef CONFIG_SYSVIPC 1118/* ipc stuff */ 1119 struct sysv_sem sysvsem; 1120#endif 1121#ifdef CONFIG_DETECT_SOFTLOCKUP 1122/* hung task detection */ 1123 unsigned long last_switch_timestamp; 1124 unsigned long last_switch_count; 1125#endif 1126/* CPU-specific state of this task */ 1127 struct thread_struct thread; 1128/* filesystem information */ 1129 struct fs_struct *fs; 1130/* open file information */ 1131 struct files_struct *files; 1132/* namespaces */ 1133 struct nsproxy *nsproxy; 1134/* signal handlers */ 1135 struct signal_struct *signal; 1136 struct sighand_struct *sighand; 1137 1138 sigset_t blocked, real_blocked; 1139 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 1140 struct sigpending pending; 1141 1142 unsigned long sas_ss_sp; 1143 size_t sas_ss_size; 1144 int (*notifier)(void *priv); 1145 void *notifier_data; 1146 sigset_t *notifier_mask; 1147#ifdef CONFIG_SECURITY 1148 void *security; 1149#endif 1150 struct audit_context *audit_context; 1151#ifdef CONFIG_AUDITSYSCALL 1152 uid_t loginuid; 1153 unsigned int sessionid; 1154#endif 1155 seccomp_t seccomp; 1156 1157/* Thread group tracking */ 1158 u32 parent_exec_id; 1159 u32 self_exec_id; 1160/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1161 spinlock_t alloc_lock; 1162 1163 /* Protection of the PI data structures: */ 1164 spinlock_t pi_lock; 1165 1166#ifdef CONFIG_RT_MUTEXES 1167 /* PI waiters blocked on a rt_mutex held by this task */ 1168 struct plist_head pi_waiters; 1169 /* Deadlock detection and priority inheritance handling */ 1170 struct rt_mutex_waiter *pi_blocked_on; 1171#endif 1172 1173#ifdef CONFIG_DEBUG_MUTEXES 1174 /* mutex deadlock detection */ 1175 struct mutex_waiter *blocked_on; 1176#endif 1177#ifdef CONFIG_TRACE_IRQFLAGS 1178 unsigned int irq_events; 1179 int hardirqs_enabled; 1180 unsigned long hardirq_enable_ip; 1181 unsigned int hardirq_enable_event; 1182 unsigned long hardirq_disable_ip; 1183 unsigned int hardirq_disable_event; 1184 int softirqs_enabled; 1185 unsigned long softirq_disable_ip; 1186 unsigned int softirq_disable_event; 1187 unsigned long softirq_enable_ip; 1188 unsigned int softirq_enable_event; 1189 int hardirq_context; 1190 int softirq_context; 1191#endif 1192#ifdef CONFIG_LOCKDEP 1193# define MAX_LOCK_DEPTH 48UL 1194 u64 curr_chain_key; 1195 int lockdep_depth; 1196 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1197 unsigned int lockdep_recursion; 1198#endif 1199 1200/* journalling filesystem info */ 1201 void *journal_info; 1202 1203/* stacked block device info */ 1204 struct bio *bio_list, **bio_tail; 1205 1206/* VM state */ 1207 struct reclaim_state *reclaim_state; 1208 1209 struct backing_dev_info *backing_dev_info; 1210 1211 struct io_context *io_context; 1212 1213 unsigned long ptrace_message; 1214 siginfo_t *last_siginfo; /* For ptrace use. */ 1215#ifdef CONFIG_TASK_XACCT 1216/* i/o counters(bytes read/written, #syscalls */ 1217 u64 rchar, wchar, syscr, syscw; 1218#endif 1219 struct task_io_accounting ioac; 1220#if defined(CONFIG_TASK_XACCT) 1221 u64 acct_rss_mem1; /* accumulated rss usage */ 1222 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1223 cputime_t acct_stimexpd;/* stime since last update */ 1224#endif 1225#ifdef CONFIG_NUMA 1226 struct mempolicy *mempolicy; 1227 short il_next; 1228#endif 1229#ifdef CONFIG_CPUSETS 1230 nodemask_t mems_allowed; 1231 int cpuset_mems_generation; 1232 int cpuset_mem_spread_rotor; 1233#endif 1234#ifdef CONFIG_CGROUPS 1235 /* Control Group info protected by css_set_lock */ 1236 struct css_set *cgroups; 1237 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1238 struct list_head cg_list; 1239#endif 1240#ifdef CONFIG_FUTEX 1241 struct robust_list_head __user *robust_list; 1242#ifdef CONFIG_COMPAT 1243 struct compat_robust_list_head __user *compat_robust_list; 1244#endif 1245 struct list_head pi_state_list; 1246 struct futex_pi_state *pi_state_cache; 1247#endif 1248 atomic_t fs_excl; /* holding fs exclusive resources */ 1249 struct rcu_head rcu; 1250 1251 /* 1252 * cache last used pipe for splice 1253 */ 1254 struct pipe_inode_info *splice_pipe; 1255#ifdef CONFIG_TASK_DELAY_ACCT 1256 struct task_delay_info *delays; 1257#endif 1258#ifdef CONFIG_FAULT_INJECTION 1259 int make_it_fail; 1260#endif 1261 struct prop_local_single dirties; 1262#ifdef CONFIG_LATENCYTOP 1263 int latency_record_count; 1264 struct latency_record latency_record[LT_SAVECOUNT]; 1265#endif 1266}; 1267 1268/* 1269 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1270 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1271 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1272 * values are inverted: lower p->prio value means higher priority. 1273 * 1274 * The MAX_USER_RT_PRIO value allows the actual maximum 1275 * RT priority to be separate from the value exported to 1276 * user-space. This allows kernel threads to set their 1277 * priority to a value higher than any user task. Note: 1278 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1279 */ 1280 1281#define MAX_USER_RT_PRIO 100 1282#define MAX_RT_PRIO MAX_USER_RT_PRIO 1283 1284#define MAX_PRIO (MAX_RT_PRIO + 40) 1285#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1286 1287static inline int rt_prio(int prio) 1288{ 1289 if (unlikely(prio < MAX_RT_PRIO)) 1290 return 1; 1291 return 0; 1292} 1293 1294static inline int rt_task(struct task_struct *p) 1295{ 1296 return rt_prio(p->prio); 1297} 1298 1299static inline void set_task_session(struct task_struct *tsk, pid_t session) 1300{ 1301 tsk->signal->__session = session; 1302} 1303 1304static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1305{ 1306 tsk->signal->__pgrp = pgrp; 1307} 1308 1309static inline struct pid *task_pid(struct task_struct *task) 1310{ 1311 return task->pids[PIDTYPE_PID].pid; 1312} 1313 1314static inline struct pid *task_tgid(struct task_struct *task) 1315{ 1316 return task->group_leader->pids[PIDTYPE_PID].pid; 1317} 1318 1319static inline struct pid *task_pgrp(struct task_struct *task) 1320{ 1321 return task->group_leader->pids[PIDTYPE_PGID].pid; 1322} 1323 1324static inline struct pid *task_session(struct task_struct *task) 1325{ 1326 return task->group_leader->pids[PIDTYPE_SID].pid; 1327} 1328 1329struct pid_namespace; 1330 1331/* 1332 * the helpers to get the task's different pids as they are seen 1333 * from various namespaces 1334 * 1335 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1336 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1337 * current. 1338 * task_xid_nr_ns() : id seen from the ns specified; 1339 * 1340 * set_task_vxid() : assigns a virtual id to a task; 1341 * 1342 * see also pid_nr() etc in include/linux/pid.h 1343 */ 1344 1345static inline pid_t task_pid_nr(struct task_struct *tsk) 1346{ 1347 return tsk->pid; 1348} 1349 1350pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1351 1352static inline pid_t task_pid_vnr(struct task_struct *tsk) 1353{ 1354 return pid_vnr(task_pid(tsk)); 1355} 1356 1357 1358static inline pid_t task_tgid_nr(struct task_struct *tsk) 1359{ 1360 return tsk->tgid; 1361} 1362 1363pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1364 1365static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1366{ 1367 return pid_vnr(task_tgid(tsk)); 1368} 1369 1370 1371static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1372{ 1373 return tsk->signal->__pgrp; 1374} 1375 1376pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1377 1378static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1379{ 1380 return pid_vnr(task_pgrp(tsk)); 1381} 1382 1383 1384static inline pid_t task_session_nr(struct task_struct *tsk) 1385{ 1386 return tsk->signal->__session; 1387} 1388 1389pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1390 1391static inline pid_t task_session_vnr(struct task_struct *tsk) 1392{ 1393 return pid_vnr(task_session(tsk)); 1394} 1395 1396 1397/** 1398 * pid_alive - check that a task structure is not stale 1399 * @p: Task structure to be checked. 1400 * 1401 * Test if a process is not yet dead (at most zombie state) 1402 * If pid_alive fails, then pointers within the task structure 1403 * can be stale and must not be dereferenced. 1404 */ 1405static inline int pid_alive(struct task_struct *p) 1406{ 1407 return p->pids[PIDTYPE_PID].pid != NULL; 1408} 1409 1410/** 1411 * is_global_init - check if a task structure is init 1412 * @tsk: Task structure to be checked. 1413 * 1414 * Check if a task structure is the first user space task the kernel created. 1415 */ 1416static inline int is_global_init(struct task_struct *tsk) 1417{ 1418 return tsk->pid == 1; 1419} 1420 1421/* 1422 * is_container_init: 1423 * check whether in the task is init in its own pid namespace. 1424 */ 1425extern int is_container_init(struct task_struct *tsk); 1426 1427extern struct pid *cad_pid; 1428 1429extern void free_task(struct task_struct *tsk); 1430#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1431 1432extern void __put_task_struct(struct task_struct *t); 1433 1434static inline void put_task_struct(struct task_struct *t) 1435{ 1436 if (atomic_dec_and_test(&t->usage)) 1437 __put_task_struct(t); 1438} 1439 1440/* 1441 * Per process flags 1442 */ 1443#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1444 /* Not implemented yet, only for 486*/ 1445#define PF_STARTING 0x00000002 /* being created */ 1446#define PF_EXITING 0x00000004 /* getting shut down */ 1447#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1448#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1449#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1450#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1451#define PF_DUMPCORE 0x00000200 /* dumped core */ 1452#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1453#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1454#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1455#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1456#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1457#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1458#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1459#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1460#define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1461#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1462#define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1463#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1464#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1465#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1466#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1467#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1468#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1469#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1470 1471/* 1472 * Only the _current_ task can read/write to tsk->flags, but other 1473 * tasks can access tsk->flags in readonly mode for example 1474 * with tsk_used_math (like during threaded core dumping). 1475 * There is however an exception to this rule during ptrace 1476 * or during fork: the ptracer task is allowed to write to the 1477 * child->flags of its traced child (same goes for fork, the parent 1478 * can write to the child->flags), because we're guaranteed the 1479 * child is not running and in turn not changing child->flags 1480 * at the same time the parent does it. 1481 */ 1482#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1483#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1484#define clear_used_math() clear_stopped_child_used_math(current) 1485#define set_used_math() set_stopped_child_used_math(current) 1486#define conditional_stopped_child_used_math(condition, child) \ 1487 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1488#define conditional_used_math(condition) \ 1489 conditional_stopped_child_used_math(condition, current) 1490#define copy_to_stopped_child_used_math(child) \ 1491 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1492/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1493#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1494#define used_math() tsk_used_math(current) 1495 1496#ifdef CONFIG_SMP 1497extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); 1498#else 1499static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1500{ 1501 if (!cpu_isset(0, new_mask)) 1502 return -EINVAL; 1503 return 0; 1504} 1505#endif 1506 1507extern unsigned long long sched_clock(void); 1508 1509/* 1510 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1511 * clock constructed from sched_clock(): 1512 */ 1513extern unsigned long long cpu_clock(int cpu); 1514 1515extern unsigned long long 1516task_sched_runtime(struct task_struct *task); 1517 1518/* sched_exec is called by processes performing an exec */ 1519#ifdef CONFIG_SMP 1520extern void sched_exec(void); 1521#else 1522#define sched_exec() {} 1523#endif 1524 1525extern void sched_clock_idle_sleep_event(void); 1526extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1527 1528#ifdef CONFIG_HOTPLUG_CPU 1529extern void idle_task_exit(void); 1530#else 1531static inline void idle_task_exit(void) {} 1532#endif 1533 1534extern void sched_idle_next(void); 1535 1536#ifdef CONFIG_SCHED_DEBUG 1537extern unsigned int sysctl_sched_latency; 1538extern unsigned int sysctl_sched_min_granularity; 1539extern unsigned int sysctl_sched_wakeup_granularity; 1540extern unsigned int sysctl_sched_batch_wakeup_granularity; 1541extern unsigned int sysctl_sched_child_runs_first; 1542extern unsigned int sysctl_sched_features; 1543extern unsigned int sysctl_sched_migration_cost; 1544extern unsigned int sysctl_sched_nr_migrate; 1545 1546int sched_nr_latency_handler(struct ctl_table *table, int write, 1547 struct file *file, void __user *buffer, size_t *length, 1548 loff_t *ppos); 1549#endif 1550extern unsigned int sysctl_sched_rt_period; 1551extern int sysctl_sched_rt_runtime; 1552 1553extern unsigned int sysctl_sched_compat_yield; 1554 1555#ifdef CONFIG_RT_MUTEXES 1556extern int rt_mutex_getprio(struct task_struct *p); 1557extern void rt_mutex_setprio(struct task_struct *p, int prio); 1558extern void rt_mutex_adjust_pi(struct task_struct *p); 1559#else 1560static inline int rt_mutex_getprio(struct task_struct *p) 1561{ 1562 return p->normal_prio; 1563} 1564# define rt_mutex_adjust_pi(p) do { } while (0) 1565#endif 1566 1567extern void set_user_nice(struct task_struct *p, long nice); 1568extern int task_prio(const struct task_struct *p); 1569extern int task_nice(const struct task_struct *p); 1570extern int can_nice(const struct task_struct *p, const int nice); 1571extern int task_curr(const struct task_struct *p); 1572extern int idle_cpu(int cpu); 1573extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1574extern struct task_struct *idle_task(int cpu); 1575extern struct task_struct *curr_task(int cpu); 1576extern void set_curr_task(int cpu, struct task_struct *p); 1577 1578void yield(void); 1579 1580/* 1581 * The default (Linux) execution domain. 1582 */ 1583extern struct exec_domain default_exec_domain; 1584 1585union thread_union { 1586 struct thread_info thread_info; 1587 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1588}; 1589 1590#ifndef __HAVE_ARCH_KSTACK_END 1591static inline int kstack_end(void *addr) 1592{ 1593 /* Reliable end of stack detection: 1594 * Some APM bios versions misalign the stack 1595 */ 1596 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1597} 1598#endif 1599 1600extern union thread_union init_thread_union; 1601extern struct task_struct init_task; 1602 1603extern struct mm_struct init_mm; 1604 1605extern struct pid_namespace init_pid_ns; 1606 1607/* 1608 * find a task by one of its numerical ids 1609 * 1610 * find_task_by_pid_type_ns(): 1611 * it is the most generic call - it finds a task by all id, 1612 * type and namespace specified 1613 * find_task_by_pid_ns(): 1614 * finds a task by its pid in the specified namespace 1615 * find_task_by_vpid(): 1616 * finds a task by its virtual pid 1617 * find_task_by_pid(): 1618 * finds a task by its global pid 1619 * 1620 * see also find_pid() etc in include/linux/pid.h 1621 */ 1622 1623extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1624 struct pid_namespace *ns); 1625 1626extern struct task_struct *find_task_by_pid(pid_t nr); 1627extern struct task_struct *find_task_by_vpid(pid_t nr); 1628extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1629 struct pid_namespace *ns); 1630 1631extern void __set_special_pids(struct pid *pid); 1632 1633/* per-UID process charging. */ 1634extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1635static inline struct user_struct *get_uid(struct user_struct *u) 1636{ 1637 atomic_inc(&u->__count); 1638 return u; 1639} 1640extern void free_uid(struct user_struct *); 1641extern void switch_uid(struct user_struct *); 1642extern void release_uids(struct user_namespace *ns); 1643 1644#include <asm/current.h> 1645 1646extern void do_timer(unsigned long ticks); 1647 1648extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1649extern int wake_up_process(struct task_struct *tsk); 1650extern void wake_up_new_task(struct task_struct *tsk, 1651 unsigned long clone_flags); 1652#ifdef CONFIG_SMP 1653 extern void kick_process(struct task_struct *tsk); 1654#else 1655 static inline void kick_process(struct task_struct *tsk) { } 1656#endif 1657extern void sched_fork(struct task_struct *p, int clone_flags); 1658extern void sched_dead(struct task_struct *p); 1659 1660extern int in_group_p(gid_t); 1661extern int in_egroup_p(gid_t); 1662 1663extern void proc_caches_init(void); 1664extern void flush_signals(struct task_struct *); 1665extern void ignore_signals(struct task_struct *); 1666extern void flush_signal_handlers(struct task_struct *, int force_default); 1667extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1668 1669static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1670{ 1671 unsigned long flags; 1672 int ret; 1673 1674 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1675 ret = dequeue_signal(tsk, mask, info); 1676 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1677 1678 return ret; 1679} 1680 1681extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1682 sigset_t *mask); 1683extern void unblock_all_signals(void); 1684extern void release_task(struct task_struct * p); 1685extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1686extern int force_sigsegv(int, struct task_struct *); 1687extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1688extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1689extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1690extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1691extern int kill_pgrp(struct pid *pid, int sig, int priv); 1692extern int kill_pid(struct pid *pid, int sig, int priv); 1693extern int kill_proc_info(int, struct siginfo *, pid_t); 1694extern void do_notify_parent(struct task_struct *, int); 1695extern void force_sig(int, struct task_struct *); 1696extern void force_sig_specific(int, struct task_struct *); 1697extern int send_sig(int, struct task_struct *, int); 1698extern void zap_other_threads(struct task_struct *p); 1699extern int kill_proc(pid_t, int, int); 1700extern struct sigqueue *sigqueue_alloc(void); 1701extern void sigqueue_free(struct sigqueue *); 1702extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1703extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1704extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1705extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1706 1707static inline int kill_cad_pid(int sig, int priv) 1708{ 1709 return kill_pid(cad_pid, sig, priv); 1710} 1711 1712/* These can be the second arg to send_sig_info/send_group_sig_info. */ 1713#define SEND_SIG_NOINFO ((struct siginfo *) 0) 1714#define SEND_SIG_PRIV ((struct siginfo *) 1) 1715#define SEND_SIG_FORCED ((struct siginfo *) 2) 1716 1717static inline int is_si_special(const struct siginfo *info) 1718{ 1719 return info <= SEND_SIG_FORCED; 1720} 1721 1722/* True if we are on the alternate signal stack. */ 1723 1724static inline int on_sig_stack(unsigned long sp) 1725{ 1726 return (sp - current->sas_ss_sp < current->sas_ss_size); 1727} 1728 1729static inline int sas_ss_flags(unsigned long sp) 1730{ 1731 return (current->sas_ss_size == 0 ? SS_DISABLE 1732 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1733} 1734 1735/* 1736 * Routines for handling mm_structs 1737 */ 1738extern struct mm_struct * mm_alloc(void); 1739 1740/* mmdrop drops the mm and the page tables */ 1741extern void __mmdrop(struct mm_struct *); 1742static inline void mmdrop(struct mm_struct * mm) 1743{ 1744 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1745 __mmdrop(mm); 1746} 1747 1748/* mmput gets rid of the mappings and all user-space */ 1749extern void mmput(struct mm_struct *); 1750/* Grab a reference to a task's mm, if it is not already going away */ 1751extern struct mm_struct *get_task_mm(struct task_struct *task); 1752/* Remove the current tasks stale references to the old mm_struct */ 1753extern void mm_release(struct task_struct *, struct mm_struct *); 1754 1755extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1756extern void flush_thread(void); 1757extern void exit_thread(void); 1758 1759extern void exit_files(struct task_struct *); 1760extern void __cleanup_signal(struct signal_struct *); 1761extern void __cleanup_sighand(struct sighand_struct *); 1762extern void exit_itimers(struct signal_struct *); 1763 1764extern NORET_TYPE void do_group_exit(int); 1765 1766extern void daemonize(const char *, ...); 1767extern int allow_signal(int); 1768extern int disallow_signal(int); 1769 1770extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1771extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1772struct task_struct *fork_idle(int); 1773 1774extern void set_task_comm(struct task_struct *tsk, char *from); 1775extern char *get_task_comm(char *to, struct task_struct *tsk); 1776 1777#ifdef CONFIG_SMP 1778extern void wait_task_inactive(struct task_struct * p); 1779#else 1780#define wait_task_inactive(p) do { } while (0) 1781#endif 1782 1783#define remove_parent(p) list_del_init(&(p)->sibling) 1784#define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1785 1786#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1787 1788#define for_each_process(p) \ 1789 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1790 1791/* 1792 * Careful: do_each_thread/while_each_thread is a double loop so 1793 * 'break' will not work as expected - use goto instead. 1794 */ 1795#define do_each_thread(g, t) \ 1796 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1797 1798#define while_each_thread(g, t) \ 1799 while ((t = next_thread(t)) != g) 1800 1801/* de_thread depends on thread_group_leader not being a pid based check */ 1802#define thread_group_leader(p) (p == p->group_leader) 1803 1804/* Do to the insanities of de_thread it is possible for a process 1805 * to have the pid of the thread group leader without actually being 1806 * the thread group leader. For iteration through the pids in proc 1807 * all we care about is that we have a task with the appropriate 1808 * pid, we don't actually care if we have the right task. 1809 */ 1810static inline int has_group_leader_pid(struct task_struct *p) 1811{ 1812 return p->pid == p->tgid; 1813} 1814 1815static inline 1816int same_thread_group(struct task_struct *p1, struct task_struct *p2) 1817{ 1818 return p1->tgid == p2->tgid; 1819} 1820 1821static inline struct task_struct *next_thread(const struct task_struct *p) 1822{ 1823 return list_entry(rcu_dereference(p->thread_group.next), 1824 struct task_struct, thread_group); 1825} 1826 1827static inline int thread_group_empty(struct task_struct *p) 1828{ 1829 return list_empty(&p->thread_group); 1830} 1831 1832#define delay_group_leader(p) \ 1833 (thread_group_leader(p) && !thread_group_empty(p)) 1834 1835/* 1836 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1837 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1838 * pins the final release of task.io_context. Also protects ->cpuset and 1839 * ->cgroup.subsys[]. 1840 * 1841 * Nests both inside and outside of read_lock(&tasklist_lock). 1842 * It must not be nested with write_lock_irq(&tasklist_lock), 1843 * neither inside nor outside. 1844 */ 1845static inline void task_lock(struct task_struct *p) 1846{ 1847 spin_lock(&p->alloc_lock); 1848} 1849 1850static inline void task_unlock(struct task_struct *p) 1851{ 1852 spin_unlock(&p->alloc_lock); 1853} 1854 1855extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1856 unsigned long *flags); 1857 1858static inline void unlock_task_sighand(struct task_struct *tsk, 1859 unsigned long *flags) 1860{ 1861 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1862} 1863 1864#ifndef __HAVE_THREAD_FUNCTIONS 1865 1866#define task_thread_info(task) ((struct thread_info *)(task)->stack) 1867#define task_stack_page(task) ((task)->stack) 1868 1869static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1870{ 1871 *task_thread_info(p) = *task_thread_info(org); 1872 task_thread_info(p)->task = p; 1873} 1874 1875static inline unsigned long *end_of_stack(struct task_struct *p) 1876{ 1877 return (unsigned long *)(task_thread_info(p) + 1); 1878} 1879 1880#endif 1881 1882/* set thread flags in other task's structures 1883 * - see asm/thread_info.h for TIF_xxxx flags available 1884 */ 1885static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1886{ 1887 set_ti_thread_flag(task_thread_info(tsk), flag); 1888} 1889 1890static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1891{ 1892 clear_ti_thread_flag(task_thread_info(tsk), flag); 1893} 1894 1895static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1896{ 1897 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1898} 1899 1900static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1901{ 1902 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1903} 1904 1905static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1906{ 1907 return test_ti_thread_flag(task_thread_info(tsk), flag); 1908} 1909 1910static inline void set_tsk_need_resched(struct task_struct *tsk) 1911{ 1912 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1913} 1914 1915static inline void clear_tsk_need_resched(struct task_struct *tsk) 1916{ 1917 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1918} 1919 1920static inline int signal_pending(struct task_struct *p) 1921{ 1922 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1923} 1924 1925extern int __fatal_signal_pending(struct task_struct *p); 1926 1927static inline int fatal_signal_pending(struct task_struct *p) 1928{ 1929 return signal_pending(p) && __fatal_signal_pending(p); 1930} 1931 1932static inline int need_resched(void) 1933{ 1934 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1935} 1936 1937/* 1938 * cond_resched() and cond_resched_lock(): latency reduction via 1939 * explicit rescheduling in places that are safe. The return 1940 * value indicates whether a reschedule was done in fact. 1941 * cond_resched_lock() will drop the spinlock before scheduling, 1942 * cond_resched_softirq() will enable bhs before scheduling. 1943 */ 1944#ifdef CONFIG_PREEMPT 1945static inline int cond_resched(void) 1946{ 1947 return 0; 1948} 1949#else 1950extern int _cond_resched(void); 1951static inline int cond_resched(void) 1952{ 1953 return _cond_resched(); 1954} 1955#endif 1956extern int cond_resched_lock(spinlock_t * lock); 1957extern int cond_resched_softirq(void); 1958 1959/* 1960 * Does a critical section need to be broken due to another 1961 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 1962 * but a general need for low latency) 1963 */ 1964static inline int spin_needbreak(spinlock_t *lock) 1965{ 1966#ifdef CONFIG_PREEMPT 1967 return spin_is_contended(lock); 1968#else 1969 return 0; 1970#endif 1971} 1972 1973/* 1974 * Reevaluate whether the task has signals pending delivery. 1975 * Wake the task if so. 1976 * This is required every time the blocked sigset_t changes. 1977 * callers must hold sighand->siglock. 1978 */ 1979extern void recalc_sigpending_and_wake(struct task_struct *t); 1980extern void recalc_sigpending(void); 1981 1982extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1983 1984/* 1985 * Wrappers for p->thread_info->cpu access. No-op on UP. 1986 */ 1987#ifdef CONFIG_SMP 1988 1989static inline unsigned int task_cpu(const struct task_struct *p) 1990{ 1991 return task_thread_info(p)->cpu; 1992} 1993 1994extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1995 1996#else 1997 1998static inline unsigned int task_cpu(const struct task_struct *p) 1999{ 2000 return 0; 2001} 2002 2003static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2004{ 2005} 2006 2007#endif /* CONFIG_SMP */ 2008 2009#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 2010extern void arch_pick_mmap_layout(struct mm_struct *mm); 2011#else 2012static inline void arch_pick_mmap_layout(struct mm_struct *mm) 2013{ 2014 mm->mmap_base = TASK_UNMAPPED_BASE; 2015 mm->get_unmapped_area = arch_get_unmapped_area; 2016 mm->unmap_area = arch_unmap_area; 2017} 2018#endif 2019 2020extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 2021extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 2022 2023extern int sched_mc_power_savings, sched_smt_power_savings; 2024 2025extern void normalize_rt_tasks(void); 2026 2027#ifdef CONFIG_GROUP_SCHED 2028 2029extern struct task_group init_task_group; 2030 2031extern struct task_group *sched_create_group(void); 2032extern void sched_destroy_group(struct task_group *tg); 2033extern void sched_move_task(struct task_struct *tsk); 2034#ifdef CONFIG_FAIR_GROUP_SCHED 2035extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2036extern unsigned long sched_group_shares(struct task_group *tg); 2037#endif 2038#ifdef CONFIG_RT_GROUP_SCHED 2039extern int sched_group_set_rt_runtime(struct task_group *tg, 2040 long rt_runtime_us); 2041extern long sched_group_rt_runtime(struct task_group *tg); 2042#endif 2043#endif 2044 2045#ifdef CONFIG_TASK_XACCT 2046static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2047{ 2048 tsk->rchar += amt; 2049} 2050 2051static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2052{ 2053 tsk->wchar += amt; 2054} 2055 2056static inline void inc_syscr(struct task_struct *tsk) 2057{ 2058 tsk->syscr++; 2059} 2060 2061static inline void inc_syscw(struct task_struct *tsk) 2062{ 2063 tsk->syscw++; 2064} 2065#else 2066static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2067{ 2068} 2069 2070static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2071{ 2072} 2073 2074static inline void inc_syscr(struct task_struct *tsk) 2075{ 2076} 2077 2078static inline void inc_syscw(struct task_struct *tsk) 2079{ 2080} 2081#endif 2082 2083#ifdef CONFIG_SMP 2084void migration_init(void); 2085#else 2086static inline void migration_init(void) 2087{ 2088} 2089#endif 2090 2091#ifndef TASK_SIZE_OF 2092#define TASK_SIZE_OF(tsk) TASK_SIZE 2093#endif 2094 2095#endif /* __KERNEL__ */ 2096 2097#endif