at 768cbfbc5273bad91afe12b81471f563b288118a 3150 lines 84 kB view raw
1/* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7/* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21#include <linux/config.h> 22#include <linux/kernel.h> 23#include <linux/syscalls.h> 24#include <linux/fs.h> 25#include <linux/mm.h> 26#include <linux/percpu.h> 27#include <linux/slab.h> 28#include <linux/smp_lock.h> 29#include <linux/blkdev.h> 30#include <linux/file.h> 31#include <linux/quotaops.h> 32#include <linux/highmem.h> 33#include <linux/module.h> 34#include <linux/writeback.h> 35#include <linux/hash.h> 36#include <linux/suspend.h> 37#include <linux/buffer_head.h> 38#include <linux/bio.h> 39#include <linux/notifier.h> 40#include <linux/cpu.h> 41#include <linux/bitops.h> 42#include <linux/mpage.h> 43 44static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 45static void invalidate_bh_lrus(void); 46 47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49inline void 50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51{ 52 bh->b_end_io = handler; 53 bh->b_private = private; 54} 55 56static int sync_buffer(void *word) 57{ 58 struct block_device *bd; 59 struct buffer_head *bh 60 = container_of(word, struct buffer_head, b_state); 61 62 smp_mb(); 63 bd = bh->b_bdev; 64 if (bd) 65 blk_run_address_space(bd->bd_inode->i_mapping); 66 io_schedule(); 67 return 0; 68} 69 70void fastcall __lock_buffer(struct buffer_head *bh) 71{ 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 73 TASK_UNINTERRUPTIBLE); 74} 75EXPORT_SYMBOL(__lock_buffer); 76 77void fastcall unlock_buffer(struct buffer_head *bh) 78{ 79 clear_buffer_locked(bh); 80 smp_mb__after_clear_bit(); 81 wake_up_bit(&bh->b_state, BH_Lock); 82} 83 84/* 85 * Block until a buffer comes unlocked. This doesn't stop it 86 * from becoming locked again - you have to lock it yourself 87 * if you want to preserve its state. 88 */ 89void __wait_on_buffer(struct buffer_head * bh) 90{ 91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 92} 93 94static void 95__clear_page_buffers(struct page *page) 96{ 97 ClearPagePrivate(page); 98 page->private = 0; 99 page_cache_release(page); 100} 101 102static void buffer_io_error(struct buffer_head *bh) 103{ 104 char b[BDEVNAME_SIZE]; 105 106 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 107 bdevname(bh->b_bdev, b), 108 (unsigned long long)bh->b_blocknr); 109} 110 111/* 112 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 113 * unlock the buffer. This is what ll_rw_block uses too. 114 */ 115void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 116{ 117 if (uptodate) { 118 set_buffer_uptodate(bh); 119 } else { 120 /* This happens, due to failed READA attempts. */ 121 clear_buffer_uptodate(bh); 122 } 123 unlock_buffer(bh); 124 put_bh(bh); 125} 126 127void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 128{ 129 char b[BDEVNAME_SIZE]; 130 131 if (uptodate) { 132 set_buffer_uptodate(bh); 133 } else { 134 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 135 buffer_io_error(bh); 136 printk(KERN_WARNING "lost page write due to " 137 "I/O error on %s\n", 138 bdevname(bh->b_bdev, b)); 139 } 140 set_buffer_write_io_error(bh); 141 clear_buffer_uptodate(bh); 142 } 143 unlock_buffer(bh); 144 put_bh(bh); 145} 146 147/* 148 * Write out and wait upon all the dirty data associated with a block 149 * device via its mapping. Does not take the superblock lock. 150 */ 151int sync_blockdev(struct block_device *bdev) 152{ 153 int ret = 0; 154 155 if (bdev) { 156 int err; 157 158 ret = filemap_fdatawrite(bdev->bd_inode->i_mapping); 159 err = filemap_fdatawait(bdev->bd_inode->i_mapping); 160 if (!ret) 161 ret = err; 162 } 163 return ret; 164} 165EXPORT_SYMBOL(sync_blockdev); 166 167/* 168 * Write out and wait upon all dirty data associated with this 169 * superblock. Filesystem data as well as the underlying block 170 * device. Takes the superblock lock. 171 */ 172int fsync_super(struct super_block *sb) 173{ 174 sync_inodes_sb(sb, 0); 175 DQUOT_SYNC(sb); 176 lock_super(sb); 177 if (sb->s_dirt && sb->s_op->write_super) 178 sb->s_op->write_super(sb); 179 unlock_super(sb); 180 if (sb->s_op->sync_fs) 181 sb->s_op->sync_fs(sb, 1); 182 sync_blockdev(sb->s_bdev); 183 sync_inodes_sb(sb, 1); 184 185 return sync_blockdev(sb->s_bdev); 186} 187 188/* 189 * Write out and wait upon all dirty data associated with this 190 * device. Filesystem data as well as the underlying block 191 * device. Takes the superblock lock. 192 */ 193int fsync_bdev(struct block_device *bdev) 194{ 195 struct super_block *sb = get_super(bdev); 196 if (sb) { 197 int res = fsync_super(sb); 198 drop_super(sb); 199 return res; 200 } 201 return sync_blockdev(bdev); 202} 203 204/** 205 * freeze_bdev -- lock a filesystem and force it into a consistent state 206 * @bdev: blockdevice to lock 207 * 208 * This takes the block device bd_mount_sem to make sure no new mounts 209 * happen on bdev until thaw_bdev() is called. 210 * If a superblock is found on this device, we take the s_umount semaphore 211 * on it to make sure nobody unmounts until the snapshot creation is done. 212 */ 213struct super_block *freeze_bdev(struct block_device *bdev) 214{ 215 struct super_block *sb; 216 217 down(&bdev->bd_mount_sem); 218 sb = get_super(bdev); 219 if (sb && !(sb->s_flags & MS_RDONLY)) { 220 sb->s_frozen = SB_FREEZE_WRITE; 221 smp_wmb(); 222 223 sync_inodes_sb(sb, 0); 224 DQUOT_SYNC(sb); 225 226 lock_super(sb); 227 if (sb->s_dirt && sb->s_op->write_super) 228 sb->s_op->write_super(sb); 229 unlock_super(sb); 230 231 if (sb->s_op->sync_fs) 232 sb->s_op->sync_fs(sb, 1); 233 234 sync_blockdev(sb->s_bdev); 235 sync_inodes_sb(sb, 1); 236 237 sb->s_frozen = SB_FREEZE_TRANS; 238 smp_wmb(); 239 240 sync_blockdev(sb->s_bdev); 241 242 if (sb->s_op->write_super_lockfs) 243 sb->s_op->write_super_lockfs(sb); 244 } 245 246 sync_blockdev(bdev); 247 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 248} 249EXPORT_SYMBOL(freeze_bdev); 250 251/** 252 * thaw_bdev -- unlock filesystem 253 * @bdev: blockdevice to unlock 254 * @sb: associated superblock 255 * 256 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 257 */ 258void thaw_bdev(struct block_device *bdev, struct super_block *sb) 259{ 260 if (sb) { 261 BUG_ON(sb->s_bdev != bdev); 262 263 if (sb->s_op->unlockfs) 264 sb->s_op->unlockfs(sb); 265 sb->s_frozen = SB_UNFROZEN; 266 smp_wmb(); 267 wake_up(&sb->s_wait_unfrozen); 268 drop_super(sb); 269 } 270 271 up(&bdev->bd_mount_sem); 272} 273EXPORT_SYMBOL(thaw_bdev); 274 275/* 276 * sync everything. Start out by waking pdflush, because that writes back 277 * all queues in parallel. 278 */ 279static void do_sync(unsigned long wait) 280{ 281 wakeup_bdflush(0); 282 sync_inodes(0); /* All mappings, inodes and their blockdevs */ 283 DQUOT_SYNC(NULL); 284 sync_supers(); /* Write the superblocks */ 285 sync_filesystems(0); /* Start syncing the filesystems */ 286 sync_filesystems(wait); /* Waitingly sync the filesystems */ 287 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */ 288 if (!wait) 289 printk("Emergency Sync complete\n"); 290 if (unlikely(laptop_mode)) 291 laptop_sync_completion(); 292} 293 294asmlinkage long sys_sync(void) 295{ 296 do_sync(1); 297 return 0; 298} 299 300void emergency_sync(void) 301{ 302 pdflush_operation(do_sync, 0); 303} 304 305/* 306 * Generic function to fsync a file. 307 * 308 * filp may be NULL if called via the msync of a vma. 309 */ 310 311int file_fsync(struct file *filp, struct dentry *dentry, int datasync) 312{ 313 struct inode * inode = dentry->d_inode; 314 struct super_block * sb; 315 int ret, err; 316 317 /* sync the inode to buffers */ 318 ret = write_inode_now(inode, 0); 319 320 /* sync the superblock to buffers */ 321 sb = inode->i_sb; 322 lock_super(sb); 323 if (sb->s_op->write_super) 324 sb->s_op->write_super(sb); 325 unlock_super(sb); 326 327 /* .. finally sync the buffers to disk */ 328 err = sync_blockdev(sb->s_bdev); 329 if (!ret) 330 ret = err; 331 return ret; 332} 333 334asmlinkage long sys_fsync(unsigned int fd) 335{ 336 struct file * file; 337 struct address_space *mapping; 338 int ret, err; 339 340 ret = -EBADF; 341 file = fget(fd); 342 if (!file) 343 goto out; 344 345 mapping = file->f_mapping; 346 347 ret = -EINVAL; 348 if (!file->f_op || !file->f_op->fsync) { 349 /* Why? We can still call filemap_fdatawrite */ 350 goto out_putf; 351 } 352 353 current->flags |= PF_SYNCWRITE; 354 ret = filemap_fdatawrite(mapping); 355 356 /* 357 * We need to protect against concurrent writers, 358 * which could cause livelocks in fsync_buffers_list 359 */ 360 down(&mapping->host->i_sem); 361 err = file->f_op->fsync(file, file->f_dentry, 0); 362 if (!ret) 363 ret = err; 364 up(&mapping->host->i_sem); 365 err = filemap_fdatawait(mapping); 366 if (!ret) 367 ret = err; 368 current->flags &= ~PF_SYNCWRITE; 369 370out_putf: 371 fput(file); 372out: 373 return ret; 374} 375 376asmlinkage long sys_fdatasync(unsigned int fd) 377{ 378 struct file * file; 379 struct address_space *mapping; 380 int ret, err; 381 382 ret = -EBADF; 383 file = fget(fd); 384 if (!file) 385 goto out; 386 387 ret = -EINVAL; 388 if (!file->f_op || !file->f_op->fsync) 389 goto out_putf; 390 391 mapping = file->f_mapping; 392 393 current->flags |= PF_SYNCWRITE; 394 ret = filemap_fdatawrite(mapping); 395 down(&mapping->host->i_sem); 396 err = file->f_op->fsync(file, file->f_dentry, 1); 397 if (!ret) 398 ret = err; 399 up(&mapping->host->i_sem); 400 err = filemap_fdatawait(mapping); 401 if (!ret) 402 ret = err; 403 current->flags &= ~PF_SYNCWRITE; 404 405out_putf: 406 fput(file); 407out: 408 return ret; 409} 410 411/* 412 * Various filesystems appear to want __find_get_block to be non-blocking. 413 * But it's the page lock which protects the buffers. To get around this, 414 * we get exclusion from try_to_free_buffers with the blockdev mapping's 415 * private_lock. 416 * 417 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 418 * may be quite high. This code could TryLock the page, and if that 419 * succeeds, there is no need to take private_lock. (But if 420 * private_lock is contended then so is mapping->tree_lock). 421 */ 422static struct buffer_head * 423__find_get_block_slow(struct block_device *bdev, sector_t block, int unused) 424{ 425 struct inode *bd_inode = bdev->bd_inode; 426 struct address_space *bd_mapping = bd_inode->i_mapping; 427 struct buffer_head *ret = NULL; 428 pgoff_t index; 429 struct buffer_head *bh; 430 struct buffer_head *head; 431 struct page *page; 432 int all_mapped = 1; 433 434 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 435 page = find_get_page(bd_mapping, index); 436 if (!page) 437 goto out; 438 439 spin_lock(&bd_mapping->private_lock); 440 if (!page_has_buffers(page)) 441 goto out_unlock; 442 head = page_buffers(page); 443 bh = head; 444 do { 445 if (bh->b_blocknr == block) { 446 ret = bh; 447 get_bh(bh); 448 goto out_unlock; 449 } 450 if (!buffer_mapped(bh)) 451 all_mapped = 0; 452 bh = bh->b_this_page; 453 } while (bh != head); 454 455 /* we might be here because some of the buffers on this page are 456 * not mapped. This is due to various races between 457 * file io on the block device and getblk. It gets dealt with 458 * elsewhere, don't buffer_error if we had some unmapped buffers 459 */ 460 if (all_mapped) { 461 printk("__find_get_block_slow() failed. " 462 "block=%llu, b_blocknr=%llu\n", 463 (unsigned long long)block, (unsigned long long)bh->b_blocknr); 464 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size); 465 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 466 } 467out_unlock: 468 spin_unlock(&bd_mapping->private_lock); 469 page_cache_release(page); 470out: 471 return ret; 472} 473 474/* If invalidate_buffers() will trash dirty buffers, it means some kind 475 of fs corruption is going on. Trashing dirty data always imply losing 476 information that was supposed to be just stored on the physical layer 477 by the user. 478 479 Thus invalidate_buffers in general usage is not allwowed to trash 480 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 481 be preserved. These buffers are simply skipped. 482 483 We also skip buffers which are still in use. For example this can 484 happen if a userspace program is reading the block device. 485 486 NOTE: In the case where the user removed a removable-media-disk even if 487 there's still dirty data not synced on disk (due a bug in the device driver 488 or due an error of the user), by not destroying the dirty buffers we could 489 generate corruption also on the next media inserted, thus a parameter is 490 necessary to handle this case in the most safe way possible (trying 491 to not corrupt also the new disk inserted with the data belonging to 492 the old now corrupted disk). Also for the ramdisk the natural thing 493 to do in order to release the ramdisk memory is to destroy dirty buffers. 494 495 These are two special cases. Normal usage imply the device driver 496 to issue a sync on the device (without waiting I/O completion) and 497 then an invalidate_buffers call that doesn't trash dirty buffers. 498 499 For handling cache coherency with the blkdev pagecache the 'update' case 500 is been introduced. It is needed to re-read from disk any pinned 501 buffer. NOTE: re-reading from disk is destructive so we can do it only 502 when we assume nobody is changing the buffercache under our I/O and when 503 we think the disk contains more recent information than the buffercache. 504 The update == 1 pass marks the buffers we need to update, the update == 2 505 pass does the actual I/O. */ 506void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers) 507{ 508 invalidate_bh_lrus(); 509 /* 510 * FIXME: what about destroy_dirty_buffers? 511 * We really want to use invalidate_inode_pages2() for 512 * that, but not until that's cleaned up. 513 */ 514 invalidate_inode_pages(bdev->bd_inode->i_mapping); 515} 516 517/* 518 * Kick pdflush then try to free up some ZONE_NORMAL memory. 519 */ 520static void free_more_memory(void) 521{ 522 struct zone **zones; 523 pg_data_t *pgdat; 524 525 wakeup_bdflush(1024); 526 yield(); 527 528 for_each_pgdat(pgdat) { 529 zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones; 530 if (*zones) 531 try_to_free_pages(zones, GFP_NOFS, 0); 532 } 533} 534 535/* 536 * I/O completion handler for block_read_full_page() - pages 537 * which come unlocked at the end of I/O. 538 */ 539static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 540{ 541 static DEFINE_SPINLOCK(page_uptodate_lock); 542 unsigned long flags; 543 struct buffer_head *tmp; 544 struct page *page; 545 int page_uptodate = 1; 546 547 BUG_ON(!buffer_async_read(bh)); 548 549 page = bh->b_page; 550 if (uptodate) { 551 set_buffer_uptodate(bh); 552 } else { 553 clear_buffer_uptodate(bh); 554 if (printk_ratelimit()) 555 buffer_io_error(bh); 556 SetPageError(page); 557 } 558 559 /* 560 * Be _very_ careful from here on. Bad things can happen if 561 * two buffer heads end IO at almost the same time and both 562 * decide that the page is now completely done. 563 */ 564 spin_lock_irqsave(&page_uptodate_lock, flags); 565 clear_buffer_async_read(bh); 566 unlock_buffer(bh); 567 tmp = bh; 568 do { 569 if (!buffer_uptodate(tmp)) 570 page_uptodate = 0; 571 if (buffer_async_read(tmp)) { 572 BUG_ON(!buffer_locked(tmp)); 573 goto still_busy; 574 } 575 tmp = tmp->b_this_page; 576 } while (tmp != bh); 577 spin_unlock_irqrestore(&page_uptodate_lock, flags); 578 579 /* 580 * If none of the buffers had errors and they are all 581 * uptodate then we can set the page uptodate. 582 */ 583 if (page_uptodate && !PageError(page)) 584 SetPageUptodate(page); 585 unlock_page(page); 586 return; 587 588still_busy: 589 spin_unlock_irqrestore(&page_uptodate_lock, flags); 590 return; 591} 592 593/* 594 * Completion handler for block_write_full_page() - pages which are unlocked 595 * during I/O, and which have PageWriteback cleared upon I/O completion. 596 */ 597void end_buffer_async_write(struct buffer_head *bh, int uptodate) 598{ 599 char b[BDEVNAME_SIZE]; 600 static DEFINE_SPINLOCK(page_uptodate_lock); 601 unsigned long flags; 602 struct buffer_head *tmp; 603 struct page *page; 604 605 BUG_ON(!buffer_async_write(bh)); 606 607 page = bh->b_page; 608 if (uptodate) { 609 set_buffer_uptodate(bh); 610 } else { 611 if (printk_ratelimit()) { 612 buffer_io_error(bh); 613 printk(KERN_WARNING "lost page write due to " 614 "I/O error on %s\n", 615 bdevname(bh->b_bdev, b)); 616 } 617 set_bit(AS_EIO, &page->mapping->flags); 618 clear_buffer_uptodate(bh); 619 SetPageError(page); 620 } 621 622 spin_lock_irqsave(&page_uptodate_lock, flags); 623 clear_buffer_async_write(bh); 624 unlock_buffer(bh); 625 tmp = bh->b_this_page; 626 while (tmp != bh) { 627 if (buffer_async_write(tmp)) { 628 BUG_ON(!buffer_locked(tmp)); 629 goto still_busy; 630 } 631 tmp = tmp->b_this_page; 632 } 633 spin_unlock_irqrestore(&page_uptodate_lock, flags); 634 end_page_writeback(page); 635 return; 636 637still_busy: 638 spin_unlock_irqrestore(&page_uptodate_lock, flags); 639 return; 640} 641 642/* 643 * If a page's buffers are under async readin (end_buffer_async_read 644 * completion) then there is a possibility that another thread of 645 * control could lock one of the buffers after it has completed 646 * but while some of the other buffers have not completed. This 647 * locked buffer would confuse end_buffer_async_read() into not unlocking 648 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 649 * that this buffer is not under async I/O. 650 * 651 * The page comes unlocked when it has no locked buffer_async buffers 652 * left. 653 * 654 * PageLocked prevents anyone starting new async I/O reads any of 655 * the buffers. 656 * 657 * PageWriteback is used to prevent simultaneous writeout of the same 658 * page. 659 * 660 * PageLocked prevents anyone from starting writeback of a page which is 661 * under read I/O (PageWriteback is only ever set against a locked page). 662 */ 663static void mark_buffer_async_read(struct buffer_head *bh) 664{ 665 bh->b_end_io = end_buffer_async_read; 666 set_buffer_async_read(bh); 667} 668 669void mark_buffer_async_write(struct buffer_head *bh) 670{ 671 bh->b_end_io = end_buffer_async_write; 672 set_buffer_async_write(bh); 673} 674EXPORT_SYMBOL(mark_buffer_async_write); 675 676 677/* 678 * fs/buffer.c contains helper functions for buffer-backed address space's 679 * fsync functions. A common requirement for buffer-based filesystems is 680 * that certain data from the backing blockdev needs to be written out for 681 * a successful fsync(). For example, ext2 indirect blocks need to be 682 * written back and waited upon before fsync() returns. 683 * 684 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 685 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 686 * management of a list of dependent buffers at ->i_mapping->private_list. 687 * 688 * Locking is a little subtle: try_to_free_buffers() will remove buffers 689 * from their controlling inode's queue when they are being freed. But 690 * try_to_free_buffers() will be operating against the *blockdev* mapping 691 * at the time, not against the S_ISREG file which depends on those buffers. 692 * So the locking for private_list is via the private_lock in the address_space 693 * which backs the buffers. Which is different from the address_space 694 * against which the buffers are listed. So for a particular address_space, 695 * mapping->private_lock does *not* protect mapping->private_list! In fact, 696 * mapping->private_list will always be protected by the backing blockdev's 697 * ->private_lock. 698 * 699 * Which introduces a requirement: all buffers on an address_space's 700 * ->private_list must be from the same address_space: the blockdev's. 701 * 702 * address_spaces which do not place buffers at ->private_list via these 703 * utility functions are free to use private_lock and private_list for 704 * whatever they want. The only requirement is that list_empty(private_list) 705 * be true at clear_inode() time. 706 * 707 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 708 * filesystems should do that. invalidate_inode_buffers() should just go 709 * BUG_ON(!list_empty). 710 * 711 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 712 * take an address_space, not an inode. And it should be called 713 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 714 * queued up. 715 * 716 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 717 * list if it is already on a list. Because if the buffer is on a list, 718 * it *must* already be on the right one. If not, the filesystem is being 719 * silly. This will save a ton of locking. But first we have to ensure 720 * that buffers are taken *off* the old inode's list when they are freed 721 * (presumably in truncate). That requires careful auditing of all 722 * filesystems (do it inside bforget()). It could also be done by bringing 723 * b_inode back. 724 */ 725 726/* 727 * The buffer's backing address_space's private_lock must be held 728 */ 729static inline void __remove_assoc_queue(struct buffer_head *bh) 730{ 731 list_del_init(&bh->b_assoc_buffers); 732} 733 734int inode_has_buffers(struct inode *inode) 735{ 736 return !list_empty(&inode->i_data.private_list); 737} 738 739/* 740 * osync is designed to support O_SYNC io. It waits synchronously for 741 * all already-submitted IO to complete, but does not queue any new 742 * writes to the disk. 743 * 744 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 745 * you dirty the buffers, and then use osync_inode_buffers to wait for 746 * completion. Any other dirty buffers which are not yet queued for 747 * write will not be flushed to disk by the osync. 748 */ 749static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 750{ 751 struct buffer_head *bh; 752 struct list_head *p; 753 int err = 0; 754 755 spin_lock(lock); 756repeat: 757 list_for_each_prev(p, list) { 758 bh = BH_ENTRY(p); 759 if (buffer_locked(bh)) { 760 get_bh(bh); 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 goto repeat; 768 } 769 } 770 spin_unlock(lock); 771 return err; 772} 773 774/** 775 * sync_mapping_buffers - write out and wait upon a mapping's "associated" 776 * buffers 777 * @mapping: the mapping which wants those buffers written 778 * 779 * Starts I/O against the buffers at mapping->private_list, and waits upon 780 * that I/O. 781 * 782 * Basically, this is a convenience function for fsync(). 783 * @mapping is a file or directory which needs those buffers to be written for 784 * a successful fsync(). 785 */ 786int sync_mapping_buffers(struct address_space *mapping) 787{ 788 struct address_space *buffer_mapping = mapping->assoc_mapping; 789 790 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 791 return 0; 792 793 return fsync_buffers_list(&buffer_mapping->private_lock, 794 &mapping->private_list); 795} 796EXPORT_SYMBOL(sync_mapping_buffers); 797 798/* 799 * Called when we've recently written block `bblock', and it is known that 800 * `bblock' was for a buffer_boundary() buffer. This means that the block at 801 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 802 * dirty, schedule it for IO. So that indirects merge nicely with their data. 803 */ 804void write_boundary_block(struct block_device *bdev, 805 sector_t bblock, unsigned blocksize) 806{ 807 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 808 if (bh) { 809 if (buffer_dirty(bh)) 810 ll_rw_block(WRITE, 1, &bh); 811 put_bh(bh); 812 } 813} 814 815void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 816{ 817 struct address_space *mapping = inode->i_mapping; 818 struct address_space *buffer_mapping = bh->b_page->mapping; 819 820 mark_buffer_dirty(bh); 821 if (!mapping->assoc_mapping) { 822 mapping->assoc_mapping = buffer_mapping; 823 } else { 824 if (mapping->assoc_mapping != buffer_mapping) 825 BUG(); 826 } 827 if (list_empty(&bh->b_assoc_buffers)) { 828 spin_lock(&buffer_mapping->private_lock); 829 list_move_tail(&bh->b_assoc_buffers, 830 &mapping->private_list); 831 spin_unlock(&buffer_mapping->private_lock); 832 } 833} 834EXPORT_SYMBOL(mark_buffer_dirty_inode); 835 836/* 837 * Add a page to the dirty page list. 838 * 839 * It is a sad fact of life that this function is called from several places 840 * deeply under spinlocking. It may not sleep. 841 * 842 * If the page has buffers, the uptodate buffers are set dirty, to preserve 843 * dirty-state coherency between the page and the buffers. It the page does 844 * not have buffers then when they are later attached they will all be set 845 * dirty. 846 * 847 * The buffers are dirtied before the page is dirtied. There's a small race 848 * window in which a writepage caller may see the page cleanness but not the 849 * buffer dirtiness. That's fine. If this code were to set the page dirty 850 * before the buffers, a concurrent writepage caller could clear the page dirty 851 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 852 * page on the dirty page list. 853 * 854 * We use private_lock to lock against try_to_free_buffers while using the 855 * page's buffer list. Also use this to protect against clean buffers being 856 * added to the page after it was set dirty. 857 * 858 * FIXME: may need to call ->reservepage here as well. That's rather up to the 859 * address_space though. 860 */ 861int __set_page_dirty_buffers(struct page *page) 862{ 863 struct address_space * const mapping = page->mapping; 864 865 spin_lock(&mapping->private_lock); 866 if (page_has_buffers(page)) { 867 struct buffer_head *head = page_buffers(page); 868 struct buffer_head *bh = head; 869 870 do { 871 set_buffer_dirty(bh); 872 bh = bh->b_this_page; 873 } while (bh != head); 874 } 875 spin_unlock(&mapping->private_lock); 876 877 if (!TestSetPageDirty(page)) { 878 write_lock_irq(&mapping->tree_lock); 879 if (page->mapping) { /* Race with truncate? */ 880 if (mapping_cap_account_dirty(mapping)) 881 inc_page_state(nr_dirty); 882 radix_tree_tag_set(&mapping->page_tree, 883 page_index(page), 884 PAGECACHE_TAG_DIRTY); 885 } 886 write_unlock_irq(&mapping->tree_lock); 887 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 888 } 889 890 return 0; 891} 892EXPORT_SYMBOL(__set_page_dirty_buffers); 893 894/* 895 * Write out and wait upon a list of buffers. 896 * 897 * We have conflicting pressures: we want to make sure that all 898 * initially dirty buffers get waited on, but that any subsequently 899 * dirtied buffers don't. After all, we don't want fsync to last 900 * forever if somebody is actively writing to the file. 901 * 902 * Do this in two main stages: first we copy dirty buffers to a 903 * temporary inode list, queueing the writes as we go. Then we clean 904 * up, waiting for those writes to complete. 905 * 906 * During this second stage, any subsequent updates to the file may end 907 * up refiling the buffer on the original inode's dirty list again, so 908 * there is a chance we will end up with a buffer queued for write but 909 * not yet completed on that list. So, as a final cleanup we go through 910 * the osync code to catch these locked, dirty buffers without requeuing 911 * any newly dirty buffers for write. 912 */ 913static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 914{ 915 struct buffer_head *bh; 916 struct list_head tmp; 917 int err = 0, err2; 918 919 INIT_LIST_HEAD(&tmp); 920 921 spin_lock(lock); 922 while (!list_empty(list)) { 923 bh = BH_ENTRY(list->next); 924 list_del_init(&bh->b_assoc_buffers); 925 if (buffer_dirty(bh) || buffer_locked(bh)) { 926 list_add(&bh->b_assoc_buffers, &tmp); 927 if (buffer_dirty(bh)) { 928 get_bh(bh); 929 spin_unlock(lock); 930 /* 931 * Ensure any pending I/O completes so that 932 * ll_rw_block() actually writes the current 933 * contents - it is a noop if I/O is still in 934 * flight on potentially older contents. 935 */ 936 wait_on_buffer(bh); 937 ll_rw_block(WRITE, 1, &bh); 938 brelse(bh); 939 spin_lock(lock); 940 } 941 } 942 } 943 944 while (!list_empty(&tmp)) { 945 bh = BH_ENTRY(tmp.prev); 946 __remove_assoc_queue(bh); 947 get_bh(bh); 948 spin_unlock(lock); 949 wait_on_buffer(bh); 950 if (!buffer_uptodate(bh)) 951 err = -EIO; 952 brelse(bh); 953 spin_lock(lock); 954 } 955 956 spin_unlock(lock); 957 err2 = osync_buffers_list(lock, list); 958 if (err) 959 return err; 960 else 961 return err2; 962} 963 964/* 965 * Invalidate any and all dirty buffers on a given inode. We are 966 * probably unmounting the fs, but that doesn't mean we have already 967 * done a sync(). Just drop the buffers from the inode list. 968 * 969 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 970 * assumes that all the buffers are against the blockdev. Not true 971 * for reiserfs. 972 */ 973void invalidate_inode_buffers(struct inode *inode) 974{ 975 if (inode_has_buffers(inode)) { 976 struct address_space *mapping = &inode->i_data; 977 struct list_head *list = &mapping->private_list; 978 struct address_space *buffer_mapping = mapping->assoc_mapping; 979 980 spin_lock(&buffer_mapping->private_lock); 981 while (!list_empty(list)) 982 __remove_assoc_queue(BH_ENTRY(list->next)); 983 spin_unlock(&buffer_mapping->private_lock); 984 } 985} 986 987/* 988 * Remove any clean buffers from the inode's buffer list. This is called 989 * when we're trying to free the inode itself. Those buffers can pin it. 990 * 991 * Returns true if all buffers were removed. 992 */ 993int remove_inode_buffers(struct inode *inode) 994{ 995 int ret = 1; 996 997 if (inode_has_buffers(inode)) { 998 struct address_space *mapping = &inode->i_data; 999 struct list_head *list = &mapping->private_list; 1000 struct address_space *buffer_mapping = mapping->assoc_mapping; 1001 1002 spin_lock(&buffer_mapping->private_lock); 1003 while (!list_empty(list)) { 1004 struct buffer_head *bh = BH_ENTRY(list->next); 1005 if (buffer_dirty(bh)) { 1006 ret = 0; 1007 break; 1008 } 1009 __remove_assoc_queue(bh); 1010 } 1011 spin_unlock(&buffer_mapping->private_lock); 1012 } 1013 return ret; 1014} 1015 1016/* 1017 * Create the appropriate buffers when given a page for data area and 1018 * the size of each buffer.. Use the bh->b_this_page linked list to 1019 * follow the buffers created. Return NULL if unable to create more 1020 * buffers. 1021 * 1022 * The retry flag is used to differentiate async IO (paging, swapping) 1023 * which may not fail from ordinary buffer allocations. 1024 */ 1025struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 1026 int retry) 1027{ 1028 struct buffer_head *bh, *head; 1029 long offset; 1030 1031try_again: 1032 head = NULL; 1033 offset = PAGE_SIZE; 1034 while ((offset -= size) >= 0) { 1035 bh = alloc_buffer_head(GFP_NOFS); 1036 if (!bh) 1037 goto no_grow; 1038 1039 bh->b_bdev = NULL; 1040 bh->b_this_page = head; 1041 bh->b_blocknr = -1; 1042 head = bh; 1043 1044 bh->b_state = 0; 1045 atomic_set(&bh->b_count, 0); 1046 bh->b_size = size; 1047 1048 /* Link the buffer to its page */ 1049 set_bh_page(bh, page, offset); 1050 1051 bh->b_end_io = NULL; 1052 } 1053 return head; 1054/* 1055 * In case anything failed, we just free everything we got. 1056 */ 1057no_grow: 1058 if (head) { 1059 do { 1060 bh = head; 1061 head = head->b_this_page; 1062 free_buffer_head(bh); 1063 } while (head); 1064 } 1065 1066 /* 1067 * Return failure for non-async IO requests. Async IO requests 1068 * are not allowed to fail, so we have to wait until buffer heads 1069 * become available. But we don't want tasks sleeping with 1070 * partially complete buffers, so all were released above. 1071 */ 1072 if (!retry) 1073 return NULL; 1074 1075 /* We're _really_ low on memory. Now we just 1076 * wait for old buffer heads to become free due to 1077 * finishing IO. Since this is an async request and 1078 * the reserve list is empty, we're sure there are 1079 * async buffer heads in use. 1080 */ 1081 free_more_memory(); 1082 goto try_again; 1083} 1084EXPORT_SYMBOL_GPL(alloc_page_buffers); 1085 1086static inline void 1087link_dev_buffers(struct page *page, struct buffer_head *head) 1088{ 1089 struct buffer_head *bh, *tail; 1090 1091 bh = head; 1092 do { 1093 tail = bh; 1094 bh = bh->b_this_page; 1095 } while (bh); 1096 tail->b_this_page = head; 1097 attach_page_buffers(page, head); 1098} 1099 1100/* 1101 * Initialise the state of a blockdev page's buffers. 1102 */ 1103static void 1104init_page_buffers(struct page *page, struct block_device *bdev, 1105 sector_t block, int size) 1106{ 1107 struct buffer_head *head = page_buffers(page); 1108 struct buffer_head *bh = head; 1109 int uptodate = PageUptodate(page); 1110 1111 do { 1112 if (!buffer_mapped(bh)) { 1113 init_buffer(bh, NULL, NULL); 1114 bh->b_bdev = bdev; 1115 bh->b_blocknr = block; 1116 if (uptodate) 1117 set_buffer_uptodate(bh); 1118 set_buffer_mapped(bh); 1119 } 1120 block++; 1121 bh = bh->b_this_page; 1122 } while (bh != head); 1123} 1124 1125/* 1126 * Create the page-cache page that contains the requested block. 1127 * 1128 * This is user purely for blockdev mappings. 1129 */ 1130static struct page * 1131grow_dev_page(struct block_device *bdev, sector_t block, 1132 pgoff_t index, int size) 1133{ 1134 struct inode *inode = bdev->bd_inode; 1135 struct page *page; 1136 struct buffer_head *bh; 1137 1138 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 1139 if (!page) 1140 return NULL; 1141 1142 if (!PageLocked(page)) 1143 BUG(); 1144 1145 if (page_has_buffers(page)) { 1146 bh = page_buffers(page); 1147 if (bh->b_size == size) { 1148 init_page_buffers(page, bdev, block, size); 1149 return page; 1150 } 1151 if (!try_to_free_buffers(page)) 1152 goto failed; 1153 } 1154 1155 /* 1156 * Allocate some buffers for this page 1157 */ 1158 bh = alloc_page_buffers(page, size, 0); 1159 if (!bh) 1160 goto failed; 1161 1162 /* 1163 * Link the page to the buffers and initialise them. Take the 1164 * lock to be atomic wrt __find_get_block(), which does not 1165 * run under the page lock. 1166 */ 1167 spin_lock(&inode->i_mapping->private_lock); 1168 link_dev_buffers(page, bh); 1169 init_page_buffers(page, bdev, block, size); 1170 spin_unlock(&inode->i_mapping->private_lock); 1171 return page; 1172 1173failed: 1174 BUG(); 1175 unlock_page(page); 1176 page_cache_release(page); 1177 return NULL; 1178} 1179 1180/* 1181 * Create buffers for the specified block device block's page. If 1182 * that page was dirty, the buffers are set dirty also. 1183 * 1184 * Except that's a bug. Attaching dirty buffers to a dirty 1185 * blockdev's page can result in filesystem corruption, because 1186 * some of those buffers may be aliases of filesystem data. 1187 * grow_dev_page() will go BUG() if this happens. 1188 */ 1189static inline int 1190grow_buffers(struct block_device *bdev, sector_t block, int size) 1191{ 1192 struct page *page; 1193 pgoff_t index; 1194 int sizebits; 1195 1196 sizebits = -1; 1197 do { 1198 sizebits++; 1199 } while ((size << sizebits) < PAGE_SIZE); 1200 1201 index = block >> sizebits; 1202 block = index << sizebits; 1203 1204 /* Create a page with the proper size buffers.. */ 1205 page = grow_dev_page(bdev, block, index, size); 1206 if (!page) 1207 return 0; 1208 unlock_page(page); 1209 page_cache_release(page); 1210 return 1; 1211} 1212 1213static struct buffer_head * 1214__getblk_slow(struct block_device *bdev, sector_t block, int size) 1215{ 1216 /* Size must be multiple of hard sectorsize */ 1217 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1218 (size < 512 || size > PAGE_SIZE))) { 1219 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1220 size); 1221 printk(KERN_ERR "hardsect size: %d\n", 1222 bdev_hardsect_size(bdev)); 1223 1224 dump_stack(); 1225 return NULL; 1226 } 1227 1228 for (;;) { 1229 struct buffer_head * bh; 1230 1231 bh = __find_get_block(bdev, block, size); 1232 if (bh) 1233 return bh; 1234 1235 if (!grow_buffers(bdev, block, size)) 1236 free_more_memory(); 1237 } 1238} 1239 1240/* 1241 * The relationship between dirty buffers and dirty pages: 1242 * 1243 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1244 * the page is tagged dirty in its radix tree. 1245 * 1246 * At all times, the dirtiness of the buffers represents the dirtiness of 1247 * subsections of the page. If the page has buffers, the page dirty bit is 1248 * merely a hint about the true dirty state. 1249 * 1250 * When a page is set dirty in its entirety, all its buffers are marked dirty 1251 * (if the page has buffers). 1252 * 1253 * When a buffer is marked dirty, its page is dirtied, but the page's other 1254 * buffers are not. 1255 * 1256 * Also. When blockdev buffers are explicitly read with bread(), they 1257 * individually become uptodate. But their backing page remains not 1258 * uptodate - even if all of its buffers are uptodate. A subsequent 1259 * block_read_full_page() against that page will discover all the uptodate 1260 * buffers, will set the page uptodate and will perform no I/O. 1261 */ 1262 1263/** 1264 * mark_buffer_dirty - mark a buffer_head as needing writeout 1265 * @bh: the buffer_head to mark dirty 1266 * 1267 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1268 * backing page dirty, then tag the page as dirty in its address_space's radix 1269 * tree and then attach the address_space's inode to its superblock's dirty 1270 * inode list. 1271 * 1272 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1273 * mapping->tree_lock and the global inode_lock. 1274 */ 1275void fastcall mark_buffer_dirty(struct buffer_head *bh) 1276{ 1277 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1278 __set_page_dirty_nobuffers(bh->b_page); 1279} 1280 1281/* 1282 * Decrement a buffer_head's reference count. If all buffers against a page 1283 * have zero reference count, are clean and unlocked, and if the page is clean 1284 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1285 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1286 * a page but it ends up not being freed, and buffers may later be reattached). 1287 */ 1288void __brelse(struct buffer_head * buf) 1289{ 1290 if (atomic_read(&buf->b_count)) { 1291 put_bh(buf); 1292 return; 1293 } 1294 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1295 WARN_ON(1); 1296} 1297 1298/* 1299 * bforget() is like brelse(), except it discards any 1300 * potentially dirty data. 1301 */ 1302void __bforget(struct buffer_head *bh) 1303{ 1304 clear_buffer_dirty(bh); 1305 if (!list_empty(&bh->b_assoc_buffers)) { 1306 struct address_space *buffer_mapping = bh->b_page->mapping; 1307 1308 spin_lock(&buffer_mapping->private_lock); 1309 list_del_init(&bh->b_assoc_buffers); 1310 spin_unlock(&buffer_mapping->private_lock); 1311 } 1312 __brelse(bh); 1313} 1314 1315static struct buffer_head *__bread_slow(struct buffer_head *bh) 1316{ 1317 lock_buffer(bh); 1318 if (buffer_uptodate(bh)) { 1319 unlock_buffer(bh); 1320 return bh; 1321 } else { 1322 get_bh(bh); 1323 bh->b_end_io = end_buffer_read_sync; 1324 submit_bh(READ, bh); 1325 wait_on_buffer(bh); 1326 if (buffer_uptodate(bh)) 1327 return bh; 1328 } 1329 brelse(bh); 1330 return NULL; 1331} 1332 1333/* 1334 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1335 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1336 * refcount elevated by one when they're in an LRU. A buffer can only appear 1337 * once in a particular CPU's LRU. A single buffer can be present in multiple 1338 * CPU's LRUs at the same time. 1339 * 1340 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1341 * sb_find_get_block(). 1342 * 1343 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1344 * a local interrupt disable for that. 1345 */ 1346 1347#define BH_LRU_SIZE 8 1348 1349struct bh_lru { 1350 struct buffer_head *bhs[BH_LRU_SIZE]; 1351}; 1352 1353static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1354 1355#ifdef CONFIG_SMP 1356#define bh_lru_lock() local_irq_disable() 1357#define bh_lru_unlock() local_irq_enable() 1358#else 1359#define bh_lru_lock() preempt_disable() 1360#define bh_lru_unlock() preempt_enable() 1361#endif 1362 1363static inline void check_irqs_on(void) 1364{ 1365#ifdef irqs_disabled 1366 BUG_ON(irqs_disabled()); 1367#endif 1368} 1369 1370/* 1371 * The LRU management algorithm is dopey-but-simple. Sorry. 1372 */ 1373static void bh_lru_install(struct buffer_head *bh) 1374{ 1375 struct buffer_head *evictee = NULL; 1376 struct bh_lru *lru; 1377 1378 check_irqs_on(); 1379 bh_lru_lock(); 1380 lru = &__get_cpu_var(bh_lrus); 1381 if (lru->bhs[0] != bh) { 1382 struct buffer_head *bhs[BH_LRU_SIZE]; 1383 int in; 1384 int out = 0; 1385 1386 get_bh(bh); 1387 bhs[out++] = bh; 1388 for (in = 0; in < BH_LRU_SIZE; in++) { 1389 struct buffer_head *bh2 = lru->bhs[in]; 1390 1391 if (bh2 == bh) { 1392 __brelse(bh2); 1393 } else { 1394 if (out >= BH_LRU_SIZE) { 1395 BUG_ON(evictee != NULL); 1396 evictee = bh2; 1397 } else { 1398 bhs[out++] = bh2; 1399 } 1400 } 1401 } 1402 while (out < BH_LRU_SIZE) 1403 bhs[out++] = NULL; 1404 memcpy(lru->bhs, bhs, sizeof(bhs)); 1405 } 1406 bh_lru_unlock(); 1407 1408 if (evictee) 1409 __brelse(evictee); 1410} 1411 1412/* 1413 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1414 */ 1415static inline struct buffer_head * 1416lookup_bh_lru(struct block_device *bdev, sector_t block, int size) 1417{ 1418 struct buffer_head *ret = NULL; 1419 struct bh_lru *lru; 1420 int i; 1421 1422 check_irqs_on(); 1423 bh_lru_lock(); 1424 lru = &__get_cpu_var(bh_lrus); 1425 for (i = 0; i < BH_LRU_SIZE; i++) { 1426 struct buffer_head *bh = lru->bhs[i]; 1427 1428 if (bh && bh->b_bdev == bdev && 1429 bh->b_blocknr == block && bh->b_size == size) { 1430 if (i) { 1431 while (i) { 1432 lru->bhs[i] = lru->bhs[i - 1]; 1433 i--; 1434 } 1435 lru->bhs[0] = bh; 1436 } 1437 get_bh(bh); 1438 ret = bh; 1439 break; 1440 } 1441 } 1442 bh_lru_unlock(); 1443 return ret; 1444} 1445 1446/* 1447 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1448 * it in the LRU and mark it as accessed. If it is not present then return 1449 * NULL 1450 */ 1451struct buffer_head * 1452__find_get_block(struct block_device *bdev, sector_t block, int size) 1453{ 1454 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1455 1456 if (bh == NULL) { 1457 bh = __find_get_block_slow(bdev, block, size); 1458 if (bh) 1459 bh_lru_install(bh); 1460 } 1461 if (bh) 1462 touch_buffer(bh); 1463 return bh; 1464} 1465EXPORT_SYMBOL(__find_get_block); 1466 1467/* 1468 * __getblk will locate (and, if necessary, create) the buffer_head 1469 * which corresponds to the passed block_device, block and size. The 1470 * returned buffer has its reference count incremented. 1471 * 1472 * __getblk() cannot fail - it just keeps trying. If you pass it an 1473 * illegal block number, __getblk() will happily return a buffer_head 1474 * which represents the non-existent block. Very weird. 1475 * 1476 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1477 * attempt is failing. FIXME, perhaps? 1478 */ 1479struct buffer_head * 1480__getblk(struct block_device *bdev, sector_t block, int size) 1481{ 1482 struct buffer_head *bh = __find_get_block(bdev, block, size); 1483 1484 might_sleep(); 1485 if (bh == NULL) 1486 bh = __getblk_slow(bdev, block, size); 1487 return bh; 1488} 1489EXPORT_SYMBOL(__getblk); 1490 1491/* 1492 * Do async read-ahead on a buffer.. 1493 */ 1494void __breadahead(struct block_device *bdev, sector_t block, int size) 1495{ 1496 struct buffer_head *bh = __getblk(bdev, block, size); 1497 ll_rw_block(READA, 1, &bh); 1498 brelse(bh); 1499} 1500EXPORT_SYMBOL(__breadahead); 1501 1502/** 1503 * __bread() - reads a specified block and returns the bh 1504 * @bdev: the block_device to read from 1505 * @block: number of block 1506 * @size: size (in bytes) to read 1507 * 1508 * Reads a specified block, and returns buffer head that contains it. 1509 * It returns NULL if the block was unreadable. 1510 */ 1511struct buffer_head * 1512__bread(struct block_device *bdev, sector_t block, int size) 1513{ 1514 struct buffer_head *bh = __getblk(bdev, block, size); 1515 1516 if (!buffer_uptodate(bh)) 1517 bh = __bread_slow(bh); 1518 return bh; 1519} 1520EXPORT_SYMBOL(__bread); 1521 1522/* 1523 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1524 * This doesn't race because it runs in each cpu either in irq 1525 * or with preempt disabled. 1526 */ 1527static void invalidate_bh_lru(void *arg) 1528{ 1529 struct bh_lru *b = &get_cpu_var(bh_lrus); 1530 int i; 1531 1532 for (i = 0; i < BH_LRU_SIZE; i++) { 1533 brelse(b->bhs[i]); 1534 b->bhs[i] = NULL; 1535 } 1536 put_cpu_var(bh_lrus); 1537} 1538 1539static void invalidate_bh_lrus(void) 1540{ 1541 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1542} 1543 1544void set_bh_page(struct buffer_head *bh, 1545 struct page *page, unsigned long offset) 1546{ 1547 bh->b_page = page; 1548 if (offset >= PAGE_SIZE) 1549 BUG(); 1550 if (PageHighMem(page)) 1551 /* 1552 * This catches illegal uses and preserves the offset: 1553 */ 1554 bh->b_data = (char *)(0 + offset); 1555 else 1556 bh->b_data = page_address(page) + offset; 1557} 1558EXPORT_SYMBOL(set_bh_page); 1559 1560/* 1561 * Called when truncating a buffer on a page completely. 1562 */ 1563static inline void discard_buffer(struct buffer_head * bh) 1564{ 1565 lock_buffer(bh); 1566 clear_buffer_dirty(bh); 1567 bh->b_bdev = NULL; 1568 clear_buffer_mapped(bh); 1569 clear_buffer_req(bh); 1570 clear_buffer_new(bh); 1571 clear_buffer_delay(bh); 1572 unlock_buffer(bh); 1573} 1574 1575/** 1576 * try_to_release_page() - release old fs-specific metadata on a page 1577 * 1578 * @page: the page which the kernel is trying to free 1579 * @gfp_mask: memory allocation flags (and I/O mode) 1580 * 1581 * The address_space is to try to release any data against the page 1582 * (presumably at page->private). If the release was successful, return `1'. 1583 * Otherwise return zero. 1584 * 1585 * The @gfp_mask argument specifies whether I/O may be performed to release 1586 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 1587 * 1588 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 1589 */ 1590int try_to_release_page(struct page *page, int gfp_mask) 1591{ 1592 struct address_space * const mapping = page->mapping; 1593 1594 BUG_ON(!PageLocked(page)); 1595 if (PageWriteback(page)) 1596 return 0; 1597 1598 if (mapping && mapping->a_ops->releasepage) 1599 return mapping->a_ops->releasepage(page, gfp_mask); 1600 return try_to_free_buffers(page); 1601} 1602EXPORT_SYMBOL(try_to_release_page); 1603 1604/** 1605 * block_invalidatepage - invalidate part of all of a buffer-backed page 1606 * 1607 * @page: the page which is affected 1608 * @offset: the index of the truncation point 1609 * 1610 * block_invalidatepage() is called when all or part of the page has become 1611 * invalidatedby a truncate operation. 1612 * 1613 * block_invalidatepage() does not have to release all buffers, but it must 1614 * ensure that no dirty buffer is left outside @offset and that no I/O 1615 * is underway against any of the blocks which are outside the truncation 1616 * point. Because the caller is about to free (and possibly reuse) those 1617 * blocks on-disk. 1618 */ 1619int block_invalidatepage(struct page *page, unsigned long offset) 1620{ 1621 struct buffer_head *head, *bh, *next; 1622 unsigned int curr_off = 0; 1623 int ret = 1; 1624 1625 BUG_ON(!PageLocked(page)); 1626 if (!page_has_buffers(page)) 1627 goto out; 1628 1629 head = page_buffers(page); 1630 bh = head; 1631 do { 1632 unsigned int next_off = curr_off + bh->b_size; 1633 next = bh->b_this_page; 1634 1635 /* 1636 * is this block fully invalidated? 1637 */ 1638 if (offset <= curr_off) 1639 discard_buffer(bh); 1640 curr_off = next_off; 1641 bh = next; 1642 } while (bh != head); 1643 1644 /* 1645 * We release buffers only if the entire page is being invalidated. 1646 * The get_block cached value has been unconditionally invalidated, 1647 * so real IO is not possible anymore. 1648 */ 1649 if (offset == 0) 1650 ret = try_to_release_page(page, 0); 1651out: 1652 return ret; 1653} 1654EXPORT_SYMBOL(block_invalidatepage); 1655 1656/* 1657 * We attach and possibly dirty the buffers atomically wrt 1658 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1659 * is already excluded via the page lock. 1660 */ 1661void create_empty_buffers(struct page *page, 1662 unsigned long blocksize, unsigned long b_state) 1663{ 1664 struct buffer_head *bh, *head, *tail; 1665 1666 head = alloc_page_buffers(page, blocksize, 1); 1667 bh = head; 1668 do { 1669 bh->b_state |= b_state; 1670 tail = bh; 1671 bh = bh->b_this_page; 1672 } while (bh); 1673 tail->b_this_page = head; 1674 1675 spin_lock(&page->mapping->private_lock); 1676 if (PageUptodate(page) || PageDirty(page)) { 1677 bh = head; 1678 do { 1679 if (PageDirty(page)) 1680 set_buffer_dirty(bh); 1681 if (PageUptodate(page)) 1682 set_buffer_uptodate(bh); 1683 bh = bh->b_this_page; 1684 } while (bh != head); 1685 } 1686 attach_page_buffers(page, head); 1687 spin_unlock(&page->mapping->private_lock); 1688} 1689EXPORT_SYMBOL(create_empty_buffers); 1690 1691/* 1692 * We are taking a block for data and we don't want any output from any 1693 * buffer-cache aliases starting from return from that function and 1694 * until the moment when something will explicitly mark the buffer 1695 * dirty (hopefully that will not happen until we will free that block ;-) 1696 * We don't even need to mark it not-uptodate - nobody can expect 1697 * anything from a newly allocated buffer anyway. We used to used 1698 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1699 * don't want to mark the alias unmapped, for example - it would confuse 1700 * anyone who might pick it with bread() afterwards... 1701 * 1702 * Also.. Note that bforget() doesn't lock the buffer. So there can 1703 * be writeout I/O going on against recently-freed buffers. We don't 1704 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1705 * only if we really need to. That happens here. 1706 */ 1707void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1708{ 1709 struct buffer_head *old_bh; 1710 1711 might_sleep(); 1712 1713 old_bh = __find_get_block_slow(bdev, block, 0); 1714 if (old_bh) { 1715 clear_buffer_dirty(old_bh); 1716 wait_on_buffer(old_bh); 1717 clear_buffer_req(old_bh); 1718 __brelse(old_bh); 1719 } 1720} 1721EXPORT_SYMBOL(unmap_underlying_metadata); 1722 1723/* 1724 * NOTE! All mapped/uptodate combinations are valid: 1725 * 1726 * Mapped Uptodate Meaning 1727 * 1728 * No No "unknown" - must do get_block() 1729 * No Yes "hole" - zero-filled 1730 * Yes No "allocated" - allocated on disk, not read in 1731 * Yes Yes "valid" - allocated and up-to-date in memory. 1732 * 1733 * "Dirty" is valid only with the last case (mapped+uptodate). 1734 */ 1735 1736/* 1737 * While block_write_full_page is writing back the dirty buffers under 1738 * the page lock, whoever dirtied the buffers may decide to clean them 1739 * again at any time. We handle that by only looking at the buffer 1740 * state inside lock_buffer(). 1741 * 1742 * If block_write_full_page() is called for regular writeback 1743 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1744 * locked buffer. This only can happen if someone has written the buffer 1745 * directly, with submit_bh(). At the address_space level PageWriteback 1746 * prevents this contention from occurring. 1747 */ 1748static int __block_write_full_page(struct inode *inode, struct page *page, 1749 get_block_t *get_block, struct writeback_control *wbc) 1750{ 1751 int err; 1752 sector_t block; 1753 sector_t last_block; 1754 struct buffer_head *bh, *head; 1755 int nr_underway = 0; 1756 1757 BUG_ON(!PageLocked(page)); 1758 1759 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1760 1761 if (!page_has_buffers(page)) { 1762 create_empty_buffers(page, 1 << inode->i_blkbits, 1763 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1764 } 1765 1766 /* 1767 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1768 * here, and the (potentially unmapped) buffers may become dirty at 1769 * any time. If a buffer becomes dirty here after we've inspected it 1770 * then we just miss that fact, and the page stays dirty. 1771 * 1772 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1773 * handle that here by just cleaning them. 1774 */ 1775 1776 block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1777 head = page_buffers(page); 1778 bh = head; 1779 1780 /* 1781 * Get all the dirty buffers mapped to disk addresses and 1782 * handle any aliases from the underlying blockdev's mapping. 1783 */ 1784 do { 1785 if (block > last_block) { 1786 /* 1787 * mapped buffers outside i_size will occur, because 1788 * this page can be outside i_size when there is a 1789 * truncate in progress. 1790 */ 1791 /* 1792 * The buffer was zeroed by block_write_full_page() 1793 */ 1794 clear_buffer_dirty(bh); 1795 set_buffer_uptodate(bh); 1796 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1797 err = get_block(inode, block, bh, 1); 1798 if (err) 1799 goto recover; 1800 if (buffer_new(bh)) { 1801 /* blockdev mappings never come here */ 1802 clear_buffer_new(bh); 1803 unmap_underlying_metadata(bh->b_bdev, 1804 bh->b_blocknr); 1805 } 1806 } 1807 bh = bh->b_this_page; 1808 block++; 1809 } while (bh != head); 1810 1811 do { 1812 if (!buffer_mapped(bh)) 1813 continue; 1814 /* 1815 * If it's a fully non-blocking write attempt and we cannot 1816 * lock the buffer then redirty the page. Note that this can 1817 * potentially cause a busy-wait loop from pdflush and kswapd 1818 * activity, but those code paths have their own higher-level 1819 * throttling. 1820 */ 1821 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1822 lock_buffer(bh); 1823 } else if (test_set_buffer_locked(bh)) { 1824 redirty_page_for_writepage(wbc, page); 1825 continue; 1826 } 1827 if (test_clear_buffer_dirty(bh)) { 1828 mark_buffer_async_write(bh); 1829 } else { 1830 unlock_buffer(bh); 1831 } 1832 } while ((bh = bh->b_this_page) != head); 1833 1834 /* 1835 * The page and its buffers are protected by PageWriteback(), so we can 1836 * drop the bh refcounts early. 1837 */ 1838 BUG_ON(PageWriteback(page)); 1839 set_page_writeback(page); 1840 1841 do { 1842 struct buffer_head *next = bh->b_this_page; 1843 if (buffer_async_write(bh)) { 1844 submit_bh(WRITE, bh); 1845 nr_underway++; 1846 } 1847 bh = next; 1848 } while (bh != head); 1849 unlock_page(page); 1850 1851 err = 0; 1852done: 1853 if (nr_underway == 0) { 1854 /* 1855 * The page was marked dirty, but the buffers were 1856 * clean. Someone wrote them back by hand with 1857 * ll_rw_block/submit_bh. A rare case. 1858 */ 1859 int uptodate = 1; 1860 do { 1861 if (!buffer_uptodate(bh)) { 1862 uptodate = 0; 1863 break; 1864 } 1865 bh = bh->b_this_page; 1866 } while (bh != head); 1867 if (uptodate) 1868 SetPageUptodate(page); 1869 end_page_writeback(page); 1870 /* 1871 * The page and buffer_heads can be released at any time from 1872 * here on. 1873 */ 1874 wbc->pages_skipped++; /* We didn't write this page */ 1875 } 1876 return err; 1877 1878recover: 1879 /* 1880 * ENOSPC, or some other error. We may already have added some 1881 * blocks to the file, so we need to write these out to avoid 1882 * exposing stale data. 1883 * The page is currently locked and not marked for writeback 1884 */ 1885 bh = head; 1886 /* Recovery: lock and submit the mapped buffers */ 1887 do { 1888 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1889 lock_buffer(bh); 1890 mark_buffer_async_write(bh); 1891 } else { 1892 /* 1893 * The buffer may have been set dirty during 1894 * attachment to a dirty page. 1895 */ 1896 clear_buffer_dirty(bh); 1897 } 1898 } while ((bh = bh->b_this_page) != head); 1899 SetPageError(page); 1900 BUG_ON(PageWriteback(page)); 1901 set_page_writeback(page); 1902 unlock_page(page); 1903 do { 1904 struct buffer_head *next = bh->b_this_page; 1905 if (buffer_async_write(bh)) { 1906 clear_buffer_dirty(bh); 1907 submit_bh(WRITE, bh); 1908 nr_underway++; 1909 } 1910 bh = next; 1911 } while (bh != head); 1912 goto done; 1913} 1914 1915static int __block_prepare_write(struct inode *inode, struct page *page, 1916 unsigned from, unsigned to, get_block_t *get_block) 1917{ 1918 unsigned block_start, block_end; 1919 sector_t block; 1920 int err = 0; 1921 unsigned blocksize, bbits; 1922 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1923 1924 BUG_ON(!PageLocked(page)); 1925 BUG_ON(from > PAGE_CACHE_SIZE); 1926 BUG_ON(to > PAGE_CACHE_SIZE); 1927 BUG_ON(from > to); 1928 1929 blocksize = 1 << inode->i_blkbits; 1930 if (!page_has_buffers(page)) 1931 create_empty_buffers(page, blocksize, 0); 1932 head = page_buffers(page); 1933 1934 bbits = inode->i_blkbits; 1935 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1936 1937 for(bh = head, block_start = 0; bh != head || !block_start; 1938 block++, block_start=block_end, bh = bh->b_this_page) { 1939 block_end = block_start + blocksize; 1940 if (block_end <= from || block_start >= to) { 1941 if (PageUptodate(page)) { 1942 if (!buffer_uptodate(bh)) 1943 set_buffer_uptodate(bh); 1944 } 1945 continue; 1946 } 1947 if (buffer_new(bh)) 1948 clear_buffer_new(bh); 1949 if (!buffer_mapped(bh)) { 1950 err = get_block(inode, block, bh, 1); 1951 if (err) 1952 break; 1953 if (buffer_new(bh)) { 1954 clear_buffer_new(bh); 1955 unmap_underlying_metadata(bh->b_bdev, 1956 bh->b_blocknr); 1957 if (PageUptodate(page)) { 1958 set_buffer_uptodate(bh); 1959 continue; 1960 } 1961 if (block_end > to || block_start < from) { 1962 void *kaddr; 1963 1964 kaddr = kmap_atomic(page, KM_USER0); 1965 if (block_end > to) 1966 memset(kaddr+to, 0, 1967 block_end-to); 1968 if (block_start < from) 1969 memset(kaddr+block_start, 1970 0, from-block_start); 1971 flush_dcache_page(page); 1972 kunmap_atomic(kaddr, KM_USER0); 1973 } 1974 continue; 1975 } 1976 } 1977 if (PageUptodate(page)) { 1978 if (!buffer_uptodate(bh)) 1979 set_buffer_uptodate(bh); 1980 continue; 1981 } 1982 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1983 (block_start < from || block_end > to)) { 1984 ll_rw_block(READ, 1, &bh); 1985 *wait_bh++=bh; 1986 } 1987 } 1988 /* 1989 * If we issued read requests - let them complete. 1990 */ 1991 while(wait_bh > wait) { 1992 wait_on_buffer(*--wait_bh); 1993 if (!buffer_uptodate(*wait_bh)) 1994 err = -EIO; 1995 } 1996 if (!err) 1997 return err; 1998 1999 /* Error case: */ 2000 /* 2001 * Zero out any newly allocated blocks to avoid exposing stale 2002 * data. If BH_New is set, we know that the block was newly 2003 * allocated in the above loop. 2004 */ 2005 bh = head; 2006 block_start = 0; 2007 do { 2008 block_end = block_start+blocksize; 2009 if (block_end <= from) 2010 goto next_bh; 2011 if (block_start >= to) 2012 break; 2013 if (buffer_new(bh)) { 2014 void *kaddr; 2015 2016 clear_buffer_new(bh); 2017 kaddr = kmap_atomic(page, KM_USER0); 2018 memset(kaddr+block_start, 0, bh->b_size); 2019 kunmap_atomic(kaddr, KM_USER0); 2020 set_buffer_uptodate(bh); 2021 mark_buffer_dirty(bh); 2022 } 2023next_bh: 2024 block_start = block_end; 2025 bh = bh->b_this_page; 2026 } while (bh != head); 2027 return err; 2028} 2029 2030static int __block_commit_write(struct inode *inode, struct page *page, 2031 unsigned from, unsigned to) 2032{ 2033 unsigned block_start, block_end; 2034 int partial = 0; 2035 unsigned blocksize; 2036 struct buffer_head *bh, *head; 2037 2038 blocksize = 1 << inode->i_blkbits; 2039 2040 for(bh = head = page_buffers(page), block_start = 0; 2041 bh != head || !block_start; 2042 block_start=block_end, bh = bh->b_this_page) { 2043 block_end = block_start + blocksize; 2044 if (block_end <= from || block_start >= to) { 2045 if (!buffer_uptodate(bh)) 2046 partial = 1; 2047 } else { 2048 set_buffer_uptodate(bh); 2049 mark_buffer_dirty(bh); 2050 } 2051 } 2052 2053 /* 2054 * If this is a partial write which happened to make all buffers 2055 * uptodate then we can optimize away a bogus readpage() for 2056 * the next read(). Here we 'discover' whether the page went 2057 * uptodate as a result of this (potentially partial) write. 2058 */ 2059 if (!partial) 2060 SetPageUptodate(page); 2061 return 0; 2062} 2063 2064/* 2065 * Generic "read page" function for block devices that have the normal 2066 * get_block functionality. This is most of the block device filesystems. 2067 * Reads the page asynchronously --- the unlock_buffer() and 2068 * set/clear_buffer_uptodate() functions propagate buffer state into the 2069 * page struct once IO has completed. 2070 */ 2071int block_read_full_page(struct page *page, get_block_t *get_block) 2072{ 2073 struct inode *inode = page->mapping->host; 2074 sector_t iblock, lblock; 2075 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2076 unsigned int blocksize; 2077 int nr, i; 2078 int fully_mapped = 1; 2079 2080 BUG_ON(!PageLocked(page)); 2081 blocksize = 1 << inode->i_blkbits; 2082 if (!page_has_buffers(page)) 2083 create_empty_buffers(page, blocksize, 0); 2084 head = page_buffers(page); 2085 2086 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2087 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2088 bh = head; 2089 nr = 0; 2090 i = 0; 2091 2092 do { 2093 if (buffer_uptodate(bh)) 2094 continue; 2095 2096 if (!buffer_mapped(bh)) { 2097 fully_mapped = 0; 2098 if (iblock < lblock) { 2099 if (get_block(inode, iblock, bh, 0)) 2100 SetPageError(page); 2101 } 2102 if (!buffer_mapped(bh)) { 2103 void *kaddr = kmap_atomic(page, KM_USER0); 2104 memset(kaddr + i * blocksize, 0, blocksize); 2105 flush_dcache_page(page); 2106 kunmap_atomic(kaddr, KM_USER0); 2107 set_buffer_uptodate(bh); 2108 continue; 2109 } 2110 /* 2111 * get_block() might have updated the buffer 2112 * synchronously 2113 */ 2114 if (buffer_uptodate(bh)) 2115 continue; 2116 } 2117 arr[nr++] = bh; 2118 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2119 2120 if (fully_mapped) 2121 SetPageMappedToDisk(page); 2122 2123 if (!nr) { 2124 /* 2125 * All buffers are uptodate - we can set the page uptodate 2126 * as well. But not if get_block() returned an error. 2127 */ 2128 if (!PageError(page)) 2129 SetPageUptodate(page); 2130 unlock_page(page); 2131 return 0; 2132 } 2133 2134 /* Stage two: lock the buffers */ 2135 for (i = 0; i < nr; i++) { 2136 bh = arr[i]; 2137 lock_buffer(bh); 2138 mark_buffer_async_read(bh); 2139 } 2140 2141 /* 2142 * Stage 3: start the IO. Check for uptodateness 2143 * inside the buffer lock in case another process reading 2144 * the underlying blockdev brought it uptodate (the sct fix). 2145 */ 2146 for (i = 0; i < nr; i++) { 2147 bh = arr[i]; 2148 if (buffer_uptodate(bh)) 2149 end_buffer_async_read(bh, 1); 2150 else 2151 submit_bh(READ, bh); 2152 } 2153 return 0; 2154} 2155 2156/* utility function for filesystems that need to do work on expanding 2157 * truncates. Uses prepare/commit_write to allow the filesystem to 2158 * deal with the hole. 2159 */ 2160int generic_cont_expand(struct inode *inode, loff_t size) 2161{ 2162 struct address_space *mapping = inode->i_mapping; 2163 struct page *page; 2164 unsigned long index, offset, limit; 2165 int err; 2166 2167 err = -EFBIG; 2168 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2169 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2170 send_sig(SIGXFSZ, current, 0); 2171 goto out; 2172 } 2173 if (size > inode->i_sb->s_maxbytes) 2174 goto out; 2175 2176 offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */ 2177 2178 /* ugh. in prepare/commit_write, if from==to==start of block, we 2179 ** skip the prepare. make sure we never send an offset for the start 2180 ** of a block 2181 */ 2182 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { 2183 offset++; 2184 } 2185 index = size >> PAGE_CACHE_SHIFT; 2186 err = -ENOMEM; 2187 page = grab_cache_page(mapping, index); 2188 if (!page) 2189 goto out; 2190 err = mapping->a_ops->prepare_write(NULL, page, offset, offset); 2191 if (!err) { 2192 err = mapping->a_ops->commit_write(NULL, page, offset, offset); 2193 } 2194 unlock_page(page); 2195 page_cache_release(page); 2196 if (err > 0) 2197 err = 0; 2198out: 2199 return err; 2200} 2201 2202/* 2203 * For moronic filesystems that do not allow holes in file. 2204 * We may have to extend the file. 2205 */ 2206 2207int cont_prepare_write(struct page *page, unsigned offset, 2208 unsigned to, get_block_t *get_block, loff_t *bytes) 2209{ 2210 struct address_space *mapping = page->mapping; 2211 struct inode *inode = mapping->host; 2212 struct page *new_page; 2213 pgoff_t pgpos; 2214 long status; 2215 unsigned zerofrom; 2216 unsigned blocksize = 1 << inode->i_blkbits; 2217 void *kaddr; 2218 2219 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { 2220 status = -ENOMEM; 2221 new_page = grab_cache_page(mapping, pgpos); 2222 if (!new_page) 2223 goto out; 2224 /* we might sleep */ 2225 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { 2226 unlock_page(new_page); 2227 page_cache_release(new_page); 2228 continue; 2229 } 2230 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2231 if (zerofrom & (blocksize-1)) { 2232 *bytes |= (blocksize-1); 2233 (*bytes)++; 2234 } 2235 status = __block_prepare_write(inode, new_page, zerofrom, 2236 PAGE_CACHE_SIZE, get_block); 2237 if (status) 2238 goto out_unmap; 2239 kaddr = kmap_atomic(new_page, KM_USER0); 2240 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); 2241 flush_dcache_page(new_page); 2242 kunmap_atomic(kaddr, KM_USER0); 2243 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); 2244 unlock_page(new_page); 2245 page_cache_release(new_page); 2246 } 2247 2248 if (page->index < pgpos) { 2249 /* completely inside the area */ 2250 zerofrom = offset; 2251 } else { 2252 /* page covers the boundary, find the boundary offset */ 2253 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2254 2255 /* if we will expand the thing last block will be filled */ 2256 if (to > zerofrom && (zerofrom & (blocksize-1))) { 2257 *bytes |= (blocksize-1); 2258 (*bytes)++; 2259 } 2260 2261 /* starting below the boundary? Nothing to zero out */ 2262 if (offset <= zerofrom) 2263 zerofrom = offset; 2264 } 2265 status = __block_prepare_write(inode, page, zerofrom, to, get_block); 2266 if (status) 2267 goto out1; 2268 if (zerofrom < offset) { 2269 kaddr = kmap_atomic(page, KM_USER0); 2270 memset(kaddr+zerofrom, 0, offset-zerofrom); 2271 flush_dcache_page(page); 2272 kunmap_atomic(kaddr, KM_USER0); 2273 __block_commit_write(inode, page, zerofrom, offset); 2274 } 2275 return 0; 2276out1: 2277 ClearPageUptodate(page); 2278 return status; 2279 2280out_unmap: 2281 ClearPageUptodate(new_page); 2282 unlock_page(new_page); 2283 page_cache_release(new_page); 2284out: 2285 return status; 2286} 2287 2288int block_prepare_write(struct page *page, unsigned from, unsigned to, 2289 get_block_t *get_block) 2290{ 2291 struct inode *inode = page->mapping->host; 2292 int err = __block_prepare_write(inode, page, from, to, get_block); 2293 if (err) 2294 ClearPageUptodate(page); 2295 return err; 2296} 2297 2298int block_commit_write(struct page *page, unsigned from, unsigned to) 2299{ 2300 struct inode *inode = page->mapping->host; 2301 __block_commit_write(inode,page,from,to); 2302 return 0; 2303} 2304 2305int generic_commit_write(struct file *file, struct page *page, 2306 unsigned from, unsigned to) 2307{ 2308 struct inode *inode = page->mapping->host; 2309 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2310 __block_commit_write(inode,page,from,to); 2311 /* 2312 * No need to use i_size_read() here, the i_size 2313 * cannot change under us because we hold i_sem. 2314 */ 2315 if (pos > inode->i_size) { 2316 i_size_write(inode, pos); 2317 mark_inode_dirty(inode); 2318 } 2319 return 0; 2320} 2321 2322 2323/* 2324 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed 2325 * immediately, while under the page lock. So it needs a special end_io 2326 * handler which does not touch the bh after unlocking it. 2327 * 2328 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 2329 * a race there is benign: unlock_buffer() only use the bh's address for 2330 * hashing after unlocking the buffer, so it doesn't actually touch the bh 2331 * itself. 2332 */ 2333static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2334{ 2335 if (uptodate) { 2336 set_buffer_uptodate(bh); 2337 } else { 2338 /* This happens, due to failed READA attempts. */ 2339 clear_buffer_uptodate(bh); 2340 } 2341 unlock_buffer(bh); 2342} 2343 2344/* 2345 * On entry, the page is fully not uptodate. 2346 * On exit the page is fully uptodate in the areas outside (from,to) 2347 */ 2348int nobh_prepare_write(struct page *page, unsigned from, unsigned to, 2349 get_block_t *get_block) 2350{ 2351 struct inode *inode = page->mapping->host; 2352 const unsigned blkbits = inode->i_blkbits; 2353 const unsigned blocksize = 1 << blkbits; 2354 struct buffer_head map_bh; 2355 struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; 2356 unsigned block_in_page; 2357 unsigned block_start; 2358 sector_t block_in_file; 2359 char *kaddr; 2360 int nr_reads = 0; 2361 int i; 2362 int ret = 0; 2363 int is_mapped_to_disk = 1; 2364 int dirtied_it = 0; 2365 2366 if (PageMappedToDisk(page)) 2367 return 0; 2368 2369 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2370 map_bh.b_page = page; 2371 2372 /* 2373 * We loop across all blocks in the page, whether or not they are 2374 * part of the affected region. This is so we can discover if the 2375 * page is fully mapped-to-disk. 2376 */ 2377 for (block_start = 0, block_in_page = 0; 2378 block_start < PAGE_CACHE_SIZE; 2379 block_in_page++, block_start += blocksize) { 2380 unsigned block_end = block_start + blocksize; 2381 int create; 2382 2383 map_bh.b_state = 0; 2384 create = 1; 2385 if (block_start >= to) 2386 create = 0; 2387 ret = get_block(inode, block_in_file + block_in_page, 2388 &map_bh, create); 2389 if (ret) 2390 goto failed; 2391 if (!buffer_mapped(&map_bh)) 2392 is_mapped_to_disk = 0; 2393 if (buffer_new(&map_bh)) 2394 unmap_underlying_metadata(map_bh.b_bdev, 2395 map_bh.b_blocknr); 2396 if (PageUptodate(page)) 2397 continue; 2398 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { 2399 kaddr = kmap_atomic(page, KM_USER0); 2400 if (block_start < from) { 2401 memset(kaddr+block_start, 0, from-block_start); 2402 dirtied_it = 1; 2403 } 2404 if (block_end > to) { 2405 memset(kaddr + to, 0, block_end - to); 2406 dirtied_it = 1; 2407 } 2408 flush_dcache_page(page); 2409 kunmap_atomic(kaddr, KM_USER0); 2410 continue; 2411 } 2412 if (buffer_uptodate(&map_bh)) 2413 continue; /* reiserfs does this */ 2414 if (block_start < from || block_end > to) { 2415 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); 2416 2417 if (!bh) { 2418 ret = -ENOMEM; 2419 goto failed; 2420 } 2421 bh->b_state = map_bh.b_state; 2422 atomic_set(&bh->b_count, 0); 2423 bh->b_this_page = NULL; 2424 bh->b_page = page; 2425 bh->b_blocknr = map_bh.b_blocknr; 2426 bh->b_size = blocksize; 2427 bh->b_data = (char *)(long)block_start; 2428 bh->b_bdev = map_bh.b_bdev; 2429 bh->b_private = NULL; 2430 read_bh[nr_reads++] = bh; 2431 } 2432 } 2433 2434 if (nr_reads) { 2435 struct buffer_head *bh; 2436 2437 /* 2438 * The page is locked, so these buffers are protected from 2439 * any VM or truncate activity. Hence we don't need to care 2440 * for the buffer_head refcounts. 2441 */ 2442 for (i = 0; i < nr_reads; i++) { 2443 bh = read_bh[i]; 2444 lock_buffer(bh); 2445 bh->b_end_io = end_buffer_read_nobh; 2446 submit_bh(READ, bh); 2447 } 2448 for (i = 0; i < nr_reads; i++) { 2449 bh = read_bh[i]; 2450 wait_on_buffer(bh); 2451 if (!buffer_uptodate(bh)) 2452 ret = -EIO; 2453 free_buffer_head(bh); 2454 read_bh[i] = NULL; 2455 } 2456 if (ret) 2457 goto failed; 2458 } 2459 2460 if (is_mapped_to_disk) 2461 SetPageMappedToDisk(page); 2462 SetPageUptodate(page); 2463 2464 /* 2465 * Setting the page dirty here isn't necessary for the prepare_write 2466 * function - commit_write will do that. But if/when this function is 2467 * used within the pagefault handler to ensure that all mmapped pages 2468 * have backing space in the filesystem, we will need to dirty the page 2469 * if its contents were altered. 2470 */ 2471 if (dirtied_it) 2472 set_page_dirty(page); 2473 2474 return 0; 2475 2476failed: 2477 for (i = 0; i < nr_reads; i++) { 2478 if (read_bh[i]) 2479 free_buffer_head(read_bh[i]); 2480 } 2481 2482 /* 2483 * Error recovery is pretty slack. Clear the page and mark it dirty 2484 * so we'll later zero out any blocks which _were_ allocated. 2485 */ 2486 kaddr = kmap_atomic(page, KM_USER0); 2487 memset(kaddr, 0, PAGE_CACHE_SIZE); 2488 kunmap_atomic(kaddr, KM_USER0); 2489 SetPageUptodate(page); 2490 set_page_dirty(page); 2491 return ret; 2492} 2493EXPORT_SYMBOL(nobh_prepare_write); 2494 2495int nobh_commit_write(struct file *file, struct page *page, 2496 unsigned from, unsigned to) 2497{ 2498 struct inode *inode = page->mapping->host; 2499 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2500 2501 set_page_dirty(page); 2502 if (pos > inode->i_size) { 2503 i_size_write(inode, pos); 2504 mark_inode_dirty(inode); 2505 } 2506 return 0; 2507} 2508EXPORT_SYMBOL(nobh_commit_write); 2509 2510/* 2511 * nobh_writepage() - based on block_full_write_page() except 2512 * that it tries to operate without attaching bufferheads to 2513 * the page. 2514 */ 2515int nobh_writepage(struct page *page, get_block_t *get_block, 2516 struct writeback_control *wbc) 2517{ 2518 struct inode * const inode = page->mapping->host; 2519 loff_t i_size = i_size_read(inode); 2520 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2521 unsigned offset; 2522 void *kaddr; 2523 int ret; 2524 2525 /* Is the page fully inside i_size? */ 2526 if (page->index < end_index) 2527 goto out; 2528 2529 /* Is the page fully outside i_size? (truncate in progress) */ 2530 offset = i_size & (PAGE_CACHE_SIZE-1); 2531 if (page->index >= end_index+1 || !offset) { 2532 /* 2533 * The page may have dirty, unmapped buffers. For example, 2534 * they may have been added in ext3_writepage(). Make them 2535 * freeable here, so the page does not leak. 2536 */ 2537#if 0 2538 /* Not really sure about this - do we need this ? */ 2539 if (page->mapping->a_ops->invalidatepage) 2540 page->mapping->a_ops->invalidatepage(page, offset); 2541#endif 2542 unlock_page(page); 2543 return 0; /* don't care */ 2544 } 2545 2546 /* 2547 * The page straddles i_size. It must be zeroed out on each and every 2548 * writepage invocation because it may be mmapped. "A file is mapped 2549 * in multiples of the page size. For a file that is not a multiple of 2550 * the page size, the remaining memory is zeroed when mapped, and 2551 * writes to that region are not written out to the file." 2552 */ 2553 kaddr = kmap_atomic(page, KM_USER0); 2554 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2555 flush_dcache_page(page); 2556 kunmap_atomic(kaddr, KM_USER0); 2557out: 2558 ret = mpage_writepage(page, get_block, wbc); 2559 if (ret == -EAGAIN) 2560 ret = __block_write_full_page(inode, page, get_block, wbc); 2561 return ret; 2562} 2563EXPORT_SYMBOL(nobh_writepage); 2564 2565/* 2566 * This function assumes that ->prepare_write() uses nobh_prepare_write(). 2567 */ 2568int nobh_truncate_page(struct address_space *mapping, loff_t from) 2569{ 2570 struct inode *inode = mapping->host; 2571 unsigned blocksize = 1 << inode->i_blkbits; 2572 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2573 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2574 unsigned to; 2575 struct page *page; 2576 struct address_space_operations *a_ops = mapping->a_ops; 2577 char *kaddr; 2578 int ret = 0; 2579 2580 if ((offset & (blocksize - 1)) == 0) 2581 goto out; 2582 2583 ret = -ENOMEM; 2584 page = grab_cache_page(mapping, index); 2585 if (!page) 2586 goto out; 2587 2588 to = (offset + blocksize) & ~(blocksize - 1); 2589 ret = a_ops->prepare_write(NULL, page, offset, to); 2590 if (ret == 0) { 2591 kaddr = kmap_atomic(page, KM_USER0); 2592 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2593 flush_dcache_page(page); 2594 kunmap_atomic(kaddr, KM_USER0); 2595 set_page_dirty(page); 2596 } 2597 unlock_page(page); 2598 page_cache_release(page); 2599out: 2600 return ret; 2601} 2602EXPORT_SYMBOL(nobh_truncate_page); 2603 2604int block_truncate_page(struct address_space *mapping, 2605 loff_t from, get_block_t *get_block) 2606{ 2607 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2608 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2609 unsigned blocksize; 2610 pgoff_t iblock; 2611 unsigned length, pos; 2612 struct inode *inode = mapping->host; 2613 struct page *page; 2614 struct buffer_head *bh; 2615 void *kaddr; 2616 int err; 2617 2618 blocksize = 1 << inode->i_blkbits; 2619 length = offset & (blocksize - 1); 2620 2621 /* Block boundary? Nothing to do */ 2622 if (!length) 2623 return 0; 2624 2625 length = blocksize - length; 2626 iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2627 2628 page = grab_cache_page(mapping, index); 2629 err = -ENOMEM; 2630 if (!page) 2631 goto out; 2632 2633 if (!page_has_buffers(page)) 2634 create_empty_buffers(page, blocksize, 0); 2635 2636 /* Find the buffer that contains "offset" */ 2637 bh = page_buffers(page); 2638 pos = blocksize; 2639 while (offset >= pos) { 2640 bh = bh->b_this_page; 2641 iblock++; 2642 pos += blocksize; 2643 } 2644 2645 err = 0; 2646 if (!buffer_mapped(bh)) { 2647 err = get_block(inode, iblock, bh, 0); 2648 if (err) 2649 goto unlock; 2650 /* unmapped? It's a hole - nothing to do */ 2651 if (!buffer_mapped(bh)) 2652 goto unlock; 2653 } 2654 2655 /* Ok, it's mapped. Make sure it's up-to-date */ 2656 if (PageUptodate(page)) 2657 set_buffer_uptodate(bh); 2658 2659 if (!buffer_uptodate(bh) && !buffer_delay(bh)) { 2660 err = -EIO; 2661 ll_rw_block(READ, 1, &bh); 2662 wait_on_buffer(bh); 2663 /* Uhhuh. Read error. Complain and punt. */ 2664 if (!buffer_uptodate(bh)) 2665 goto unlock; 2666 } 2667 2668 kaddr = kmap_atomic(page, KM_USER0); 2669 memset(kaddr + offset, 0, length); 2670 flush_dcache_page(page); 2671 kunmap_atomic(kaddr, KM_USER0); 2672 2673 mark_buffer_dirty(bh); 2674 err = 0; 2675 2676unlock: 2677 unlock_page(page); 2678 page_cache_release(page); 2679out: 2680 return err; 2681} 2682 2683/* 2684 * The generic ->writepage function for buffer-backed address_spaces 2685 */ 2686int block_write_full_page(struct page *page, get_block_t *get_block, 2687 struct writeback_control *wbc) 2688{ 2689 struct inode * const inode = page->mapping->host; 2690 loff_t i_size = i_size_read(inode); 2691 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2692 unsigned offset; 2693 void *kaddr; 2694 2695 /* Is the page fully inside i_size? */ 2696 if (page->index < end_index) 2697 return __block_write_full_page(inode, page, get_block, wbc); 2698 2699 /* Is the page fully outside i_size? (truncate in progress) */ 2700 offset = i_size & (PAGE_CACHE_SIZE-1); 2701 if (page->index >= end_index+1 || !offset) { 2702 /* 2703 * The page may have dirty, unmapped buffers. For example, 2704 * they may have been added in ext3_writepage(). Make them 2705 * freeable here, so the page does not leak. 2706 */ 2707 block_invalidatepage(page, 0); 2708 unlock_page(page); 2709 return 0; /* don't care */ 2710 } 2711 2712 /* 2713 * The page straddles i_size. It must be zeroed out on each and every 2714 * writepage invokation because it may be mmapped. "A file is mapped 2715 * in multiples of the page size. For a file that is not a multiple of 2716 * the page size, the remaining memory is zeroed when mapped, and 2717 * writes to that region are not written out to the file." 2718 */ 2719 kaddr = kmap_atomic(page, KM_USER0); 2720 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2721 flush_dcache_page(page); 2722 kunmap_atomic(kaddr, KM_USER0); 2723 return __block_write_full_page(inode, page, get_block, wbc); 2724} 2725 2726sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2727 get_block_t *get_block) 2728{ 2729 struct buffer_head tmp; 2730 struct inode *inode = mapping->host; 2731 tmp.b_state = 0; 2732 tmp.b_blocknr = 0; 2733 get_block(inode, block, &tmp, 0); 2734 return tmp.b_blocknr; 2735} 2736 2737static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) 2738{ 2739 struct buffer_head *bh = bio->bi_private; 2740 2741 if (bio->bi_size) 2742 return 1; 2743 2744 if (err == -EOPNOTSUPP) { 2745 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2746 set_bit(BH_Eopnotsupp, &bh->b_state); 2747 } 2748 2749 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2750 bio_put(bio); 2751 return 0; 2752} 2753 2754int submit_bh(int rw, struct buffer_head * bh) 2755{ 2756 struct bio *bio; 2757 int ret = 0; 2758 2759 BUG_ON(!buffer_locked(bh)); 2760 BUG_ON(!buffer_mapped(bh)); 2761 BUG_ON(!bh->b_end_io); 2762 2763 if (buffer_ordered(bh) && (rw == WRITE)) 2764 rw = WRITE_BARRIER; 2765 2766 /* 2767 * Only clear out a write error when rewriting, should this 2768 * include WRITE_SYNC as well? 2769 */ 2770 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2771 clear_buffer_write_io_error(bh); 2772 2773 /* 2774 * from here on down, it's all bio -- do the initial mapping, 2775 * submit_bio -> generic_make_request may further map this bio around 2776 */ 2777 bio = bio_alloc(GFP_NOIO, 1); 2778 2779 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2780 bio->bi_bdev = bh->b_bdev; 2781 bio->bi_io_vec[0].bv_page = bh->b_page; 2782 bio->bi_io_vec[0].bv_len = bh->b_size; 2783 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2784 2785 bio->bi_vcnt = 1; 2786 bio->bi_idx = 0; 2787 bio->bi_size = bh->b_size; 2788 2789 bio->bi_end_io = end_bio_bh_io_sync; 2790 bio->bi_private = bh; 2791 2792 bio_get(bio); 2793 submit_bio(rw, bio); 2794 2795 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2796 ret = -EOPNOTSUPP; 2797 2798 bio_put(bio); 2799 return ret; 2800} 2801 2802/** 2803 * ll_rw_block: low-level access to block devices (DEPRECATED) 2804 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2805 * @nr: number of &struct buffer_heads in the array 2806 * @bhs: array of pointers to &struct buffer_head 2807 * 2808 * ll_rw_block() takes an array of pointers to &struct buffer_heads, 2809 * and requests an I/O operation on them, either a %READ or a %WRITE. 2810 * The third %READA option is described in the documentation for 2811 * generic_make_request() which ll_rw_block() calls. 2812 * 2813 * This function drops any buffer that it cannot get a lock on (with the 2814 * BH_Lock state bit), any buffer that appears to be clean when doing a 2815 * write request, and any buffer that appears to be up-to-date when doing 2816 * read request. Further it marks as clean buffers that are processed for 2817 * writing (the buffer cache won't assume that they are actually clean until 2818 * the buffer gets unlocked). 2819 * 2820 * ll_rw_block sets b_end_io to simple completion handler that marks 2821 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2822 * any waiters. 2823 * 2824 * All of the buffers must be for the same device, and must also be a 2825 * multiple of the current approved size for the device. 2826 */ 2827void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2828{ 2829 int i; 2830 2831 for (i = 0; i < nr; i++) { 2832 struct buffer_head *bh = bhs[i]; 2833 2834 if (test_set_buffer_locked(bh)) 2835 continue; 2836 2837 get_bh(bh); 2838 if (rw == WRITE) { 2839 if (test_clear_buffer_dirty(bh)) { 2840 bh->b_end_io = end_buffer_write_sync; 2841 submit_bh(WRITE, bh); 2842 continue; 2843 } 2844 } else { 2845 if (!buffer_uptodate(bh)) { 2846 bh->b_end_io = end_buffer_read_sync; 2847 submit_bh(rw, bh); 2848 continue; 2849 } 2850 } 2851 unlock_buffer(bh); 2852 put_bh(bh); 2853 } 2854} 2855 2856/* 2857 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2858 * and then start new I/O and then wait upon it. The caller must have a ref on 2859 * the buffer_head. 2860 */ 2861int sync_dirty_buffer(struct buffer_head *bh) 2862{ 2863 int ret = 0; 2864 2865 WARN_ON(atomic_read(&bh->b_count) < 1); 2866 lock_buffer(bh); 2867 if (test_clear_buffer_dirty(bh)) { 2868 get_bh(bh); 2869 bh->b_end_io = end_buffer_write_sync; 2870 ret = submit_bh(WRITE, bh); 2871 wait_on_buffer(bh); 2872 if (buffer_eopnotsupp(bh)) { 2873 clear_buffer_eopnotsupp(bh); 2874 ret = -EOPNOTSUPP; 2875 } 2876 if (!ret && !buffer_uptodate(bh)) 2877 ret = -EIO; 2878 } else { 2879 unlock_buffer(bh); 2880 } 2881 return ret; 2882} 2883 2884/* 2885 * try_to_free_buffers() checks if all the buffers on this particular page 2886 * are unused, and releases them if so. 2887 * 2888 * Exclusion against try_to_free_buffers may be obtained by either 2889 * locking the page or by holding its mapping's private_lock. 2890 * 2891 * If the page is dirty but all the buffers are clean then we need to 2892 * be sure to mark the page clean as well. This is because the page 2893 * may be against a block device, and a later reattachment of buffers 2894 * to a dirty page will set *all* buffers dirty. Which would corrupt 2895 * filesystem data on the same device. 2896 * 2897 * The same applies to regular filesystem pages: if all the buffers are 2898 * clean then we set the page clean and proceed. To do that, we require 2899 * total exclusion from __set_page_dirty_buffers(). That is obtained with 2900 * private_lock. 2901 * 2902 * try_to_free_buffers() is non-blocking. 2903 */ 2904static inline int buffer_busy(struct buffer_head *bh) 2905{ 2906 return atomic_read(&bh->b_count) | 2907 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2908} 2909 2910static int 2911drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 2912{ 2913 struct buffer_head *head = page_buffers(page); 2914 struct buffer_head *bh; 2915 2916 bh = head; 2917 do { 2918 if (buffer_write_io_error(bh) && page->mapping) 2919 set_bit(AS_EIO, &page->mapping->flags); 2920 if (buffer_busy(bh)) 2921 goto failed; 2922 bh = bh->b_this_page; 2923 } while (bh != head); 2924 2925 do { 2926 struct buffer_head *next = bh->b_this_page; 2927 2928 if (!list_empty(&bh->b_assoc_buffers)) 2929 __remove_assoc_queue(bh); 2930 bh = next; 2931 } while (bh != head); 2932 *buffers_to_free = head; 2933 __clear_page_buffers(page); 2934 return 1; 2935failed: 2936 return 0; 2937} 2938 2939int try_to_free_buffers(struct page *page) 2940{ 2941 struct address_space * const mapping = page->mapping; 2942 struct buffer_head *buffers_to_free = NULL; 2943 int ret = 0; 2944 2945 BUG_ON(!PageLocked(page)); 2946 if (PageWriteback(page)) 2947 return 0; 2948 2949 if (mapping == NULL) { /* can this still happen? */ 2950 ret = drop_buffers(page, &buffers_to_free); 2951 goto out; 2952 } 2953 2954 spin_lock(&mapping->private_lock); 2955 ret = drop_buffers(page, &buffers_to_free); 2956 if (ret) { 2957 /* 2958 * If the filesystem writes its buffers by hand (eg ext3) 2959 * then we can have clean buffers against a dirty page. We 2960 * clean the page here; otherwise later reattachment of buffers 2961 * could encounter a non-uptodate page, which is unresolvable. 2962 * This only applies in the rare case where try_to_free_buffers 2963 * succeeds but the page is not freed. 2964 */ 2965 clear_page_dirty(page); 2966 } 2967 spin_unlock(&mapping->private_lock); 2968out: 2969 if (buffers_to_free) { 2970 struct buffer_head *bh = buffers_to_free; 2971 2972 do { 2973 struct buffer_head *next = bh->b_this_page; 2974 free_buffer_head(bh); 2975 bh = next; 2976 } while (bh != buffers_to_free); 2977 } 2978 return ret; 2979} 2980EXPORT_SYMBOL(try_to_free_buffers); 2981 2982int block_sync_page(struct page *page) 2983{ 2984 struct address_space *mapping; 2985 2986 smp_mb(); 2987 mapping = page_mapping(page); 2988 if (mapping) 2989 blk_run_backing_dev(mapping->backing_dev_info, page); 2990 return 0; 2991} 2992 2993/* 2994 * There are no bdflush tunables left. But distributions are 2995 * still running obsolete flush daemons, so we terminate them here. 2996 * 2997 * Use of bdflush() is deprecated and will be removed in a future kernel. 2998 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 2999 */ 3000asmlinkage long sys_bdflush(int func, long data) 3001{ 3002 static int msg_count; 3003 3004 if (!capable(CAP_SYS_ADMIN)) 3005 return -EPERM; 3006 3007 if (msg_count < 5) { 3008 msg_count++; 3009 printk(KERN_INFO 3010 "warning: process `%s' used the obsolete bdflush" 3011 " system call\n", current->comm); 3012 printk(KERN_INFO "Fix your initscripts?\n"); 3013 } 3014 3015 if (func == 1) 3016 do_exit(0); 3017 return 0; 3018} 3019 3020/* 3021 * Buffer-head allocation 3022 */ 3023static kmem_cache_t *bh_cachep; 3024 3025/* 3026 * Once the number of bh's in the machine exceeds this level, we start 3027 * stripping them in writeback. 3028 */ 3029static int max_buffer_heads; 3030 3031int buffer_heads_over_limit; 3032 3033struct bh_accounting { 3034 int nr; /* Number of live bh's */ 3035 int ratelimit; /* Limit cacheline bouncing */ 3036}; 3037 3038static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3039 3040static void recalc_bh_state(void) 3041{ 3042 int i; 3043 int tot = 0; 3044 3045 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3046 return; 3047 __get_cpu_var(bh_accounting).ratelimit = 0; 3048 for_each_cpu(i) 3049 tot += per_cpu(bh_accounting, i).nr; 3050 buffer_heads_over_limit = (tot > max_buffer_heads); 3051} 3052 3053struct buffer_head *alloc_buffer_head(unsigned int __nocast gfp_flags) 3054{ 3055 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 3056 if (ret) { 3057 preempt_disable(); 3058 __get_cpu_var(bh_accounting).nr++; 3059 recalc_bh_state(); 3060 preempt_enable(); 3061 } 3062 return ret; 3063} 3064EXPORT_SYMBOL(alloc_buffer_head); 3065 3066void free_buffer_head(struct buffer_head *bh) 3067{ 3068 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3069 kmem_cache_free(bh_cachep, bh); 3070 preempt_disable(); 3071 __get_cpu_var(bh_accounting).nr--; 3072 recalc_bh_state(); 3073 preempt_enable(); 3074} 3075EXPORT_SYMBOL(free_buffer_head); 3076 3077static void 3078init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags) 3079{ 3080 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 3081 SLAB_CTOR_CONSTRUCTOR) { 3082 struct buffer_head * bh = (struct buffer_head *)data; 3083 3084 memset(bh, 0, sizeof(*bh)); 3085 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3086 } 3087} 3088 3089#ifdef CONFIG_HOTPLUG_CPU 3090static void buffer_exit_cpu(int cpu) 3091{ 3092 int i; 3093 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3094 3095 for (i = 0; i < BH_LRU_SIZE; i++) { 3096 brelse(b->bhs[i]); 3097 b->bhs[i] = NULL; 3098 } 3099} 3100 3101static int buffer_cpu_notify(struct notifier_block *self, 3102 unsigned long action, void *hcpu) 3103{ 3104 if (action == CPU_DEAD) 3105 buffer_exit_cpu((unsigned long)hcpu); 3106 return NOTIFY_OK; 3107} 3108#endif /* CONFIG_HOTPLUG_CPU */ 3109 3110void __init buffer_init(void) 3111{ 3112 int nrpages; 3113 3114 bh_cachep = kmem_cache_create("buffer_head", 3115 sizeof(struct buffer_head), 0, 3116 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL); 3117 3118 /* 3119 * Limit the bh occupancy to 10% of ZONE_NORMAL 3120 */ 3121 nrpages = (nr_free_buffer_pages() * 10) / 100; 3122 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3123 hotcpu_notifier(buffer_cpu_notify, 0); 3124} 3125 3126EXPORT_SYMBOL(__bforget); 3127EXPORT_SYMBOL(__brelse); 3128EXPORT_SYMBOL(__wait_on_buffer); 3129EXPORT_SYMBOL(block_commit_write); 3130EXPORT_SYMBOL(block_prepare_write); 3131EXPORT_SYMBOL(block_read_full_page); 3132EXPORT_SYMBOL(block_sync_page); 3133EXPORT_SYMBOL(block_truncate_page); 3134EXPORT_SYMBOL(block_write_full_page); 3135EXPORT_SYMBOL(cont_prepare_write); 3136EXPORT_SYMBOL(end_buffer_async_write); 3137EXPORT_SYMBOL(end_buffer_read_sync); 3138EXPORT_SYMBOL(end_buffer_write_sync); 3139EXPORT_SYMBOL(file_fsync); 3140EXPORT_SYMBOL(fsync_bdev); 3141EXPORT_SYMBOL(generic_block_bmap); 3142EXPORT_SYMBOL(generic_commit_write); 3143EXPORT_SYMBOL(generic_cont_expand); 3144EXPORT_SYMBOL(init_buffer); 3145EXPORT_SYMBOL(invalidate_bdev); 3146EXPORT_SYMBOL(ll_rw_block); 3147EXPORT_SYMBOL(mark_buffer_dirty); 3148EXPORT_SYMBOL(submit_bh); 3149EXPORT_SYMBOL(sync_dirty_buffer); 3150EXPORT_SYMBOL(unlock_buffer);