1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15 16struct mempolicy; 17struct anon_vma; 18struct file_ra_state; 19struct user_struct; 20struct writeback_control; 21 22#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 23extern unsigned long max_mapnr; 24#endif 25 26extern unsigned long num_physpages; 27extern void * high_memory; 28extern int page_cluster; 29 30#ifdef CONFIG_SYSCTL 31extern int sysctl_legacy_va_layout; 32#else 33#define sysctl_legacy_va_layout 0 34#endif 35 36extern unsigned long mmap_min_addr; 37 38#include <asm/page.h> 39#include <asm/pgtable.h> 40#include <asm/processor.h> 41 42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44/* 45 * Linux kernel virtual memory manager primitives. 46 * The idea being to have a "virtual" mm in the same way 47 * we have a virtual fs - giving a cleaner interface to the 48 * mm details, and allowing different kinds of memory mappings 49 * (from shared memory to executable loading to arbitrary 50 * mmap() functions). 51 */ 52 53extern struct kmem_cache *vm_area_cachep; 54 55/* 56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 57 * disabled, then there's a single shared list of VMAs maintained by the 58 * system, and mm's subscribe to these individually 59 */ 60struct vm_list_struct { 61 struct vm_list_struct *next; 62 struct vm_area_struct *vma; 63}; 64 65#ifndef CONFIG_MMU 66extern struct rb_root nommu_vma_tree; 67extern struct rw_semaphore nommu_vma_sem; 68 69extern unsigned int kobjsize(const void *objp); 70#endif 71 72/* 73 * vm_flags.. 74 */ 75#define VM_READ 0x00000001 /* currently active flags */ 76#define VM_WRITE 0x00000002 77#define VM_EXEC 0x00000004 78#define VM_SHARED 0x00000008 79 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82#define VM_MAYWRITE 0x00000020 83#define VM_MAYEXEC 0x00000040 84#define VM_MAYSHARE 0x00000080 85 86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87#define VM_GROWSUP 0x00000200 88#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91#define VM_EXECUTABLE 0x00001000 92#define VM_LOCKED 0x00002000 93#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 104#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 105#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 106#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 107#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 108 109#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 110 111#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 112#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 113#endif 114 115#ifdef CONFIG_STACK_GROWSUP 116#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 117#else 118#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 119#endif 120 121#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 122#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 123#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 124#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 125#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 126 127/* 128 * mapping from the currently active vm_flags protection bits (the 129 * low four bits) to a page protection mask.. 130 */ 131extern pgprot_t protection_map[16]; 132 133#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 134#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 135 136 137/* 138 * vm_fault is filled by the the pagefault handler and passed to the vma's 139 * ->fault function. The vma's ->fault is responsible for returning a bitmask 140 * of VM_FAULT_xxx flags that give details about how the fault was handled. 141 * 142 * pgoff should be used in favour of virtual_address, if possible. If pgoff 143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 144 * mapping support. 145 */ 146struct vm_fault { 147 unsigned int flags; /* FAULT_FLAG_xxx flags */ 148 pgoff_t pgoff; /* Logical page offset based on vma */ 149 void __user *virtual_address; /* Faulting virtual address */ 150 151 struct page *page; /* ->fault handlers should return a 152 * page here, unless VM_FAULT_NOPAGE 153 * is set (which is also implied by 154 * VM_FAULT_ERROR). 155 */ 156}; 157 158/* 159 * These are the virtual MM functions - opening of an area, closing and 160 * unmapping it (needed to keep files on disk up-to-date etc), pointer 161 * to the functions called when a no-page or a wp-page exception occurs. 162 */ 163struct vm_operations_struct { 164 void (*open)(struct vm_area_struct * area); 165 void (*close)(struct vm_area_struct * area); 166 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 167 struct page *(*nopage)(struct vm_area_struct *area, 168 unsigned long address, int *type); 169 unsigned long (*nopfn)(struct vm_area_struct *area, 170 unsigned long address); 171 172 /* notification that a previously read-only page is about to become 173 * writable, if an error is returned it will cause a SIGBUS */ 174 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 175#ifdef CONFIG_NUMA 176 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 177 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 178 unsigned long addr); 179 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 180 const nodemask_t *to, unsigned long flags); 181#endif 182}; 183 184struct mmu_gather; 185struct inode; 186 187#define page_private(page) ((page)->private) 188#define set_page_private(page, v) ((page)->private = (v)) 189 190/* 191 * FIXME: take this include out, include page-flags.h in 192 * files which need it (119 of them) 193 */ 194#include <linux/page-flags.h> 195 196#ifdef CONFIG_DEBUG_VM 197#define VM_BUG_ON(cond) BUG_ON(cond) 198#else 199#define VM_BUG_ON(condition) do { } while(0) 200#endif 201 202/* 203 * Methods to modify the page usage count. 204 * 205 * What counts for a page usage: 206 * - cache mapping (page->mapping) 207 * - private data (page->private) 208 * - page mapped in a task's page tables, each mapping 209 * is counted separately 210 * 211 * Also, many kernel routines increase the page count before a critical 212 * routine so they can be sure the page doesn't go away from under them. 213 */ 214 215/* 216 * Drop a ref, return true if the refcount fell to zero (the page has no users) 217 */ 218static inline int put_page_testzero(struct page *page) 219{ 220 VM_BUG_ON(atomic_read(&page->_count) == 0); 221 return atomic_dec_and_test(&page->_count); 222} 223 224/* 225 * Try to grab a ref unless the page has a refcount of zero, return false if 226 * that is the case. 227 */ 228static inline int get_page_unless_zero(struct page *page) 229{ 230 VM_BUG_ON(PageTail(page)); 231 return atomic_inc_not_zero(&page->_count); 232} 233 234/* Support for virtually mapped pages */ 235struct page *vmalloc_to_page(const void *addr); 236unsigned long vmalloc_to_pfn(const void *addr); 237 238#ifdef CONFIG_MMU 239/* Determine if an address is within the vmalloc range */ 240static inline int is_vmalloc_addr(const void *x) 241{ 242 unsigned long addr = (unsigned long)x; 243 244 return addr >= VMALLOC_START && addr < VMALLOC_END; 245} 246#endif 247 248static inline struct page *compound_head(struct page *page) 249{ 250 if (unlikely(PageTail(page))) 251 return page->first_page; 252 return page; 253} 254 255static inline int page_count(struct page *page) 256{ 257 return atomic_read(&compound_head(page)->_count); 258} 259 260static inline void get_page(struct page *page) 261{ 262 page = compound_head(page); 263 VM_BUG_ON(atomic_read(&page->_count) == 0); 264 atomic_inc(&page->_count); 265} 266 267static inline struct page *virt_to_head_page(const void *x) 268{ 269 struct page *page = virt_to_page(x); 270 return compound_head(page); 271} 272 273/* 274 * Setup the page count before being freed into the page allocator for 275 * the first time (boot or memory hotplug) 276 */ 277static inline void init_page_count(struct page *page) 278{ 279 atomic_set(&page->_count, 1); 280} 281 282void put_page(struct page *page); 283void put_pages_list(struct list_head *pages); 284 285void split_page(struct page *page, unsigned int order); 286 287/* 288 * Compound pages have a destructor function. Provide a 289 * prototype for that function and accessor functions. 290 * These are _only_ valid on the head of a PG_compound page. 291 */ 292typedef void compound_page_dtor(struct page *); 293 294static inline void set_compound_page_dtor(struct page *page, 295 compound_page_dtor *dtor) 296{ 297 page[1].lru.next = (void *)dtor; 298} 299 300static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 301{ 302 return (compound_page_dtor *)page[1].lru.next; 303} 304 305static inline int compound_order(struct page *page) 306{ 307 if (!PageHead(page)) 308 return 0; 309 return (unsigned long)page[1].lru.prev; 310} 311 312static inline void set_compound_order(struct page *page, unsigned long order) 313{ 314 page[1].lru.prev = (void *)order; 315} 316 317/* 318 * Multiple processes may "see" the same page. E.g. for untouched 319 * mappings of /dev/null, all processes see the same page full of 320 * zeroes, and text pages of executables and shared libraries have 321 * only one copy in memory, at most, normally. 322 * 323 * For the non-reserved pages, page_count(page) denotes a reference count. 324 * page_count() == 0 means the page is free. page->lru is then used for 325 * freelist management in the buddy allocator. 326 * page_count() > 0 means the page has been allocated. 327 * 328 * Pages are allocated by the slab allocator in order to provide memory 329 * to kmalloc and kmem_cache_alloc. In this case, the management of the 330 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 331 * unless a particular usage is carefully commented. (the responsibility of 332 * freeing the kmalloc memory is the caller's, of course). 333 * 334 * A page may be used by anyone else who does a __get_free_page(). 335 * In this case, page_count still tracks the references, and should only 336 * be used through the normal accessor functions. The top bits of page->flags 337 * and page->virtual store page management information, but all other fields 338 * are unused and could be used privately, carefully. The management of this 339 * page is the responsibility of the one who allocated it, and those who have 340 * subsequently been given references to it. 341 * 342 * The other pages (we may call them "pagecache pages") are completely 343 * managed by the Linux memory manager: I/O, buffers, swapping etc. 344 * The following discussion applies only to them. 345 * 346 * A pagecache page contains an opaque `private' member, which belongs to the 347 * page's address_space. Usually, this is the address of a circular list of 348 * the page's disk buffers. PG_private must be set to tell the VM to call 349 * into the filesystem to release these pages. 350 * 351 * A page may belong to an inode's memory mapping. In this case, page->mapping 352 * is the pointer to the inode, and page->index is the file offset of the page, 353 * in units of PAGE_CACHE_SIZE. 354 * 355 * If pagecache pages are not associated with an inode, they are said to be 356 * anonymous pages. These may become associated with the swapcache, and in that 357 * case PG_swapcache is set, and page->private is an offset into the swapcache. 358 * 359 * In either case (swapcache or inode backed), the pagecache itself holds one 360 * reference to the page. Setting PG_private should also increment the 361 * refcount. The each user mapping also has a reference to the page. 362 * 363 * The pagecache pages are stored in a per-mapping radix tree, which is 364 * rooted at mapping->page_tree, and indexed by offset. 365 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 366 * lists, we instead now tag pages as dirty/writeback in the radix tree. 367 * 368 * All pagecache pages may be subject to I/O: 369 * - inode pages may need to be read from disk, 370 * - inode pages which have been modified and are MAP_SHARED may need 371 * to be written back to the inode on disk, 372 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 373 * modified may need to be swapped out to swap space and (later) to be read 374 * back into memory. 375 */ 376 377/* 378 * The zone field is never updated after free_area_init_core() 379 * sets it, so none of the operations on it need to be atomic. 380 */ 381 382 383/* 384 * page->flags layout: 385 * 386 * There are three possibilities for how page->flags get 387 * laid out. The first is for the normal case, without 388 * sparsemem. The second is for sparsemem when there is 389 * plenty of space for node and section. The last is when 390 * we have run out of space and have to fall back to an 391 * alternate (slower) way of determining the node. 392 * 393 * No sparsemem: | NODE | ZONE | ... | FLAGS | 394 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 395 * no space for node: | SECTION | ZONE | ... | FLAGS | 396 */ 397#ifdef CONFIG_SPARSEMEM 398#define SECTIONS_WIDTH SECTIONS_SHIFT 399#else 400#define SECTIONS_WIDTH 0 401#endif 402 403#define ZONES_WIDTH ZONES_SHIFT 404 405#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 406#define NODES_WIDTH NODES_SHIFT 407#else 408#define NODES_WIDTH 0 409#endif 410 411/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 412#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 413#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 414#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 415 416/* 417 * We are going to use the flags for the page to node mapping if its in 418 * there. This includes the case where there is no node, so it is implicit. 419 */ 420#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 421#define NODE_NOT_IN_PAGE_FLAGS 422#endif 423 424#ifndef PFN_SECTION_SHIFT 425#define PFN_SECTION_SHIFT 0 426#endif 427 428/* 429 * Define the bit shifts to access each section. For non-existant 430 * sections we define the shift as 0; that plus a 0 mask ensures 431 * the compiler will optimise away reference to them. 432 */ 433#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 434#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 435#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 436 437/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 438#ifdef NODE_NOT_IN_PAGEFLAGS 439#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 440#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 441 SECTIONS_PGOFF : ZONES_PGOFF) 442#else 443#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 444#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 445 NODES_PGOFF : ZONES_PGOFF) 446#endif 447 448#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 449 450#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 451#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 452#endif 453 454#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 455#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 456#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 457#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 458 459static inline enum zone_type page_zonenum(struct page *page) 460{ 461 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 462} 463 464/* 465 * The identification function is only used by the buddy allocator for 466 * determining if two pages could be buddies. We are not really 467 * identifying a zone since we could be using a the section number 468 * id if we have not node id available in page flags. 469 * We guarantee only that it will return the same value for two 470 * combinable pages in a zone. 471 */ 472static inline int page_zone_id(struct page *page) 473{ 474 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 475} 476 477static inline int zone_to_nid(struct zone *zone) 478{ 479#ifdef CONFIG_NUMA 480 return zone->node; 481#else 482 return 0; 483#endif 484} 485 486#ifdef NODE_NOT_IN_PAGE_FLAGS 487extern int page_to_nid(struct page *page); 488#else 489static inline int page_to_nid(struct page *page) 490{ 491 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 492} 493#endif 494 495static inline struct zone *page_zone(struct page *page) 496{ 497 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 498} 499 500static inline unsigned long page_to_section(struct page *page) 501{ 502 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 503} 504 505static inline void set_page_zone(struct page *page, enum zone_type zone) 506{ 507 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 508 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 509} 510 511static inline void set_page_node(struct page *page, unsigned long node) 512{ 513 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 514 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 515} 516 517static inline void set_page_section(struct page *page, unsigned long section) 518{ 519 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 520 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 521} 522 523static inline void set_page_links(struct page *page, enum zone_type zone, 524 unsigned long node, unsigned long pfn) 525{ 526 set_page_zone(page, zone); 527 set_page_node(page, node); 528 set_page_section(page, pfn_to_section_nr(pfn)); 529} 530 531/* 532 * If a hint addr is less than mmap_min_addr change hint to be as 533 * low as possible but still greater than mmap_min_addr 534 */ 535static inline unsigned long round_hint_to_min(unsigned long hint) 536{ 537#ifdef CONFIG_SECURITY 538 hint &= PAGE_MASK; 539 if (((void *)hint != NULL) && 540 (hint < mmap_min_addr)) 541 return PAGE_ALIGN(mmap_min_addr); 542#endif 543 return hint; 544} 545 546/* 547 * Some inline functions in vmstat.h depend on page_zone() 548 */ 549#include <linux/vmstat.h> 550 551static __always_inline void *lowmem_page_address(struct page *page) 552{ 553 return __va(page_to_pfn(page) << PAGE_SHIFT); 554} 555 556#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 557#define HASHED_PAGE_VIRTUAL 558#endif 559 560#if defined(WANT_PAGE_VIRTUAL) 561#define page_address(page) ((page)->virtual) 562#define set_page_address(page, address) \ 563 do { \ 564 (page)->virtual = (address); \ 565 } while(0) 566#define page_address_init() do { } while(0) 567#endif 568 569#if defined(HASHED_PAGE_VIRTUAL) 570void *page_address(struct page *page); 571void set_page_address(struct page *page, void *virtual); 572void page_address_init(void); 573#endif 574 575#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 576#define page_address(page) lowmem_page_address(page) 577#define set_page_address(page, address) do { } while(0) 578#define page_address_init() do { } while(0) 579#endif 580 581/* 582 * On an anonymous page mapped into a user virtual memory area, 583 * page->mapping points to its anon_vma, not to a struct address_space; 584 * with the PAGE_MAPPING_ANON bit set to distinguish it. 585 * 586 * Please note that, confusingly, "page_mapping" refers to the inode 587 * address_space which maps the page from disk; whereas "page_mapped" 588 * refers to user virtual address space into which the page is mapped. 589 */ 590#define PAGE_MAPPING_ANON 1 591 592extern struct address_space swapper_space; 593static inline struct address_space *page_mapping(struct page *page) 594{ 595 struct address_space *mapping = page->mapping; 596 597 VM_BUG_ON(PageSlab(page)); 598 if (unlikely(PageSwapCache(page))) 599 mapping = &swapper_space; 600 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 601 mapping = NULL; 602 return mapping; 603} 604 605static inline int PageAnon(struct page *page) 606{ 607 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 608} 609 610/* 611 * Return the pagecache index of the passed page. Regular pagecache pages 612 * use ->index whereas swapcache pages use ->private 613 */ 614static inline pgoff_t page_index(struct page *page) 615{ 616 if (unlikely(PageSwapCache(page))) 617 return page_private(page); 618 return page->index; 619} 620 621/* 622 * The atomic page->_mapcount, like _count, starts from -1: 623 * so that transitions both from it and to it can be tracked, 624 * using atomic_inc_and_test and atomic_add_negative(-1). 625 */ 626static inline void reset_page_mapcount(struct page *page) 627{ 628 atomic_set(&(page)->_mapcount, -1); 629} 630 631static inline int page_mapcount(struct page *page) 632{ 633 return atomic_read(&(page)->_mapcount) + 1; 634} 635 636/* 637 * Return true if this page is mapped into pagetables. 638 */ 639static inline int page_mapped(struct page *page) 640{ 641 return atomic_read(&(page)->_mapcount) >= 0; 642} 643 644/* 645 * Error return values for the *_nopage functions 646 */ 647#define NOPAGE_SIGBUS (NULL) 648#define NOPAGE_OOM ((struct page *) (-1)) 649 650/* 651 * Error return values for the *_nopfn functions 652 */ 653#define NOPFN_SIGBUS ((unsigned long) -1) 654#define NOPFN_OOM ((unsigned long) -2) 655#define NOPFN_REFAULT ((unsigned long) -3) 656 657/* 658 * Different kinds of faults, as returned by handle_mm_fault(). 659 * Used to decide whether a process gets delivered SIGBUS or 660 * just gets major/minor fault counters bumped up. 661 */ 662 663#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 664 665#define VM_FAULT_OOM 0x0001 666#define VM_FAULT_SIGBUS 0x0002 667#define VM_FAULT_MAJOR 0x0004 668#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 669 670#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 671#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 672 673#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 674 675#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 676 677extern void show_free_areas(void); 678 679#ifdef CONFIG_SHMEM 680int shmem_lock(struct file *file, int lock, struct user_struct *user); 681#else 682static inline int shmem_lock(struct file *file, int lock, 683 struct user_struct *user) 684{ 685 return 0; 686} 687#endif 688struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 689 690int shmem_zero_setup(struct vm_area_struct *); 691 692#ifndef CONFIG_MMU 693extern unsigned long shmem_get_unmapped_area(struct file *file, 694 unsigned long addr, 695 unsigned long len, 696 unsigned long pgoff, 697 unsigned long flags); 698#endif 699 700extern int can_do_mlock(void); 701extern int user_shm_lock(size_t, struct user_struct *); 702extern void user_shm_unlock(size_t, struct user_struct *); 703 704/* 705 * Parameter block passed down to zap_pte_range in exceptional cases. 706 */ 707struct zap_details { 708 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 709 struct address_space *check_mapping; /* Check page->mapping if set */ 710 pgoff_t first_index; /* Lowest page->index to unmap */ 711 pgoff_t last_index; /* Highest page->index to unmap */ 712 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 713 unsigned long truncate_count; /* Compare vm_truncate_count */ 714}; 715 716struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 717unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 718 unsigned long size, struct zap_details *); 719unsigned long unmap_vmas(struct mmu_gather **tlb, 720 struct vm_area_struct *start_vma, unsigned long start_addr, 721 unsigned long end_addr, unsigned long *nr_accounted, 722 struct zap_details *); 723 724/** 725 * mm_walk - callbacks for walk_page_range 726 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 727 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 728 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 729 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 730 * @pte_hole: if set, called for each hole at all levels 731 * 732 * (see walk_page_range for more details) 733 */ 734struct mm_walk { 735 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *); 736 int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *); 737 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *); 738 int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *); 739 int (*pte_hole)(unsigned long, unsigned long, void *); 740}; 741 742int walk_page_range(const struct mm_struct *, unsigned long addr, 743 unsigned long end, const struct mm_walk *walk, 744 void *private); 745void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 746 unsigned long end, unsigned long floor, unsigned long ceiling); 747void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 748 unsigned long floor, unsigned long ceiling); 749int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 750 struct vm_area_struct *vma); 751void unmap_mapping_range(struct address_space *mapping, 752 loff_t const holebegin, loff_t const holelen, int even_cows); 753 754static inline void unmap_shared_mapping_range(struct address_space *mapping, 755 loff_t const holebegin, loff_t const holelen) 756{ 757 unmap_mapping_range(mapping, holebegin, holelen, 0); 758} 759 760extern int vmtruncate(struct inode * inode, loff_t offset); 761extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 762 763#ifdef CONFIG_MMU 764extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 765 unsigned long address, int write_access); 766#else 767static inline int handle_mm_fault(struct mm_struct *mm, 768 struct vm_area_struct *vma, unsigned long address, 769 int write_access) 770{ 771 /* should never happen if there's no MMU */ 772 BUG(); 773 return VM_FAULT_SIGBUS; 774} 775#endif 776 777extern int make_pages_present(unsigned long addr, unsigned long end); 778extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 779 780int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 781 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 782void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 783 784extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 785extern void do_invalidatepage(struct page *page, unsigned long offset); 786 787int __set_page_dirty_nobuffers(struct page *page); 788int __set_page_dirty_no_writeback(struct page *page); 789int redirty_page_for_writepage(struct writeback_control *wbc, 790 struct page *page); 791int set_page_dirty(struct page *page); 792int set_page_dirty_lock(struct page *page); 793int clear_page_dirty_for_io(struct page *page); 794 795extern unsigned long move_page_tables(struct vm_area_struct *vma, 796 unsigned long old_addr, struct vm_area_struct *new_vma, 797 unsigned long new_addr, unsigned long len); 798extern unsigned long do_mremap(unsigned long addr, 799 unsigned long old_len, unsigned long new_len, 800 unsigned long flags, unsigned long new_addr); 801extern int mprotect_fixup(struct vm_area_struct *vma, 802 struct vm_area_struct **pprev, unsigned long start, 803 unsigned long end, unsigned long newflags); 804 805/* 806 * A callback you can register to apply pressure to ageable caches. 807 * 808 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 809 * look through the least-recently-used 'nr_to_scan' entries and 810 * attempt to free them up. It should return the number of objects 811 * which remain in the cache. If it returns -1, it means it cannot do 812 * any scanning at this time (eg. there is a risk of deadlock). 813 * 814 * The 'gfpmask' refers to the allocation we are currently trying to 815 * fulfil. 816 * 817 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 818 * querying the cache size, so a fastpath for that case is appropriate. 819 */ 820struct shrinker { 821 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 822 int seeks; /* seeks to recreate an obj */ 823 824 /* These are for internal use */ 825 struct list_head list; 826 long nr; /* objs pending delete */ 827}; 828#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 829extern void register_shrinker(struct shrinker *); 830extern void unregister_shrinker(struct shrinker *); 831 832int vma_wants_writenotify(struct vm_area_struct *vma); 833 834extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 835 836#ifdef __PAGETABLE_PUD_FOLDED 837static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 838 unsigned long address) 839{ 840 return 0; 841} 842#else 843int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 844#endif 845 846#ifdef __PAGETABLE_PMD_FOLDED 847static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 848 unsigned long address) 849{ 850 return 0; 851} 852#else 853int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 854#endif 855 856int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 857int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 858 859/* 860 * The following ifdef needed to get the 4level-fixup.h header to work. 861 * Remove it when 4level-fixup.h has been removed. 862 */ 863#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 864static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 865{ 866 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 867 NULL: pud_offset(pgd, address); 868} 869 870static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 871{ 872 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 873 NULL: pmd_offset(pud, address); 874} 875#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 876 877#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 878/* 879 * We tuck a spinlock to guard each pagetable page into its struct page, 880 * at page->private, with BUILD_BUG_ON to make sure that this will not 881 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 882 * When freeing, reset page->mapping so free_pages_check won't complain. 883 */ 884#define __pte_lockptr(page) &((page)->ptl) 885#define pte_lock_init(_page) do { \ 886 spin_lock_init(__pte_lockptr(_page)); \ 887} while (0) 888#define pte_lock_deinit(page) ((page)->mapping = NULL) 889#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 890#else 891/* 892 * We use mm->page_table_lock to guard all pagetable pages of the mm. 893 */ 894#define pte_lock_init(page) do {} while (0) 895#define pte_lock_deinit(page) do {} while (0) 896#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 897#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 898 899static inline void pgtable_page_ctor(struct page *page) 900{ 901 pte_lock_init(page); 902 inc_zone_page_state(page, NR_PAGETABLE); 903} 904 905static inline void pgtable_page_dtor(struct page *page) 906{ 907 pte_lock_deinit(page); 908 dec_zone_page_state(page, NR_PAGETABLE); 909} 910 911#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 912({ \ 913 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 914 pte_t *__pte = pte_offset_map(pmd, address); \ 915 *(ptlp) = __ptl; \ 916 spin_lock(__ptl); \ 917 __pte; \ 918}) 919 920#define pte_unmap_unlock(pte, ptl) do { \ 921 spin_unlock(ptl); \ 922 pte_unmap(pte); \ 923} while (0) 924 925#define pte_alloc_map(mm, pmd, address) \ 926 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 927 NULL: pte_offset_map(pmd, address)) 928 929#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 930 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 931 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 932 933#define pte_alloc_kernel(pmd, address) \ 934 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 935 NULL: pte_offset_kernel(pmd, address)) 936 937extern void free_area_init(unsigned long * zones_size); 938extern void free_area_init_node(int nid, pg_data_t *pgdat, 939 unsigned long * zones_size, unsigned long zone_start_pfn, 940 unsigned long *zholes_size); 941#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 942/* 943 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 944 * zones, allocate the backing mem_map and account for memory holes in a more 945 * architecture independent manner. This is a substitute for creating the 946 * zone_sizes[] and zholes_size[] arrays and passing them to 947 * free_area_init_node() 948 * 949 * An architecture is expected to register range of page frames backed by 950 * physical memory with add_active_range() before calling 951 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 952 * usage, an architecture is expected to do something like 953 * 954 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 955 * max_highmem_pfn}; 956 * for_each_valid_physical_page_range() 957 * add_active_range(node_id, start_pfn, end_pfn) 958 * free_area_init_nodes(max_zone_pfns); 959 * 960 * If the architecture guarantees that there are no holes in the ranges 961 * registered with add_active_range(), free_bootmem_active_regions() 962 * will call free_bootmem_node() for each registered physical page range. 963 * Similarly sparse_memory_present_with_active_regions() calls 964 * memory_present() for each range when SPARSEMEM is enabled. 965 * 966 * See mm/page_alloc.c for more information on each function exposed by 967 * CONFIG_ARCH_POPULATES_NODE_MAP 968 */ 969extern void free_area_init_nodes(unsigned long *max_zone_pfn); 970extern void add_active_range(unsigned int nid, unsigned long start_pfn, 971 unsigned long end_pfn); 972extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 973 unsigned long new_end_pfn); 974extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 975 unsigned long end_pfn); 976extern void remove_all_active_ranges(void); 977extern unsigned long absent_pages_in_range(unsigned long start_pfn, 978 unsigned long end_pfn); 979extern void get_pfn_range_for_nid(unsigned int nid, 980 unsigned long *start_pfn, unsigned long *end_pfn); 981extern unsigned long find_min_pfn_with_active_regions(void); 982extern unsigned long find_max_pfn_with_active_regions(void); 983extern void free_bootmem_with_active_regions(int nid, 984 unsigned long max_low_pfn); 985extern void sparse_memory_present_with_active_regions(int nid); 986#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 987extern int early_pfn_to_nid(unsigned long pfn); 988#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 989#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 990extern void set_dma_reserve(unsigned long new_dma_reserve); 991extern void memmap_init_zone(unsigned long, int, unsigned long, 992 unsigned long, enum memmap_context); 993extern void setup_per_zone_pages_min(void); 994extern void mem_init(void); 995extern void show_mem(void); 996extern void si_meminfo(struct sysinfo * val); 997extern void si_meminfo_node(struct sysinfo *val, int nid); 998 999#ifdef CONFIG_NUMA 1000extern void setup_per_cpu_pageset(void); 1001#else 1002static inline void setup_per_cpu_pageset(void) {} 1003#endif 1004 1005/* prio_tree.c */ 1006void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1007void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1008void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1009struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1010 struct prio_tree_iter *iter); 1011 1012#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1013 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1014 (vma = vma_prio_tree_next(vma, iter)); ) 1015 1016static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1017 struct list_head *list) 1018{ 1019 vma->shared.vm_set.parent = NULL; 1020 list_add_tail(&vma->shared.vm_set.list, list); 1021} 1022 1023/* mmap.c */ 1024extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1025extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1026 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1027extern struct vm_area_struct *vma_merge(struct mm_struct *, 1028 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1029 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1030 struct mempolicy *); 1031extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1032extern int split_vma(struct mm_struct *, 1033 struct vm_area_struct *, unsigned long addr, int new_below); 1034extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1035extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1036 struct rb_node **, struct rb_node *); 1037extern void unlink_file_vma(struct vm_area_struct *); 1038extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1039 unsigned long addr, unsigned long len, pgoff_t pgoff); 1040extern void exit_mmap(struct mm_struct *); 1041extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1042extern int install_special_mapping(struct mm_struct *mm, 1043 unsigned long addr, unsigned long len, 1044 unsigned long flags, struct page **pages); 1045 1046extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1047 1048extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1049 unsigned long len, unsigned long prot, 1050 unsigned long flag, unsigned long pgoff); 1051extern unsigned long mmap_region(struct file *file, unsigned long addr, 1052 unsigned long len, unsigned long flags, 1053 unsigned int vm_flags, unsigned long pgoff, 1054 int accountable); 1055 1056static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1057 unsigned long len, unsigned long prot, 1058 unsigned long flag, unsigned long offset) 1059{ 1060 unsigned long ret = -EINVAL; 1061 if ((offset + PAGE_ALIGN(len)) < offset) 1062 goto out; 1063 if (!(offset & ~PAGE_MASK)) 1064 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1065out: 1066 return ret; 1067} 1068 1069extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1070 1071extern unsigned long do_brk(unsigned long, unsigned long); 1072 1073/* filemap.c */ 1074extern unsigned long page_unuse(struct page *); 1075extern void truncate_inode_pages(struct address_space *, loff_t); 1076extern void truncate_inode_pages_range(struct address_space *, 1077 loff_t lstart, loff_t lend); 1078 1079/* generic vm_area_ops exported for stackable file systems */ 1080extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1081 1082/* mm/page-writeback.c */ 1083int write_one_page(struct page *page, int wait); 1084 1085/* readahead.c */ 1086#define VM_MAX_READAHEAD 128 /* kbytes */ 1087#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1088 1089int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1090 pgoff_t offset, unsigned long nr_to_read); 1091int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1092 pgoff_t offset, unsigned long nr_to_read); 1093 1094void page_cache_sync_readahead(struct address_space *mapping, 1095 struct file_ra_state *ra, 1096 struct file *filp, 1097 pgoff_t offset, 1098 unsigned long size); 1099 1100void page_cache_async_readahead(struct address_space *mapping, 1101 struct file_ra_state *ra, 1102 struct file *filp, 1103 struct page *pg, 1104 pgoff_t offset, 1105 unsigned long size); 1106 1107unsigned long max_sane_readahead(unsigned long nr); 1108 1109/* Do stack extension */ 1110extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1111#ifdef CONFIG_IA64 1112extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1113#endif 1114extern int expand_stack_downwards(struct vm_area_struct *vma, 1115 unsigned long address); 1116 1117/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1118extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1119extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1120 struct vm_area_struct **pprev); 1121 1122/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1123 NULL if none. Assume start_addr < end_addr. */ 1124static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1125{ 1126 struct vm_area_struct * vma = find_vma(mm,start_addr); 1127 1128 if (vma && end_addr <= vma->vm_start) 1129 vma = NULL; 1130 return vma; 1131} 1132 1133static inline unsigned long vma_pages(struct vm_area_struct *vma) 1134{ 1135 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1136} 1137 1138pgprot_t vm_get_page_prot(unsigned long vm_flags); 1139struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1140int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1141 unsigned long pfn, unsigned long size, pgprot_t); 1142int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1143int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1144 unsigned long pfn); 1145 1146struct page *follow_page(struct vm_area_struct *, unsigned long address, 1147 unsigned int foll_flags); 1148#define FOLL_WRITE 0x01 /* check pte is writable */ 1149#define FOLL_TOUCH 0x02 /* mark page accessed */ 1150#define FOLL_GET 0x04 /* do get_page on page */ 1151#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1152 1153typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1154 void *data); 1155extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1156 unsigned long size, pte_fn_t fn, void *data); 1157 1158#ifdef CONFIG_PROC_FS 1159void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1160#else 1161static inline void vm_stat_account(struct mm_struct *mm, 1162 unsigned long flags, struct file *file, long pages) 1163{ 1164} 1165#endif /* CONFIG_PROC_FS */ 1166 1167#ifdef CONFIG_DEBUG_PAGEALLOC 1168extern int debug_pagealloc_enabled; 1169 1170extern void kernel_map_pages(struct page *page, int numpages, int enable); 1171 1172static inline void enable_debug_pagealloc(void) 1173{ 1174 debug_pagealloc_enabled = 1; 1175} 1176#ifdef CONFIG_HIBERNATION 1177extern bool kernel_page_present(struct page *page); 1178#endif /* CONFIG_HIBERNATION */ 1179#else 1180static inline void 1181kernel_map_pages(struct page *page, int numpages, int enable) {} 1182static inline void enable_debug_pagealloc(void) 1183{ 1184} 1185#ifdef CONFIG_HIBERNATION 1186static inline bool kernel_page_present(struct page *page) { return true; } 1187#endif /* CONFIG_HIBERNATION */ 1188#endif 1189 1190extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1191#ifdef __HAVE_ARCH_GATE_AREA 1192int in_gate_area_no_task(unsigned long addr); 1193int in_gate_area(struct task_struct *task, unsigned long addr); 1194#else 1195int in_gate_area_no_task(unsigned long addr); 1196#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1197#endif /* __HAVE_ARCH_GATE_AREA */ 1198 1199int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1200 void __user *, size_t *, loff_t *); 1201unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1202 unsigned long lru_pages); 1203void drop_pagecache(void); 1204void drop_slab(void); 1205 1206#ifndef CONFIG_MMU 1207#define randomize_va_space 0 1208#else 1209extern int randomize_va_space; 1210#endif 1211 1212const char * arch_vma_name(struct vm_area_struct *vma); 1213void print_vma_addr(char *prefix, unsigned long rip); 1214 1215struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1216pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1217pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1218pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1219pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1220void *vmemmap_alloc_block(unsigned long size, int node); 1221void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1222int vmemmap_populate_basepages(struct page *start_page, 1223 unsigned long pages, int node); 1224int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1225 1226#endif /* __KERNEL__ */ 1227#endif /* _LINUX_MM_H */