at 5c3e985a2c1908aa97221d3806f85ce7e2fbfa88 306 lines 7.4 kB view raw
1/* 2 * sparse memory mappings. 3 */ 4#include <linux/mm.h> 5#include <linux/mmzone.h> 6#include <linux/bootmem.h> 7#include <linux/highmem.h> 8#include <linux/module.h> 9#include <linux/spinlock.h> 10#include <linux/vmalloc.h> 11#include <asm/dma.h> 12 13/* 14 * Permanent SPARSEMEM data: 15 * 16 * 1) mem_section - memory sections, mem_map's for valid memory 17 */ 18#ifdef CONFIG_SPARSEMEM_EXTREME 19struct mem_section *mem_section[NR_SECTION_ROOTS] 20 ____cacheline_internodealigned_in_smp; 21#else 22struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 23 ____cacheline_internodealigned_in_smp; 24#endif 25EXPORT_SYMBOL(mem_section); 26 27#ifdef CONFIG_SPARSEMEM_EXTREME 28static struct mem_section *sparse_index_alloc(int nid) 29{ 30 struct mem_section *section = NULL; 31 unsigned long array_size = SECTIONS_PER_ROOT * 32 sizeof(struct mem_section); 33 34 if (slab_is_available()) 35 section = kmalloc_node(array_size, GFP_KERNEL, nid); 36 else 37 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 38 39 if (section) 40 memset(section, 0, array_size); 41 42 return section; 43} 44 45static int sparse_index_init(unsigned long section_nr, int nid) 46{ 47 static DEFINE_SPINLOCK(index_init_lock); 48 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 49 struct mem_section *section; 50 int ret = 0; 51 52 if (mem_section[root]) 53 return -EEXIST; 54 55 section = sparse_index_alloc(nid); 56 /* 57 * This lock keeps two different sections from 58 * reallocating for the same index 59 */ 60 spin_lock(&index_init_lock); 61 62 if (mem_section[root]) { 63 ret = -EEXIST; 64 goto out; 65 } 66 67 mem_section[root] = section; 68out: 69 spin_unlock(&index_init_lock); 70 return ret; 71} 72#else /* !SPARSEMEM_EXTREME */ 73static inline int sparse_index_init(unsigned long section_nr, int nid) 74{ 75 return 0; 76} 77#endif 78 79/* 80 * Although written for the SPARSEMEM_EXTREME case, this happens 81 * to also work for the flat array case becase 82 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 83 */ 84int __section_nr(struct mem_section* ms) 85{ 86 unsigned long root_nr; 87 struct mem_section* root; 88 89 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 90 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 91 if (!root) 92 continue; 93 94 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 95 break; 96 } 97 98 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 99} 100 101/* 102 * During early boot, before section_mem_map is used for an actual 103 * mem_map, we use section_mem_map to store the section's NUMA 104 * node. This keeps us from having to use another data structure. The 105 * node information is cleared just before we store the real mem_map. 106 */ 107static inline unsigned long sparse_encode_early_nid(int nid) 108{ 109 return (nid << SECTION_NID_SHIFT); 110} 111 112static inline int sparse_early_nid(struct mem_section *section) 113{ 114 return (section->section_mem_map >> SECTION_NID_SHIFT); 115} 116 117/* Record a memory area against a node. */ 118void memory_present(int nid, unsigned long start, unsigned long end) 119{ 120 unsigned long pfn; 121 122 start &= PAGE_SECTION_MASK; 123 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 124 unsigned long section = pfn_to_section_nr(pfn); 125 struct mem_section *ms; 126 127 sparse_index_init(section, nid); 128 129 ms = __nr_to_section(section); 130 if (!ms->section_mem_map) 131 ms->section_mem_map = sparse_encode_early_nid(nid) | 132 SECTION_MARKED_PRESENT; 133 } 134} 135 136/* 137 * Only used by the i386 NUMA architecures, but relatively 138 * generic code. 139 */ 140unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 141 unsigned long end_pfn) 142{ 143 unsigned long pfn; 144 unsigned long nr_pages = 0; 145 146 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 147 if (nid != early_pfn_to_nid(pfn)) 148 continue; 149 150 if (pfn_valid(pfn)) 151 nr_pages += PAGES_PER_SECTION; 152 } 153 154 return nr_pages * sizeof(struct page); 155} 156 157/* 158 * Subtle, we encode the real pfn into the mem_map such that 159 * the identity pfn - section_mem_map will return the actual 160 * physical page frame number. 161 */ 162static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 163{ 164 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 165} 166 167/* 168 * We need this if we ever free the mem_maps. While not implemented yet, 169 * this function is included for parity with its sibling. 170 */ 171static __attribute((unused)) 172struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 173{ 174 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 175} 176 177static int sparse_init_one_section(struct mem_section *ms, 178 unsigned long pnum, struct page *mem_map) 179{ 180 if (!valid_section(ms)) 181 return -EINVAL; 182 183 ms->section_mem_map &= ~SECTION_MAP_MASK; 184 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum); 185 186 return 1; 187} 188 189static struct page *sparse_early_mem_map_alloc(unsigned long pnum) 190{ 191 struct page *map; 192 struct mem_section *ms = __nr_to_section(pnum); 193 int nid = sparse_early_nid(ms); 194 195 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 196 if (map) 197 return map; 198 199 map = alloc_bootmem_node(NODE_DATA(nid), 200 sizeof(struct page) * PAGES_PER_SECTION); 201 if (map) 202 return map; 203 204 printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__); 205 ms->section_mem_map = 0; 206 return NULL; 207} 208 209static struct page *__kmalloc_section_memmap(unsigned long nr_pages) 210{ 211 struct page *page, *ret; 212 unsigned long memmap_size = sizeof(struct page) * nr_pages; 213 214 page = alloc_pages(GFP_KERNEL, get_order(memmap_size)); 215 if (page) 216 goto got_map_page; 217 218 ret = vmalloc(memmap_size); 219 if (ret) 220 goto got_map_ptr; 221 222 return NULL; 223got_map_page: 224 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 225got_map_ptr: 226 memset(ret, 0, memmap_size); 227 228 return ret; 229} 230 231static int vaddr_in_vmalloc_area(void *addr) 232{ 233 if (addr >= (void *)VMALLOC_START && 234 addr < (void *)VMALLOC_END) 235 return 1; 236 return 0; 237} 238 239static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 240{ 241 if (vaddr_in_vmalloc_area(memmap)) 242 vfree(memmap); 243 else 244 free_pages((unsigned long)memmap, 245 get_order(sizeof(struct page) * nr_pages)); 246} 247 248/* 249 * Allocate the accumulated non-linear sections, allocate a mem_map 250 * for each and record the physical to section mapping. 251 */ 252void sparse_init(void) 253{ 254 unsigned long pnum; 255 struct page *map; 256 257 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 258 if (!valid_section_nr(pnum)) 259 continue; 260 261 map = sparse_early_mem_map_alloc(pnum); 262 if (!map) 263 continue; 264 sparse_init_one_section(__nr_to_section(pnum), pnum, map); 265 } 266} 267 268/* 269 * returns the number of sections whose mem_maps were properly 270 * set. If this is <=0, then that means that the passed-in 271 * map was not consumed and must be freed. 272 */ 273int sparse_add_one_section(struct zone *zone, unsigned long start_pfn, 274 int nr_pages) 275{ 276 unsigned long section_nr = pfn_to_section_nr(start_pfn); 277 struct pglist_data *pgdat = zone->zone_pgdat; 278 struct mem_section *ms; 279 struct page *memmap; 280 unsigned long flags; 281 int ret; 282 283 /* 284 * no locking for this, because it does its own 285 * plus, it does a kmalloc 286 */ 287 sparse_index_init(section_nr, pgdat->node_id); 288 memmap = __kmalloc_section_memmap(nr_pages); 289 290 pgdat_resize_lock(pgdat, &flags); 291 292 ms = __pfn_to_section(start_pfn); 293 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 294 ret = -EEXIST; 295 goto out; 296 } 297 ms->section_mem_map |= SECTION_MARKED_PRESENT; 298 299 ret = sparse_init_one_section(ms, section_nr, memmap); 300 301out: 302 pgdat_resize_unlock(pgdat, &flags); 303 if (ret <= 0) 304 __kfree_section_memmap(memmap, nr_pages); 305 return ret; 306}