1/* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7/* 8 * #!-checking implemented by tytso. 9 */ 10/* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25#include <linux/slab.h> 26#include <linux/file.h> 27#include <linux/mman.h> 28#include <linux/a.out.h> 29#include <linux/stat.h> 30#include <linux/fcntl.h> 31#include <linux/smp_lock.h> 32#include <linux/init.h> 33#include <linux/pagemap.h> 34#include <linux/highmem.h> 35#include <linux/spinlock.h> 36#include <linux/key.h> 37#include <linux/personality.h> 38#include <linux/binfmts.h> 39#include <linux/swap.h> 40#include <linux/utsname.h> 41#include <linux/pid_namespace.h> 42#include <linux/module.h> 43#include <linux/namei.h> 44#include <linux/proc_fs.h> 45#include <linux/ptrace.h> 46#include <linux/mount.h> 47#include <linux/security.h> 48#include <linux/syscalls.h> 49#include <linux/rmap.h> 50#include <linux/tsacct_kern.h> 51#include <linux/cn_proc.h> 52#include <linux/audit.h> 53#include <linux/signalfd.h> 54 55#include <asm/uaccess.h> 56#include <asm/mmu_context.h> 57#include <asm/tlb.h> 58 59#ifdef CONFIG_KMOD 60#include <linux/kmod.h> 61#endif 62 63int core_uses_pid; 64char core_pattern[CORENAME_MAX_SIZE] = "core"; 65int suid_dumpable = 0; 66 67EXPORT_SYMBOL(suid_dumpable); 68/* The maximal length of core_pattern is also specified in sysctl.c */ 69 70static struct linux_binfmt *formats; 71static DEFINE_RWLOCK(binfmt_lock); 72 73int register_binfmt(struct linux_binfmt * fmt) 74{ 75 struct linux_binfmt ** tmp = &formats; 76 77 if (!fmt) 78 return -EINVAL; 79 if (fmt->next) 80 return -EBUSY; 81 write_lock(&binfmt_lock); 82 while (*tmp) { 83 if (fmt == *tmp) { 84 write_unlock(&binfmt_lock); 85 return -EBUSY; 86 } 87 tmp = &(*tmp)->next; 88 } 89 fmt->next = formats; 90 formats = fmt; 91 write_unlock(&binfmt_lock); 92 return 0; 93} 94 95EXPORT_SYMBOL(register_binfmt); 96 97int unregister_binfmt(struct linux_binfmt * fmt) 98{ 99 struct linux_binfmt ** tmp = &formats; 100 101 write_lock(&binfmt_lock); 102 while (*tmp) { 103 if (fmt == *tmp) { 104 *tmp = fmt->next; 105 fmt->next = NULL; 106 write_unlock(&binfmt_lock); 107 return 0; 108 } 109 tmp = &(*tmp)->next; 110 } 111 write_unlock(&binfmt_lock); 112 return -EINVAL; 113} 114 115EXPORT_SYMBOL(unregister_binfmt); 116 117static inline void put_binfmt(struct linux_binfmt * fmt) 118{ 119 module_put(fmt->module); 120} 121 122/* 123 * Note that a shared library must be both readable and executable due to 124 * security reasons. 125 * 126 * Also note that we take the address to load from from the file itself. 127 */ 128asmlinkage long sys_uselib(const char __user * library) 129{ 130 struct file * file; 131 struct nameidata nd; 132 int error; 133 134 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 135 if (error) 136 goto out; 137 138 error = -EACCES; 139 if (nd.mnt->mnt_flags & MNT_NOEXEC) 140 goto exit; 141 error = -EINVAL; 142 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 143 goto exit; 144 145 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 146 if (error) 147 goto exit; 148 149 file = nameidata_to_filp(&nd, O_RDONLY); 150 error = PTR_ERR(file); 151 if (IS_ERR(file)) 152 goto out; 153 154 error = -ENOEXEC; 155 if(file->f_op) { 156 struct linux_binfmt * fmt; 157 158 read_lock(&binfmt_lock); 159 for (fmt = formats ; fmt ; fmt = fmt->next) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 } 173 fput(file); 174out: 175 return error; 176exit: 177 release_open_intent(&nd); 178 path_release(&nd); 179 goto out; 180} 181 182#ifdef CONFIG_MMU 183 184static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 185 int write) 186{ 187 struct page *page; 188 int ret; 189 190#ifdef CONFIG_STACK_GROWSUP 191 if (write) { 192 ret = expand_stack_downwards(bprm->vma, pos); 193 if (ret < 0) 194 return NULL; 195 } 196#endif 197 ret = get_user_pages(current, bprm->mm, pos, 198 1, write, 1, &page, NULL); 199 if (ret <= 0) 200 return NULL; 201 202 if (write) { 203 struct rlimit *rlim = current->signal->rlim; 204 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 205 206 /* 207 * Limit to 1/4-th the stack size for the argv+env strings. 208 * This ensures that: 209 * - the remaining binfmt code will not run out of stack space, 210 * - the program will have a reasonable amount of stack left 211 * to work from. 212 */ 213 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 214 put_page(page); 215 return NULL; 216 } 217 } 218 219 return page; 220} 221 222static void put_arg_page(struct page *page) 223{ 224 put_page(page); 225} 226 227static void free_arg_page(struct linux_binprm *bprm, int i) 228{ 229} 230 231static void free_arg_pages(struct linux_binprm *bprm) 232{ 233} 234 235static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 236 struct page *page) 237{ 238 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 239} 240 241static int __bprm_mm_init(struct linux_binprm *bprm) 242{ 243 int err = -ENOMEM; 244 struct vm_area_struct *vma = NULL; 245 struct mm_struct *mm = bprm->mm; 246 247 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 248 if (!vma) 249 goto err; 250 251 down_write(&mm->mmap_sem); 252 vma->vm_mm = mm; 253 254 /* 255 * Place the stack at the largest stack address the architecture 256 * supports. Later, we'll move this to an appropriate place. We don't 257 * use STACK_TOP because that can depend on attributes which aren't 258 * configured yet. 259 */ 260 vma->vm_end = STACK_TOP_MAX; 261 vma->vm_start = vma->vm_end - PAGE_SIZE; 262 263 vma->vm_flags = VM_STACK_FLAGS; 264 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7]; 265 err = insert_vm_struct(mm, vma); 266 if (err) { 267 up_write(&mm->mmap_sem); 268 goto err; 269 } 270 271 mm->stack_vm = mm->total_vm = 1; 272 up_write(&mm->mmap_sem); 273 274 bprm->p = vma->vm_end - sizeof(void *); 275 276 return 0; 277 278err: 279 if (vma) { 280 bprm->vma = NULL; 281 kmem_cache_free(vm_area_cachep, vma); 282 } 283 284 return err; 285} 286 287static bool valid_arg_len(struct linux_binprm *bprm, long len) 288{ 289 return len <= MAX_ARG_STRLEN; 290} 291 292#else 293 294static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 295 int write) 296{ 297 struct page *page; 298 299 page = bprm->page[pos / PAGE_SIZE]; 300 if (!page && write) { 301 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 302 if (!page) 303 return NULL; 304 bprm->page[pos / PAGE_SIZE] = page; 305 } 306 307 return page; 308} 309 310static void put_arg_page(struct page *page) 311{ 312} 313 314static void free_arg_page(struct linux_binprm *bprm, int i) 315{ 316 if (bprm->page[i]) { 317 __free_page(bprm->page[i]); 318 bprm->page[i] = NULL; 319 } 320} 321 322static void free_arg_pages(struct linux_binprm *bprm) 323{ 324 int i; 325 326 for (i = 0; i < MAX_ARG_PAGES; i++) 327 free_arg_page(bprm, i); 328} 329 330static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 331 struct page *page) 332{ 333} 334 335static int __bprm_mm_init(struct linux_binprm *bprm) 336{ 337 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 338 return 0; 339} 340 341static bool valid_arg_len(struct linux_binprm *bprm, long len) 342{ 343 return len <= bprm->p; 344} 345 346#endif /* CONFIG_MMU */ 347 348/* 349 * Create a new mm_struct and populate it with a temporary stack 350 * vm_area_struct. We don't have enough context at this point to set the stack 351 * flags, permissions, and offset, so we use temporary values. We'll update 352 * them later in setup_arg_pages(). 353 */ 354int bprm_mm_init(struct linux_binprm *bprm) 355{ 356 int err; 357 struct mm_struct *mm = NULL; 358 359 bprm->mm = mm = mm_alloc(); 360 err = -ENOMEM; 361 if (!mm) 362 goto err; 363 364 err = init_new_context(current, mm); 365 if (err) 366 goto err; 367 368 err = __bprm_mm_init(bprm); 369 if (err) 370 goto err; 371 372 return 0; 373 374err: 375 if (mm) { 376 bprm->mm = NULL; 377 mmdrop(mm); 378 } 379 380 return err; 381} 382 383/* 384 * count() counts the number of strings in array ARGV. 385 */ 386static int count(char __user * __user * argv, int max) 387{ 388 int i = 0; 389 390 if (argv != NULL) { 391 for (;;) { 392 char __user * p; 393 394 if (get_user(p, argv)) 395 return -EFAULT; 396 if (!p) 397 break; 398 argv++; 399 if(++i > max) 400 return -E2BIG; 401 cond_resched(); 402 } 403 } 404 return i; 405} 406 407/* 408 * 'copy_strings()' copies argument/environment strings from the old 409 * processes's memory to the new process's stack. The call to get_user_pages() 410 * ensures the destination page is created and not swapped out. 411 */ 412static int copy_strings(int argc, char __user * __user * argv, 413 struct linux_binprm *bprm) 414{ 415 struct page *kmapped_page = NULL; 416 char *kaddr = NULL; 417 unsigned long kpos = 0; 418 int ret; 419 420 while (argc-- > 0) { 421 char __user *str; 422 int len; 423 unsigned long pos; 424 425 if (get_user(str, argv+argc) || 426 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 427 ret = -EFAULT; 428 goto out; 429 } 430 431 if (!valid_arg_len(bprm, len)) { 432 ret = -E2BIG; 433 goto out; 434 } 435 436 /* We're going to work our way backwords. */ 437 pos = bprm->p; 438 str += len; 439 bprm->p -= len; 440 441 while (len > 0) { 442 int offset, bytes_to_copy; 443 444 offset = pos % PAGE_SIZE; 445 if (offset == 0) 446 offset = PAGE_SIZE; 447 448 bytes_to_copy = offset; 449 if (bytes_to_copy > len) 450 bytes_to_copy = len; 451 452 offset -= bytes_to_copy; 453 pos -= bytes_to_copy; 454 str -= bytes_to_copy; 455 len -= bytes_to_copy; 456 457 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 458 struct page *page; 459 460 page = get_arg_page(bprm, pos, 1); 461 if (!page) { 462 ret = -E2BIG; 463 goto out; 464 } 465 466 if (kmapped_page) { 467 flush_kernel_dcache_page(kmapped_page); 468 kunmap(kmapped_page); 469 put_arg_page(kmapped_page); 470 } 471 kmapped_page = page; 472 kaddr = kmap(kmapped_page); 473 kpos = pos & PAGE_MASK; 474 flush_arg_page(bprm, kpos, kmapped_page); 475 } 476 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 477 ret = -EFAULT; 478 goto out; 479 } 480 } 481 } 482 ret = 0; 483out: 484 if (kmapped_page) { 485 flush_kernel_dcache_page(kmapped_page); 486 kunmap(kmapped_page); 487 put_arg_page(kmapped_page); 488 } 489 return ret; 490} 491 492/* 493 * Like copy_strings, but get argv and its values from kernel memory. 494 */ 495int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 496{ 497 int r; 498 mm_segment_t oldfs = get_fs(); 499 set_fs(KERNEL_DS); 500 r = copy_strings(argc, (char __user * __user *)argv, bprm); 501 set_fs(oldfs); 502 return r; 503} 504EXPORT_SYMBOL(copy_strings_kernel); 505 506#ifdef CONFIG_MMU 507 508/* 509 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 510 * the binfmt code determines where the new stack should reside, we shift it to 511 * its final location. The process proceeds as follows: 512 * 513 * 1) Use shift to calculate the new vma endpoints. 514 * 2) Extend vma to cover both the old and new ranges. This ensures the 515 * arguments passed to subsequent functions are consistent. 516 * 3) Move vma's page tables to the new range. 517 * 4) Free up any cleared pgd range. 518 * 5) Shrink the vma to cover only the new range. 519 */ 520static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 521{ 522 struct mm_struct *mm = vma->vm_mm; 523 unsigned long old_start = vma->vm_start; 524 unsigned long old_end = vma->vm_end; 525 unsigned long length = old_end - old_start; 526 unsigned long new_start = old_start - shift; 527 unsigned long new_end = old_end - shift; 528 struct mmu_gather *tlb; 529 530 BUG_ON(new_start > new_end); 531 532 /* 533 * ensure there are no vmas between where we want to go 534 * and where we are 535 */ 536 if (vma != find_vma(mm, new_start)) 537 return -EFAULT; 538 539 /* 540 * cover the whole range: [new_start, old_end) 541 */ 542 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 543 544 /* 545 * move the page tables downwards, on failure we rely on 546 * process cleanup to remove whatever mess we made. 547 */ 548 if (length != move_page_tables(vma, old_start, 549 vma, new_start, length)) 550 return -ENOMEM; 551 552 lru_add_drain(); 553 tlb = tlb_gather_mmu(mm, 0); 554 if (new_end > old_start) { 555 /* 556 * when the old and new regions overlap clear from new_end. 557 */ 558 free_pgd_range(&tlb, new_end, old_end, new_end, 559 vma->vm_next ? vma->vm_next->vm_start : 0); 560 } else { 561 /* 562 * otherwise, clean from old_start; this is done to not touch 563 * the address space in [new_end, old_start) some architectures 564 * have constraints on va-space that make this illegal (IA64) - 565 * for the others its just a little faster. 566 */ 567 free_pgd_range(&tlb, old_start, old_end, new_end, 568 vma->vm_next ? vma->vm_next->vm_start : 0); 569 } 570 tlb_finish_mmu(tlb, new_end, old_end); 571 572 /* 573 * shrink the vma to just the new range. 574 */ 575 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 576 577 return 0; 578} 579 580#define EXTRA_STACK_VM_PAGES 20 /* random */ 581 582/* 583 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 584 * the stack is optionally relocated, and some extra space is added. 585 */ 586int setup_arg_pages(struct linux_binprm *bprm, 587 unsigned long stack_top, 588 int executable_stack) 589{ 590 unsigned long ret; 591 unsigned long stack_shift; 592 struct mm_struct *mm = current->mm; 593 struct vm_area_struct *vma = bprm->vma; 594 struct vm_area_struct *prev = NULL; 595 unsigned long vm_flags; 596 unsigned long stack_base; 597 598#ifdef CONFIG_STACK_GROWSUP 599 /* Limit stack size to 1GB */ 600 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 601 if (stack_base > (1 << 30)) 602 stack_base = 1 << 30; 603 604 /* Make sure we didn't let the argument array grow too large. */ 605 if (vma->vm_end - vma->vm_start > stack_base) 606 return -ENOMEM; 607 608 stack_base = PAGE_ALIGN(stack_top - stack_base); 609 610 stack_shift = vma->vm_start - stack_base; 611 mm->arg_start = bprm->p - stack_shift; 612 bprm->p = vma->vm_end - stack_shift; 613#else 614 stack_top = arch_align_stack(stack_top); 615 stack_top = PAGE_ALIGN(stack_top); 616 stack_shift = vma->vm_end - stack_top; 617 618 bprm->p -= stack_shift; 619 mm->arg_start = bprm->p; 620#endif 621 622 if (bprm->loader) 623 bprm->loader -= stack_shift; 624 bprm->exec -= stack_shift; 625 626 down_write(&mm->mmap_sem); 627 vm_flags = vma->vm_flags; 628 629 /* 630 * Adjust stack execute permissions; explicitly enable for 631 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 632 * (arch default) otherwise. 633 */ 634 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 635 vm_flags |= VM_EXEC; 636 else if (executable_stack == EXSTACK_DISABLE_X) 637 vm_flags &= ~VM_EXEC; 638 vm_flags |= mm->def_flags; 639 640 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 641 vm_flags); 642 if (ret) 643 goto out_unlock; 644 BUG_ON(prev != vma); 645 646 /* Move stack pages down in memory. */ 647 if (stack_shift) { 648 ret = shift_arg_pages(vma, stack_shift); 649 if (ret) { 650 up_write(&mm->mmap_sem); 651 return ret; 652 } 653 } 654 655#ifdef CONFIG_STACK_GROWSUP 656 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 657#else 658 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 659#endif 660 ret = expand_stack(vma, stack_base); 661 if (ret) 662 ret = -EFAULT; 663 664out_unlock: 665 up_write(&mm->mmap_sem); 666 return 0; 667} 668EXPORT_SYMBOL(setup_arg_pages); 669 670#endif /* CONFIG_MMU */ 671 672struct file *open_exec(const char *name) 673{ 674 struct nameidata nd; 675 int err; 676 struct file *file; 677 678 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 679 file = ERR_PTR(err); 680 681 if (!err) { 682 struct inode *inode = nd.dentry->d_inode; 683 file = ERR_PTR(-EACCES); 684 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && 685 S_ISREG(inode->i_mode)) { 686 int err = vfs_permission(&nd, MAY_EXEC); 687 file = ERR_PTR(err); 688 if (!err) { 689 file = nameidata_to_filp(&nd, O_RDONLY); 690 if (!IS_ERR(file)) { 691 err = deny_write_access(file); 692 if (err) { 693 fput(file); 694 file = ERR_PTR(err); 695 } 696 } 697out: 698 return file; 699 } 700 } 701 release_open_intent(&nd); 702 path_release(&nd); 703 } 704 goto out; 705} 706 707EXPORT_SYMBOL(open_exec); 708 709int kernel_read(struct file *file, unsigned long offset, 710 char *addr, unsigned long count) 711{ 712 mm_segment_t old_fs; 713 loff_t pos = offset; 714 int result; 715 716 old_fs = get_fs(); 717 set_fs(get_ds()); 718 /* The cast to a user pointer is valid due to the set_fs() */ 719 result = vfs_read(file, (void __user *)addr, count, &pos); 720 set_fs(old_fs); 721 return result; 722} 723 724EXPORT_SYMBOL(kernel_read); 725 726static int exec_mmap(struct mm_struct *mm) 727{ 728 struct task_struct *tsk; 729 struct mm_struct * old_mm, *active_mm; 730 731 /* Notify parent that we're no longer interested in the old VM */ 732 tsk = current; 733 old_mm = current->mm; 734 mm_release(tsk, old_mm); 735 736 if (old_mm) { 737 /* 738 * Make sure that if there is a core dump in progress 739 * for the old mm, we get out and die instead of going 740 * through with the exec. We must hold mmap_sem around 741 * checking core_waiters and changing tsk->mm. The 742 * core-inducing thread will increment core_waiters for 743 * each thread whose ->mm == old_mm. 744 */ 745 down_read(&old_mm->mmap_sem); 746 if (unlikely(old_mm->core_waiters)) { 747 up_read(&old_mm->mmap_sem); 748 return -EINTR; 749 } 750 } 751 task_lock(tsk); 752 active_mm = tsk->active_mm; 753 tsk->mm = mm; 754 tsk->active_mm = mm; 755 activate_mm(active_mm, mm); 756 task_unlock(tsk); 757 arch_pick_mmap_layout(mm); 758 if (old_mm) { 759 up_read(&old_mm->mmap_sem); 760 BUG_ON(active_mm != old_mm); 761 mmput(old_mm); 762 return 0; 763 } 764 mmdrop(active_mm); 765 return 0; 766} 767 768/* 769 * This function makes sure the current process has its own signal table, 770 * so that flush_signal_handlers can later reset the handlers without 771 * disturbing other processes. (Other processes might share the signal 772 * table via the CLONE_SIGHAND option to clone().) 773 */ 774static int de_thread(struct task_struct *tsk) 775{ 776 struct signal_struct *sig = tsk->signal; 777 struct sighand_struct *newsighand, *oldsighand = tsk->sighand; 778 spinlock_t *lock = &oldsighand->siglock; 779 struct task_struct *leader = NULL; 780 int count; 781 782 /* 783 * If we don't share sighandlers, then we aren't sharing anything 784 * and we can just re-use it all. 785 */ 786 if (atomic_read(&oldsighand->count) <= 1) { 787 signalfd_detach(tsk); 788 exit_itimers(sig); 789 return 0; 790 } 791 792 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 793 if (!newsighand) 794 return -ENOMEM; 795 796 if (thread_group_empty(tsk)) 797 goto no_thread_group; 798 799 /* 800 * Kill all other threads in the thread group. 801 * We must hold tasklist_lock to call zap_other_threads. 802 */ 803 read_lock(&tasklist_lock); 804 spin_lock_irq(lock); 805 if (sig->flags & SIGNAL_GROUP_EXIT) { 806 /* 807 * Another group action in progress, just 808 * return so that the signal is processed. 809 */ 810 spin_unlock_irq(lock); 811 read_unlock(&tasklist_lock); 812 kmem_cache_free(sighand_cachep, newsighand); 813 return -EAGAIN; 814 } 815 816 /* 817 * child_reaper ignores SIGKILL, change it now. 818 * Reparenting needs write_lock on tasklist_lock, 819 * so it is safe to do it under read_lock. 820 */ 821 if (unlikely(tsk->group_leader == child_reaper(tsk))) 822 tsk->nsproxy->pid_ns->child_reaper = tsk; 823 824 zap_other_threads(tsk); 825 read_unlock(&tasklist_lock); 826 827 /* 828 * Account for the thread group leader hanging around: 829 */ 830 count = 1; 831 if (!thread_group_leader(tsk)) { 832 count = 2; 833 /* 834 * The SIGALRM timer survives the exec, but needs to point 835 * at us as the new group leader now. We have a race with 836 * a timer firing now getting the old leader, so we need to 837 * synchronize with any firing (by calling del_timer_sync) 838 * before we can safely let the old group leader die. 839 */ 840 sig->tsk = tsk; 841 spin_unlock_irq(lock); 842 if (hrtimer_cancel(&sig->real_timer)) 843 hrtimer_restart(&sig->real_timer); 844 spin_lock_irq(lock); 845 } 846 while (atomic_read(&sig->count) > count) { 847 sig->group_exit_task = tsk; 848 sig->notify_count = count; 849 __set_current_state(TASK_UNINTERRUPTIBLE); 850 spin_unlock_irq(lock); 851 schedule(); 852 spin_lock_irq(lock); 853 } 854 sig->group_exit_task = NULL; 855 sig->notify_count = 0; 856 spin_unlock_irq(lock); 857 858 /* 859 * At this point all other threads have exited, all we have to 860 * do is to wait for the thread group leader to become inactive, 861 * and to assume its PID: 862 */ 863 if (!thread_group_leader(tsk)) { 864 /* 865 * Wait for the thread group leader to be a zombie. 866 * It should already be zombie at this point, most 867 * of the time. 868 */ 869 leader = tsk->group_leader; 870 while (leader->exit_state != EXIT_ZOMBIE) 871 yield(); 872 873 /* 874 * The only record we have of the real-time age of a 875 * process, regardless of execs it's done, is start_time. 876 * All the past CPU time is accumulated in signal_struct 877 * from sister threads now dead. But in this non-leader 878 * exec, nothing survives from the original leader thread, 879 * whose birth marks the true age of this process now. 880 * When we take on its identity by switching to its PID, we 881 * also take its birthdate (always earlier than our own). 882 */ 883 tsk->start_time = leader->start_time; 884 885 write_lock_irq(&tasklist_lock); 886 887 BUG_ON(leader->tgid != tsk->tgid); 888 BUG_ON(tsk->pid == tsk->tgid); 889 /* 890 * An exec() starts a new thread group with the 891 * TGID of the previous thread group. Rehash the 892 * two threads with a switched PID, and release 893 * the former thread group leader: 894 */ 895 896 /* Become a process group leader with the old leader's pid. 897 * The old leader becomes a thread of the this thread group. 898 * Note: The old leader also uses this pid until release_task 899 * is called. Odd but simple and correct. 900 */ 901 detach_pid(tsk, PIDTYPE_PID); 902 tsk->pid = leader->pid; 903 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid)); 904 transfer_pid(leader, tsk, PIDTYPE_PGID); 905 transfer_pid(leader, tsk, PIDTYPE_SID); 906 list_replace_rcu(&leader->tasks, &tsk->tasks); 907 908 tsk->group_leader = tsk; 909 leader->group_leader = tsk; 910 911 tsk->exit_signal = SIGCHLD; 912 913 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 914 leader->exit_state = EXIT_DEAD; 915 916 write_unlock_irq(&tasklist_lock); 917 } 918 919 /* 920 * There may be one thread left which is just exiting, 921 * but it's safe to stop telling the group to kill themselves. 922 */ 923 sig->flags = 0; 924 925no_thread_group: 926 signalfd_detach(tsk); 927 exit_itimers(sig); 928 if (leader) 929 release_task(leader); 930 931 if (atomic_read(&oldsighand->count) == 1) { 932 /* 933 * Now that we nuked the rest of the thread group, 934 * it turns out we are not sharing sighand any more either. 935 * So we can just keep it. 936 */ 937 kmem_cache_free(sighand_cachep, newsighand); 938 } else { 939 /* 940 * Move our state over to newsighand and switch it in. 941 */ 942 atomic_set(&newsighand->count, 1); 943 memcpy(newsighand->action, oldsighand->action, 944 sizeof(newsighand->action)); 945 946 write_lock_irq(&tasklist_lock); 947 spin_lock(&oldsighand->siglock); 948 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING); 949 950 rcu_assign_pointer(tsk->sighand, newsighand); 951 recalc_sigpending(); 952 953 spin_unlock(&newsighand->siglock); 954 spin_unlock(&oldsighand->siglock); 955 write_unlock_irq(&tasklist_lock); 956 957 __cleanup_sighand(oldsighand); 958 } 959 960 BUG_ON(!thread_group_leader(tsk)); 961 return 0; 962} 963 964/* 965 * These functions flushes out all traces of the currently running executable 966 * so that a new one can be started 967 */ 968 969static void flush_old_files(struct files_struct * files) 970{ 971 long j = -1; 972 struct fdtable *fdt; 973 974 spin_lock(&files->file_lock); 975 for (;;) { 976 unsigned long set, i; 977 978 j++; 979 i = j * __NFDBITS; 980 fdt = files_fdtable(files); 981 if (i >= fdt->max_fds) 982 break; 983 set = fdt->close_on_exec->fds_bits[j]; 984 if (!set) 985 continue; 986 fdt->close_on_exec->fds_bits[j] = 0; 987 spin_unlock(&files->file_lock); 988 for ( ; set ; i++,set >>= 1) { 989 if (set & 1) { 990 sys_close(i); 991 } 992 } 993 spin_lock(&files->file_lock); 994 995 } 996 spin_unlock(&files->file_lock); 997} 998 999void get_task_comm(char *buf, struct task_struct *tsk) 1000{ 1001 /* buf must be at least sizeof(tsk->comm) in size */ 1002 task_lock(tsk); 1003 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1004 task_unlock(tsk); 1005} 1006 1007void set_task_comm(struct task_struct *tsk, char *buf) 1008{ 1009 task_lock(tsk); 1010 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1011 task_unlock(tsk); 1012} 1013 1014int flush_old_exec(struct linux_binprm * bprm) 1015{ 1016 char * name; 1017 int i, ch, retval; 1018 struct files_struct *files; 1019 char tcomm[sizeof(current->comm)]; 1020 1021 /* 1022 * Make sure we have a private signal table and that 1023 * we are unassociated from the previous thread group. 1024 */ 1025 retval = de_thread(current); 1026 if (retval) 1027 goto out; 1028 1029 /* 1030 * Make sure we have private file handles. Ask the 1031 * fork helper to do the work for us and the exit 1032 * helper to do the cleanup of the old one. 1033 */ 1034 files = current->files; /* refcounted so safe to hold */ 1035 retval = unshare_files(); 1036 if (retval) 1037 goto out; 1038 /* 1039 * Release all of the old mmap stuff 1040 */ 1041 retval = exec_mmap(bprm->mm); 1042 if (retval) 1043 goto mmap_failed; 1044 1045 bprm->mm = NULL; /* We're using it now */ 1046 1047 /* This is the point of no return */ 1048 put_files_struct(files); 1049 1050 current->sas_ss_sp = current->sas_ss_size = 0; 1051 1052 if (current->euid == current->uid && current->egid == current->gid) 1053 set_dumpable(current->mm, 1); 1054 else 1055 set_dumpable(current->mm, suid_dumpable); 1056 1057 name = bprm->filename; 1058 1059 /* Copies the binary name from after last slash */ 1060 for (i=0; (ch = *(name++)) != '\0';) { 1061 if (ch == '/') 1062 i = 0; /* overwrite what we wrote */ 1063 else 1064 if (i < (sizeof(tcomm) - 1)) 1065 tcomm[i++] = ch; 1066 } 1067 tcomm[i] = '\0'; 1068 set_task_comm(current, tcomm); 1069 1070 current->flags &= ~PF_RANDOMIZE; 1071 flush_thread(); 1072 1073 /* Set the new mm task size. We have to do that late because it may 1074 * depend on TIF_32BIT which is only updated in flush_thread() on 1075 * some architectures like powerpc 1076 */ 1077 current->mm->task_size = TASK_SIZE; 1078 1079 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1080 suid_keys(current); 1081 set_dumpable(current->mm, suid_dumpable); 1082 current->pdeath_signal = 0; 1083 } else if (file_permission(bprm->file, MAY_READ) || 1084 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1085 suid_keys(current); 1086 set_dumpable(current->mm, suid_dumpable); 1087 } 1088 1089 /* An exec changes our domain. We are no longer part of the thread 1090 group */ 1091 1092 current->self_exec_id++; 1093 1094 flush_signal_handlers(current, 0); 1095 flush_old_files(current->files); 1096 1097 return 0; 1098 1099mmap_failed: 1100 reset_files_struct(current, files); 1101out: 1102 return retval; 1103} 1104 1105EXPORT_SYMBOL(flush_old_exec); 1106 1107/* 1108 * Fill the binprm structure from the inode. 1109 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1110 */ 1111int prepare_binprm(struct linux_binprm *bprm) 1112{ 1113 int mode; 1114 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1115 int retval; 1116 1117 mode = inode->i_mode; 1118 if (bprm->file->f_op == NULL) 1119 return -EACCES; 1120 1121 bprm->e_uid = current->euid; 1122 bprm->e_gid = current->egid; 1123 1124 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1125 /* Set-uid? */ 1126 if (mode & S_ISUID) { 1127 current->personality &= ~PER_CLEAR_ON_SETID; 1128 bprm->e_uid = inode->i_uid; 1129 } 1130 1131 /* Set-gid? */ 1132 /* 1133 * If setgid is set but no group execute bit then this 1134 * is a candidate for mandatory locking, not a setgid 1135 * executable. 1136 */ 1137 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1138 current->personality &= ~PER_CLEAR_ON_SETID; 1139 bprm->e_gid = inode->i_gid; 1140 } 1141 } 1142 1143 /* fill in binprm security blob */ 1144 retval = security_bprm_set(bprm); 1145 if (retval) 1146 return retval; 1147 1148 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1149 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1150} 1151 1152EXPORT_SYMBOL(prepare_binprm); 1153 1154static int unsafe_exec(struct task_struct *p) 1155{ 1156 int unsafe = 0; 1157 if (p->ptrace & PT_PTRACED) { 1158 if (p->ptrace & PT_PTRACE_CAP) 1159 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1160 else 1161 unsafe |= LSM_UNSAFE_PTRACE; 1162 } 1163 if (atomic_read(&p->fs->count) > 1 || 1164 atomic_read(&p->files->count) > 1 || 1165 atomic_read(&p->sighand->count) > 1) 1166 unsafe |= LSM_UNSAFE_SHARE; 1167 1168 return unsafe; 1169} 1170 1171void compute_creds(struct linux_binprm *bprm) 1172{ 1173 int unsafe; 1174 1175 if (bprm->e_uid != current->uid) { 1176 suid_keys(current); 1177 current->pdeath_signal = 0; 1178 } 1179 exec_keys(current); 1180 1181 task_lock(current); 1182 unsafe = unsafe_exec(current); 1183 security_bprm_apply_creds(bprm, unsafe); 1184 task_unlock(current); 1185 security_bprm_post_apply_creds(bprm); 1186} 1187EXPORT_SYMBOL(compute_creds); 1188 1189/* 1190 * Arguments are '\0' separated strings found at the location bprm->p 1191 * points to; chop off the first by relocating brpm->p to right after 1192 * the first '\0' encountered. 1193 */ 1194int remove_arg_zero(struct linux_binprm *bprm) 1195{ 1196 int ret = 0; 1197 unsigned long offset; 1198 char *kaddr; 1199 struct page *page; 1200 1201 if (!bprm->argc) 1202 return 0; 1203 1204 do { 1205 offset = bprm->p & ~PAGE_MASK; 1206 page = get_arg_page(bprm, bprm->p, 0); 1207 if (!page) { 1208 ret = -EFAULT; 1209 goto out; 1210 } 1211 kaddr = kmap_atomic(page, KM_USER0); 1212 1213 for (; offset < PAGE_SIZE && kaddr[offset]; 1214 offset++, bprm->p++) 1215 ; 1216 1217 kunmap_atomic(kaddr, KM_USER0); 1218 put_arg_page(page); 1219 1220 if (offset == PAGE_SIZE) 1221 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1222 } while (offset == PAGE_SIZE); 1223 1224 bprm->p++; 1225 bprm->argc--; 1226 ret = 0; 1227 1228out: 1229 return ret; 1230} 1231EXPORT_SYMBOL(remove_arg_zero); 1232 1233/* 1234 * cycle the list of binary formats handler, until one recognizes the image 1235 */ 1236int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1237{ 1238 int try,retval; 1239 struct linux_binfmt *fmt; 1240#ifdef __alpha__ 1241 /* handle /sbin/loader.. */ 1242 { 1243 struct exec * eh = (struct exec *) bprm->buf; 1244 1245 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1246 (eh->fh.f_flags & 0x3000) == 0x3000) 1247 { 1248 struct file * file; 1249 unsigned long loader; 1250 1251 allow_write_access(bprm->file); 1252 fput(bprm->file); 1253 bprm->file = NULL; 1254 1255 loader = bprm->vma->vm_end - sizeof(void *); 1256 1257 file = open_exec("/sbin/loader"); 1258 retval = PTR_ERR(file); 1259 if (IS_ERR(file)) 1260 return retval; 1261 1262 /* Remember if the application is TASO. */ 1263 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1264 1265 bprm->file = file; 1266 bprm->loader = loader; 1267 retval = prepare_binprm(bprm); 1268 if (retval<0) 1269 return retval; 1270 /* should call search_binary_handler recursively here, 1271 but it does not matter */ 1272 } 1273 } 1274#endif 1275 retval = security_bprm_check(bprm); 1276 if (retval) 1277 return retval; 1278 1279 /* kernel module loader fixup */ 1280 /* so we don't try to load run modprobe in kernel space. */ 1281 set_fs(USER_DS); 1282 1283 retval = audit_bprm(bprm); 1284 if (retval) 1285 return retval; 1286 1287 retval = -ENOENT; 1288 for (try=0; try<2; try++) { 1289 read_lock(&binfmt_lock); 1290 for (fmt = formats ; fmt ; fmt = fmt->next) { 1291 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1292 if (!fn) 1293 continue; 1294 if (!try_module_get(fmt->module)) 1295 continue; 1296 read_unlock(&binfmt_lock); 1297 retval = fn(bprm, regs); 1298 if (retval >= 0) { 1299 put_binfmt(fmt); 1300 allow_write_access(bprm->file); 1301 if (bprm->file) 1302 fput(bprm->file); 1303 bprm->file = NULL; 1304 current->did_exec = 1; 1305 proc_exec_connector(current); 1306 return retval; 1307 } 1308 read_lock(&binfmt_lock); 1309 put_binfmt(fmt); 1310 if (retval != -ENOEXEC || bprm->mm == NULL) 1311 break; 1312 if (!bprm->file) { 1313 read_unlock(&binfmt_lock); 1314 return retval; 1315 } 1316 } 1317 read_unlock(&binfmt_lock); 1318 if (retval != -ENOEXEC || bprm->mm == NULL) { 1319 break; 1320#ifdef CONFIG_KMOD 1321 }else{ 1322#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1323 if (printable(bprm->buf[0]) && 1324 printable(bprm->buf[1]) && 1325 printable(bprm->buf[2]) && 1326 printable(bprm->buf[3])) 1327 break; /* -ENOEXEC */ 1328 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1329#endif 1330 } 1331 } 1332 return retval; 1333} 1334 1335EXPORT_SYMBOL(search_binary_handler); 1336 1337/* 1338 * sys_execve() executes a new program. 1339 */ 1340int do_execve(char * filename, 1341 char __user *__user *argv, 1342 char __user *__user *envp, 1343 struct pt_regs * regs) 1344{ 1345 struct linux_binprm *bprm; 1346 struct file *file; 1347 unsigned long env_p; 1348 int retval; 1349 1350 retval = -ENOMEM; 1351 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1352 if (!bprm) 1353 goto out_ret; 1354 1355 file = open_exec(filename); 1356 retval = PTR_ERR(file); 1357 if (IS_ERR(file)) 1358 goto out_kfree; 1359 1360 sched_exec(); 1361 1362 bprm->file = file; 1363 bprm->filename = filename; 1364 bprm->interp = filename; 1365 1366 retval = bprm_mm_init(bprm); 1367 if (retval) 1368 goto out_file; 1369 1370 bprm->argc = count(argv, MAX_ARG_STRINGS); 1371 if ((retval = bprm->argc) < 0) 1372 goto out_mm; 1373 1374 bprm->envc = count(envp, MAX_ARG_STRINGS); 1375 if ((retval = bprm->envc) < 0) 1376 goto out_mm; 1377 1378 retval = security_bprm_alloc(bprm); 1379 if (retval) 1380 goto out; 1381 1382 retval = prepare_binprm(bprm); 1383 if (retval < 0) 1384 goto out; 1385 1386 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1387 if (retval < 0) 1388 goto out; 1389 1390 bprm->exec = bprm->p; 1391 retval = copy_strings(bprm->envc, envp, bprm); 1392 if (retval < 0) 1393 goto out; 1394 1395 env_p = bprm->p; 1396 retval = copy_strings(bprm->argc, argv, bprm); 1397 if (retval < 0) 1398 goto out; 1399 bprm->argv_len = env_p - bprm->p; 1400 1401 retval = search_binary_handler(bprm,regs); 1402 if (retval >= 0) { 1403 /* execve success */ 1404 free_arg_pages(bprm); 1405 security_bprm_free(bprm); 1406 acct_update_integrals(current); 1407 kfree(bprm); 1408 return retval; 1409 } 1410 1411out: 1412 free_arg_pages(bprm); 1413 if (bprm->security) 1414 security_bprm_free(bprm); 1415 1416out_mm: 1417 if (bprm->mm) 1418 mmput (bprm->mm); 1419 1420out_file: 1421 if (bprm->file) { 1422 allow_write_access(bprm->file); 1423 fput(bprm->file); 1424 } 1425out_kfree: 1426 kfree(bprm); 1427 1428out_ret: 1429 return retval; 1430} 1431 1432int set_binfmt(struct linux_binfmt *new) 1433{ 1434 struct linux_binfmt *old = current->binfmt; 1435 1436 if (new) { 1437 if (!try_module_get(new->module)) 1438 return -1; 1439 } 1440 current->binfmt = new; 1441 if (old) 1442 module_put(old->module); 1443 return 0; 1444} 1445 1446EXPORT_SYMBOL(set_binfmt); 1447 1448/* format_corename will inspect the pattern parameter, and output a 1449 * name into corename, which must have space for at least 1450 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1451 */ 1452static int format_corename(char *corename, const char *pattern, long signr) 1453{ 1454 const char *pat_ptr = pattern; 1455 char *out_ptr = corename; 1456 char *const out_end = corename + CORENAME_MAX_SIZE; 1457 int rc; 1458 int pid_in_pattern = 0; 1459 int ispipe = 0; 1460 1461 if (*pattern == '|') 1462 ispipe = 1; 1463 1464 /* Repeat as long as we have more pattern to process and more output 1465 space */ 1466 while (*pat_ptr) { 1467 if (*pat_ptr != '%') { 1468 if (out_ptr == out_end) 1469 goto out; 1470 *out_ptr++ = *pat_ptr++; 1471 } else { 1472 switch (*++pat_ptr) { 1473 case 0: 1474 goto out; 1475 /* Double percent, output one percent */ 1476 case '%': 1477 if (out_ptr == out_end) 1478 goto out; 1479 *out_ptr++ = '%'; 1480 break; 1481 /* pid */ 1482 case 'p': 1483 pid_in_pattern = 1; 1484 rc = snprintf(out_ptr, out_end - out_ptr, 1485 "%d", current->tgid); 1486 if (rc > out_end - out_ptr) 1487 goto out; 1488 out_ptr += rc; 1489 break; 1490 /* uid */ 1491 case 'u': 1492 rc = snprintf(out_ptr, out_end - out_ptr, 1493 "%d", current->uid); 1494 if (rc > out_end - out_ptr) 1495 goto out; 1496 out_ptr += rc; 1497 break; 1498 /* gid */ 1499 case 'g': 1500 rc = snprintf(out_ptr, out_end - out_ptr, 1501 "%d", current->gid); 1502 if (rc > out_end - out_ptr) 1503 goto out; 1504 out_ptr += rc; 1505 break; 1506 /* signal that caused the coredump */ 1507 case 's': 1508 rc = snprintf(out_ptr, out_end - out_ptr, 1509 "%ld", signr); 1510 if (rc > out_end - out_ptr) 1511 goto out; 1512 out_ptr += rc; 1513 break; 1514 /* UNIX time of coredump */ 1515 case 't': { 1516 struct timeval tv; 1517 do_gettimeofday(&tv); 1518 rc = snprintf(out_ptr, out_end - out_ptr, 1519 "%lu", tv.tv_sec); 1520 if (rc > out_end - out_ptr) 1521 goto out; 1522 out_ptr += rc; 1523 break; 1524 } 1525 /* hostname */ 1526 case 'h': 1527 down_read(&uts_sem); 1528 rc = snprintf(out_ptr, out_end - out_ptr, 1529 "%s", utsname()->nodename); 1530 up_read(&uts_sem); 1531 if (rc > out_end - out_ptr) 1532 goto out; 1533 out_ptr += rc; 1534 break; 1535 /* executable */ 1536 case 'e': 1537 rc = snprintf(out_ptr, out_end - out_ptr, 1538 "%s", current->comm); 1539 if (rc > out_end - out_ptr) 1540 goto out; 1541 out_ptr += rc; 1542 break; 1543 default: 1544 break; 1545 } 1546 ++pat_ptr; 1547 } 1548 } 1549 /* Backward compatibility with core_uses_pid: 1550 * 1551 * If core_pattern does not include a %p (as is the default) 1552 * and core_uses_pid is set, then .%pid will be appended to 1553 * the filename. Do not do this for piped commands. */ 1554 if (!ispipe && !pid_in_pattern 1555 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) { 1556 rc = snprintf(out_ptr, out_end - out_ptr, 1557 ".%d", current->tgid); 1558 if (rc > out_end - out_ptr) 1559 goto out; 1560 out_ptr += rc; 1561 } 1562out: 1563 *out_ptr = 0; 1564 return ispipe; 1565} 1566 1567static void zap_process(struct task_struct *start) 1568{ 1569 struct task_struct *t; 1570 1571 start->signal->flags = SIGNAL_GROUP_EXIT; 1572 start->signal->group_stop_count = 0; 1573 1574 t = start; 1575 do { 1576 if (t != current && t->mm) { 1577 t->mm->core_waiters++; 1578 sigaddset(&t->pending.signal, SIGKILL); 1579 signal_wake_up(t, 1); 1580 } 1581 } while ((t = next_thread(t)) != start); 1582} 1583 1584static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1585 int exit_code) 1586{ 1587 struct task_struct *g, *p; 1588 unsigned long flags; 1589 int err = -EAGAIN; 1590 1591 spin_lock_irq(&tsk->sighand->siglock); 1592 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 1593 tsk->signal->group_exit_code = exit_code; 1594 zap_process(tsk); 1595 err = 0; 1596 } 1597 spin_unlock_irq(&tsk->sighand->siglock); 1598 if (err) 1599 return err; 1600 1601 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1602 goto done; 1603 1604 rcu_read_lock(); 1605 for_each_process(g) { 1606 if (g == tsk->group_leader) 1607 continue; 1608 1609 p = g; 1610 do { 1611 if (p->mm) { 1612 if (p->mm == mm) { 1613 /* 1614 * p->sighand can't disappear, but 1615 * may be changed by de_thread() 1616 */ 1617 lock_task_sighand(p, &flags); 1618 zap_process(p); 1619 unlock_task_sighand(p, &flags); 1620 } 1621 break; 1622 } 1623 } while ((p = next_thread(p)) != g); 1624 } 1625 rcu_read_unlock(); 1626done: 1627 return mm->core_waiters; 1628} 1629 1630static int coredump_wait(int exit_code) 1631{ 1632 struct task_struct *tsk = current; 1633 struct mm_struct *mm = tsk->mm; 1634 struct completion startup_done; 1635 struct completion *vfork_done; 1636 int core_waiters; 1637 1638 init_completion(&mm->core_done); 1639 init_completion(&startup_done); 1640 mm->core_startup_done = &startup_done; 1641 1642 core_waiters = zap_threads(tsk, mm, exit_code); 1643 up_write(&mm->mmap_sem); 1644 1645 if (unlikely(core_waiters < 0)) 1646 goto fail; 1647 1648 /* 1649 * Make sure nobody is waiting for us to release the VM, 1650 * otherwise we can deadlock when we wait on each other 1651 */ 1652 vfork_done = tsk->vfork_done; 1653 if (vfork_done) { 1654 tsk->vfork_done = NULL; 1655 complete(vfork_done); 1656 } 1657 1658 if (core_waiters) 1659 wait_for_completion(&startup_done); 1660fail: 1661 BUG_ON(mm->core_waiters); 1662 return core_waiters; 1663} 1664 1665/* 1666 * set_dumpable converts traditional three-value dumpable to two flags and 1667 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1668 * these bits are not changed atomically. So get_dumpable can observe the 1669 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1670 * return either old dumpable or new one by paying attention to the order of 1671 * modifying the bits. 1672 * 1673 * dumpable | mm->flags (binary) 1674 * old new | initial interim final 1675 * ---------+----------------------- 1676 * 0 1 | 00 01 01 1677 * 0 2 | 00 10(*) 11 1678 * 1 0 | 01 00 00 1679 * 1 2 | 01 11 11 1680 * 2 0 | 11 10(*) 00 1681 * 2 1 | 11 11 01 1682 * 1683 * (*) get_dumpable regards interim value of 10 as 11. 1684 */ 1685void set_dumpable(struct mm_struct *mm, int value) 1686{ 1687 switch (value) { 1688 case 0: 1689 clear_bit(MMF_DUMPABLE, &mm->flags); 1690 smp_wmb(); 1691 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1692 break; 1693 case 1: 1694 set_bit(MMF_DUMPABLE, &mm->flags); 1695 smp_wmb(); 1696 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1697 break; 1698 case 2: 1699 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1700 smp_wmb(); 1701 set_bit(MMF_DUMPABLE, &mm->flags); 1702 break; 1703 } 1704} 1705EXPORT_SYMBOL_GPL(set_dumpable); 1706 1707int get_dumpable(struct mm_struct *mm) 1708{ 1709 int ret; 1710 1711 ret = mm->flags & 0x3; 1712 return (ret >= 2) ? 2 : ret; 1713} 1714 1715int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1716{ 1717 char corename[CORENAME_MAX_SIZE + 1]; 1718 struct mm_struct *mm = current->mm; 1719 struct linux_binfmt * binfmt; 1720 struct inode * inode; 1721 struct file * file; 1722 int retval = 0; 1723 int fsuid = current->fsuid; 1724 int flag = 0; 1725 int ispipe = 0; 1726 1727 audit_core_dumps(signr); 1728 1729 binfmt = current->binfmt; 1730 if (!binfmt || !binfmt->core_dump) 1731 goto fail; 1732 down_write(&mm->mmap_sem); 1733 if (!get_dumpable(mm)) { 1734 up_write(&mm->mmap_sem); 1735 goto fail; 1736 } 1737 1738 /* 1739 * We cannot trust fsuid as being the "true" uid of the 1740 * process nor do we know its entire history. We only know it 1741 * was tainted so we dump it as root in mode 2. 1742 */ 1743 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1744 flag = O_EXCL; /* Stop rewrite attacks */ 1745 current->fsuid = 0; /* Dump root private */ 1746 } 1747 set_dumpable(mm, 0); 1748 1749 retval = coredump_wait(exit_code); 1750 if (retval < 0) 1751 goto fail; 1752 1753 /* 1754 * Clear any false indication of pending signals that might 1755 * be seen by the filesystem code called to write the core file. 1756 */ 1757 clear_thread_flag(TIF_SIGPENDING); 1758 1759 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump) 1760 goto fail_unlock; 1761 1762 /* 1763 * lock_kernel() because format_corename() is controlled by sysctl, which 1764 * uses lock_kernel() 1765 */ 1766 lock_kernel(); 1767 ispipe = format_corename(corename, core_pattern, signr); 1768 unlock_kernel(); 1769 if (ispipe) { 1770 /* SIGPIPE can happen, but it's just never processed */ 1771 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) { 1772 printk(KERN_INFO "Core dump to %s pipe failed\n", 1773 corename); 1774 goto fail_unlock; 1775 } 1776 } else 1777 file = filp_open(corename, 1778 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1779 0600); 1780 if (IS_ERR(file)) 1781 goto fail_unlock; 1782 inode = file->f_path.dentry->d_inode; 1783 if (inode->i_nlink > 1) 1784 goto close_fail; /* multiple links - don't dump */ 1785 if (!ispipe && d_unhashed(file->f_path.dentry)) 1786 goto close_fail; 1787 1788 /* AK: actually i see no reason to not allow this for named pipes etc., 1789 but keep the previous behaviour for now. */ 1790 if (!ispipe && !S_ISREG(inode->i_mode)) 1791 goto close_fail; 1792 if (!file->f_op) 1793 goto close_fail; 1794 if (!file->f_op->write) 1795 goto close_fail; 1796 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1797 goto close_fail; 1798 1799 retval = binfmt->core_dump(signr, regs, file); 1800 1801 if (retval) 1802 current->signal->group_exit_code |= 0x80; 1803close_fail: 1804 filp_close(file, NULL); 1805fail_unlock: 1806 current->fsuid = fsuid; 1807 complete_all(&mm->core_done); 1808fail: 1809 return retval; 1810}