Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8#define CLONE_VM 0x00000100 /* set if VM shared between processes */
9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD 0x00010000 /* Same thread group? */
16#define CLONE_NEWNS 0x00020000 /* New namespace group? */
17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26#define CLONE_NEWIPC 0x08000000 /* New ipcs */
27#define CLONE_NEWUSER 0x10000000 /* New user namespace */
28#define CLONE_NEWPID 0x20000000 /* New pid namespace */
29#define CLONE_NEWNET 0x40000000 /* New network namespace */
30#define CLONE_IO 0x80000000 /* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL 0
36#define SCHED_FIFO 1
37#define SCHED_RR 2
38#define SCHED_BATCH 3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE 5
41
42#ifdef __KERNEL__
43
44struct sched_param {
45 int sched_priority;
46};
47
48#include <asm/param.h> /* for HZ */
49
50#include <linux/capability.h>
51#include <linux/threads.h>
52#include <linux/kernel.h>
53#include <linux/types.h>
54#include <linux/timex.h>
55#include <linux/jiffies.h>
56#include <linux/rbtree.h>
57#include <linux/thread_info.h>
58#include <linux/cpumask.h>
59#include <linux/errno.h>
60#include <linux/nodemask.h>
61#include <linux/mm_types.h>
62
63#include <asm/system.h>
64#include <asm/semaphore.h>
65#include <asm/page.h>
66#include <asm/ptrace.h>
67#include <asm/cputime.h>
68
69#include <linux/smp.h>
70#include <linux/sem.h>
71#include <linux/signal.h>
72#include <linux/securebits.h>
73#include <linux/fs_struct.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rtmutex.h>
83
84#include <linux/time.h>
85#include <linux/param.h>
86#include <linux/resource.h>
87#include <linux/timer.h>
88#include <linux/hrtimer.h>
89#include <linux/task_io_accounting.h>
90#include <linux/kobject.h>
91#include <linux/latencytop.h>
92
93#include <asm/processor.h>
94
95struct mem_cgroup;
96struct exec_domain;
97struct futex_pi_state;
98struct robust_list_head;
99struct bio;
100
101/*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107/*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117extern unsigned long avenrun[]; /* Load averages */
118
119#define FSHIFT 11 /* nr of bits of precision */
120#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123#define EXP_5 2014 /* 1/exp(5sec/5min) */
124#define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126#define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131extern unsigned long total_forks;
132extern int nr_threads;
133DECLARE_PER_CPU(unsigned long, process_counts);
134extern int nr_processes(void);
135extern unsigned long nr_running(void);
136extern unsigned long nr_uninterruptible(void);
137extern unsigned long nr_active(void);
138extern unsigned long nr_iowait(void);
139extern unsigned long weighted_cpuload(const int cpu);
140
141struct seq_file;
142struct cfs_rq;
143struct task_group;
144#ifdef CONFIG_SCHED_DEBUG
145extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
146extern void proc_sched_set_task(struct task_struct *p);
147extern void
148print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
149#else
150static inline void
151proc_sched_show_task(struct task_struct *p, struct seq_file *m)
152{
153}
154static inline void proc_sched_set_task(struct task_struct *p)
155{
156}
157static inline void
158print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
159{
160}
161#endif
162
163/*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173#define TASK_RUNNING 0
174#define TASK_INTERRUPTIBLE 1
175#define TASK_UNINTERRUPTIBLE 2
176#define __TASK_STOPPED 4
177#define __TASK_TRACED 8
178/* in tsk->exit_state */
179#define EXIT_ZOMBIE 16
180#define EXIT_DEAD 32
181/* in tsk->state again */
182#define TASK_DEAD 64
183#define TASK_WAKEKILL 128
184
185/* Convenience macros for the sake of set_task_state */
186#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190/* Convenience macros for the sake of wake_up */
191#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194/* get_task_state() */
195#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201#define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203#define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206#define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208#define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211/*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222#define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224#define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227/* Task command name length */
228#define TASK_COMM_LEN 16
229
230#include <linux/spinlock.h>
231
232/*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238extern rwlock_t tasklist_lock;
239extern spinlock_t mmlist_lock;
240
241struct task_struct;
242
243extern void sched_init(void);
244extern void sched_init_smp(void);
245extern asmlinkage void schedule_tail(struct task_struct *prev);
246extern void init_idle(struct task_struct *idle, int cpu);
247extern void init_idle_bootup_task(struct task_struct *idle);
248
249extern cpumask_t nohz_cpu_mask;
250#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
251extern int select_nohz_load_balancer(int cpu);
252#else
253static inline int select_nohz_load_balancer(int cpu)
254{
255 return 0;
256}
257#endif
258
259extern unsigned long rt_needs_cpu(int cpu);
260
261/*
262 * Only dump TASK_* tasks. (0 for all tasks)
263 */
264extern void show_state_filter(unsigned long state_filter);
265
266static inline void show_state(void)
267{
268 show_state_filter(0);
269}
270
271extern void show_regs(struct pt_regs *);
272
273/*
274 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
275 * task), SP is the stack pointer of the first frame that should be shown in the back
276 * trace (or NULL if the entire call-chain of the task should be shown).
277 */
278extern void show_stack(struct task_struct *task, unsigned long *sp);
279
280void io_schedule(void);
281long io_schedule_timeout(long timeout);
282
283extern void cpu_init (void);
284extern void trap_init(void);
285extern void account_process_tick(struct task_struct *task, int user);
286extern void update_process_times(int user);
287extern void scheduler_tick(void);
288extern void hrtick_resched(void);
289
290extern void sched_show_task(struct task_struct *p);
291
292#ifdef CONFIG_DETECT_SOFTLOCKUP
293extern void softlockup_tick(void);
294extern void spawn_softlockup_task(void);
295extern void touch_softlockup_watchdog(void);
296extern void touch_all_softlockup_watchdogs(void);
297extern unsigned long softlockup_thresh;
298extern unsigned long sysctl_hung_task_check_count;
299extern unsigned long sysctl_hung_task_timeout_secs;
300extern unsigned long sysctl_hung_task_warnings;
301#else
302static inline void softlockup_tick(void)
303{
304}
305static inline void spawn_softlockup_task(void)
306{
307}
308static inline void touch_softlockup_watchdog(void)
309{
310}
311static inline void touch_all_softlockup_watchdogs(void)
312{
313}
314#endif
315
316
317/* Attach to any functions which should be ignored in wchan output. */
318#define __sched __attribute__((__section__(".sched.text")))
319
320/* Linker adds these: start and end of __sched functions */
321extern char __sched_text_start[], __sched_text_end[];
322
323/* Is this address in the __sched functions? */
324extern int in_sched_functions(unsigned long addr);
325
326#define MAX_SCHEDULE_TIMEOUT LONG_MAX
327extern signed long schedule_timeout(signed long timeout);
328extern signed long schedule_timeout_interruptible(signed long timeout);
329extern signed long schedule_timeout_killable(signed long timeout);
330extern signed long schedule_timeout_uninterruptible(signed long timeout);
331asmlinkage void schedule(void);
332
333struct nsproxy;
334struct user_namespace;
335
336/* Maximum number of active map areas.. This is a random (large) number */
337#define DEFAULT_MAX_MAP_COUNT 65536
338
339extern int sysctl_max_map_count;
340
341#include <linux/aio.h>
342
343extern unsigned long
344arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
345 unsigned long, unsigned long);
346extern unsigned long
347arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
348 unsigned long len, unsigned long pgoff,
349 unsigned long flags);
350extern void arch_unmap_area(struct mm_struct *, unsigned long);
351extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
352
353#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
354/*
355 * The mm counters are not protected by its page_table_lock,
356 * so must be incremented atomically.
357 */
358#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
359#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
360#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
361#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
362#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
363
364#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
365/*
366 * The mm counters are protected by its page_table_lock,
367 * so can be incremented directly.
368 */
369#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
370#define get_mm_counter(mm, member) ((mm)->_##member)
371#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
372#define inc_mm_counter(mm, member) (mm)->_##member++
373#define dec_mm_counter(mm, member) (mm)->_##member--
374
375#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
376
377#define get_mm_rss(mm) \
378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
379#define update_hiwater_rss(mm) do { \
380 unsigned long _rss = get_mm_rss(mm); \
381 if ((mm)->hiwater_rss < _rss) \
382 (mm)->hiwater_rss = _rss; \
383} while (0)
384#define update_hiwater_vm(mm) do { \
385 if ((mm)->hiwater_vm < (mm)->total_vm) \
386 (mm)->hiwater_vm = (mm)->total_vm; \
387} while (0)
388
389extern void set_dumpable(struct mm_struct *mm, int value);
390extern int get_dumpable(struct mm_struct *mm);
391
392/* mm flags */
393/* dumpable bits */
394#define MMF_DUMPABLE 0 /* core dump is permitted */
395#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
396#define MMF_DUMPABLE_BITS 2
397
398/* coredump filter bits */
399#define MMF_DUMP_ANON_PRIVATE 2
400#define MMF_DUMP_ANON_SHARED 3
401#define MMF_DUMP_MAPPED_PRIVATE 4
402#define MMF_DUMP_MAPPED_SHARED 5
403#define MMF_DUMP_ELF_HEADERS 6
404#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
405#define MMF_DUMP_FILTER_BITS 5
406#define MMF_DUMP_FILTER_MASK \
407 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
408#define MMF_DUMP_FILTER_DEFAULT \
409 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
410
411struct sighand_struct {
412 atomic_t count;
413 struct k_sigaction action[_NSIG];
414 spinlock_t siglock;
415 wait_queue_head_t signalfd_wqh;
416};
417
418struct pacct_struct {
419 int ac_flag;
420 long ac_exitcode;
421 unsigned long ac_mem;
422 cputime_t ac_utime, ac_stime;
423 unsigned long ac_minflt, ac_majflt;
424};
425
426/*
427 * NOTE! "signal_struct" does not have it's own
428 * locking, because a shared signal_struct always
429 * implies a shared sighand_struct, so locking
430 * sighand_struct is always a proper superset of
431 * the locking of signal_struct.
432 */
433struct signal_struct {
434 atomic_t count;
435 atomic_t live;
436
437 wait_queue_head_t wait_chldexit; /* for wait4() */
438
439 /* current thread group signal load-balancing target: */
440 struct task_struct *curr_target;
441
442 /* shared signal handling: */
443 struct sigpending shared_pending;
444
445 /* thread group exit support */
446 int group_exit_code;
447 /* overloaded:
448 * - notify group_exit_task when ->count is equal to notify_count
449 * - everyone except group_exit_task is stopped during signal delivery
450 * of fatal signals, group_exit_task processes the signal.
451 */
452 struct task_struct *group_exit_task;
453 int notify_count;
454
455 /* thread group stop support, overloads group_exit_code too */
456 int group_stop_count;
457 unsigned int flags; /* see SIGNAL_* flags below */
458
459 /* POSIX.1b Interval Timers */
460 struct list_head posix_timers;
461
462 /* ITIMER_REAL timer for the process */
463 struct hrtimer real_timer;
464 struct pid *leader_pid;
465 ktime_t it_real_incr;
466
467 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
468 cputime_t it_prof_expires, it_virt_expires;
469 cputime_t it_prof_incr, it_virt_incr;
470
471 /* job control IDs */
472
473 /*
474 * pgrp and session fields are deprecated.
475 * use the task_session_Xnr and task_pgrp_Xnr routines below
476 */
477
478 union {
479 pid_t pgrp __deprecated;
480 pid_t __pgrp;
481 };
482
483 struct pid *tty_old_pgrp;
484
485 union {
486 pid_t session __deprecated;
487 pid_t __session;
488 };
489
490 /* boolean value for session group leader */
491 int leader;
492
493 struct tty_struct *tty; /* NULL if no tty */
494
495 /*
496 * Cumulative resource counters for dead threads in the group,
497 * and for reaped dead child processes forked by this group.
498 * Live threads maintain their own counters and add to these
499 * in __exit_signal, except for the group leader.
500 */
501 cputime_t utime, stime, cutime, cstime;
502 cputime_t gtime;
503 cputime_t cgtime;
504 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
505 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
506 unsigned long inblock, oublock, cinblock, coublock;
507
508 /*
509 * Cumulative ns of scheduled CPU time for dead threads in the
510 * group, not including a zombie group leader. (This only differs
511 * from jiffies_to_ns(utime + stime) if sched_clock uses something
512 * other than jiffies.)
513 */
514 unsigned long long sum_sched_runtime;
515
516 /*
517 * We don't bother to synchronize most readers of this at all,
518 * because there is no reader checking a limit that actually needs
519 * to get both rlim_cur and rlim_max atomically, and either one
520 * alone is a single word that can safely be read normally.
521 * getrlimit/setrlimit use task_lock(current->group_leader) to
522 * protect this instead of the siglock, because they really
523 * have no need to disable irqs.
524 */
525 struct rlimit rlim[RLIM_NLIMITS];
526
527 struct list_head cpu_timers[3];
528
529 /* keep the process-shared keyrings here so that they do the right
530 * thing in threads created with CLONE_THREAD */
531#ifdef CONFIG_KEYS
532 struct key *session_keyring; /* keyring inherited over fork */
533 struct key *process_keyring; /* keyring private to this process */
534#endif
535#ifdef CONFIG_BSD_PROCESS_ACCT
536 struct pacct_struct pacct; /* per-process accounting information */
537#endif
538#ifdef CONFIG_TASKSTATS
539 struct taskstats *stats;
540#endif
541#ifdef CONFIG_AUDIT
542 unsigned audit_tty;
543 struct tty_audit_buf *tty_audit_buf;
544#endif
545};
546
547/* Context switch must be unlocked if interrupts are to be enabled */
548#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
549# define __ARCH_WANT_UNLOCKED_CTXSW
550#endif
551
552/*
553 * Bits in flags field of signal_struct.
554 */
555#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
556#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
557#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
558#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
559
560/* If true, all threads except ->group_exit_task have pending SIGKILL */
561static inline int signal_group_exit(const struct signal_struct *sig)
562{
563 return (sig->flags & SIGNAL_GROUP_EXIT) ||
564 (sig->group_exit_task != NULL);
565}
566
567/*
568 * Some day this will be a full-fledged user tracking system..
569 */
570struct user_struct {
571 atomic_t __count; /* reference count */
572 atomic_t processes; /* How many processes does this user have? */
573 atomic_t files; /* How many open files does this user have? */
574 atomic_t sigpending; /* How many pending signals does this user have? */
575#ifdef CONFIG_INOTIFY_USER
576 atomic_t inotify_watches; /* How many inotify watches does this user have? */
577 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
578#endif
579#ifdef CONFIG_POSIX_MQUEUE
580 /* protected by mq_lock */
581 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
582#endif
583 unsigned long locked_shm; /* How many pages of mlocked shm ? */
584
585#ifdef CONFIG_KEYS
586 struct key *uid_keyring; /* UID specific keyring */
587 struct key *session_keyring; /* UID's default session keyring */
588#endif
589
590 /* Hash table maintenance information */
591 struct hlist_node uidhash_node;
592 uid_t uid;
593
594#ifdef CONFIG_USER_SCHED
595 struct task_group *tg;
596#ifdef CONFIG_SYSFS
597 struct kobject kobj;
598 struct work_struct work;
599#endif
600#endif
601};
602
603extern int uids_sysfs_init(void);
604
605extern struct user_struct *find_user(uid_t);
606
607extern struct user_struct root_user;
608#define INIT_USER (&root_user)
609
610struct backing_dev_info;
611struct reclaim_state;
612
613#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
614struct sched_info {
615 /* cumulative counters */
616 unsigned long pcount; /* # of times run on this cpu */
617 unsigned long long cpu_time, /* time spent on the cpu */
618 run_delay; /* time spent waiting on a runqueue */
619
620 /* timestamps */
621 unsigned long long last_arrival,/* when we last ran on a cpu */
622 last_queued; /* when we were last queued to run */
623#ifdef CONFIG_SCHEDSTATS
624 /* BKL stats */
625 unsigned int bkl_count;
626#endif
627};
628#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
629
630#ifdef CONFIG_SCHEDSTATS
631extern const struct file_operations proc_schedstat_operations;
632#endif /* CONFIG_SCHEDSTATS */
633
634#ifdef CONFIG_TASK_DELAY_ACCT
635struct task_delay_info {
636 spinlock_t lock;
637 unsigned int flags; /* Private per-task flags */
638
639 /* For each stat XXX, add following, aligned appropriately
640 *
641 * struct timespec XXX_start, XXX_end;
642 * u64 XXX_delay;
643 * u32 XXX_count;
644 *
645 * Atomicity of updates to XXX_delay, XXX_count protected by
646 * single lock above (split into XXX_lock if contention is an issue).
647 */
648
649 /*
650 * XXX_count is incremented on every XXX operation, the delay
651 * associated with the operation is added to XXX_delay.
652 * XXX_delay contains the accumulated delay time in nanoseconds.
653 */
654 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
655 u64 blkio_delay; /* wait for sync block io completion */
656 u64 swapin_delay; /* wait for swapin block io completion */
657 u32 blkio_count; /* total count of the number of sync block */
658 /* io operations performed */
659 u32 swapin_count; /* total count of the number of swapin block */
660 /* io operations performed */
661};
662#endif /* CONFIG_TASK_DELAY_ACCT */
663
664static inline int sched_info_on(void)
665{
666#ifdef CONFIG_SCHEDSTATS
667 return 1;
668#elif defined(CONFIG_TASK_DELAY_ACCT)
669 extern int delayacct_on;
670 return delayacct_on;
671#else
672 return 0;
673#endif
674}
675
676enum cpu_idle_type {
677 CPU_IDLE,
678 CPU_NOT_IDLE,
679 CPU_NEWLY_IDLE,
680 CPU_MAX_IDLE_TYPES
681};
682
683/*
684 * sched-domains (multiprocessor balancing) declarations:
685 */
686
687/*
688 * Increase resolution of nice-level calculations:
689 */
690#define SCHED_LOAD_SHIFT 10
691#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
692
693#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
694
695#ifdef CONFIG_SMP
696#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
697#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
698#define SD_BALANCE_EXEC 4 /* Balance on exec */
699#define SD_BALANCE_FORK 8 /* Balance on fork, clone */
700#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
701#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
702#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
703#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
704#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
705#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
706#define SD_SERIALIZE 1024 /* Only a single load balancing instance */
707
708#define BALANCE_FOR_MC_POWER \
709 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
710
711#define BALANCE_FOR_PKG_POWER \
712 ((sched_mc_power_savings || sched_smt_power_savings) ? \
713 SD_POWERSAVINGS_BALANCE : 0)
714
715#define test_sd_parent(sd, flag) ((sd->parent && \
716 (sd->parent->flags & flag)) ? 1 : 0)
717
718
719struct sched_group {
720 struct sched_group *next; /* Must be a circular list */
721 cpumask_t cpumask;
722
723 /*
724 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
725 * single CPU. This is read only (except for setup, hotplug CPU).
726 * Note : Never change cpu_power without recompute its reciprocal
727 */
728 unsigned int __cpu_power;
729 /*
730 * reciprocal value of cpu_power to avoid expensive divides
731 * (see include/linux/reciprocal_div.h)
732 */
733 u32 reciprocal_cpu_power;
734};
735
736struct sched_domain {
737 /* These fields must be setup */
738 struct sched_domain *parent; /* top domain must be null terminated */
739 struct sched_domain *child; /* bottom domain must be null terminated */
740 struct sched_group *groups; /* the balancing groups of the domain */
741 cpumask_t span; /* span of all CPUs in this domain */
742 unsigned long min_interval; /* Minimum balance interval ms */
743 unsigned long max_interval; /* Maximum balance interval ms */
744 unsigned int busy_factor; /* less balancing by factor if busy */
745 unsigned int imbalance_pct; /* No balance until over watermark */
746 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
747 unsigned int busy_idx;
748 unsigned int idle_idx;
749 unsigned int newidle_idx;
750 unsigned int wake_idx;
751 unsigned int forkexec_idx;
752 int flags; /* See SD_* */
753
754 /* Runtime fields. */
755 unsigned long last_balance; /* init to jiffies. units in jiffies */
756 unsigned int balance_interval; /* initialise to 1. units in ms. */
757 unsigned int nr_balance_failed; /* initialise to 0 */
758
759#ifdef CONFIG_SCHEDSTATS
760 /* load_balance() stats */
761 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
762 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
763 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
764 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
765 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
766 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
767 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
768 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
769
770 /* Active load balancing */
771 unsigned int alb_count;
772 unsigned int alb_failed;
773 unsigned int alb_pushed;
774
775 /* SD_BALANCE_EXEC stats */
776 unsigned int sbe_count;
777 unsigned int sbe_balanced;
778 unsigned int sbe_pushed;
779
780 /* SD_BALANCE_FORK stats */
781 unsigned int sbf_count;
782 unsigned int sbf_balanced;
783 unsigned int sbf_pushed;
784
785 /* try_to_wake_up() stats */
786 unsigned int ttwu_wake_remote;
787 unsigned int ttwu_move_affine;
788 unsigned int ttwu_move_balance;
789#endif
790};
791
792extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
793
794#endif /* CONFIG_SMP */
795
796/*
797 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
798 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
799 * task of nice 0 or enough lower priority tasks to bring up the
800 * weighted_cpuload
801 */
802static inline int above_background_load(void)
803{
804 unsigned long cpu;
805
806 for_each_online_cpu(cpu) {
807 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
808 return 1;
809 }
810 return 0;
811}
812
813struct io_context; /* See blkdev.h */
814#define NGROUPS_SMALL 32
815#define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
816struct group_info {
817 int ngroups;
818 atomic_t usage;
819 gid_t small_block[NGROUPS_SMALL];
820 int nblocks;
821 gid_t *blocks[0];
822};
823
824/*
825 * get_group_info() must be called with the owning task locked (via task_lock())
826 * when task != current. The reason being that the vast majority of callers are
827 * looking at current->group_info, which can not be changed except by the
828 * current task. Changing current->group_info requires the task lock, too.
829 */
830#define get_group_info(group_info) do { \
831 atomic_inc(&(group_info)->usage); \
832} while (0)
833
834#define put_group_info(group_info) do { \
835 if (atomic_dec_and_test(&(group_info)->usage)) \
836 groups_free(group_info); \
837} while (0)
838
839extern struct group_info *groups_alloc(int gidsetsize);
840extern void groups_free(struct group_info *group_info);
841extern int set_current_groups(struct group_info *group_info);
842extern int groups_search(struct group_info *group_info, gid_t grp);
843/* access the groups "array" with this macro */
844#define GROUP_AT(gi, i) \
845 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
846
847#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
848extern void prefetch_stack(struct task_struct *t);
849#else
850static inline void prefetch_stack(struct task_struct *t) { }
851#endif
852
853struct audit_context; /* See audit.c */
854struct mempolicy;
855struct pipe_inode_info;
856struct uts_namespace;
857
858struct rq;
859struct sched_domain;
860
861struct sched_class {
862 const struct sched_class *next;
863
864 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
865 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
866 void (*yield_task) (struct rq *rq);
867 int (*select_task_rq)(struct task_struct *p, int sync);
868
869 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
870
871 struct task_struct * (*pick_next_task) (struct rq *rq);
872 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
873
874#ifdef CONFIG_SMP
875 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
876 struct rq *busiest, unsigned long max_load_move,
877 struct sched_domain *sd, enum cpu_idle_type idle,
878 int *all_pinned, int *this_best_prio);
879
880 int (*move_one_task) (struct rq *this_rq, int this_cpu,
881 struct rq *busiest, struct sched_domain *sd,
882 enum cpu_idle_type idle);
883 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
884 void (*post_schedule) (struct rq *this_rq);
885 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
886#endif
887
888 void (*set_curr_task) (struct rq *rq);
889 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
890 void (*task_new) (struct rq *rq, struct task_struct *p);
891 void (*set_cpus_allowed)(struct task_struct *p, cpumask_t *newmask);
892
893 void (*join_domain)(struct rq *rq);
894 void (*leave_domain)(struct rq *rq);
895
896 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
897 int running);
898 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
899 int running);
900 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
901 int oldprio, int running);
902};
903
904struct load_weight {
905 unsigned long weight, inv_weight;
906};
907
908/*
909 * CFS stats for a schedulable entity (task, task-group etc)
910 *
911 * Current field usage histogram:
912 *
913 * 4 se->block_start
914 * 4 se->run_node
915 * 4 se->sleep_start
916 * 6 se->load.weight
917 */
918struct sched_entity {
919 struct load_weight load; /* for load-balancing */
920 struct rb_node run_node;
921 unsigned int on_rq;
922
923 u64 exec_start;
924 u64 sum_exec_runtime;
925 u64 vruntime;
926 u64 prev_sum_exec_runtime;
927
928#ifdef CONFIG_SCHEDSTATS
929 u64 wait_start;
930 u64 wait_max;
931 u64 wait_count;
932 u64 wait_sum;
933
934 u64 sleep_start;
935 u64 sleep_max;
936 s64 sum_sleep_runtime;
937
938 u64 block_start;
939 u64 block_max;
940 u64 exec_max;
941 u64 slice_max;
942
943 u64 nr_migrations;
944 u64 nr_migrations_cold;
945 u64 nr_failed_migrations_affine;
946 u64 nr_failed_migrations_running;
947 u64 nr_failed_migrations_hot;
948 u64 nr_forced_migrations;
949 u64 nr_forced2_migrations;
950
951 u64 nr_wakeups;
952 u64 nr_wakeups_sync;
953 u64 nr_wakeups_migrate;
954 u64 nr_wakeups_local;
955 u64 nr_wakeups_remote;
956 u64 nr_wakeups_affine;
957 u64 nr_wakeups_affine_attempts;
958 u64 nr_wakeups_passive;
959 u64 nr_wakeups_idle;
960#endif
961
962#ifdef CONFIG_FAIR_GROUP_SCHED
963 struct sched_entity *parent;
964 /* rq on which this entity is (to be) queued: */
965 struct cfs_rq *cfs_rq;
966 /* rq "owned" by this entity/group: */
967 struct cfs_rq *my_q;
968#endif
969};
970
971struct sched_rt_entity {
972 struct list_head run_list;
973 unsigned int time_slice;
974 unsigned long timeout;
975 int nr_cpus_allowed;
976
977#ifdef CONFIG_RT_GROUP_SCHED
978 struct sched_rt_entity *parent;
979 /* rq on which this entity is (to be) queued: */
980 struct rt_rq *rt_rq;
981 /* rq "owned" by this entity/group: */
982 struct rt_rq *my_q;
983#endif
984};
985
986struct task_struct {
987 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
988 void *stack;
989 atomic_t usage;
990 unsigned int flags; /* per process flags, defined below */
991 unsigned int ptrace;
992
993 int lock_depth; /* BKL lock depth */
994
995#ifdef CONFIG_SMP
996#ifdef __ARCH_WANT_UNLOCKED_CTXSW
997 int oncpu;
998#endif
999#endif
1000
1001 int prio, static_prio, normal_prio;
1002 const struct sched_class *sched_class;
1003 struct sched_entity se;
1004 struct sched_rt_entity rt;
1005
1006#ifdef CONFIG_PREEMPT_NOTIFIERS
1007 /* list of struct preempt_notifier: */
1008 struct hlist_head preempt_notifiers;
1009#endif
1010
1011 /*
1012 * fpu_counter contains the number of consecutive context switches
1013 * that the FPU is used. If this is over a threshold, the lazy fpu
1014 * saving becomes unlazy to save the trap. This is an unsigned char
1015 * so that after 256 times the counter wraps and the behavior turns
1016 * lazy again; this to deal with bursty apps that only use FPU for
1017 * a short time
1018 */
1019 unsigned char fpu_counter;
1020 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1021#ifdef CONFIG_BLK_DEV_IO_TRACE
1022 unsigned int btrace_seq;
1023#endif
1024
1025 unsigned int policy;
1026 cpumask_t cpus_allowed;
1027
1028#ifdef CONFIG_PREEMPT_RCU
1029 int rcu_read_lock_nesting;
1030 int rcu_flipctr_idx;
1031#endif /* #ifdef CONFIG_PREEMPT_RCU */
1032
1033#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1034 struct sched_info sched_info;
1035#endif
1036
1037 struct list_head tasks;
1038 /*
1039 * ptrace_list/ptrace_children forms the list of my children
1040 * that were stolen by a ptracer.
1041 */
1042 struct list_head ptrace_children;
1043 struct list_head ptrace_list;
1044
1045 struct mm_struct *mm, *active_mm;
1046
1047/* task state */
1048 struct linux_binfmt *binfmt;
1049 int exit_state;
1050 int exit_code, exit_signal;
1051 int pdeath_signal; /* The signal sent when the parent dies */
1052 /* ??? */
1053 unsigned int personality;
1054 unsigned did_exec:1;
1055 pid_t pid;
1056 pid_t tgid;
1057
1058#ifdef CONFIG_CC_STACKPROTECTOR
1059 /* Canary value for the -fstack-protector gcc feature */
1060 unsigned long stack_canary;
1061#endif
1062 /*
1063 * pointers to (original) parent process, youngest child, younger sibling,
1064 * older sibling, respectively. (p->father can be replaced with
1065 * p->parent->pid)
1066 */
1067 struct task_struct *real_parent; /* real parent process (when being debugged) */
1068 struct task_struct *parent; /* parent process */
1069 /*
1070 * children/sibling forms the list of my children plus the
1071 * tasks I'm ptracing.
1072 */
1073 struct list_head children; /* list of my children */
1074 struct list_head sibling; /* linkage in my parent's children list */
1075 struct task_struct *group_leader; /* threadgroup leader */
1076
1077 /* PID/PID hash table linkage. */
1078 struct pid_link pids[PIDTYPE_MAX];
1079 struct list_head thread_group;
1080
1081 struct completion *vfork_done; /* for vfork() */
1082 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1083 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1084
1085 unsigned int rt_priority;
1086 cputime_t utime, stime, utimescaled, stimescaled;
1087 cputime_t gtime;
1088 cputime_t prev_utime, prev_stime;
1089 unsigned long nvcsw, nivcsw; /* context switch counts */
1090 struct timespec start_time; /* monotonic time */
1091 struct timespec real_start_time; /* boot based time */
1092/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1093 unsigned long min_flt, maj_flt;
1094
1095 cputime_t it_prof_expires, it_virt_expires;
1096 unsigned long long it_sched_expires;
1097 struct list_head cpu_timers[3];
1098
1099/* process credentials */
1100 uid_t uid,euid,suid,fsuid;
1101 gid_t gid,egid,sgid,fsgid;
1102 struct group_info *group_info;
1103 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1104 unsigned keep_capabilities:1;
1105 struct user_struct *user;
1106#ifdef CONFIG_KEYS
1107 struct key *request_key_auth; /* assumed request_key authority */
1108 struct key *thread_keyring; /* keyring private to this thread */
1109 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1110#endif
1111 char comm[TASK_COMM_LEN]; /* executable name excluding path
1112 - access with [gs]et_task_comm (which lock
1113 it with task_lock())
1114 - initialized normally by flush_old_exec */
1115/* file system info */
1116 int link_count, total_link_count;
1117#ifdef CONFIG_SYSVIPC
1118/* ipc stuff */
1119 struct sysv_sem sysvsem;
1120#endif
1121#ifdef CONFIG_DETECT_SOFTLOCKUP
1122/* hung task detection */
1123 unsigned long last_switch_timestamp;
1124 unsigned long last_switch_count;
1125#endif
1126/* CPU-specific state of this task */
1127 struct thread_struct thread;
1128/* filesystem information */
1129 struct fs_struct *fs;
1130/* open file information */
1131 struct files_struct *files;
1132/* namespaces */
1133 struct nsproxy *nsproxy;
1134/* signal handlers */
1135 struct signal_struct *signal;
1136 struct sighand_struct *sighand;
1137
1138 sigset_t blocked, real_blocked;
1139 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1140 struct sigpending pending;
1141
1142 unsigned long sas_ss_sp;
1143 size_t sas_ss_size;
1144 int (*notifier)(void *priv);
1145 void *notifier_data;
1146 sigset_t *notifier_mask;
1147#ifdef CONFIG_SECURITY
1148 void *security;
1149#endif
1150 struct audit_context *audit_context;
1151#ifdef CONFIG_AUDITSYSCALL
1152 uid_t loginuid;
1153 unsigned int sessionid;
1154#endif
1155 seccomp_t seccomp;
1156
1157/* Thread group tracking */
1158 u32 parent_exec_id;
1159 u32 self_exec_id;
1160/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1161 spinlock_t alloc_lock;
1162
1163 /* Protection of the PI data structures: */
1164 spinlock_t pi_lock;
1165
1166#ifdef CONFIG_RT_MUTEXES
1167 /* PI waiters blocked on a rt_mutex held by this task */
1168 struct plist_head pi_waiters;
1169 /* Deadlock detection and priority inheritance handling */
1170 struct rt_mutex_waiter *pi_blocked_on;
1171#endif
1172
1173#ifdef CONFIG_DEBUG_MUTEXES
1174 /* mutex deadlock detection */
1175 struct mutex_waiter *blocked_on;
1176#endif
1177#ifdef CONFIG_TRACE_IRQFLAGS
1178 unsigned int irq_events;
1179 int hardirqs_enabled;
1180 unsigned long hardirq_enable_ip;
1181 unsigned int hardirq_enable_event;
1182 unsigned long hardirq_disable_ip;
1183 unsigned int hardirq_disable_event;
1184 int softirqs_enabled;
1185 unsigned long softirq_disable_ip;
1186 unsigned int softirq_disable_event;
1187 unsigned long softirq_enable_ip;
1188 unsigned int softirq_enable_event;
1189 int hardirq_context;
1190 int softirq_context;
1191#endif
1192#ifdef CONFIG_LOCKDEP
1193# define MAX_LOCK_DEPTH 48UL
1194 u64 curr_chain_key;
1195 int lockdep_depth;
1196 struct held_lock held_locks[MAX_LOCK_DEPTH];
1197 unsigned int lockdep_recursion;
1198#endif
1199
1200/* journalling filesystem info */
1201 void *journal_info;
1202
1203/* stacked block device info */
1204 struct bio *bio_list, **bio_tail;
1205
1206/* VM state */
1207 struct reclaim_state *reclaim_state;
1208
1209 struct backing_dev_info *backing_dev_info;
1210
1211 struct io_context *io_context;
1212
1213 unsigned long ptrace_message;
1214 siginfo_t *last_siginfo; /* For ptrace use. */
1215#ifdef CONFIG_TASK_XACCT
1216/* i/o counters(bytes read/written, #syscalls */
1217 u64 rchar, wchar, syscr, syscw;
1218#endif
1219 struct task_io_accounting ioac;
1220#if defined(CONFIG_TASK_XACCT)
1221 u64 acct_rss_mem1; /* accumulated rss usage */
1222 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1223 cputime_t acct_stimexpd;/* stime since last update */
1224#endif
1225#ifdef CONFIG_NUMA
1226 struct mempolicy *mempolicy;
1227 short il_next;
1228#endif
1229#ifdef CONFIG_CPUSETS
1230 nodemask_t mems_allowed;
1231 int cpuset_mems_generation;
1232 int cpuset_mem_spread_rotor;
1233#endif
1234#ifdef CONFIG_CGROUPS
1235 /* Control Group info protected by css_set_lock */
1236 struct css_set *cgroups;
1237 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1238 struct list_head cg_list;
1239#endif
1240#ifdef CONFIG_FUTEX
1241 struct robust_list_head __user *robust_list;
1242#ifdef CONFIG_COMPAT
1243 struct compat_robust_list_head __user *compat_robust_list;
1244#endif
1245 struct list_head pi_state_list;
1246 struct futex_pi_state *pi_state_cache;
1247#endif
1248 atomic_t fs_excl; /* holding fs exclusive resources */
1249 struct rcu_head rcu;
1250
1251 /*
1252 * cache last used pipe for splice
1253 */
1254 struct pipe_inode_info *splice_pipe;
1255#ifdef CONFIG_TASK_DELAY_ACCT
1256 struct task_delay_info *delays;
1257#endif
1258#ifdef CONFIG_FAULT_INJECTION
1259 int make_it_fail;
1260#endif
1261 struct prop_local_single dirties;
1262#ifdef CONFIG_LATENCYTOP
1263 int latency_record_count;
1264 struct latency_record latency_record[LT_SAVECOUNT];
1265#endif
1266};
1267
1268/*
1269 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1270 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1271 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1272 * values are inverted: lower p->prio value means higher priority.
1273 *
1274 * The MAX_USER_RT_PRIO value allows the actual maximum
1275 * RT priority to be separate from the value exported to
1276 * user-space. This allows kernel threads to set their
1277 * priority to a value higher than any user task. Note:
1278 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1279 */
1280
1281#define MAX_USER_RT_PRIO 100
1282#define MAX_RT_PRIO MAX_USER_RT_PRIO
1283
1284#define MAX_PRIO (MAX_RT_PRIO + 40)
1285#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1286
1287static inline int rt_prio(int prio)
1288{
1289 if (unlikely(prio < MAX_RT_PRIO))
1290 return 1;
1291 return 0;
1292}
1293
1294static inline int rt_task(struct task_struct *p)
1295{
1296 return rt_prio(p->prio);
1297}
1298
1299static inline void set_task_session(struct task_struct *tsk, pid_t session)
1300{
1301 tsk->signal->__session = session;
1302}
1303
1304static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1305{
1306 tsk->signal->__pgrp = pgrp;
1307}
1308
1309static inline struct pid *task_pid(struct task_struct *task)
1310{
1311 return task->pids[PIDTYPE_PID].pid;
1312}
1313
1314static inline struct pid *task_tgid(struct task_struct *task)
1315{
1316 return task->group_leader->pids[PIDTYPE_PID].pid;
1317}
1318
1319static inline struct pid *task_pgrp(struct task_struct *task)
1320{
1321 return task->group_leader->pids[PIDTYPE_PGID].pid;
1322}
1323
1324static inline struct pid *task_session(struct task_struct *task)
1325{
1326 return task->group_leader->pids[PIDTYPE_SID].pid;
1327}
1328
1329struct pid_namespace;
1330
1331/*
1332 * the helpers to get the task's different pids as they are seen
1333 * from various namespaces
1334 *
1335 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1336 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1337 * current.
1338 * task_xid_nr_ns() : id seen from the ns specified;
1339 *
1340 * set_task_vxid() : assigns a virtual id to a task;
1341 *
1342 * see also pid_nr() etc in include/linux/pid.h
1343 */
1344
1345static inline pid_t task_pid_nr(struct task_struct *tsk)
1346{
1347 return tsk->pid;
1348}
1349
1350pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1351
1352static inline pid_t task_pid_vnr(struct task_struct *tsk)
1353{
1354 return pid_vnr(task_pid(tsk));
1355}
1356
1357
1358static inline pid_t task_tgid_nr(struct task_struct *tsk)
1359{
1360 return tsk->tgid;
1361}
1362
1363pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1364
1365static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1366{
1367 return pid_vnr(task_tgid(tsk));
1368}
1369
1370
1371static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1372{
1373 return tsk->signal->__pgrp;
1374}
1375
1376pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1377
1378static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1379{
1380 return pid_vnr(task_pgrp(tsk));
1381}
1382
1383
1384static inline pid_t task_session_nr(struct task_struct *tsk)
1385{
1386 return tsk->signal->__session;
1387}
1388
1389pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1390
1391static inline pid_t task_session_vnr(struct task_struct *tsk)
1392{
1393 return pid_vnr(task_session(tsk));
1394}
1395
1396
1397/**
1398 * pid_alive - check that a task structure is not stale
1399 * @p: Task structure to be checked.
1400 *
1401 * Test if a process is not yet dead (at most zombie state)
1402 * If pid_alive fails, then pointers within the task structure
1403 * can be stale and must not be dereferenced.
1404 */
1405static inline int pid_alive(struct task_struct *p)
1406{
1407 return p->pids[PIDTYPE_PID].pid != NULL;
1408}
1409
1410/**
1411 * is_global_init - check if a task structure is init
1412 * @tsk: Task structure to be checked.
1413 *
1414 * Check if a task structure is the first user space task the kernel created.
1415 */
1416static inline int is_global_init(struct task_struct *tsk)
1417{
1418 return tsk->pid == 1;
1419}
1420
1421/*
1422 * is_container_init:
1423 * check whether in the task is init in its own pid namespace.
1424 */
1425extern int is_container_init(struct task_struct *tsk);
1426
1427extern struct pid *cad_pid;
1428
1429extern void free_task(struct task_struct *tsk);
1430#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1431
1432extern void __put_task_struct(struct task_struct *t);
1433
1434static inline void put_task_struct(struct task_struct *t)
1435{
1436 if (atomic_dec_and_test(&t->usage))
1437 __put_task_struct(t);
1438}
1439
1440/*
1441 * Per process flags
1442 */
1443#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1444 /* Not implemented yet, only for 486*/
1445#define PF_STARTING 0x00000002 /* being created */
1446#define PF_EXITING 0x00000004 /* getting shut down */
1447#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1448#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1449#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1450#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1451#define PF_DUMPCORE 0x00000200 /* dumped core */
1452#define PF_SIGNALED 0x00000400 /* killed by a signal */
1453#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1454#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1455#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1456#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1457#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1458#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1459#define PF_KSWAPD 0x00040000 /* I am kswapd */
1460#define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1461#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1462#define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1463#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1464#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1465#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1466#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1467#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1468#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1469#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1470
1471/*
1472 * Only the _current_ task can read/write to tsk->flags, but other
1473 * tasks can access tsk->flags in readonly mode for example
1474 * with tsk_used_math (like during threaded core dumping).
1475 * There is however an exception to this rule during ptrace
1476 * or during fork: the ptracer task is allowed to write to the
1477 * child->flags of its traced child (same goes for fork, the parent
1478 * can write to the child->flags), because we're guaranteed the
1479 * child is not running and in turn not changing child->flags
1480 * at the same time the parent does it.
1481 */
1482#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1483#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1484#define clear_used_math() clear_stopped_child_used_math(current)
1485#define set_used_math() set_stopped_child_used_math(current)
1486#define conditional_stopped_child_used_math(condition, child) \
1487 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1488#define conditional_used_math(condition) \
1489 conditional_stopped_child_used_math(condition, current)
1490#define copy_to_stopped_child_used_math(child) \
1491 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1492/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1493#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1494#define used_math() tsk_used_math(current)
1495
1496#ifdef CONFIG_SMP
1497extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1498#else
1499static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1500{
1501 if (!cpu_isset(0, new_mask))
1502 return -EINVAL;
1503 return 0;
1504}
1505#endif
1506
1507extern unsigned long long sched_clock(void);
1508
1509/*
1510 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1511 * clock constructed from sched_clock():
1512 */
1513extern unsigned long long cpu_clock(int cpu);
1514
1515extern unsigned long long
1516task_sched_runtime(struct task_struct *task);
1517
1518/* sched_exec is called by processes performing an exec */
1519#ifdef CONFIG_SMP
1520extern void sched_exec(void);
1521#else
1522#define sched_exec() {}
1523#endif
1524
1525extern void sched_clock_idle_sleep_event(void);
1526extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1527
1528#ifdef CONFIG_HOTPLUG_CPU
1529extern void idle_task_exit(void);
1530#else
1531static inline void idle_task_exit(void) {}
1532#endif
1533
1534extern void sched_idle_next(void);
1535
1536#ifdef CONFIG_SCHED_DEBUG
1537extern unsigned int sysctl_sched_latency;
1538extern unsigned int sysctl_sched_min_granularity;
1539extern unsigned int sysctl_sched_wakeup_granularity;
1540extern unsigned int sysctl_sched_batch_wakeup_granularity;
1541extern unsigned int sysctl_sched_child_runs_first;
1542extern unsigned int sysctl_sched_features;
1543extern unsigned int sysctl_sched_migration_cost;
1544extern unsigned int sysctl_sched_nr_migrate;
1545
1546int sched_nr_latency_handler(struct ctl_table *table, int write,
1547 struct file *file, void __user *buffer, size_t *length,
1548 loff_t *ppos);
1549#endif
1550extern unsigned int sysctl_sched_rt_period;
1551extern int sysctl_sched_rt_runtime;
1552
1553extern unsigned int sysctl_sched_compat_yield;
1554
1555#ifdef CONFIG_RT_MUTEXES
1556extern int rt_mutex_getprio(struct task_struct *p);
1557extern void rt_mutex_setprio(struct task_struct *p, int prio);
1558extern void rt_mutex_adjust_pi(struct task_struct *p);
1559#else
1560static inline int rt_mutex_getprio(struct task_struct *p)
1561{
1562 return p->normal_prio;
1563}
1564# define rt_mutex_adjust_pi(p) do { } while (0)
1565#endif
1566
1567extern void set_user_nice(struct task_struct *p, long nice);
1568extern int task_prio(const struct task_struct *p);
1569extern int task_nice(const struct task_struct *p);
1570extern int can_nice(const struct task_struct *p, const int nice);
1571extern int task_curr(const struct task_struct *p);
1572extern int idle_cpu(int cpu);
1573extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1574extern struct task_struct *idle_task(int cpu);
1575extern struct task_struct *curr_task(int cpu);
1576extern void set_curr_task(int cpu, struct task_struct *p);
1577
1578void yield(void);
1579
1580/*
1581 * The default (Linux) execution domain.
1582 */
1583extern struct exec_domain default_exec_domain;
1584
1585union thread_union {
1586 struct thread_info thread_info;
1587 unsigned long stack[THREAD_SIZE/sizeof(long)];
1588};
1589
1590#ifndef __HAVE_ARCH_KSTACK_END
1591static inline int kstack_end(void *addr)
1592{
1593 /* Reliable end of stack detection:
1594 * Some APM bios versions misalign the stack
1595 */
1596 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1597}
1598#endif
1599
1600extern union thread_union init_thread_union;
1601extern struct task_struct init_task;
1602
1603extern struct mm_struct init_mm;
1604
1605extern struct pid_namespace init_pid_ns;
1606
1607/*
1608 * find a task by one of its numerical ids
1609 *
1610 * find_task_by_pid_type_ns():
1611 * it is the most generic call - it finds a task by all id,
1612 * type and namespace specified
1613 * find_task_by_pid_ns():
1614 * finds a task by its pid in the specified namespace
1615 * find_task_by_vpid():
1616 * finds a task by its virtual pid
1617 * find_task_by_pid():
1618 * finds a task by its global pid
1619 *
1620 * see also find_pid() etc in include/linux/pid.h
1621 */
1622
1623extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1624 struct pid_namespace *ns);
1625
1626extern struct task_struct *find_task_by_pid(pid_t nr);
1627extern struct task_struct *find_task_by_vpid(pid_t nr);
1628extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1629 struct pid_namespace *ns);
1630
1631extern void __set_special_pids(struct pid *pid);
1632
1633/* per-UID process charging. */
1634extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1635static inline struct user_struct *get_uid(struct user_struct *u)
1636{
1637 atomic_inc(&u->__count);
1638 return u;
1639}
1640extern void free_uid(struct user_struct *);
1641extern void switch_uid(struct user_struct *);
1642extern void release_uids(struct user_namespace *ns);
1643
1644#include <asm/current.h>
1645
1646extern void do_timer(unsigned long ticks);
1647
1648extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1649extern int wake_up_process(struct task_struct *tsk);
1650extern void wake_up_new_task(struct task_struct *tsk,
1651 unsigned long clone_flags);
1652#ifdef CONFIG_SMP
1653 extern void kick_process(struct task_struct *tsk);
1654#else
1655 static inline void kick_process(struct task_struct *tsk) { }
1656#endif
1657extern void sched_fork(struct task_struct *p, int clone_flags);
1658extern void sched_dead(struct task_struct *p);
1659
1660extern int in_group_p(gid_t);
1661extern int in_egroup_p(gid_t);
1662
1663extern void proc_caches_init(void);
1664extern void flush_signals(struct task_struct *);
1665extern void ignore_signals(struct task_struct *);
1666extern void flush_signal_handlers(struct task_struct *, int force_default);
1667extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1668
1669static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1670{
1671 unsigned long flags;
1672 int ret;
1673
1674 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1675 ret = dequeue_signal(tsk, mask, info);
1676 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1677
1678 return ret;
1679}
1680
1681extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1682 sigset_t *mask);
1683extern void unblock_all_signals(void);
1684extern void release_task(struct task_struct * p);
1685extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1686extern int force_sigsegv(int, struct task_struct *);
1687extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1688extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1689extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1690extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1691extern int kill_pgrp(struct pid *pid, int sig, int priv);
1692extern int kill_pid(struct pid *pid, int sig, int priv);
1693extern int kill_proc_info(int, struct siginfo *, pid_t);
1694extern void do_notify_parent(struct task_struct *, int);
1695extern void force_sig(int, struct task_struct *);
1696extern void force_sig_specific(int, struct task_struct *);
1697extern int send_sig(int, struct task_struct *, int);
1698extern void zap_other_threads(struct task_struct *p);
1699extern int kill_proc(pid_t, int, int);
1700extern struct sigqueue *sigqueue_alloc(void);
1701extern void sigqueue_free(struct sigqueue *);
1702extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1703extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1704extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1705extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1706
1707static inline int kill_cad_pid(int sig, int priv)
1708{
1709 return kill_pid(cad_pid, sig, priv);
1710}
1711
1712/* These can be the second arg to send_sig_info/send_group_sig_info. */
1713#define SEND_SIG_NOINFO ((struct siginfo *) 0)
1714#define SEND_SIG_PRIV ((struct siginfo *) 1)
1715#define SEND_SIG_FORCED ((struct siginfo *) 2)
1716
1717static inline int is_si_special(const struct siginfo *info)
1718{
1719 return info <= SEND_SIG_FORCED;
1720}
1721
1722/* True if we are on the alternate signal stack. */
1723
1724static inline int on_sig_stack(unsigned long sp)
1725{
1726 return (sp - current->sas_ss_sp < current->sas_ss_size);
1727}
1728
1729static inline int sas_ss_flags(unsigned long sp)
1730{
1731 return (current->sas_ss_size == 0 ? SS_DISABLE
1732 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1733}
1734
1735/*
1736 * Routines for handling mm_structs
1737 */
1738extern struct mm_struct * mm_alloc(void);
1739
1740/* mmdrop drops the mm and the page tables */
1741extern void __mmdrop(struct mm_struct *);
1742static inline void mmdrop(struct mm_struct * mm)
1743{
1744 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1745 __mmdrop(mm);
1746}
1747
1748/* mmput gets rid of the mappings and all user-space */
1749extern void mmput(struct mm_struct *);
1750/* Grab a reference to a task's mm, if it is not already going away */
1751extern struct mm_struct *get_task_mm(struct task_struct *task);
1752/* Remove the current tasks stale references to the old mm_struct */
1753extern void mm_release(struct task_struct *, struct mm_struct *);
1754
1755extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1756extern void flush_thread(void);
1757extern void exit_thread(void);
1758
1759extern void exit_files(struct task_struct *);
1760extern void __cleanup_signal(struct signal_struct *);
1761extern void __cleanup_sighand(struct sighand_struct *);
1762extern void exit_itimers(struct signal_struct *);
1763
1764extern NORET_TYPE void do_group_exit(int);
1765
1766extern void daemonize(const char *, ...);
1767extern int allow_signal(int);
1768extern int disallow_signal(int);
1769
1770extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1771extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1772struct task_struct *fork_idle(int);
1773
1774extern void set_task_comm(struct task_struct *tsk, char *from);
1775extern char *get_task_comm(char *to, struct task_struct *tsk);
1776
1777#ifdef CONFIG_SMP
1778extern void wait_task_inactive(struct task_struct * p);
1779#else
1780#define wait_task_inactive(p) do { } while (0)
1781#endif
1782
1783#define remove_parent(p) list_del_init(&(p)->sibling)
1784#define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1785
1786#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1787
1788#define for_each_process(p) \
1789 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1790
1791/*
1792 * Careful: do_each_thread/while_each_thread is a double loop so
1793 * 'break' will not work as expected - use goto instead.
1794 */
1795#define do_each_thread(g, t) \
1796 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1797
1798#define while_each_thread(g, t) \
1799 while ((t = next_thread(t)) != g)
1800
1801/* de_thread depends on thread_group_leader not being a pid based check */
1802#define thread_group_leader(p) (p == p->group_leader)
1803
1804/* Do to the insanities of de_thread it is possible for a process
1805 * to have the pid of the thread group leader without actually being
1806 * the thread group leader. For iteration through the pids in proc
1807 * all we care about is that we have a task with the appropriate
1808 * pid, we don't actually care if we have the right task.
1809 */
1810static inline int has_group_leader_pid(struct task_struct *p)
1811{
1812 return p->pid == p->tgid;
1813}
1814
1815static inline
1816int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1817{
1818 return p1->tgid == p2->tgid;
1819}
1820
1821static inline struct task_struct *next_thread(const struct task_struct *p)
1822{
1823 return list_entry(rcu_dereference(p->thread_group.next),
1824 struct task_struct, thread_group);
1825}
1826
1827static inline int thread_group_empty(struct task_struct *p)
1828{
1829 return list_empty(&p->thread_group);
1830}
1831
1832#define delay_group_leader(p) \
1833 (thread_group_leader(p) && !thread_group_empty(p))
1834
1835/*
1836 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1837 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1838 * pins the final release of task.io_context. Also protects ->cpuset and
1839 * ->cgroup.subsys[].
1840 *
1841 * Nests both inside and outside of read_lock(&tasklist_lock).
1842 * It must not be nested with write_lock_irq(&tasklist_lock),
1843 * neither inside nor outside.
1844 */
1845static inline void task_lock(struct task_struct *p)
1846{
1847 spin_lock(&p->alloc_lock);
1848}
1849
1850static inline void task_unlock(struct task_struct *p)
1851{
1852 spin_unlock(&p->alloc_lock);
1853}
1854
1855extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1856 unsigned long *flags);
1857
1858static inline void unlock_task_sighand(struct task_struct *tsk,
1859 unsigned long *flags)
1860{
1861 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1862}
1863
1864#ifndef __HAVE_THREAD_FUNCTIONS
1865
1866#define task_thread_info(task) ((struct thread_info *)(task)->stack)
1867#define task_stack_page(task) ((task)->stack)
1868
1869static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1870{
1871 *task_thread_info(p) = *task_thread_info(org);
1872 task_thread_info(p)->task = p;
1873}
1874
1875static inline unsigned long *end_of_stack(struct task_struct *p)
1876{
1877 return (unsigned long *)(task_thread_info(p) + 1);
1878}
1879
1880#endif
1881
1882/* set thread flags in other task's structures
1883 * - see asm/thread_info.h for TIF_xxxx flags available
1884 */
1885static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1886{
1887 set_ti_thread_flag(task_thread_info(tsk), flag);
1888}
1889
1890static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1891{
1892 clear_ti_thread_flag(task_thread_info(tsk), flag);
1893}
1894
1895static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1896{
1897 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1898}
1899
1900static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1901{
1902 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1903}
1904
1905static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1906{
1907 return test_ti_thread_flag(task_thread_info(tsk), flag);
1908}
1909
1910static inline void set_tsk_need_resched(struct task_struct *tsk)
1911{
1912 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1913}
1914
1915static inline void clear_tsk_need_resched(struct task_struct *tsk)
1916{
1917 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1918}
1919
1920static inline int signal_pending(struct task_struct *p)
1921{
1922 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1923}
1924
1925extern int __fatal_signal_pending(struct task_struct *p);
1926
1927static inline int fatal_signal_pending(struct task_struct *p)
1928{
1929 return signal_pending(p) && __fatal_signal_pending(p);
1930}
1931
1932static inline int need_resched(void)
1933{
1934 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1935}
1936
1937/*
1938 * cond_resched() and cond_resched_lock(): latency reduction via
1939 * explicit rescheduling in places that are safe. The return
1940 * value indicates whether a reschedule was done in fact.
1941 * cond_resched_lock() will drop the spinlock before scheduling,
1942 * cond_resched_softirq() will enable bhs before scheduling.
1943 */
1944#ifdef CONFIG_PREEMPT
1945static inline int cond_resched(void)
1946{
1947 return 0;
1948}
1949#else
1950extern int _cond_resched(void);
1951static inline int cond_resched(void)
1952{
1953 return _cond_resched();
1954}
1955#endif
1956extern int cond_resched_lock(spinlock_t * lock);
1957extern int cond_resched_softirq(void);
1958
1959/*
1960 * Does a critical section need to be broken due to another
1961 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1962 * but a general need for low latency)
1963 */
1964static inline int spin_needbreak(spinlock_t *lock)
1965{
1966#ifdef CONFIG_PREEMPT
1967 return spin_is_contended(lock);
1968#else
1969 return 0;
1970#endif
1971}
1972
1973/*
1974 * Reevaluate whether the task has signals pending delivery.
1975 * Wake the task if so.
1976 * This is required every time the blocked sigset_t changes.
1977 * callers must hold sighand->siglock.
1978 */
1979extern void recalc_sigpending_and_wake(struct task_struct *t);
1980extern void recalc_sigpending(void);
1981
1982extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1983
1984/*
1985 * Wrappers for p->thread_info->cpu access. No-op on UP.
1986 */
1987#ifdef CONFIG_SMP
1988
1989static inline unsigned int task_cpu(const struct task_struct *p)
1990{
1991 return task_thread_info(p)->cpu;
1992}
1993
1994extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1995
1996#else
1997
1998static inline unsigned int task_cpu(const struct task_struct *p)
1999{
2000 return 0;
2001}
2002
2003static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2004{
2005}
2006
2007#endif /* CONFIG_SMP */
2008
2009#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2010extern void arch_pick_mmap_layout(struct mm_struct *mm);
2011#else
2012static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2013{
2014 mm->mmap_base = TASK_UNMAPPED_BASE;
2015 mm->get_unmapped_area = arch_get_unmapped_area;
2016 mm->unmap_area = arch_unmap_area;
2017}
2018#endif
2019
2020extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
2021extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2022
2023extern int sched_mc_power_savings, sched_smt_power_savings;
2024
2025extern void normalize_rt_tasks(void);
2026
2027#ifdef CONFIG_GROUP_SCHED
2028
2029extern struct task_group init_task_group;
2030
2031extern struct task_group *sched_create_group(void);
2032extern void sched_destroy_group(struct task_group *tg);
2033extern void sched_move_task(struct task_struct *tsk);
2034#ifdef CONFIG_FAIR_GROUP_SCHED
2035extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2036extern unsigned long sched_group_shares(struct task_group *tg);
2037#endif
2038#ifdef CONFIG_RT_GROUP_SCHED
2039extern int sched_group_set_rt_runtime(struct task_group *tg,
2040 long rt_runtime_us);
2041extern long sched_group_rt_runtime(struct task_group *tg);
2042#endif
2043#endif
2044
2045#ifdef CONFIG_TASK_XACCT
2046static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2047{
2048 tsk->rchar += amt;
2049}
2050
2051static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2052{
2053 tsk->wchar += amt;
2054}
2055
2056static inline void inc_syscr(struct task_struct *tsk)
2057{
2058 tsk->syscr++;
2059}
2060
2061static inline void inc_syscw(struct task_struct *tsk)
2062{
2063 tsk->syscw++;
2064}
2065#else
2066static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2067{
2068}
2069
2070static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2071{
2072}
2073
2074static inline void inc_syscr(struct task_struct *tsk)
2075{
2076}
2077
2078static inline void inc_syscw(struct task_struct *tsk)
2079{
2080}
2081#endif
2082
2083#ifdef CONFIG_SMP
2084void migration_init(void);
2085#else
2086static inline void migration_init(void)
2087{
2088}
2089#endif
2090
2091#ifndef TASK_SIZE_OF
2092#define TASK_SIZE_OF(tsk) TASK_SIZE
2093#endif
2094
2095#endif /* __KERNEL__ */
2096
2097#endif