1#ifndef _LINUX_SLUB_DEF_H 2#define _LINUX_SLUB_DEF_H 3 4/* 5 * SLUB : A Slab allocator without object queues. 6 * 7 * (C) 2007 SGI, Christoph Lameter 8 */ 9#include <linux/types.h> 10#include <linux/gfp.h> 11#include <linux/workqueue.h> 12#include <linux/kobject.h> 13 14#include <linux/kmemleak.h> 15 16enum stat_item { 17 ALLOC_FASTPATH, /* Allocation from cpu slab */ 18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 19 FREE_FASTPATH, /* Free to cpu slub */ 20 FREE_SLOWPATH, /* Freeing not to cpu slab */ 21 FREE_FROZEN, /* Freeing to frozen slab */ 22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */ 25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 27 FREE_SLAB, /* Slab freed to the page allocator */ 28 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 29 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 30 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 31 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 32 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 33 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 34 ORDER_FALLBACK, /* Number of times fallback was necessary */ 35 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ 36 NR_SLUB_STAT_ITEMS }; 37 38struct kmem_cache_cpu { 39 void **freelist; /* Pointer to next available object */ 40#ifdef CONFIG_CMPXCHG_LOCAL 41 unsigned long tid; /* Globally unique transaction id */ 42#endif 43 struct page *page; /* The slab from which we are allocating */ 44 int node; /* The node of the page (or -1 for debug) */ 45#ifdef CONFIG_SLUB_STATS 46 unsigned stat[NR_SLUB_STAT_ITEMS]; 47#endif 48}; 49 50struct kmem_cache_node { 51 spinlock_t list_lock; /* Protect partial list and nr_partial */ 52 unsigned long nr_partial; 53 struct list_head partial; 54#ifdef CONFIG_SLUB_DEBUG 55 atomic_long_t nr_slabs; 56 atomic_long_t total_objects; 57 struct list_head full; 58#endif 59}; 60 61/* 62 * Word size structure that can be atomically updated or read and that 63 * contains both the order and the number of objects that a slab of the 64 * given order would contain. 65 */ 66struct kmem_cache_order_objects { 67 unsigned long x; 68}; 69 70/* 71 * Slab cache management. 72 */ 73struct kmem_cache { 74 struct kmem_cache_cpu __percpu *cpu_slab; 75 /* Used for retriving partial slabs etc */ 76 unsigned long flags; 77 unsigned long min_partial; 78 int size; /* The size of an object including meta data */ 79 int objsize; /* The size of an object without meta data */ 80 int offset; /* Free pointer offset. */ 81 struct kmem_cache_order_objects oo; 82 83 /* Allocation and freeing of slabs */ 84 struct kmem_cache_order_objects max; 85 struct kmem_cache_order_objects min; 86 gfp_t allocflags; /* gfp flags to use on each alloc */ 87 int refcount; /* Refcount for slab cache destroy */ 88 void (*ctor)(void *); 89 int inuse; /* Offset to metadata */ 90 int align; /* Alignment */ 91 int reserved; /* Reserved bytes at the end of slabs */ 92 const char *name; /* Name (only for display!) */ 93 struct list_head list; /* List of slab caches */ 94#ifdef CONFIG_SYSFS 95 struct kobject kobj; /* For sysfs */ 96#endif 97 98#ifdef CONFIG_NUMA 99 /* 100 * Defragmentation by allocating from a remote node. 101 */ 102 int remote_node_defrag_ratio; 103#endif 104 struct kmem_cache_node *node[MAX_NUMNODES]; 105}; 106 107/* 108 * Kmalloc subsystem. 109 */ 110#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 111#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 112#else 113#define KMALLOC_MIN_SIZE 8 114#endif 115 116#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 117 118#ifdef ARCH_DMA_MINALIGN 119#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 120#else 121#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 122#endif 123 124#ifndef ARCH_SLAB_MINALIGN 125#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 126#endif 127 128/* 129 * Maximum kmalloc object size handled by SLUB. Larger object allocations 130 * are passed through to the page allocator. The page allocator "fastpath" 131 * is relatively slow so we need this value sufficiently high so that 132 * performance critical objects are allocated through the SLUB fastpath. 133 * 134 * This should be dropped to PAGE_SIZE / 2 once the page allocator 135 * "fastpath" becomes competitive with the slab allocator fastpaths. 136 */ 137#define SLUB_MAX_SIZE (2 * PAGE_SIZE) 138 139#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2) 140 141#ifdef CONFIG_ZONE_DMA 142#define SLUB_DMA __GFP_DMA 143#else 144/* Disable DMA functionality */ 145#define SLUB_DMA (__force gfp_t)0 146#endif 147 148/* 149 * We keep the general caches in an array of slab caches that are used for 150 * 2^x bytes of allocations. 151 */ 152extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 153 154/* 155 * Sorry that the following has to be that ugly but some versions of GCC 156 * have trouble with constant propagation and loops. 157 */ 158static __always_inline int kmalloc_index(size_t size) 159{ 160 if (!size) 161 return 0; 162 163 if (size <= KMALLOC_MIN_SIZE) 164 return KMALLOC_SHIFT_LOW; 165 166 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 167 return 1; 168 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 169 return 2; 170 if (size <= 8) return 3; 171 if (size <= 16) return 4; 172 if (size <= 32) return 5; 173 if (size <= 64) return 6; 174 if (size <= 128) return 7; 175 if (size <= 256) return 8; 176 if (size <= 512) return 9; 177 if (size <= 1024) return 10; 178 if (size <= 2 * 1024) return 11; 179 if (size <= 4 * 1024) return 12; 180/* 181 * The following is only needed to support architectures with a larger page 182 * size than 4k. 183 */ 184 if (size <= 8 * 1024) return 13; 185 if (size <= 16 * 1024) return 14; 186 if (size <= 32 * 1024) return 15; 187 if (size <= 64 * 1024) return 16; 188 if (size <= 128 * 1024) return 17; 189 if (size <= 256 * 1024) return 18; 190 if (size <= 512 * 1024) return 19; 191 if (size <= 1024 * 1024) return 20; 192 if (size <= 2 * 1024 * 1024) return 21; 193 return -1; 194 195/* 196 * What we really wanted to do and cannot do because of compiler issues is: 197 * int i; 198 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) 199 * if (size <= (1 << i)) 200 * return i; 201 */ 202} 203 204/* 205 * Find the slab cache for a given combination of allocation flags and size. 206 * 207 * This ought to end up with a global pointer to the right cache 208 * in kmalloc_caches. 209 */ 210static __always_inline struct kmem_cache *kmalloc_slab(size_t size) 211{ 212 int index = kmalloc_index(size); 213 214 if (index == 0) 215 return NULL; 216 217 return kmalloc_caches[index]; 218} 219 220void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 221void *__kmalloc(size_t size, gfp_t flags); 222 223static __always_inline void * 224kmalloc_order(size_t size, gfp_t flags, unsigned int order) 225{ 226 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order); 227 kmemleak_alloc(ret, size, 1, flags); 228 return ret; 229} 230 231#ifdef CONFIG_TRACING 232extern void * 233kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size); 234extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 235#else 236static __always_inline void * 237kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 238{ 239 return kmem_cache_alloc(s, gfpflags); 240} 241 242static __always_inline void * 243kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 244{ 245 return kmalloc_order(size, flags, order); 246} 247#endif 248 249static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 250{ 251 unsigned int order = get_order(size); 252 return kmalloc_order_trace(size, flags, order); 253} 254 255static __always_inline void *kmalloc(size_t size, gfp_t flags) 256{ 257 if (__builtin_constant_p(size)) { 258 if (size > SLUB_MAX_SIZE) 259 return kmalloc_large(size, flags); 260 261 if (!(flags & SLUB_DMA)) { 262 struct kmem_cache *s = kmalloc_slab(size); 263 264 if (!s) 265 return ZERO_SIZE_PTR; 266 267 return kmem_cache_alloc_trace(s, flags, size); 268 } 269 } 270 return __kmalloc(size, flags); 271} 272 273#ifdef CONFIG_NUMA 274void *__kmalloc_node(size_t size, gfp_t flags, int node); 275void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 276 277#ifdef CONFIG_TRACING 278extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 279 gfp_t gfpflags, 280 int node, size_t size); 281#else 282static __always_inline void * 283kmem_cache_alloc_node_trace(struct kmem_cache *s, 284 gfp_t gfpflags, 285 int node, size_t size) 286{ 287 return kmem_cache_alloc_node(s, gfpflags, node); 288} 289#endif 290 291static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 292{ 293 if (__builtin_constant_p(size) && 294 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) { 295 struct kmem_cache *s = kmalloc_slab(size); 296 297 if (!s) 298 return ZERO_SIZE_PTR; 299 300 return kmem_cache_alloc_node_trace(s, flags, node, size); 301 } 302 return __kmalloc_node(size, flags, node); 303} 304#endif 305 306#endif /* _LINUX_SLUB_DEF_H */