1/* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7/* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21#include <linux/kernel.h> 22#include <linux/syscalls.h> 23#include <linux/fs.h> 24#include <linux/mm.h> 25#include <linux/percpu.h> 26#include <linux/slab.h> 27#include <linux/capability.h> 28#include <linux/blkdev.h> 29#include <linux/file.h> 30#include <linux/quotaops.h> 31#include <linux/highmem.h> 32#include <linux/module.h> 33#include <linux/writeback.h> 34#include <linux/hash.h> 35#include <linux/suspend.h> 36#include <linux/buffer_head.h> 37#include <linux/task_io_accounting_ops.h> 38#include <linux/bio.h> 39#include <linux/notifier.h> 40#include <linux/cpu.h> 41#include <linux/bitops.h> 42#include <linux/mpage.h> 43#include <linux/bit_spinlock.h> 44 45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49inline void 50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51{ 52 bh->b_end_io = handler; 53 bh->b_private = private; 54} 55 56static int sync_buffer(void *word) 57{ 58 struct block_device *bd; 59 struct buffer_head *bh 60 = container_of(word, struct buffer_head, b_state); 61 62 smp_mb(); 63 bd = bh->b_bdev; 64 if (bd) 65 blk_run_address_space(bd->bd_inode->i_mapping); 66 io_schedule(); 67 return 0; 68} 69 70void __lock_buffer(struct buffer_head *bh) 71{ 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 73 TASK_UNINTERRUPTIBLE); 74} 75EXPORT_SYMBOL(__lock_buffer); 76 77void unlock_buffer(struct buffer_head *bh) 78{ 79 smp_mb__before_clear_bit(); 80 clear_buffer_locked(bh); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83} 84 85/* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90void __wait_on_buffer(struct buffer_head * bh) 91{ 92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 93} 94 95static void 96__clear_page_buffers(struct page *page) 97{ 98 ClearPagePrivate(page); 99 set_page_private(page, 0); 100 page_cache_release(page); 101} 102 103static void buffer_io_error(struct buffer_head *bh) 104{ 105 char b[BDEVNAME_SIZE]; 106 107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 108 bdevname(bh->b_bdev, b), 109 (unsigned long long)bh->b_blocknr); 110} 111 112/* 113 * End-of-IO handler helper function which does not touch the bh after 114 * unlocking it. 115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 116 * a race there is benign: unlock_buffer() only use the bh's address for 117 * hashing after unlocking the buffer, so it doesn't actually touch the bh 118 * itself. 119 */ 120static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 121{ 122 if (uptodate) { 123 set_buffer_uptodate(bh); 124 } else { 125 /* This happens, due to failed READA attempts. */ 126 clear_buffer_uptodate(bh); 127 } 128 unlock_buffer(bh); 129} 130 131/* 132 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 133 * unlock the buffer. This is what ll_rw_block uses too. 134 */ 135void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 136{ 137 __end_buffer_read_notouch(bh, uptodate); 138 put_bh(bh); 139} 140 141void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 142{ 143 char b[BDEVNAME_SIZE]; 144 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 149 buffer_io_error(bh); 150 printk(KERN_WARNING "lost page write due to " 151 "I/O error on %s\n", 152 bdevname(bh->b_bdev, b)); 153 } 154 set_buffer_write_io_error(bh); 155 clear_buffer_uptodate(bh); 156 } 157 unlock_buffer(bh); 158 put_bh(bh); 159} 160 161/* 162 * Write out and wait upon all the dirty data associated with a block 163 * device via its mapping. Does not take the superblock lock. 164 */ 165int sync_blockdev(struct block_device *bdev) 166{ 167 int ret = 0; 168 169 if (bdev) 170 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 171 return ret; 172} 173EXPORT_SYMBOL(sync_blockdev); 174 175/* 176 * Write out and wait upon all dirty data associated with this 177 * device. Filesystem data as well as the underlying block 178 * device. Takes the superblock lock. 179 */ 180int fsync_bdev(struct block_device *bdev) 181{ 182 struct super_block *sb = get_super(bdev); 183 if (sb) { 184 int res = fsync_super(sb); 185 drop_super(sb); 186 return res; 187 } 188 return sync_blockdev(bdev); 189} 190 191/** 192 * freeze_bdev -- lock a filesystem and force it into a consistent state 193 * @bdev: blockdevice to lock 194 * 195 * This takes the block device bd_mount_sem to make sure no new mounts 196 * happen on bdev until thaw_bdev() is called. 197 * If a superblock is found on this device, we take the s_umount semaphore 198 * on it to make sure nobody unmounts until the snapshot creation is done. 199 */ 200struct super_block *freeze_bdev(struct block_device *bdev) 201{ 202 struct super_block *sb; 203 204 down(&bdev->bd_mount_sem); 205 sb = get_super(bdev); 206 if (sb && !(sb->s_flags & MS_RDONLY)) { 207 sb->s_frozen = SB_FREEZE_WRITE; 208 smp_wmb(); 209 210 __fsync_super(sb); 211 212 sb->s_frozen = SB_FREEZE_TRANS; 213 smp_wmb(); 214 215 sync_blockdev(sb->s_bdev); 216 217 if (sb->s_op->write_super_lockfs) 218 sb->s_op->write_super_lockfs(sb); 219 } 220 221 sync_blockdev(bdev); 222 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 223} 224EXPORT_SYMBOL(freeze_bdev); 225 226/** 227 * thaw_bdev -- unlock filesystem 228 * @bdev: blockdevice to unlock 229 * @sb: associated superblock 230 * 231 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 232 */ 233void thaw_bdev(struct block_device *bdev, struct super_block *sb) 234{ 235 if (sb) { 236 BUG_ON(sb->s_bdev != bdev); 237 238 if (sb->s_op->unlockfs) 239 sb->s_op->unlockfs(sb); 240 sb->s_frozen = SB_UNFROZEN; 241 smp_wmb(); 242 wake_up(&sb->s_wait_unfrozen); 243 drop_super(sb); 244 } 245 246 up(&bdev->bd_mount_sem); 247} 248EXPORT_SYMBOL(thaw_bdev); 249 250/* 251 * Various filesystems appear to want __find_get_block to be non-blocking. 252 * But it's the page lock which protects the buffers. To get around this, 253 * we get exclusion from try_to_free_buffers with the blockdev mapping's 254 * private_lock. 255 * 256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 257 * may be quite high. This code could TryLock the page, and if that 258 * succeeds, there is no need to take private_lock. (But if 259 * private_lock is contended then so is mapping->tree_lock). 260 */ 261static struct buffer_head * 262__find_get_block_slow(struct block_device *bdev, sector_t block) 263{ 264 struct inode *bd_inode = bdev->bd_inode; 265 struct address_space *bd_mapping = bd_inode->i_mapping; 266 struct buffer_head *ret = NULL; 267 pgoff_t index; 268 struct buffer_head *bh; 269 struct buffer_head *head; 270 struct page *page; 271 int all_mapped = 1; 272 273 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 274 page = find_get_page(bd_mapping, index); 275 if (!page) 276 goto out; 277 278 spin_lock(&bd_mapping->private_lock); 279 if (!page_has_buffers(page)) 280 goto out_unlock; 281 head = page_buffers(page); 282 bh = head; 283 do { 284 if (bh->b_blocknr == block) { 285 ret = bh; 286 get_bh(bh); 287 goto out_unlock; 288 } 289 if (!buffer_mapped(bh)) 290 all_mapped = 0; 291 bh = bh->b_this_page; 292 } while (bh != head); 293 294 /* we might be here because some of the buffers on this page are 295 * not mapped. This is due to various races between 296 * file io on the block device and getblk. It gets dealt with 297 * elsewhere, don't buffer_error if we had some unmapped buffers 298 */ 299 if (all_mapped) { 300 printk("__find_get_block_slow() failed. " 301 "block=%llu, b_blocknr=%llu\n", 302 (unsigned long long)block, 303 (unsigned long long)bh->b_blocknr); 304 printk("b_state=0x%08lx, b_size=%zu\n", 305 bh->b_state, bh->b_size); 306 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 307 } 308out_unlock: 309 spin_unlock(&bd_mapping->private_lock); 310 page_cache_release(page); 311out: 312 return ret; 313} 314 315/* If invalidate_buffers() will trash dirty buffers, it means some kind 316 of fs corruption is going on. Trashing dirty data always imply losing 317 information that was supposed to be just stored on the physical layer 318 by the user. 319 320 Thus invalidate_buffers in general usage is not allwowed to trash 321 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 322 be preserved. These buffers are simply skipped. 323 324 We also skip buffers which are still in use. For example this can 325 happen if a userspace program is reading the block device. 326 327 NOTE: In the case where the user removed a removable-media-disk even if 328 there's still dirty data not synced on disk (due a bug in the device driver 329 or due an error of the user), by not destroying the dirty buffers we could 330 generate corruption also on the next media inserted, thus a parameter is 331 necessary to handle this case in the most safe way possible (trying 332 to not corrupt also the new disk inserted with the data belonging to 333 the old now corrupted disk). Also for the ramdisk the natural thing 334 to do in order to release the ramdisk memory is to destroy dirty buffers. 335 336 These are two special cases. Normal usage imply the device driver 337 to issue a sync on the device (without waiting I/O completion) and 338 then an invalidate_buffers call that doesn't trash dirty buffers. 339 340 For handling cache coherency with the blkdev pagecache the 'update' case 341 is been introduced. It is needed to re-read from disk any pinned 342 buffer. NOTE: re-reading from disk is destructive so we can do it only 343 when we assume nobody is changing the buffercache under our I/O and when 344 we think the disk contains more recent information than the buffercache. 345 The update == 1 pass marks the buffers we need to update, the update == 2 346 pass does the actual I/O. */ 347void invalidate_bdev(struct block_device *bdev) 348{ 349 struct address_space *mapping = bdev->bd_inode->i_mapping; 350 351 if (mapping->nrpages == 0) 352 return; 353 354 invalidate_bh_lrus(); 355 invalidate_mapping_pages(mapping, 0, -1); 356} 357 358/* 359 * Kick pdflush then try to free up some ZONE_NORMAL memory. 360 */ 361static void free_more_memory(void) 362{ 363 struct zone **zones; 364 pg_data_t *pgdat; 365 366 wakeup_pdflush(1024); 367 yield(); 368 369 for_each_online_pgdat(pgdat) { 370 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; 371 if (*zones) 372 try_to_free_pages(zones, 0, GFP_NOFS); 373 } 374} 375 376/* 377 * I/O completion handler for block_read_full_page() - pages 378 * which come unlocked at the end of I/O. 379 */ 380static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 381{ 382 unsigned long flags; 383 struct buffer_head *first; 384 struct buffer_head *tmp; 385 struct page *page; 386 int page_uptodate = 1; 387 388 BUG_ON(!buffer_async_read(bh)); 389 390 page = bh->b_page; 391 if (uptodate) { 392 set_buffer_uptodate(bh); 393 } else { 394 clear_buffer_uptodate(bh); 395 if (printk_ratelimit()) 396 buffer_io_error(bh); 397 SetPageError(page); 398 } 399 400 /* 401 * Be _very_ careful from here on. Bad things can happen if 402 * two buffer heads end IO at almost the same time and both 403 * decide that the page is now completely done. 404 */ 405 first = page_buffers(page); 406 local_irq_save(flags); 407 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 408 clear_buffer_async_read(bh); 409 unlock_buffer(bh); 410 tmp = bh; 411 do { 412 if (!buffer_uptodate(tmp)) 413 page_uptodate = 0; 414 if (buffer_async_read(tmp)) { 415 BUG_ON(!buffer_locked(tmp)); 416 goto still_busy; 417 } 418 tmp = tmp->b_this_page; 419 } while (tmp != bh); 420 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 421 local_irq_restore(flags); 422 423 /* 424 * If none of the buffers had errors and they are all 425 * uptodate then we can set the page uptodate. 426 */ 427 if (page_uptodate && !PageError(page)) 428 SetPageUptodate(page); 429 unlock_page(page); 430 return; 431 432still_busy: 433 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 434 local_irq_restore(flags); 435 return; 436} 437 438/* 439 * Completion handler for block_write_full_page() - pages which are unlocked 440 * during I/O, and which have PageWriteback cleared upon I/O completion. 441 */ 442static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 443{ 444 char b[BDEVNAME_SIZE]; 445 unsigned long flags; 446 struct buffer_head *first; 447 struct buffer_head *tmp; 448 struct page *page; 449 450 BUG_ON(!buffer_async_write(bh)); 451 452 page = bh->b_page; 453 if (uptodate) { 454 set_buffer_uptodate(bh); 455 } else { 456 if (printk_ratelimit()) { 457 buffer_io_error(bh); 458 printk(KERN_WARNING "lost page write due to " 459 "I/O error on %s\n", 460 bdevname(bh->b_bdev, b)); 461 } 462 set_bit(AS_EIO, &page->mapping->flags); 463 set_buffer_write_io_error(bh); 464 clear_buffer_uptodate(bh); 465 SetPageError(page); 466 } 467 468 first = page_buffers(page); 469 local_irq_save(flags); 470 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 471 472 clear_buffer_async_write(bh); 473 unlock_buffer(bh); 474 tmp = bh->b_this_page; 475 while (tmp != bh) { 476 if (buffer_async_write(tmp)) { 477 BUG_ON(!buffer_locked(tmp)); 478 goto still_busy; 479 } 480 tmp = tmp->b_this_page; 481 } 482 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 483 local_irq_restore(flags); 484 end_page_writeback(page); 485 return; 486 487still_busy: 488 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 489 local_irq_restore(flags); 490 return; 491} 492 493/* 494 * If a page's buffers are under async readin (end_buffer_async_read 495 * completion) then there is a possibility that another thread of 496 * control could lock one of the buffers after it has completed 497 * but while some of the other buffers have not completed. This 498 * locked buffer would confuse end_buffer_async_read() into not unlocking 499 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 500 * that this buffer is not under async I/O. 501 * 502 * The page comes unlocked when it has no locked buffer_async buffers 503 * left. 504 * 505 * PageLocked prevents anyone starting new async I/O reads any of 506 * the buffers. 507 * 508 * PageWriteback is used to prevent simultaneous writeout of the same 509 * page. 510 * 511 * PageLocked prevents anyone from starting writeback of a page which is 512 * under read I/O (PageWriteback is only ever set against a locked page). 513 */ 514static void mark_buffer_async_read(struct buffer_head *bh) 515{ 516 bh->b_end_io = end_buffer_async_read; 517 set_buffer_async_read(bh); 518} 519 520void mark_buffer_async_write(struct buffer_head *bh) 521{ 522 bh->b_end_io = end_buffer_async_write; 523 set_buffer_async_write(bh); 524} 525EXPORT_SYMBOL(mark_buffer_async_write); 526 527 528/* 529 * fs/buffer.c contains helper functions for buffer-backed address space's 530 * fsync functions. A common requirement for buffer-based filesystems is 531 * that certain data from the backing blockdev needs to be written out for 532 * a successful fsync(). For example, ext2 indirect blocks need to be 533 * written back and waited upon before fsync() returns. 534 * 535 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 536 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 537 * management of a list of dependent buffers at ->i_mapping->private_list. 538 * 539 * Locking is a little subtle: try_to_free_buffers() will remove buffers 540 * from their controlling inode's queue when they are being freed. But 541 * try_to_free_buffers() will be operating against the *blockdev* mapping 542 * at the time, not against the S_ISREG file which depends on those buffers. 543 * So the locking for private_list is via the private_lock in the address_space 544 * which backs the buffers. Which is different from the address_space 545 * against which the buffers are listed. So for a particular address_space, 546 * mapping->private_lock does *not* protect mapping->private_list! In fact, 547 * mapping->private_list will always be protected by the backing blockdev's 548 * ->private_lock. 549 * 550 * Which introduces a requirement: all buffers on an address_space's 551 * ->private_list must be from the same address_space: the blockdev's. 552 * 553 * address_spaces which do not place buffers at ->private_list via these 554 * utility functions are free to use private_lock and private_list for 555 * whatever they want. The only requirement is that list_empty(private_list) 556 * be true at clear_inode() time. 557 * 558 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 559 * filesystems should do that. invalidate_inode_buffers() should just go 560 * BUG_ON(!list_empty). 561 * 562 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 563 * take an address_space, not an inode. And it should be called 564 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 565 * queued up. 566 * 567 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 568 * list if it is already on a list. Because if the buffer is on a list, 569 * it *must* already be on the right one. If not, the filesystem is being 570 * silly. This will save a ton of locking. But first we have to ensure 571 * that buffers are taken *off* the old inode's list when they are freed 572 * (presumably in truncate). That requires careful auditing of all 573 * filesystems (do it inside bforget()). It could also be done by bringing 574 * b_inode back. 575 */ 576 577/* 578 * The buffer's backing address_space's private_lock must be held 579 */ 580static inline void __remove_assoc_queue(struct buffer_head *bh) 581{ 582 list_del_init(&bh->b_assoc_buffers); 583 WARN_ON(!bh->b_assoc_map); 584 if (buffer_write_io_error(bh)) 585 set_bit(AS_EIO, &bh->b_assoc_map->flags); 586 bh->b_assoc_map = NULL; 587} 588 589int inode_has_buffers(struct inode *inode) 590{ 591 return !list_empty(&inode->i_data.private_list); 592} 593 594/* 595 * osync is designed to support O_SYNC io. It waits synchronously for 596 * all already-submitted IO to complete, but does not queue any new 597 * writes to the disk. 598 * 599 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 600 * you dirty the buffers, and then use osync_inode_buffers to wait for 601 * completion. Any other dirty buffers which are not yet queued for 602 * write will not be flushed to disk by the osync. 603 */ 604static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 605{ 606 struct buffer_head *bh; 607 struct list_head *p; 608 int err = 0; 609 610 spin_lock(lock); 611repeat: 612 list_for_each_prev(p, list) { 613 bh = BH_ENTRY(p); 614 if (buffer_locked(bh)) { 615 get_bh(bh); 616 spin_unlock(lock); 617 wait_on_buffer(bh); 618 if (!buffer_uptodate(bh)) 619 err = -EIO; 620 brelse(bh); 621 spin_lock(lock); 622 goto repeat; 623 } 624 } 625 spin_unlock(lock); 626 return err; 627} 628 629/** 630 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 631 * @mapping: the mapping which wants those buffers written 632 * 633 * Starts I/O against the buffers at mapping->private_list, and waits upon 634 * that I/O. 635 * 636 * Basically, this is a convenience function for fsync(). 637 * @mapping is a file or directory which needs those buffers to be written for 638 * a successful fsync(). 639 */ 640int sync_mapping_buffers(struct address_space *mapping) 641{ 642 struct address_space *buffer_mapping = mapping->assoc_mapping; 643 644 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 645 return 0; 646 647 return fsync_buffers_list(&buffer_mapping->private_lock, 648 &mapping->private_list); 649} 650EXPORT_SYMBOL(sync_mapping_buffers); 651 652/* 653 * Called when we've recently written block `bblock', and it is known that 654 * `bblock' was for a buffer_boundary() buffer. This means that the block at 655 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 656 * dirty, schedule it for IO. So that indirects merge nicely with their data. 657 */ 658void write_boundary_block(struct block_device *bdev, 659 sector_t bblock, unsigned blocksize) 660{ 661 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 662 if (bh) { 663 if (buffer_dirty(bh)) 664 ll_rw_block(WRITE, 1, &bh); 665 put_bh(bh); 666 } 667} 668 669void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 670{ 671 struct address_space *mapping = inode->i_mapping; 672 struct address_space *buffer_mapping = bh->b_page->mapping; 673 674 mark_buffer_dirty(bh); 675 if (!mapping->assoc_mapping) { 676 mapping->assoc_mapping = buffer_mapping; 677 } else { 678 BUG_ON(mapping->assoc_mapping != buffer_mapping); 679 } 680 if (!bh->b_assoc_map) { 681 spin_lock(&buffer_mapping->private_lock); 682 list_move_tail(&bh->b_assoc_buffers, 683 &mapping->private_list); 684 bh->b_assoc_map = mapping; 685 spin_unlock(&buffer_mapping->private_lock); 686 } 687} 688EXPORT_SYMBOL(mark_buffer_dirty_inode); 689 690/* 691 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 692 * dirty. 693 * 694 * If warn is true, then emit a warning if the page is not uptodate and has 695 * not been truncated. 696 */ 697static int __set_page_dirty(struct page *page, 698 struct address_space *mapping, int warn) 699{ 700 if (unlikely(!mapping)) 701 return !TestSetPageDirty(page); 702 703 if (TestSetPageDirty(page)) 704 return 0; 705 706 write_lock_irq(&mapping->tree_lock); 707 if (page->mapping) { /* Race with truncate? */ 708 WARN_ON_ONCE(warn && !PageUptodate(page)); 709 710 if (mapping_cap_account_dirty(mapping)) { 711 __inc_zone_page_state(page, NR_FILE_DIRTY); 712 __inc_bdi_stat(mapping->backing_dev_info, 713 BDI_RECLAIMABLE); 714 task_io_account_write(PAGE_CACHE_SIZE); 715 } 716 radix_tree_tag_set(&mapping->page_tree, 717 page_index(page), PAGECACHE_TAG_DIRTY); 718 } 719 write_unlock_irq(&mapping->tree_lock); 720 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 721 722 return 1; 723} 724 725/* 726 * Add a page to the dirty page list. 727 * 728 * It is a sad fact of life that this function is called from several places 729 * deeply under spinlocking. It may not sleep. 730 * 731 * If the page has buffers, the uptodate buffers are set dirty, to preserve 732 * dirty-state coherency between the page and the buffers. It the page does 733 * not have buffers then when they are later attached they will all be set 734 * dirty. 735 * 736 * The buffers are dirtied before the page is dirtied. There's a small race 737 * window in which a writepage caller may see the page cleanness but not the 738 * buffer dirtiness. That's fine. If this code were to set the page dirty 739 * before the buffers, a concurrent writepage caller could clear the page dirty 740 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 741 * page on the dirty page list. 742 * 743 * We use private_lock to lock against try_to_free_buffers while using the 744 * page's buffer list. Also use this to protect against clean buffers being 745 * added to the page after it was set dirty. 746 * 747 * FIXME: may need to call ->reservepage here as well. That's rather up to the 748 * address_space though. 749 */ 750int __set_page_dirty_buffers(struct page *page) 751{ 752 struct address_space *mapping = page_mapping(page); 753 754 if (unlikely(!mapping)) 755 return !TestSetPageDirty(page); 756 757 spin_lock(&mapping->private_lock); 758 if (page_has_buffers(page)) { 759 struct buffer_head *head = page_buffers(page); 760 struct buffer_head *bh = head; 761 762 do { 763 set_buffer_dirty(bh); 764 bh = bh->b_this_page; 765 } while (bh != head); 766 } 767 spin_unlock(&mapping->private_lock); 768 769 return __set_page_dirty(page, mapping, 1); 770} 771EXPORT_SYMBOL(__set_page_dirty_buffers); 772 773/* 774 * Write out and wait upon a list of buffers. 775 * 776 * We have conflicting pressures: we want to make sure that all 777 * initially dirty buffers get waited on, but that any subsequently 778 * dirtied buffers don't. After all, we don't want fsync to last 779 * forever if somebody is actively writing to the file. 780 * 781 * Do this in two main stages: first we copy dirty buffers to a 782 * temporary inode list, queueing the writes as we go. Then we clean 783 * up, waiting for those writes to complete. 784 * 785 * During this second stage, any subsequent updates to the file may end 786 * up refiling the buffer on the original inode's dirty list again, so 787 * there is a chance we will end up with a buffer queued for write but 788 * not yet completed on that list. So, as a final cleanup we go through 789 * the osync code to catch these locked, dirty buffers without requeuing 790 * any newly dirty buffers for write. 791 */ 792static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 793{ 794 struct buffer_head *bh; 795 struct list_head tmp; 796 struct address_space *mapping; 797 int err = 0, err2; 798 799 INIT_LIST_HEAD(&tmp); 800 801 spin_lock(lock); 802 while (!list_empty(list)) { 803 bh = BH_ENTRY(list->next); 804 mapping = bh->b_assoc_map; 805 __remove_assoc_queue(bh); 806 /* Avoid race with mark_buffer_dirty_inode() which does 807 * a lockless check and we rely on seeing the dirty bit */ 808 smp_mb(); 809 if (buffer_dirty(bh) || buffer_locked(bh)) { 810 list_add(&bh->b_assoc_buffers, &tmp); 811 bh->b_assoc_map = mapping; 812 if (buffer_dirty(bh)) { 813 get_bh(bh); 814 spin_unlock(lock); 815 /* 816 * Ensure any pending I/O completes so that 817 * ll_rw_block() actually writes the current 818 * contents - it is a noop if I/O is still in 819 * flight on potentially older contents. 820 */ 821 ll_rw_block(SWRITE, 1, &bh); 822 brelse(bh); 823 spin_lock(lock); 824 } 825 } 826 } 827 828 while (!list_empty(&tmp)) { 829 bh = BH_ENTRY(tmp.prev); 830 get_bh(bh); 831 mapping = bh->b_assoc_map; 832 __remove_assoc_queue(bh); 833 /* Avoid race with mark_buffer_dirty_inode() which does 834 * a lockless check and we rely on seeing the dirty bit */ 835 smp_mb(); 836 if (buffer_dirty(bh)) { 837 list_add(&bh->b_assoc_buffers, 838 &mapping->private_list); 839 bh->b_assoc_map = mapping; 840 } 841 spin_unlock(lock); 842 wait_on_buffer(bh); 843 if (!buffer_uptodate(bh)) 844 err = -EIO; 845 brelse(bh); 846 spin_lock(lock); 847 } 848 849 spin_unlock(lock); 850 err2 = osync_buffers_list(lock, list); 851 if (err) 852 return err; 853 else 854 return err2; 855} 856 857/* 858 * Invalidate any and all dirty buffers on a given inode. We are 859 * probably unmounting the fs, but that doesn't mean we have already 860 * done a sync(). Just drop the buffers from the inode list. 861 * 862 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 863 * assumes that all the buffers are against the blockdev. Not true 864 * for reiserfs. 865 */ 866void invalidate_inode_buffers(struct inode *inode) 867{ 868 if (inode_has_buffers(inode)) { 869 struct address_space *mapping = &inode->i_data; 870 struct list_head *list = &mapping->private_list; 871 struct address_space *buffer_mapping = mapping->assoc_mapping; 872 873 spin_lock(&buffer_mapping->private_lock); 874 while (!list_empty(list)) 875 __remove_assoc_queue(BH_ENTRY(list->next)); 876 spin_unlock(&buffer_mapping->private_lock); 877 } 878} 879 880/* 881 * Remove any clean buffers from the inode's buffer list. This is called 882 * when we're trying to free the inode itself. Those buffers can pin it. 883 * 884 * Returns true if all buffers were removed. 885 */ 886int remove_inode_buffers(struct inode *inode) 887{ 888 int ret = 1; 889 890 if (inode_has_buffers(inode)) { 891 struct address_space *mapping = &inode->i_data; 892 struct list_head *list = &mapping->private_list; 893 struct address_space *buffer_mapping = mapping->assoc_mapping; 894 895 spin_lock(&buffer_mapping->private_lock); 896 while (!list_empty(list)) { 897 struct buffer_head *bh = BH_ENTRY(list->next); 898 if (buffer_dirty(bh)) { 899 ret = 0; 900 break; 901 } 902 __remove_assoc_queue(bh); 903 } 904 spin_unlock(&buffer_mapping->private_lock); 905 } 906 return ret; 907} 908 909/* 910 * Create the appropriate buffers when given a page for data area and 911 * the size of each buffer.. Use the bh->b_this_page linked list to 912 * follow the buffers created. Return NULL if unable to create more 913 * buffers. 914 * 915 * The retry flag is used to differentiate async IO (paging, swapping) 916 * which may not fail from ordinary buffer allocations. 917 */ 918struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 919 int retry) 920{ 921 struct buffer_head *bh, *head; 922 long offset; 923 924try_again: 925 head = NULL; 926 offset = PAGE_SIZE; 927 while ((offset -= size) >= 0) { 928 bh = alloc_buffer_head(GFP_NOFS); 929 if (!bh) 930 goto no_grow; 931 932 bh->b_bdev = NULL; 933 bh->b_this_page = head; 934 bh->b_blocknr = -1; 935 head = bh; 936 937 bh->b_state = 0; 938 atomic_set(&bh->b_count, 0); 939 bh->b_private = NULL; 940 bh->b_size = size; 941 942 /* Link the buffer to its page */ 943 set_bh_page(bh, page, offset); 944 945 init_buffer(bh, NULL, NULL); 946 } 947 return head; 948/* 949 * In case anything failed, we just free everything we got. 950 */ 951no_grow: 952 if (head) { 953 do { 954 bh = head; 955 head = head->b_this_page; 956 free_buffer_head(bh); 957 } while (head); 958 } 959 960 /* 961 * Return failure for non-async IO requests. Async IO requests 962 * are not allowed to fail, so we have to wait until buffer heads 963 * become available. But we don't want tasks sleeping with 964 * partially complete buffers, so all were released above. 965 */ 966 if (!retry) 967 return NULL; 968 969 /* We're _really_ low on memory. Now we just 970 * wait for old buffer heads to become free due to 971 * finishing IO. Since this is an async request and 972 * the reserve list is empty, we're sure there are 973 * async buffer heads in use. 974 */ 975 free_more_memory(); 976 goto try_again; 977} 978EXPORT_SYMBOL_GPL(alloc_page_buffers); 979 980static inline void 981link_dev_buffers(struct page *page, struct buffer_head *head) 982{ 983 struct buffer_head *bh, *tail; 984 985 bh = head; 986 do { 987 tail = bh; 988 bh = bh->b_this_page; 989 } while (bh); 990 tail->b_this_page = head; 991 attach_page_buffers(page, head); 992} 993 994/* 995 * Initialise the state of a blockdev page's buffers. 996 */ 997static void 998init_page_buffers(struct page *page, struct block_device *bdev, 999 sector_t block, int size) 1000{ 1001 struct buffer_head *head = page_buffers(page); 1002 struct buffer_head *bh = head; 1003 int uptodate = PageUptodate(page); 1004 1005 do { 1006 if (!buffer_mapped(bh)) { 1007 init_buffer(bh, NULL, NULL); 1008 bh->b_bdev = bdev; 1009 bh->b_blocknr = block; 1010 if (uptodate) 1011 set_buffer_uptodate(bh); 1012 set_buffer_mapped(bh); 1013 } 1014 block++; 1015 bh = bh->b_this_page; 1016 } while (bh != head); 1017} 1018 1019/* 1020 * Create the page-cache page that contains the requested block. 1021 * 1022 * This is user purely for blockdev mappings. 1023 */ 1024static struct page * 1025grow_dev_page(struct block_device *bdev, sector_t block, 1026 pgoff_t index, int size) 1027{ 1028 struct inode *inode = bdev->bd_inode; 1029 struct page *page; 1030 struct buffer_head *bh; 1031 1032 page = find_or_create_page(inode->i_mapping, index, 1033 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 1034 if (!page) 1035 return NULL; 1036 1037 BUG_ON(!PageLocked(page)); 1038 1039 if (page_has_buffers(page)) { 1040 bh = page_buffers(page); 1041 if (bh->b_size == size) { 1042 init_page_buffers(page, bdev, block, size); 1043 return page; 1044 } 1045 if (!try_to_free_buffers(page)) 1046 goto failed; 1047 } 1048 1049 /* 1050 * Allocate some buffers for this page 1051 */ 1052 bh = alloc_page_buffers(page, size, 0); 1053 if (!bh) 1054 goto failed; 1055 1056 /* 1057 * Link the page to the buffers and initialise them. Take the 1058 * lock to be atomic wrt __find_get_block(), which does not 1059 * run under the page lock. 1060 */ 1061 spin_lock(&inode->i_mapping->private_lock); 1062 link_dev_buffers(page, bh); 1063 init_page_buffers(page, bdev, block, size); 1064 spin_unlock(&inode->i_mapping->private_lock); 1065 return page; 1066 1067failed: 1068 BUG(); 1069 unlock_page(page); 1070 page_cache_release(page); 1071 return NULL; 1072} 1073 1074/* 1075 * Create buffers for the specified block device block's page. If 1076 * that page was dirty, the buffers are set dirty also. 1077 */ 1078static int 1079grow_buffers(struct block_device *bdev, sector_t block, int size) 1080{ 1081 struct page *page; 1082 pgoff_t index; 1083 int sizebits; 1084 1085 sizebits = -1; 1086 do { 1087 sizebits++; 1088 } while ((size << sizebits) < PAGE_SIZE); 1089 1090 index = block >> sizebits; 1091 1092 /* 1093 * Check for a block which wants to lie outside our maximum possible 1094 * pagecache index. (this comparison is done using sector_t types). 1095 */ 1096 if (unlikely(index != block >> sizebits)) { 1097 char b[BDEVNAME_SIZE]; 1098 1099 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1100 "device %s\n", 1101 __FUNCTION__, (unsigned long long)block, 1102 bdevname(bdev, b)); 1103 return -EIO; 1104 } 1105 block = index << sizebits; 1106 /* Create a page with the proper size buffers.. */ 1107 page = grow_dev_page(bdev, block, index, size); 1108 if (!page) 1109 return 0; 1110 unlock_page(page); 1111 page_cache_release(page); 1112 return 1; 1113} 1114 1115static struct buffer_head * 1116__getblk_slow(struct block_device *bdev, sector_t block, int size) 1117{ 1118 /* Size must be multiple of hard sectorsize */ 1119 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1120 (size < 512 || size > PAGE_SIZE))) { 1121 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1122 size); 1123 printk(KERN_ERR "hardsect size: %d\n", 1124 bdev_hardsect_size(bdev)); 1125 1126 dump_stack(); 1127 return NULL; 1128 } 1129 1130 for (;;) { 1131 struct buffer_head * bh; 1132 int ret; 1133 1134 bh = __find_get_block(bdev, block, size); 1135 if (bh) 1136 return bh; 1137 1138 ret = grow_buffers(bdev, block, size); 1139 if (ret < 0) 1140 return NULL; 1141 if (ret == 0) 1142 free_more_memory(); 1143 } 1144} 1145 1146/* 1147 * The relationship between dirty buffers and dirty pages: 1148 * 1149 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1150 * the page is tagged dirty in its radix tree. 1151 * 1152 * At all times, the dirtiness of the buffers represents the dirtiness of 1153 * subsections of the page. If the page has buffers, the page dirty bit is 1154 * merely a hint about the true dirty state. 1155 * 1156 * When a page is set dirty in its entirety, all its buffers are marked dirty 1157 * (if the page has buffers). 1158 * 1159 * When a buffer is marked dirty, its page is dirtied, but the page's other 1160 * buffers are not. 1161 * 1162 * Also. When blockdev buffers are explicitly read with bread(), they 1163 * individually become uptodate. But their backing page remains not 1164 * uptodate - even if all of its buffers are uptodate. A subsequent 1165 * block_read_full_page() against that page will discover all the uptodate 1166 * buffers, will set the page uptodate and will perform no I/O. 1167 */ 1168 1169/** 1170 * mark_buffer_dirty - mark a buffer_head as needing writeout 1171 * @bh: the buffer_head to mark dirty 1172 * 1173 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1174 * backing page dirty, then tag the page as dirty in its address_space's radix 1175 * tree and then attach the address_space's inode to its superblock's dirty 1176 * inode list. 1177 * 1178 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1179 * mapping->tree_lock and the global inode_lock. 1180 */ 1181void mark_buffer_dirty(struct buffer_head *bh) 1182{ 1183 WARN_ON_ONCE(!buffer_uptodate(bh)); 1184 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1185 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0); 1186} 1187 1188/* 1189 * Decrement a buffer_head's reference count. If all buffers against a page 1190 * have zero reference count, are clean and unlocked, and if the page is clean 1191 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1192 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1193 * a page but it ends up not being freed, and buffers may later be reattached). 1194 */ 1195void __brelse(struct buffer_head * buf) 1196{ 1197 if (atomic_read(&buf->b_count)) { 1198 put_bh(buf); 1199 return; 1200 } 1201 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1202 WARN_ON(1); 1203} 1204 1205/* 1206 * bforget() is like brelse(), except it discards any 1207 * potentially dirty data. 1208 */ 1209void __bforget(struct buffer_head *bh) 1210{ 1211 clear_buffer_dirty(bh); 1212 if (bh->b_assoc_map) { 1213 struct address_space *buffer_mapping = bh->b_page->mapping; 1214 1215 spin_lock(&buffer_mapping->private_lock); 1216 list_del_init(&bh->b_assoc_buffers); 1217 bh->b_assoc_map = NULL; 1218 spin_unlock(&buffer_mapping->private_lock); 1219 } 1220 __brelse(bh); 1221} 1222 1223static struct buffer_head *__bread_slow(struct buffer_head *bh) 1224{ 1225 lock_buffer(bh); 1226 if (buffer_uptodate(bh)) { 1227 unlock_buffer(bh); 1228 return bh; 1229 } else { 1230 get_bh(bh); 1231 bh->b_end_io = end_buffer_read_sync; 1232 submit_bh(READ, bh); 1233 wait_on_buffer(bh); 1234 if (buffer_uptodate(bh)) 1235 return bh; 1236 } 1237 brelse(bh); 1238 return NULL; 1239} 1240 1241/* 1242 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1243 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1244 * refcount elevated by one when they're in an LRU. A buffer can only appear 1245 * once in a particular CPU's LRU. A single buffer can be present in multiple 1246 * CPU's LRUs at the same time. 1247 * 1248 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1249 * sb_find_get_block(). 1250 * 1251 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1252 * a local interrupt disable for that. 1253 */ 1254 1255#define BH_LRU_SIZE 8 1256 1257struct bh_lru { 1258 struct buffer_head *bhs[BH_LRU_SIZE]; 1259}; 1260 1261static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1262 1263#ifdef CONFIG_SMP 1264#define bh_lru_lock() local_irq_disable() 1265#define bh_lru_unlock() local_irq_enable() 1266#else 1267#define bh_lru_lock() preempt_disable() 1268#define bh_lru_unlock() preempt_enable() 1269#endif 1270 1271static inline void check_irqs_on(void) 1272{ 1273#ifdef irqs_disabled 1274 BUG_ON(irqs_disabled()); 1275#endif 1276} 1277 1278/* 1279 * The LRU management algorithm is dopey-but-simple. Sorry. 1280 */ 1281static void bh_lru_install(struct buffer_head *bh) 1282{ 1283 struct buffer_head *evictee = NULL; 1284 struct bh_lru *lru; 1285 1286 check_irqs_on(); 1287 bh_lru_lock(); 1288 lru = &__get_cpu_var(bh_lrus); 1289 if (lru->bhs[0] != bh) { 1290 struct buffer_head *bhs[BH_LRU_SIZE]; 1291 int in; 1292 int out = 0; 1293 1294 get_bh(bh); 1295 bhs[out++] = bh; 1296 for (in = 0; in < BH_LRU_SIZE; in++) { 1297 struct buffer_head *bh2 = lru->bhs[in]; 1298 1299 if (bh2 == bh) { 1300 __brelse(bh2); 1301 } else { 1302 if (out >= BH_LRU_SIZE) { 1303 BUG_ON(evictee != NULL); 1304 evictee = bh2; 1305 } else { 1306 bhs[out++] = bh2; 1307 } 1308 } 1309 } 1310 while (out < BH_LRU_SIZE) 1311 bhs[out++] = NULL; 1312 memcpy(lru->bhs, bhs, sizeof(bhs)); 1313 } 1314 bh_lru_unlock(); 1315 1316 if (evictee) 1317 __brelse(evictee); 1318} 1319 1320/* 1321 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1322 */ 1323static struct buffer_head * 1324lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1325{ 1326 struct buffer_head *ret = NULL; 1327 struct bh_lru *lru; 1328 unsigned int i; 1329 1330 check_irqs_on(); 1331 bh_lru_lock(); 1332 lru = &__get_cpu_var(bh_lrus); 1333 for (i = 0; i < BH_LRU_SIZE; i++) { 1334 struct buffer_head *bh = lru->bhs[i]; 1335 1336 if (bh && bh->b_bdev == bdev && 1337 bh->b_blocknr == block && bh->b_size == size) { 1338 if (i) { 1339 while (i) { 1340 lru->bhs[i] = lru->bhs[i - 1]; 1341 i--; 1342 } 1343 lru->bhs[0] = bh; 1344 } 1345 get_bh(bh); 1346 ret = bh; 1347 break; 1348 } 1349 } 1350 bh_lru_unlock(); 1351 return ret; 1352} 1353 1354/* 1355 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1356 * it in the LRU and mark it as accessed. If it is not present then return 1357 * NULL 1358 */ 1359struct buffer_head * 1360__find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1361{ 1362 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1363 1364 if (bh == NULL) { 1365 bh = __find_get_block_slow(bdev, block); 1366 if (bh) 1367 bh_lru_install(bh); 1368 } 1369 if (bh) 1370 touch_buffer(bh); 1371 return bh; 1372} 1373EXPORT_SYMBOL(__find_get_block); 1374 1375/* 1376 * __getblk will locate (and, if necessary, create) the buffer_head 1377 * which corresponds to the passed block_device, block and size. The 1378 * returned buffer has its reference count incremented. 1379 * 1380 * __getblk() cannot fail - it just keeps trying. If you pass it an 1381 * illegal block number, __getblk() will happily return a buffer_head 1382 * which represents the non-existent block. Very weird. 1383 * 1384 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1385 * attempt is failing. FIXME, perhaps? 1386 */ 1387struct buffer_head * 1388__getblk(struct block_device *bdev, sector_t block, unsigned size) 1389{ 1390 struct buffer_head *bh = __find_get_block(bdev, block, size); 1391 1392 might_sleep(); 1393 if (bh == NULL) 1394 bh = __getblk_slow(bdev, block, size); 1395 return bh; 1396} 1397EXPORT_SYMBOL(__getblk); 1398 1399/* 1400 * Do async read-ahead on a buffer.. 1401 */ 1402void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1403{ 1404 struct buffer_head *bh = __getblk(bdev, block, size); 1405 if (likely(bh)) { 1406 ll_rw_block(READA, 1, &bh); 1407 brelse(bh); 1408 } 1409} 1410EXPORT_SYMBOL(__breadahead); 1411 1412/** 1413 * __bread() - reads a specified block and returns the bh 1414 * @bdev: the block_device to read from 1415 * @block: number of block 1416 * @size: size (in bytes) to read 1417 * 1418 * Reads a specified block, and returns buffer head that contains it. 1419 * It returns NULL if the block was unreadable. 1420 */ 1421struct buffer_head * 1422__bread(struct block_device *bdev, sector_t block, unsigned size) 1423{ 1424 struct buffer_head *bh = __getblk(bdev, block, size); 1425 1426 if (likely(bh) && !buffer_uptodate(bh)) 1427 bh = __bread_slow(bh); 1428 return bh; 1429} 1430EXPORT_SYMBOL(__bread); 1431 1432/* 1433 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1434 * This doesn't race because it runs in each cpu either in irq 1435 * or with preempt disabled. 1436 */ 1437static void invalidate_bh_lru(void *arg) 1438{ 1439 struct bh_lru *b = &get_cpu_var(bh_lrus); 1440 int i; 1441 1442 for (i = 0; i < BH_LRU_SIZE; i++) { 1443 brelse(b->bhs[i]); 1444 b->bhs[i] = NULL; 1445 } 1446 put_cpu_var(bh_lrus); 1447} 1448 1449void invalidate_bh_lrus(void) 1450{ 1451 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1452} 1453EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1454 1455void set_bh_page(struct buffer_head *bh, 1456 struct page *page, unsigned long offset) 1457{ 1458 bh->b_page = page; 1459 BUG_ON(offset >= PAGE_SIZE); 1460 if (PageHighMem(page)) 1461 /* 1462 * This catches illegal uses and preserves the offset: 1463 */ 1464 bh->b_data = (char *)(0 + offset); 1465 else 1466 bh->b_data = page_address(page) + offset; 1467} 1468EXPORT_SYMBOL(set_bh_page); 1469 1470/* 1471 * Called when truncating a buffer on a page completely. 1472 */ 1473static void discard_buffer(struct buffer_head * bh) 1474{ 1475 lock_buffer(bh); 1476 clear_buffer_dirty(bh); 1477 bh->b_bdev = NULL; 1478 clear_buffer_mapped(bh); 1479 clear_buffer_req(bh); 1480 clear_buffer_new(bh); 1481 clear_buffer_delay(bh); 1482 clear_buffer_unwritten(bh); 1483 unlock_buffer(bh); 1484} 1485 1486/** 1487 * block_invalidatepage - invalidate part of all of a buffer-backed page 1488 * 1489 * @page: the page which is affected 1490 * @offset: the index of the truncation point 1491 * 1492 * block_invalidatepage() is called when all or part of the page has become 1493 * invalidatedby a truncate operation. 1494 * 1495 * block_invalidatepage() does not have to release all buffers, but it must 1496 * ensure that no dirty buffer is left outside @offset and that no I/O 1497 * is underway against any of the blocks which are outside the truncation 1498 * point. Because the caller is about to free (and possibly reuse) those 1499 * blocks on-disk. 1500 */ 1501void block_invalidatepage(struct page *page, unsigned long offset) 1502{ 1503 struct buffer_head *head, *bh, *next; 1504 unsigned int curr_off = 0; 1505 1506 BUG_ON(!PageLocked(page)); 1507 if (!page_has_buffers(page)) 1508 goto out; 1509 1510 head = page_buffers(page); 1511 bh = head; 1512 do { 1513 unsigned int next_off = curr_off + bh->b_size; 1514 next = bh->b_this_page; 1515 1516 /* 1517 * is this block fully invalidated? 1518 */ 1519 if (offset <= curr_off) 1520 discard_buffer(bh); 1521 curr_off = next_off; 1522 bh = next; 1523 } while (bh != head); 1524 1525 /* 1526 * We release buffers only if the entire page is being invalidated. 1527 * The get_block cached value has been unconditionally invalidated, 1528 * so real IO is not possible anymore. 1529 */ 1530 if (offset == 0) 1531 try_to_release_page(page, 0); 1532out: 1533 return; 1534} 1535EXPORT_SYMBOL(block_invalidatepage); 1536 1537/* 1538 * We attach and possibly dirty the buffers atomically wrt 1539 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1540 * is already excluded via the page lock. 1541 */ 1542void create_empty_buffers(struct page *page, 1543 unsigned long blocksize, unsigned long b_state) 1544{ 1545 struct buffer_head *bh, *head, *tail; 1546 1547 head = alloc_page_buffers(page, blocksize, 1); 1548 bh = head; 1549 do { 1550 bh->b_state |= b_state; 1551 tail = bh; 1552 bh = bh->b_this_page; 1553 } while (bh); 1554 tail->b_this_page = head; 1555 1556 spin_lock(&page->mapping->private_lock); 1557 if (PageUptodate(page) || PageDirty(page)) { 1558 bh = head; 1559 do { 1560 if (PageDirty(page)) 1561 set_buffer_dirty(bh); 1562 if (PageUptodate(page)) 1563 set_buffer_uptodate(bh); 1564 bh = bh->b_this_page; 1565 } while (bh != head); 1566 } 1567 attach_page_buffers(page, head); 1568 spin_unlock(&page->mapping->private_lock); 1569} 1570EXPORT_SYMBOL(create_empty_buffers); 1571 1572/* 1573 * We are taking a block for data and we don't want any output from any 1574 * buffer-cache aliases starting from return from that function and 1575 * until the moment when something will explicitly mark the buffer 1576 * dirty (hopefully that will not happen until we will free that block ;-) 1577 * We don't even need to mark it not-uptodate - nobody can expect 1578 * anything from a newly allocated buffer anyway. We used to used 1579 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1580 * don't want to mark the alias unmapped, for example - it would confuse 1581 * anyone who might pick it with bread() afterwards... 1582 * 1583 * Also.. Note that bforget() doesn't lock the buffer. So there can 1584 * be writeout I/O going on against recently-freed buffers. We don't 1585 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1586 * only if we really need to. That happens here. 1587 */ 1588void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1589{ 1590 struct buffer_head *old_bh; 1591 1592 might_sleep(); 1593 1594 old_bh = __find_get_block_slow(bdev, block); 1595 if (old_bh) { 1596 clear_buffer_dirty(old_bh); 1597 wait_on_buffer(old_bh); 1598 clear_buffer_req(old_bh); 1599 __brelse(old_bh); 1600 } 1601} 1602EXPORT_SYMBOL(unmap_underlying_metadata); 1603 1604/* 1605 * NOTE! All mapped/uptodate combinations are valid: 1606 * 1607 * Mapped Uptodate Meaning 1608 * 1609 * No No "unknown" - must do get_block() 1610 * No Yes "hole" - zero-filled 1611 * Yes No "allocated" - allocated on disk, not read in 1612 * Yes Yes "valid" - allocated and up-to-date in memory. 1613 * 1614 * "Dirty" is valid only with the last case (mapped+uptodate). 1615 */ 1616 1617/* 1618 * While block_write_full_page is writing back the dirty buffers under 1619 * the page lock, whoever dirtied the buffers may decide to clean them 1620 * again at any time. We handle that by only looking at the buffer 1621 * state inside lock_buffer(). 1622 * 1623 * If block_write_full_page() is called for regular writeback 1624 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1625 * locked buffer. This only can happen if someone has written the buffer 1626 * directly, with submit_bh(). At the address_space level PageWriteback 1627 * prevents this contention from occurring. 1628 */ 1629static int __block_write_full_page(struct inode *inode, struct page *page, 1630 get_block_t *get_block, struct writeback_control *wbc) 1631{ 1632 int err; 1633 sector_t block; 1634 sector_t last_block; 1635 struct buffer_head *bh, *head; 1636 const unsigned blocksize = 1 << inode->i_blkbits; 1637 int nr_underway = 0; 1638 1639 BUG_ON(!PageLocked(page)); 1640 1641 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1642 1643 if (!page_has_buffers(page)) { 1644 create_empty_buffers(page, blocksize, 1645 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1646 } 1647 1648 /* 1649 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1650 * here, and the (potentially unmapped) buffers may become dirty at 1651 * any time. If a buffer becomes dirty here after we've inspected it 1652 * then we just miss that fact, and the page stays dirty. 1653 * 1654 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1655 * handle that here by just cleaning them. 1656 */ 1657 1658 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1659 head = page_buffers(page); 1660 bh = head; 1661 1662 /* 1663 * Get all the dirty buffers mapped to disk addresses and 1664 * handle any aliases from the underlying blockdev's mapping. 1665 */ 1666 do { 1667 if (block > last_block) { 1668 /* 1669 * mapped buffers outside i_size will occur, because 1670 * this page can be outside i_size when there is a 1671 * truncate in progress. 1672 */ 1673 /* 1674 * The buffer was zeroed by block_write_full_page() 1675 */ 1676 clear_buffer_dirty(bh); 1677 set_buffer_uptodate(bh); 1678 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1679 WARN_ON(bh->b_size != blocksize); 1680 err = get_block(inode, block, bh, 1); 1681 if (err) 1682 goto recover; 1683 if (buffer_new(bh)) { 1684 /* blockdev mappings never come here */ 1685 clear_buffer_new(bh); 1686 unmap_underlying_metadata(bh->b_bdev, 1687 bh->b_blocknr); 1688 } 1689 } 1690 bh = bh->b_this_page; 1691 block++; 1692 } while (bh != head); 1693 1694 do { 1695 if (!buffer_mapped(bh)) 1696 continue; 1697 /* 1698 * If it's a fully non-blocking write attempt and we cannot 1699 * lock the buffer then redirty the page. Note that this can 1700 * potentially cause a busy-wait loop from pdflush and kswapd 1701 * activity, but those code paths have their own higher-level 1702 * throttling. 1703 */ 1704 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1705 lock_buffer(bh); 1706 } else if (test_set_buffer_locked(bh)) { 1707 redirty_page_for_writepage(wbc, page); 1708 continue; 1709 } 1710 if (test_clear_buffer_dirty(bh)) { 1711 mark_buffer_async_write(bh); 1712 } else { 1713 unlock_buffer(bh); 1714 } 1715 } while ((bh = bh->b_this_page) != head); 1716 1717 /* 1718 * The page and its buffers are protected by PageWriteback(), so we can 1719 * drop the bh refcounts early. 1720 */ 1721 BUG_ON(PageWriteback(page)); 1722 set_page_writeback(page); 1723 1724 do { 1725 struct buffer_head *next = bh->b_this_page; 1726 if (buffer_async_write(bh)) { 1727 submit_bh(WRITE, bh); 1728 nr_underway++; 1729 } 1730 bh = next; 1731 } while (bh != head); 1732 unlock_page(page); 1733 1734 err = 0; 1735done: 1736 if (nr_underway == 0) { 1737 /* 1738 * The page was marked dirty, but the buffers were 1739 * clean. Someone wrote them back by hand with 1740 * ll_rw_block/submit_bh. A rare case. 1741 */ 1742 end_page_writeback(page); 1743 1744 /* 1745 * The page and buffer_heads can be released at any time from 1746 * here on. 1747 */ 1748 } 1749 return err; 1750 1751recover: 1752 /* 1753 * ENOSPC, or some other error. We may already have added some 1754 * blocks to the file, so we need to write these out to avoid 1755 * exposing stale data. 1756 * The page is currently locked and not marked for writeback 1757 */ 1758 bh = head; 1759 /* Recovery: lock and submit the mapped buffers */ 1760 do { 1761 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1762 lock_buffer(bh); 1763 mark_buffer_async_write(bh); 1764 } else { 1765 /* 1766 * The buffer may have been set dirty during 1767 * attachment to a dirty page. 1768 */ 1769 clear_buffer_dirty(bh); 1770 } 1771 } while ((bh = bh->b_this_page) != head); 1772 SetPageError(page); 1773 BUG_ON(PageWriteback(page)); 1774 mapping_set_error(page->mapping, err); 1775 set_page_writeback(page); 1776 do { 1777 struct buffer_head *next = bh->b_this_page; 1778 if (buffer_async_write(bh)) { 1779 clear_buffer_dirty(bh); 1780 submit_bh(WRITE, bh); 1781 nr_underway++; 1782 } 1783 bh = next; 1784 } while (bh != head); 1785 unlock_page(page); 1786 goto done; 1787} 1788 1789/* 1790 * If a page has any new buffers, zero them out here, and mark them uptodate 1791 * and dirty so they'll be written out (in order to prevent uninitialised 1792 * block data from leaking). And clear the new bit. 1793 */ 1794void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1795{ 1796 unsigned int block_start, block_end; 1797 struct buffer_head *head, *bh; 1798 1799 BUG_ON(!PageLocked(page)); 1800 if (!page_has_buffers(page)) 1801 return; 1802 1803 bh = head = page_buffers(page); 1804 block_start = 0; 1805 do { 1806 block_end = block_start + bh->b_size; 1807 1808 if (buffer_new(bh)) { 1809 if (block_end > from && block_start < to) { 1810 if (!PageUptodate(page)) { 1811 unsigned start, size; 1812 1813 start = max(from, block_start); 1814 size = min(to, block_end) - start; 1815 1816 zero_user(page, start, size); 1817 set_buffer_uptodate(bh); 1818 } 1819 1820 clear_buffer_new(bh); 1821 mark_buffer_dirty(bh); 1822 } 1823 } 1824 1825 block_start = block_end; 1826 bh = bh->b_this_page; 1827 } while (bh != head); 1828} 1829EXPORT_SYMBOL(page_zero_new_buffers); 1830 1831static int __block_prepare_write(struct inode *inode, struct page *page, 1832 unsigned from, unsigned to, get_block_t *get_block) 1833{ 1834 unsigned block_start, block_end; 1835 sector_t block; 1836 int err = 0; 1837 unsigned blocksize, bbits; 1838 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1839 1840 BUG_ON(!PageLocked(page)); 1841 BUG_ON(from > PAGE_CACHE_SIZE); 1842 BUG_ON(to > PAGE_CACHE_SIZE); 1843 BUG_ON(from > to); 1844 1845 blocksize = 1 << inode->i_blkbits; 1846 if (!page_has_buffers(page)) 1847 create_empty_buffers(page, blocksize, 0); 1848 head = page_buffers(page); 1849 1850 bbits = inode->i_blkbits; 1851 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1852 1853 for(bh = head, block_start = 0; bh != head || !block_start; 1854 block++, block_start=block_end, bh = bh->b_this_page) { 1855 block_end = block_start + blocksize; 1856 if (block_end <= from || block_start >= to) { 1857 if (PageUptodate(page)) { 1858 if (!buffer_uptodate(bh)) 1859 set_buffer_uptodate(bh); 1860 } 1861 continue; 1862 } 1863 if (buffer_new(bh)) 1864 clear_buffer_new(bh); 1865 if (!buffer_mapped(bh)) { 1866 WARN_ON(bh->b_size != blocksize); 1867 err = get_block(inode, block, bh, 1); 1868 if (err) 1869 break; 1870 if (buffer_new(bh)) { 1871 unmap_underlying_metadata(bh->b_bdev, 1872 bh->b_blocknr); 1873 if (PageUptodate(page)) { 1874 clear_buffer_new(bh); 1875 set_buffer_uptodate(bh); 1876 mark_buffer_dirty(bh); 1877 continue; 1878 } 1879 if (block_end > to || block_start < from) 1880 zero_user_segments(page, 1881 to, block_end, 1882 block_start, from); 1883 continue; 1884 } 1885 } 1886 if (PageUptodate(page)) { 1887 if (!buffer_uptodate(bh)) 1888 set_buffer_uptodate(bh); 1889 continue; 1890 } 1891 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1892 !buffer_unwritten(bh) && 1893 (block_start < from || block_end > to)) { 1894 ll_rw_block(READ, 1, &bh); 1895 *wait_bh++=bh; 1896 } 1897 } 1898 /* 1899 * If we issued read requests - let them complete. 1900 */ 1901 while(wait_bh > wait) { 1902 wait_on_buffer(*--wait_bh); 1903 if (!buffer_uptodate(*wait_bh)) 1904 err = -EIO; 1905 } 1906 if (unlikely(err)) 1907 page_zero_new_buffers(page, from, to); 1908 return err; 1909} 1910 1911static int __block_commit_write(struct inode *inode, struct page *page, 1912 unsigned from, unsigned to) 1913{ 1914 unsigned block_start, block_end; 1915 int partial = 0; 1916 unsigned blocksize; 1917 struct buffer_head *bh, *head; 1918 1919 blocksize = 1 << inode->i_blkbits; 1920 1921 for(bh = head = page_buffers(page), block_start = 0; 1922 bh != head || !block_start; 1923 block_start=block_end, bh = bh->b_this_page) { 1924 block_end = block_start + blocksize; 1925 if (block_end <= from || block_start >= to) { 1926 if (!buffer_uptodate(bh)) 1927 partial = 1; 1928 } else { 1929 set_buffer_uptodate(bh); 1930 mark_buffer_dirty(bh); 1931 } 1932 clear_buffer_new(bh); 1933 } 1934 1935 /* 1936 * If this is a partial write which happened to make all buffers 1937 * uptodate then we can optimize away a bogus readpage() for 1938 * the next read(). Here we 'discover' whether the page went 1939 * uptodate as a result of this (potentially partial) write. 1940 */ 1941 if (!partial) 1942 SetPageUptodate(page); 1943 return 0; 1944} 1945 1946/* 1947 * block_write_begin takes care of the basic task of block allocation and 1948 * bringing partial write blocks uptodate first. 1949 * 1950 * If *pagep is not NULL, then block_write_begin uses the locked page 1951 * at *pagep rather than allocating its own. In this case, the page will 1952 * not be unlocked or deallocated on failure. 1953 */ 1954int block_write_begin(struct file *file, struct address_space *mapping, 1955 loff_t pos, unsigned len, unsigned flags, 1956 struct page **pagep, void **fsdata, 1957 get_block_t *get_block) 1958{ 1959 struct inode *inode = mapping->host; 1960 int status = 0; 1961 struct page *page; 1962 pgoff_t index; 1963 unsigned start, end; 1964 int ownpage = 0; 1965 1966 index = pos >> PAGE_CACHE_SHIFT; 1967 start = pos & (PAGE_CACHE_SIZE - 1); 1968 end = start + len; 1969 1970 page = *pagep; 1971 if (page == NULL) { 1972 ownpage = 1; 1973 page = __grab_cache_page(mapping, index); 1974 if (!page) { 1975 status = -ENOMEM; 1976 goto out; 1977 } 1978 *pagep = page; 1979 } else 1980 BUG_ON(!PageLocked(page)); 1981 1982 status = __block_prepare_write(inode, page, start, end, get_block); 1983 if (unlikely(status)) { 1984 ClearPageUptodate(page); 1985 1986 if (ownpage) { 1987 unlock_page(page); 1988 page_cache_release(page); 1989 *pagep = NULL; 1990 1991 /* 1992 * prepare_write() may have instantiated a few blocks 1993 * outside i_size. Trim these off again. Don't need 1994 * i_size_read because we hold i_mutex. 1995 */ 1996 if (pos + len > inode->i_size) 1997 vmtruncate(inode, inode->i_size); 1998 } 1999 goto out; 2000 } 2001 2002out: 2003 return status; 2004} 2005EXPORT_SYMBOL(block_write_begin); 2006 2007int block_write_end(struct file *file, struct address_space *mapping, 2008 loff_t pos, unsigned len, unsigned copied, 2009 struct page *page, void *fsdata) 2010{ 2011 struct inode *inode = mapping->host; 2012 unsigned start; 2013 2014 start = pos & (PAGE_CACHE_SIZE - 1); 2015 2016 if (unlikely(copied < len)) { 2017 /* 2018 * The buffers that were written will now be uptodate, so we 2019 * don't have to worry about a readpage reading them and 2020 * overwriting a partial write. However if we have encountered 2021 * a short write and only partially written into a buffer, it 2022 * will not be marked uptodate, so a readpage might come in and 2023 * destroy our partial write. 2024 * 2025 * Do the simplest thing, and just treat any short write to a 2026 * non uptodate page as a zero-length write, and force the 2027 * caller to redo the whole thing. 2028 */ 2029 if (!PageUptodate(page)) 2030 copied = 0; 2031 2032 page_zero_new_buffers(page, start+copied, start+len); 2033 } 2034 flush_dcache_page(page); 2035 2036 /* This could be a short (even 0-length) commit */ 2037 __block_commit_write(inode, page, start, start+copied); 2038 2039 return copied; 2040} 2041EXPORT_SYMBOL(block_write_end); 2042 2043int generic_write_end(struct file *file, struct address_space *mapping, 2044 loff_t pos, unsigned len, unsigned copied, 2045 struct page *page, void *fsdata) 2046{ 2047 struct inode *inode = mapping->host; 2048 2049 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2050 2051 /* 2052 * No need to use i_size_read() here, the i_size 2053 * cannot change under us because we hold i_mutex. 2054 * 2055 * But it's important to update i_size while still holding page lock: 2056 * page writeout could otherwise come in and zero beyond i_size. 2057 */ 2058 if (pos+copied > inode->i_size) { 2059 i_size_write(inode, pos+copied); 2060 mark_inode_dirty(inode); 2061 } 2062 2063 unlock_page(page); 2064 page_cache_release(page); 2065 2066 return copied; 2067} 2068EXPORT_SYMBOL(generic_write_end); 2069 2070/* 2071 * Generic "read page" function for block devices that have the normal 2072 * get_block functionality. This is most of the block device filesystems. 2073 * Reads the page asynchronously --- the unlock_buffer() and 2074 * set/clear_buffer_uptodate() functions propagate buffer state into the 2075 * page struct once IO has completed. 2076 */ 2077int block_read_full_page(struct page *page, get_block_t *get_block) 2078{ 2079 struct inode *inode = page->mapping->host; 2080 sector_t iblock, lblock; 2081 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2082 unsigned int blocksize; 2083 int nr, i; 2084 int fully_mapped = 1; 2085 2086 BUG_ON(!PageLocked(page)); 2087 blocksize = 1 << inode->i_blkbits; 2088 if (!page_has_buffers(page)) 2089 create_empty_buffers(page, blocksize, 0); 2090 head = page_buffers(page); 2091 2092 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2093 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2094 bh = head; 2095 nr = 0; 2096 i = 0; 2097 2098 do { 2099 if (buffer_uptodate(bh)) 2100 continue; 2101 2102 if (!buffer_mapped(bh)) { 2103 int err = 0; 2104 2105 fully_mapped = 0; 2106 if (iblock < lblock) { 2107 WARN_ON(bh->b_size != blocksize); 2108 err = get_block(inode, iblock, bh, 0); 2109 if (err) 2110 SetPageError(page); 2111 } 2112 if (!buffer_mapped(bh)) { 2113 zero_user(page, i * blocksize, blocksize); 2114 if (!err) 2115 set_buffer_uptodate(bh); 2116 continue; 2117 } 2118 /* 2119 * get_block() might have updated the buffer 2120 * synchronously 2121 */ 2122 if (buffer_uptodate(bh)) 2123 continue; 2124 } 2125 arr[nr++] = bh; 2126 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2127 2128 if (fully_mapped) 2129 SetPageMappedToDisk(page); 2130 2131 if (!nr) { 2132 /* 2133 * All buffers are uptodate - we can set the page uptodate 2134 * as well. But not if get_block() returned an error. 2135 */ 2136 if (!PageError(page)) 2137 SetPageUptodate(page); 2138 unlock_page(page); 2139 return 0; 2140 } 2141 2142 /* Stage two: lock the buffers */ 2143 for (i = 0; i < nr; i++) { 2144 bh = arr[i]; 2145 lock_buffer(bh); 2146 mark_buffer_async_read(bh); 2147 } 2148 2149 /* 2150 * Stage 3: start the IO. Check for uptodateness 2151 * inside the buffer lock in case another process reading 2152 * the underlying blockdev brought it uptodate (the sct fix). 2153 */ 2154 for (i = 0; i < nr; i++) { 2155 bh = arr[i]; 2156 if (buffer_uptodate(bh)) 2157 end_buffer_async_read(bh, 1); 2158 else 2159 submit_bh(READ, bh); 2160 } 2161 return 0; 2162} 2163 2164/* utility function for filesystems that need to do work on expanding 2165 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2166 * deal with the hole. 2167 */ 2168int generic_cont_expand_simple(struct inode *inode, loff_t size) 2169{ 2170 struct address_space *mapping = inode->i_mapping; 2171 struct page *page; 2172 void *fsdata; 2173 unsigned long limit; 2174 int err; 2175 2176 err = -EFBIG; 2177 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2178 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2179 send_sig(SIGXFSZ, current, 0); 2180 goto out; 2181 } 2182 if (size > inode->i_sb->s_maxbytes) 2183 goto out; 2184 2185 err = pagecache_write_begin(NULL, mapping, size, 0, 2186 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2187 &page, &fsdata); 2188 if (err) 2189 goto out; 2190 2191 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2192 BUG_ON(err > 0); 2193 2194out: 2195 return err; 2196} 2197 2198int cont_expand_zero(struct file *file, struct address_space *mapping, 2199 loff_t pos, loff_t *bytes) 2200{ 2201 struct inode *inode = mapping->host; 2202 unsigned blocksize = 1 << inode->i_blkbits; 2203 struct page *page; 2204 void *fsdata; 2205 pgoff_t index, curidx; 2206 loff_t curpos; 2207 unsigned zerofrom, offset, len; 2208 int err = 0; 2209 2210 index = pos >> PAGE_CACHE_SHIFT; 2211 offset = pos & ~PAGE_CACHE_MASK; 2212 2213 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2214 zerofrom = curpos & ~PAGE_CACHE_MASK; 2215 if (zerofrom & (blocksize-1)) { 2216 *bytes |= (blocksize-1); 2217 (*bytes)++; 2218 } 2219 len = PAGE_CACHE_SIZE - zerofrom; 2220 2221 err = pagecache_write_begin(file, mapping, curpos, len, 2222 AOP_FLAG_UNINTERRUPTIBLE, 2223 &page, &fsdata); 2224 if (err) 2225 goto out; 2226 zero_user(page, zerofrom, len); 2227 err = pagecache_write_end(file, mapping, curpos, len, len, 2228 page, fsdata); 2229 if (err < 0) 2230 goto out; 2231 BUG_ON(err != len); 2232 err = 0; 2233 } 2234 2235 /* page covers the boundary, find the boundary offset */ 2236 if (index == curidx) { 2237 zerofrom = curpos & ~PAGE_CACHE_MASK; 2238 /* if we will expand the thing last block will be filled */ 2239 if (offset <= zerofrom) { 2240 goto out; 2241 } 2242 if (zerofrom & (blocksize-1)) { 2243 *bytes |= (blocksize-1); 2244 (*bytes)++; 2245 } 2246 len = offset - zerofrom; 2247 2248 err = pagecache_write_begin(file, mapping, curpos, len, 2249 AOP_FLAG_UNINTERRUPTIBLE, 2250 &page, &fsdata); 2251 if (err) 2252 goto out; 2253 zero_user(page, zerofrom, len); 2254 err = pagecache_write_end(file, mapping, curpos, len, len, 2255 page, fsdata); 2256 if (err < 0) 2257 goto out; 2258 BUG_ON(err != len); 2259 err = 0; 2260 } 2261out: 2262 return err; 2263} 2264 2265/* 2266 * For moronic filesystems that do not allow holes in file. 2267 * We may have to extend the file. 2268 */ 2269int cont_write_begin(struct file *file, struct address_space *mapping, 2270 loff_t pos, unsigned len, unsigned flags, 2271 struct page **pagep, void **fsdata, 2272 get_block_t *get_block, loff_t *bytes) 2273{ 2274 struct inode *inode = mapping->host; 2275 unsigned blocksize = 1 << inode->i_blkbits; 2276 unsigned zerofrom; 2277 int err; 2278 2279 err = cont_expand_zero(file, mapping, pos, bytes); 2280 if (err) 2281 goto out; 2282 2283 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2284 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2285 *bytes |= (blocksize-1); 2286 (*bytes)++; 2287 } 2288 2289 *pagep = NULL; 2290 err = block_write_begin(file, mapping, pos, len, 2291 flags, pagep, fsdata, get_block); 2292out: 2293 return err; 2294} 2295 2296int block_prepare_write(struct page *page, unsigned from, unsigned to, 2297 get_block_t *get_block) 2298{ 2299 struct inode *inode = page->mapping->host; 2300 int err = __block_prepare_write(inode, page, from, to, get_block); 2301 if (err) 2302 ClearPageUptodate(page); 2303 return err; 2304} 2305 2306int block_commit_write(struct page *page, unsigned from, unsigned to) 2307{ 2308 struct inode *inode = page->mapping->host; 2309 __block_commit_write(inode,page,from,to); 2310 return 0; 2311} 2312 2313int generic_commit_write(struct file *file, struct page *page, 2314 unsigned from, unsigned to) 2315{ 2316 struct inode *inode = page->mapping->host; 2317 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2318 __block_commit_write(inode,page,from,to); 2319 /* 2320 * No need to use i_size_read() here, the i_size 2321 * cannot change under us because we hold i_mutex. 2322 */ 2323 if (pos > inode->i_size) { 2324 i_size_write(inode, pos); 2325 mark_inode_dirty(inode); 2326 } 2327 return 0; 2328} 2329 2330/* 2331 * block_page_mkwrite() is not allowed to change the file size as it gets 2332 * called from a page fault handler when a page is first dirtied. Hence we must 2333 * be careful to check for EOF conditions here. We set the page up correctly 2334 * for a written page which means we get ENOSPC checking when writing into 2335 * holes and correct delalloc and unwritten extent mapping on filesystems that 2336 * support these features. 2337 * 2338 * We are not allowed to take the i_mutex here so we have to play games to 2339 * protect against truncate races as the page could now be beyond EOF. Because 2340 * vmtruncate() writes the inode size before removing pages, once we have the 2341 * page lock we can determine safely if the page is beyond EOF. If it is not 2342 * beyond EOF, then the page is guaranteed safe against truncation until we 2343 * unlock the page. 2344 */ 2345int 2346block_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2347 get_block_t get_block) 2348{ 2349 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2350 unsigned long end; 2351 loff_t size; 2352 int ret = -EINVAL; 2353 2354 lock_page(page); 2355 size = i_size_read(inode); 2356 if ((page->mapping != inode->i_mapping) || 2357 (page_offset(page) > size)) { 2358 /* page got truncated out from underneath us */ 2359 goto out_unlock; 2360 } 2361 2362 /* page is wholly or partially inside EOF */ 2363 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2364 end = size & ~PAGE_CACHE_MASK; 2365 else 2366 end = PAGE_CACHE_SIZE; 2367 2368 ret = block_prepare_write(page, 0, end, get_block); 2369 if (!ret) 2370 ret = block_commit_write(page, 0, end); 2371 2372out_unlock: 2373 unlock_page(page); 2374 return ret; 2375} 2376 2377/* 2378 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2379 * immediately, while under the page lock. So it needs a special end_io 2380 * handler which does not touch the bh after unlocking it. 2381 */ 2382static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2383{ 2384 __end_buffer_read_notouch(bh, uptodate); 2385} 2386 2387/* 2388 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2389 * the page (converting it to circular linked list and taking care of page 2390 * dirty races). 2391 */ 2392static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2393{ 2394 struct buffer_head *bh; 2395 2396 BUG_ON(!PageLocked(page)); 2397 2398 spin_lock(&page->mapping->private_lock); 2399 bh = head; 2400 do { 2401 if (PageDirty(page)) 2402 set_buffer_dirty(bh); 2403 if (!bh->b_this_page) 2404 bh->b_this_page = head; 2405 bh = bh->b_this_page; 2406 } while (bh != head); 2407 attach_page_buffers(page, head); 2408 spin_unlock(&page->mapping->private_lock); 2409} 2410 2411/* 2412 * On entry, the page is fully not uptodate. 2413 * On exit the page is fully uptodate in the areas outside (from,to) 2414 */ 2415int nobh_write_begin(struct file *file, struct address_space *mapping, 2416 loff_t pos, unsigned len, unsigned flags, 2417 struct page **pagep, void **fsdata, 2418 get_block_t *get_block) 2419{ 2420 struct inode *inode = mapping->host; 2421 const unsigned blkbits = inode->i_blkbits; 2422 const unsigned blocksize = 1 << blkbits; 2423 struct buffer_head *head, *bh; 2424 struct page *page; 2425 pgoff_t index; 2426 unsigned from, to; 2427 unsigned block_in_page; 2428 unsigned block_start, block_end; 2429 sector_t block_in_file; 2430 int nr_reads = 0; 2431 int ret = 0; 2432 int is_mapped_to_disk = 1; 2433 2434 index = pos >> PAGE_CACHE_SHIFT; 2435 from = pos & (PAGE_CACHE_SIZE - 1); 2436 to = from + len; 2437 2438 page = __grab_cache_page(mapping, index); 2439 if (!page) 2440 return -ENOMEM; 2441 *pagep = page; 2442 *fsdata = NULL; 2443 2444 if (page_has_buffers(page)) { 2445 unlock_page(page); 2446 page_cache_release(page); 2447 *pagep = NULL; 2448 return block_write_begin(file, mapping, pos, len, flags, pagep, 2449 fsdata, get_block); 2450 } 2451 2452 if (PageMappedToDisk(page)) 2453 return 0; 2454 2455 /* 2456 * Allocate buffers so that we can keep track of state, and potentially 2457 * attach them to the page if an error occurs. In the common case of 2458 * no error, they will just be freed again without ever being attached 2459 * to the page (which is all OK, because we're under the page lock). 2460 * 2461 * Be careful: the buffer linked list is a NULL terminated one, rather 2462 * than the circular one we're used to. 2463 */ 2464 head = alloc_page_buffers(page, blocksize, 0); 2465 if (!head) { 2466 ret = -ENOMEM; 2467 goto out_release; 2468 } 2469 2470 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2471 2472 /* 2473 * We loop across all blocks in the page, whether or not they are 2474 * part of the affected region. This is so we can discover if the 2475 * page is fully mapped-to-disk. 2476 */ 2477 for (block_start = 0, block_in_page = 0, bh = head; 2478 block_start < PAGE_CACHE_SIZE; 2479 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2480 int create; 2481 2482 block_end = block_start + blocksize; 2483 bh->b_state = 0; 2484 create = 1; 2485 if (block_start >= to) 2486 create = 0; 2487 ret = get_block(inode, block_in_file + block_in_page, 2488 bh, create); 2489 if (ret) 2490 goto failed; 2491 if (!buffer_mapped(bh)) 2492 is_mapped_to_disk = 0; 2493 if (buffer_new(bh)) 2494 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2495 if (PageUptodate(page)) { 2496 set_buffer_uptodate(bh); 2497 continue; 2498 } 2499 if (buffer_new(bh) || !buffer_mapped(bh)) { 2500 zero_user_segments(page, block_start, from, 2501 to, block_end); 2502 continue; 2503 } 2504 if (buffer_uptodate(bh)) 2505 continue; /* reiserfs does this */ 2506 if (block_start < from || block_end > to) { 2507 lock_buffer(bh); 2508 bh->b_end_io = end_buffer_read_nobh; 2509 submit_bh(READ, bh); 2510 nr_reads++; 2511 } 2512 } 2513 2514 if (nr_reads) { 2515 /* 2516 * The page is locked, so these buffers are protected from 2517 * any VM or truncate activity. Hence we don't need to care 2518 * for the buffer_head refcounts. 2519 */ 2520 for (bh = head; bh; bh = bh->b_this_page) { 2521 wait_on_buffer(bh); 2522 if (!buffer_uptodate(bh)) 2523 ret = -EIO; 2524 } 2525 if (ret) 2526 goto failed; 2527 } 2528 2529 if (is_mapped_to_disk) 2530 SetPageMappedToDisk(page); 2531 2532 *fsdata = head; /* to be released by nobh_write_end */ 2533 2534 return 0; 2535 2536failed: 2537 BUG_ON(!ret); 2538 /* 2539 * Error recovery is a bit difficult. We need to zero out blocks that 2540 * were newly allocated, and dirty them to ensure they get written out. 2541 * Buffers need to be attached to the page at this point, otherwise 2542 * the handling of potential IO errors during writeout would be hard 2543 * (could try doing synchronous writeout, but what if that fails too?) 2544 */ 2545 attach_nobh_buffers(page, head); 2546 page_zero_new_buffers(page, from, to); 2547 2548out_release: 2549 unlock_page(page); 2550 page_cache_release(page); 2551 *pagep = NULL; 2552 2553 if (pos + len > inode->i_size) 2554 vmtruncate(inode, inode->i_size); 2555 2556 return ret; 2557} 2558EXPORT_SYMBOL(nobh_write_begin); 2559 2560int nobh_write_end(struct file *file, struct address_space *mapping, 2561 loff_t pos, unsigned len, unsigned copied, 2562 struct page *page, void *fsdata) 2563{ 2564 struct inode *inode = page->mapping->host; 2565 struct buffer_head *head = fsdata; 2566 struct buffer_head *bh; 2567 2568 if (!PageMappedToDisk(page)) { 2569 if (unlikely(copied < len) && !page_has_buffers(page)) 2570 attach_nobh_buffers(page, head); 2571 if (page_has_buffers(page)) 2572 return generic_write_end(file, mapping, pos, len, 2573 copied, page, fsdata); 2574 } 2575 2576 SetPageUptodate(page); 2577 set_page_dirty(page); 2578 if (pos+copied > inode->i_size) { 2579 i_size_write(inode, pos+copied); 2580 mark_inode_dirty(inode); 2581 } 2582 2583 unlock_page(page); 2584 page_cache_release(page); 2585 2586 while (head) { 2587 bh = head; 2588 head = head->b_this_page; 2589 free_buffer_head(bh); 2590 } 2591 2592 return copied; 2593} 2594EXPORT_SYMBOL(nobh_write_end); 2595 2596/* 2597 * nobh_writepage() - based on block_full_write_page() except 2598 * that it tries to operate without attaching bufferheads to 2599 * the page. 2600 */ 2601int nobh_writepage(struct page *page, get_block_t *get_block, 2602 struct writeback_control *wbc) 2603{ 2604 struct inode * const inode = page->mapping->host; 2605 loff_t i_size = i_size_read(inode); 2606 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2607 unsigned offset; 2608 int ret; 2609 2610 /* Is the page fully inside i_size? */ 2611 if (page->index < end_index) 2612 goto out; 2613 2614 /* Is the page fully outside i_size? (truncate in progress) */ 2615 offset = i_size & (PAGE_CACHE_SIZE-1); 2616 if (page->index >= end_index+1 || !offset) { 2617 /* 2618 * The page may have dirty, unmapped buffers. For example, 2619 * they may have been added in ext3_writepage(). Make them 2620 * freeable here, so the page does not leak. 2621 */ 2622#if 0 2623 /* Not really sure about this - do we need this ? */ 2624 if (page->mapping->a_ops->invalidatepage) 2625 page->mapping->a_ops->invalidatepage(page, offset); 2626#endif 2627 unlock_page(page); 2628 return 0; /* don't care */ 2629 } 2630 2631 /* 2632 * The page straddles i_size. It must be zeroed out on each and every 2633 * writepage invocation because it may be mmapped. "A file is mapped 2634 * in multiples of the page size. For a file that is not a multiple of 2635 * the page size, the remaining memory is zeroed when mapped, and 2636 * writes to that region are not written out to the file." 2637 */ 2638 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2639out: 2640 ret = mpage_writepage(page, get_block, wbc); 2641 if (ret == -EAGAIN) 2642 ret = __block_write_full_page(inode, page, get_block, wbc); 2643 return ret; 2644} 2645EXPORT_SYMBOL(nobh_writepage); 2646 2647int nobh_truncate_page(struct address_space *mapping, 2648 loff_t from, get_block_t *get_block) 2649{ 2650 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2651 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2652 unsigned blocksize; 2653 sector_t iblock; 2654 unsigned length, pos; 2655 struct inode *inode = mapping->host; 2656 struct page *page; 2657 struct buffer_head map_bh; 2658 int err; 2659 2660 blocksize = 1 << inode->i_blkbits; 2661 length = offset & (blocksize - 1); 2662 2663 /* Block boundary? Nothing to do */ 2664 if (!length) 2665 return 0; 2666 2667 length = blocksize - length; 2668 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2669 2670 page = grab_cache_page(mapping, index); 2671 err = -ENOMEM; 2672 if (!page) 2673 goto out; 2674 2675 if (page_has_buffers(page)) { 2676has_buffers: 2677 unlock_page(page); 2678 page_cache_release(page); 2679 return block_truncate_page(mapping, from, get_block); 2680 } 2681 2682 /* Find the buffer that contains "offset" */ 2683 pos = blocksize; 2684 while (offset >= pos) { 2685 iblock++; 2686 pos += blocksize; 2687 } 2688 2689 err = get_block(inode, iblock, &map_bh, 0); 2690 if (err) 2691 goto unlock; 2692 /* unmapped? It's a hole - nothing to do */ 2693 if (!buffer_mapped(&map_bh)) 2694 goto unlock; 2695 2696 /* Ok, it's mapped. Make sure it's up-to-date */ 2697 if (!PageUptodate(page)) { 2698 err = mapping->a_ops->readpage(NULL, page); 2699 if (err) { 2700 page_cache_release(page); 2701 goto out; 2702 } 2703 lock_page(page); 2704 if (!PageUptodate(page)) { 2705 err = -EIO; 2706 goto unlock; 2707 } 2708 if (page_has_buffers(page)) 2709 goto has_buffers; 2710 } 2711 zero_user(page, offset, length); 2712 set_page_dirty(page); 2713 err = 0; 2714 2715unlock: 2716 unlock_page(page); 2717 page_cache_release(page); 2718out: 2719 return err; 2720} 2721EXPORT_SYMBOL(nobh_truncate_page); 2722 2723int block_truncate_page(struct address_space *mapping, 2724 loff_t from, get_block_t *get_block) 2725{ 2726 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2727 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2728 unsigned blocksize; 2729 sector_t iblock; 2730 unsigned length, pos; 2731 struct inode *inode = mapping->host; 2732 struct page *page; 2733 struct buffer_head *bh; 2734 int err; 2735 2736 blocksize = 1 << inode->i_blkbits; 2737 length = offset & (blocksize - 1); 2738 2739 /* Block boundary? Nothing to do */ 2740 if (!length) 2741 return 0; 2742 2743 length = blocksize - length; 2744 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2745 2746 page = grab_cache_page(mapping, index); 2747 err = -ENOMEM; 2748 if (!page) 2749 goto out; 2750 2751 if (!page_has_buffers(page)) 2752 create_empty_buffers(page, blocksize, 0); 2753 2754 /* Find the buffer that contains "offset" */ 2755 bh = page_buffers(page); 2756 pos = blocksize; 2757 while (offset >= pos) { 2758 bh = bh->b_this_page; 2759 iblock++; 2760 pos += blocksize; 2761 } 2762 2763 err = 0; 2764 if (!buffer_mapped(bh)) { 2765 WARN_ON(bh->b_size != blocksize); 2766 err = get_block(inode, iblock, bh, 0); 2767 if (err) 2768 goto unlock; 2769 /* unmapped? It's a hole - nothing to do */ 2770 if (!buffer_mapped(bh)) 2771 goto unlock; 2772 } 2773 2774 /* Ok, it's mapped. Make sure it's up-to-date */ 2775 if (PageUptodate(page)) 2776 set_buffer_uptodate(bh); 2777 2778 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2779 err = -EIO; 2780 ll_rw_block(READ, 1, &bh); 2781 wait_on_buffer(bh); 2782 /* Uhhuh. Read error. Complain and punt. */ 2783 if (!buffer_uptodate(bh)) 2784 goto unlock; 2785 } 2786 2787 zero_user(page, offset, length); 2788 mark_buffer_dirty(bh); 2789 err = 0; 2790 2791unlock: 2792 unlock_page(page); 2793 page_cache_release(page); 2794out: 2795 return err; 2796} 2797 2798/* 2799 * The generic ->writepage function for buffer-backed address_spaces 2800 */ 2801int block_write_full_page(struct page *page, get_block_t *get_block, 2802 struct writeback_control *wbc) 2803{ 2804 struct inode * const inode = page->mapping->host; 2805 loff_t i_size = i_size_read(inode); 2806 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2807 unsigned offset; 2808 2809 /* Is the page fully inside i_size? */ 2810 if (page->index < end_index) 2811 return __block_write_full_page(inode, page, get_block, wbc); 2812 2813 /* Is the page fully outside i_size? (truncate in progress) */ 2814 offset = i_size & (PAGE_CACHE_SIZE-1); 2815 if (page->index >= end_index+1 || !offset) { 2816 /* 2817 * The page may have dirty, unmapped buffers. For example, 2818 * they may have been added in ext3_writepage(). Make them 2819 * freeable here, so the page does not leak. 2820 */ 2821 do_invalidatepage(page, 0); 2822 unlock_page(page); 2823 return 0; /* don't care */ 2824 } 2825 2826 /* 2827 * The page straddles i_size. It must be zeroed out on each and every 2828 * writepage invokation because it may be mmapped. "A file is mapped 2829 * in multiples of the page size. For a file that is not a multiple of 2830 * the page size, the remaining memory is zeroed when mapped, and 2831 * writes to that region are not written out to the file." 2832 */ 2833 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2834 return __block_write_full_page(inode, page, get_block, wbc); 2835} 2836 2837sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2838 get_block_t *get_block) 2839{ 2840 struct buffer_head tmp; 2841 struct inode *inode = mapping->host; 2842 tmp.b_state = 0; 2843 tmp.b_blocknr = 0; 2844 tmp.b_size = 1 << inode->i_blkbits; 2845 get_block(inode, block, &tmp, 0); 2846 return tmp.b_blocknr; 2847} 2848 2849static void end_bio_bh_io_sync(struct bio *bio, int err) 2850{ 2851 struct buffer_head *bh = bio->bi_private; 2852 2853 if (err == -EOPNOTSUPP) { 2854 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2855 set_bit(BH_Eopnotsupp, &bh->b_state); 2856 } 2857 2858 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2859 bio_put(bio); 2860} 2861 2862int submit_bh(int rw, struct buffer_head * bh) 2863{ 2864 struct bio *bio; 2865 int ret = 0; 2866 2867 BUG_ON(!buffer_locked(bh)); 2868 BUG_ON(!buffer_mapped(bh)); 2869 BUG_ON(!bh->b_end_io); 2870 2871 if (buffer_ordered(bh) && (rw == WRITE)) 2872 rw = WRITE_BARRIER; 2873 2874 /* 2875 * Only clear out a write error when rewriting, should this 2876 * include WRITE_SYNC as well? 2877 */ 2878 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2879 clear_buffer_write_io_error(bh); 2880 2881 /* 2882 * from here on down, it's all bio -- do the initial mapping, 2883 * submit_bio -> generic_make_request may further map this bio around 2884 */ 2885 bio = bio_alloc(GFP_NOIO, 1); 2886 2887 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2888 bio->bi_bdev = bh->b_bdev; 2889 bio->bi_io_vec[0].bv_page = bh->b_page; 2890 bio->bi_io_vec[0].bv_len = bh->b_size; 2891 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2892 2893 bio->bi_vcnt = 1; 2894 bio->bi_idx = 0; 2895 bio->bi_size = bh->b_size; 2896 2897 bio->bi_end_io = end_bio_bh_io_sync; 2898 bio->bi_private = bh; 2899 2900 bio_get(bio); 2901 submit_bio(rw, bio); 2902 2903 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2904 ret = -EOPNOTSUPP; 2905 2906 bio_put(bio); 2907 return ret; 2908} 2909 2910/** 2911 * ll_rw_block: low-level access to block devices (DEPRECATED) 2912 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2913 * @nr: number of &struct buffer_heads in the array 2914 * @bhs: array of pointers to &struct buffer_head 2915 * 2916 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2917 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2918 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2919 * are sent to disk. The fourth %READA option is described in the documentation 2920 * for generic_make_request() which ll_rw_block() calls. 2921 * 2922 * This function drops any buffer that it cannot get a lock on (with the 2923 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2924 * clean when doing a write request, and any buffer that appears to be 2925 * up-to-date when doing read request. Further it marks as clean buffers that 2926 * are processed for writing (the buffer cache won't assume that they are 2927 * actually clean until the buffer gets unlocked). 2928 * 2929 * ll_rw_block sets b_end_io to simple completion handler that marks 2930 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2931 * any waiters. 2932 * 2933 * All of the buffers must be for the same device, and must also be a 2934 * multiple of the current approved size for the device. 2935 */ 2936void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2937{ 2938 int i; 2939 2940 for (i = 0; i < nr; i++) { 2941 struct buffer_head *bh = bhs[i]; 2942 2943 if (rw == SWRITE) 2944 lock_buffer(bh); 2945 else if (test_set_buffer_locked(bh)) 2946 continue; 2947 2948 if (rw == WRITE || rw == SWRITE) { 2949 if (test_clear_buffer_dirty(bh)) { 2950 bh->b_end_io = end_buffer_write_sync; 2951 get_bh(bh); 2952 submit_bh(WRITE, bh); 2953 continue; 2954 } 2955 } else { 2956 if (!buffer_uptodate(bh)) { 2957 bh->b_end_io = end_buffer_read_sync; 2958 get_bh(bh); 2959 submit_bh(rw, bh); 2960 continue; 2961 } 2962 } 2963 unlock_buffer(bh); 2964 } 2965} 2966 2967/* 2968 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2969 * and then start new I/O and then wait upon it. The caller must have a ref on 2970 * the buffer_head. 2971 */ 2972int sync_dirty_buffer(struct buffer_head *bh) 2973{ 2974 int ret = 0; 2975 2976 WARN_ON(atomic_read(&bh->b_count) < 1); 2977 lock_buffer(bh); 2978 if (test_clear_buffer_dirty(bh)) { 2979 get_bh(bh); 2980 bh->b_end_io = end_buffer_write_sync; 2981 ret = submit_bh(WRITE, bh); 2982 wait_on_buffer(bh); 2983 if (buffer_eopnotsupp(bh)) { 2984 clear_buffer_eopnotsupp(bh); 2985 ret = -EOPNOTSUPP; 2986 } 2987 if (!ret && !buffer_uptodate(bh)) 2988 ret = -EIO; 2989 } else { 2990 unlock_buffer(bh); 2991 } 2992 return ret; 2993} 2994 2995/* 2996 * try_to_free_buffers() checks if all the buffers on this particular page 2997 * are unused, and releases them if so. 2998 * 2999 * Exclusion against try_to_free_buffers may be obtained by either 3000 * locking the page or by holding its mapping's private_lock. 3001 * 3002 * If the page is dirty but all the buffers are clean then we need to 3003 * be sure to mark the page clean as well. This is because the page 3004 * may be against a block device, and a later reattachment of buffers 3005 * to a dirty page will set *all* buffers dirty. Which would corrupt 3006 * filesystem data on the same device. 3007 * 3008 * The same applies to regular filesystem pages: if all the buffers are 3009 * clean then we set the page clean and proceed. To do that, we require 3010 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3011 * private_lock. 3012 * 3013 * try_to_free_buffers() is non-blocking. 3014 */ 3015static inline int buffer_busy(struct buffer_head *bh) 3016{ 3017 return atomic_read(&bh->b_count) | 3018 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3019} 3020 3021static int 3022drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3023{ 3024 struct buffer_head *head = page_buffers(page); 3025 struct buffer_head *bh; 3026 3027 bh = head; 3028 do { 3029 if (buffer_write_io_error(bh) && page->mapping) 3030 set_bit(AS_EIO, &page->mapping->flags); 3031 if (buffer_busy(bh)) 3032 goto failed; 3033 bh = bh->b_this_page; 3034 } while (bh != head); 3035 3036 do { 3037 struct buffer_head *next = bh->b_this_page; 3038 3039 if (bh->b_assoc_map) 3040 __remove_assoc_queue(bh); 3041 bh = next; 3042 } while (bh != head); 3043 *buffers_to_free = head; 3044 __clear_page_buffers(page); 3045 return 1; 3046failed: 3047 return 0; 3048} 3049 3050int try_to_free_buffers(struct page *page) 3051{ 3052 struct address_space * const mapping = page->mapping; 3053 struct buffer_head *buffers_to_free = NULL; 3054 int ret = 0; 3055 3056 BUG_ON(!PageLocked(page)); 3057 if (PageWriteback(page)) 3058 return 0; 3059 3060 if (mapping == NULL) { /* can this still happen? */ 3061 ret = drop_buffers(page, &buffers_to_free); 3062 goto out; 3063 } 3064 3065 spin_lock(&mapping->private_lock); 3066 ret = drop_buffers(page, &buffers_to_free); 3067 3068 /* 3069 * If the filesystem writes its buffers by hand (eg ext3) 3070 * then we can have clean buffers against a dirty page. We 3071 * clean the page here; otherwise the VM will never notice 3072 * that the filesystem did any IO at all. 3073 * 3074 * Also, during truncate, discard_buffer will have marked all 3075 * the page's buffers clean. We discover that here and clean 3076 * the page also. 3077 * 3078 * private_lock must be held over this entire operation in order 3079 * to synchronise against __set_page_dirty_buffers and prevent the 3080 * dirty bit from being lost. 3081 */ 3082 if (ret) 3083 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3084 spin_unlock(&mapping->private_lock); 3085out: 3086 if (buffers_to_free) { 3087 struct buffer_head *bh = buffers_to_free; 3088 3089 do { 3090 struct buffer_head *next = bh->b_this_page; 3091 free_buffer_head(bh); 3092 bh = next; 3093 } while (bh != buffers_to_free); 3094 } 3095 return ret; 3096} 3097EXPORT_SYMBOL(try_to_free_buffers); 3098 3099void block_sync_page(struct page *page) 3100{ 3101 struct address_space *mapping; 3102 3103 smp_mb(); 3104 mapping = page_mapping(page); 3105 if (mapping) 3106 blk_run_backing_dev(mapping->backing_dev_info, page); 3107} 3108 3109/* 3110 * There are no bdflush tunables left. But distributions are 3111 * still running obsolete flush daemons, so we terminate them here. 3112 * 3113 * Use of bdflush() is deprecated and will be removed in a future kernel. 3114 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 3115 */ 3116asmlinkage long sys_bdflush(int func, long data) 3117{ 3118 static int msg_count; 3119 3120 if (!capable(CAP_SYS_ADMIN)) 3121 return -EPERM; 3122 3123 if (msg_count < 5) { 3124 msg_count++; 3125 printk(KERN_INFO 3126 "warning: process `%s' used the obsolete bdflush" 3127 " system call\n", current->comm); 3128 printk(KERN_INFO "Fix your initscripts?\n"); 3129 } 3130 3131 if (func == 1) 3132 do_exit(0); 3133 return 0; 3134} 3135 3136/* 3137 * Buffer-head allocation 3138 */ 3139static struct kmem_cache *bh_cachep; 3140 3141/* 3142 * Once the number of bh's in the machine exceeds this level, we start 3143 * stripping them in writeback. 3144 */ 3145static int max_buffer_heads; 3146 3147int buffer_heads_over_limit; 3148 3149struct bh_accounting { 3150 int nr; /* Number of live bh's */ 3151 int ratelimit; /* Limit cacheline bouncing */ 3152}; 3153 3154static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3155 3156static void recalc_bh_state(void) 3157{ 3158 int i; 3159 int tot = 0; 3160 3161 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3162 return; 3163 __get_cpu_var(bh_accounting).ratelimit = 0; 3164 for_each_online_cpu(i) 3165 tot += per_cpu(bh_accounting, i).nr; 3166 buffer_heads_over_limit = (tot > max_buffer_heads); 3167} 3168 3169struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3170{ 3171 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, 3172 set_migrateflags(gfp_flags, __GFP_RECLAIMABLE)); 3173 if (ret) { 3174 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3175 get_cpu_var(bh_accounting).nr++; 3176 recalc_bh_state(); 3177 put_cpu_var(bh_accounting); 3178 } 3179 return ret; 3180} 3181EXPORT_SYMBOL(alloc_buffer_head); 3182 3183void free_buffer_head(struct buffer_head *bh) 3184{ 3185 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3186 kmem_cache_free(bh_cachep, bh); 3187 get_cpu_var(bh_accounting).nr--; 3188 recalc_bh_state(); 3189 put_cpu_var(bh_accounting); 3190} 3191EXPORT_SYMBOL(free_buffer_head); 3192 3193static void buffer_exit_cpu(int cpu) 3194{ 3195 int i; 3196 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3197 3198 for (i = 0; i < BH_LRU_SIZE; i++) { 3199 brelse(b->bhs[i]); 3200 b->bhs[i] = NULL; 3201 } 3202 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3203 per_cpu(bh_accounting, cpu).nr = 0; 3204 put_cpu_var(bh_accounting); 3205} 3206 3207static int buffer_cpu_notify(struct notifier_block *self, 3208 unsigned long action, void *hcpu) 3209{ 3210 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3211 buffer_exit_cpu((unsigned long)hcpu); 3212 return NOTIFY_OK; 3213} 3214 3215/** 3216 * bh_uptodate_or_lock: Test whether the buffer is uptodate 3217 * @bh: struct buffer_head 3218 * 3219 * Return true if the buffer is up-to-date and false, 3220 * with the buffer locked, if not. 3221 */ 3222int bh_uptodate_or_lock(struct buffer_head *bh) 3223{ 3224 if (!buffer_uptodate(bh)) { 3225 lock_buffer(bh); 3226 if (!buffer_uptodate(bh)) 3227 return 0; 3228 unlock_buffer(bh); 3229 } 3230 return 1; 3231} 3232EXPORT_SYMBOL(bh_uptodate_or_lock); 3233 3234/** 3235 * bh_submit_read: Submit a locked buffer for reading 3236 * @bh: struct buffer_head 3237 * 3238 * Returns zero on success and -EIO on error. 3239 */ 3240int bh_submit_read(struct buffer_head *bh) 3241{ 3242 BUG_ON(!buffer_locked(bh)); 3243 3244 if (buffer_uptodate(bh)) { 3245 unlock_buffer(bh); 3246 return 0; 3247 } 3248 3249 get_bh(bh); 3250 bh->b_end_io = end_buffer_read_sync; 3251 submit_bh(READ, bh); 3252 wait_on_buffer(bh); 3253 if (buffer_uptodate(bh)) 3254 return 0; 3255 return -EIO; 3256} 3257EXPORT_SYMBOL(bh_submit_read); 3258 3259static void 3260init_buffer_head(struct kmem_cache *cachep, void *data) 3261{ 3262 struct buffer_head *bh = data; 3263 3264 memset(bh, 0, sizeof(*bh)); 3265 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3266} 3267 3268void __init buffer_init(void) 3269{ 3270 int nrpages; 3271 3272 bh_cachep = kmem_cache_create("buffer_head", 3273 sizeof(struct buffer_head), 0, 3274 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3275 SLAB_MEM_SPREAD), 3276 init_buffer_head); 3277 3278 /* 3279 * Limit the bh occupancy to 10% of ZONE_NORMAL 3280 */ 3281 nrpages = (nr_free_buffer_pages() * 10) / 100; 3282 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3283 hotcpu_notifier(buffer_cpu_notify, 0); 3284} 3285 3286EXPORT_SYMBOL(__bforget); 3287EXPORT_SYMBOL(__brelse); 3288EXPORT_SYMBOL(__wait_on_buffer); 3289EXPORT_SYMBOL(block_commit_write); 3290EXPORT_SYMBOL(block_prepare_write); 3291EXPORT_SYMBOL(block_page_mkwrite); 3292EXPORT_SYMBOL(block_read_full_page); 3293EXPORT_SYMBOL(block_sync_page); 3294EXPORT_SYMBOL(block_truncate_page); 3295EXPORT_SYMBOL(block_write_full_page); 3296EXPORT_SYMBOL(cont_write_begin); 3297EXPORT_SYMBOL(end_buffer_read_sync); 3298EXPORT_SYMBOL(end_buffer_write_sync); 3299EXPORT_SYMBOL(file_fsync); 3300EXPORT_SYMBOL(fsync_bdev); 3301EXPORT_SYMBOL(generic_block_bmap); 3302EXPORT_SYMBOL(generic_commit_write); 3303EXPORT_SYMBOL(generic_cont_expand_simple); 3304EXPORT_SYMBOL(init_buffer); 3305EXPORT_SYMBOL(invalidate_bdev); 3306EXPORT_SYMBOL(ll_rw_block); 3307EXPORT_SYMBOL(mark_buffer_dirty); 3308EXPORT_SYMBOL(submit_bh); 3309EXPORT_SYMBOL(sync_dirty_buffer); 3310EXPORT_SYMBOL(unlock_buffer);