1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <asm/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15#include <linux/hardirq.h> /* for in_interrupt() */ 16#include <linux/hugetlb_inline.h> 17 18/* 19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 20 * allocation mode flags. 21 */ 22enum mapping_flags { 23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */ 24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */ 25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */ 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */ 27}; 28 29static inline void mapping_set_error(struct address_space *mapping, int error) 30{ 31 if (unlikely(error)) { 32 if (error == -ENOSPC) 33 set_bit(AS_ENOSPC, &mapping->flags); 34 else 35 set_bit(AS_EIO, &mapping->flags); 36 } 37} 38 39static inline void mapping_set_unevictable(struct address_space *mapping) 40{ 41 set_bit(AS_UNEVICTABLE, &mapping->flags); 42} 43 44static inline void mapping_clear_unevictable(struct address_space *mapping) 45{ 46 clear_bit(AS_UNEVICTABLE, &mapping->flags); 47} 48 49static inline int mapping_unevictable(struct address_space *mapping) 50{ 51 if (mapping) 52 return test_bit(AS_UNEVICTABLE, &mapping->flags); 53 return !!mapping; 54} 55 56static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 57{ 58 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; 59} 60 61/* 62 * This is non-atomic. Only to be used before the mapping is activated. 63 * Probably needs a barrier... 64 */ 65static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 66{ 67 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | 68 (__force unsigned long)mask; 69} 70 71/* 72 * The page cache can done in larger chunks than 73 * one page, because it allows for more efficient 74 * throughput (it can then be mapped into user 75 * space in smaller chunks for same flexibility). 76 * 77 * Or rather, it _will_ be done in larger chunks. 78 */ 79#define PAGE_CACHE_SHIFT PAGE_SHIFT 80#define PAGE_CACHE_SIZE PAGE_SIZE 81#define PAGE_CACHE_MASK PAGE_MASK 82#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) 83 84#define page_cache_get(page) get_page(page) 85#define page_cache_release(page) put_page(page) 86void release_pages(struct page **pages, int nr, int cold); 87 88/* 89 * speculatively take a reference to a page. 90 * If the page is free (_count == 0), then _count is untouched, and 0 91 * is returned. Otherwise, _count is incremented by 1 and 1 is returned. 92 * 93 * This function must be called inside the same rcu_read_lock() section as has 94 * been used to lookup the page in the pagecache radix-tree (or page table): 95 * this allows allocators to use a synchronize_rcu() to stabilize _count. 96 * 97 * Unless an RCU grace period has passed, the count of all pages coming out 98 * of the allocator must be considered unstable. page_count may return higher 99 * than expected, and put_page must be able to do the right thing when the 100 * page has been finished with, no matter what it is subsequently allocated 101 * for (because put_page is what is used here to drop an invalid speculative 102 * reference). 103 * 104 * This is the interesting part of the lockless pagecache (and lockless 105 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 106 * has the following pattern: 107 * 1. find page in radix tree 108 * 2. conditionally increment refcount 109 * 3. check the page is still in pagecache (if no, goto 1) 110 * 111 * Remove-side that cares about stability of _count (eg. reclaim) has the 112 * following (with tree_lock held for write): 113 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 114 * B. remove page from pagecache 115 * C. free the page 116 * 117 * There are 2 critical interleavings that matter: 118 * - 2 runs before A: in this case, A sees elevated refcount and bails out 119 * - A runs before 2: in this case, 2 sees zero refcount and retries; 120 * subsequently, B will complete and 1 will find no page, causing the 121 * lookup to return NULL. 122 * 123 * It is possible that between 1 and 2, the page is removed then the exact same 124 * page is inserted into the same position in pagecache. That's OK: the 125 * old find_get_page using tree_lock could equally have run before or after 126 * such a re-insertion, depending on order that locks are granted. 127 * 128 * Lookups racing against pagecache insertion isn't a big problem: either 1 129 * will find the page or it will not. Likewise, the old find_get_page could run 130 * either before the insertion or afterwards, depending on timing. 131 */ 132static inline int page_cache_get_speculative(struct page *page) 133{ 134 VM_BUG_ON(in_interrupt()); 135 136#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 137# ifdef CONFIG_PREEMPT 138 VM_BUG_ON(!in_atomic()); 139# endif 140 /* 141 * Preempt must be disabled here - we rely on rcu_read_lock doing 142 * this for us. 143 * 144 * Pagecache won't be truncated from interrupt context, so if we have 145 * found a page in the radix tree here, we have pinned its refcount by 146 * disabling preempt, and hence no need for the "speculative get" that 147 * SMP requires. 148 */ 149 VM_BUG_ON(page_count(page) == 0); 150 atomic_inc(&page->_count); 151 152#else 153 if (unlikely(!get_page_unless_zero(page))) { 154 /* 155 * Either the page has been freed, or will be freed. 156 * In either case, retry here and the caller should 157 * do the right thing (see comments above). 158 */ 159 return 0; 160 } 161#endif 162 VM_BUG_ON(PageTail(page)); 163 164 return 1; 165} 166 167/* 168 * Same as above, but add instead of inc (could just be merged) 169 */ 170static inline int page_cache_add_speculative(struct page *page, int count) 171{ 172 VM_BUG_ON(in_interrupt()); 173 174#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 175# ifdef CONFIG_PREEMPT 176 VM_BUG_ON(!in_atomic()); 177# endif 178 VM_BUG_ON(page_count(page) == 0); 179 atomic_add(count, &page->_count); 180 181#else 182 if (unlikely(!atomic_add_unless(&page->_count, count, 0))) 183 return 0; 184#endif 185 VM_BUG_ON(PageCompound(page) && page != compound_head(page)); 186 187 return 1; 188} 189 190static inline int page_freeze_refs(struct page *page, int count) 191{ 192 return likely(atomic_cmpxchg(&page->_count, count, 0) == count); 193} 194 195static inline void page_unfreeze_refs(struct page *page, int count) 196{ 197 VM_BUG_ON(page_count(page) != 0); 198 VM_BUG_ON(count == 0); 199 200 atomic_set(&page->_count, count); 201} 202 203#ifdef CONFIG_NUMA 204extern struct page *__page_cache_alloc(gfp_t gfp); 205#else 206static inline struct page *__page_cache_alloc(gfp_t gfp) 207{ 208 return alloc_pages(gfp, 0); 209} 210#endif 211 212static inline struct page *page_cache_alloc(struct address_space *x) 213{ 214 return __page_cache_alloc(mapping_gfp_mask(x)); 215} 216 217static inline struct page *page_cache_alloc_cold(struct address_space *x) 218{ 219 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 220} 221 222typedef int filler_t(void *, struct page *); 223 224extern struct page * find_get_page(struct address_space *mapping, 225 pgoff_t index); 226extern struct page * find_lock_page(struct address_space *mapping, 227 pgoff_t index); 228extern struct page * find_or_create_page(struct address_space *mapping, 229 pgoff_t index, gfp_t gfp_mask); 230unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 231 unsigned int nr_pages, struct page **pages); 232unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 233 unsigned int nr_pages, struct page **pages); 234unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 235 int tag, unsigned int nr_pages, struct page **pages); 236 237struct page *grab_cache_page_write_begin(struct address_space *mapping, 238 pgoff_t index, unsigned flags); 239 240/* 241 * Returns locked page at given index in given cache, creating it if needed. 242 */ 243static inline struct page *grab_cache_page(struct address_space *mapping, 244 pgoff_t index) 245{ 246 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 247} 248 249extern struct page * grab_cache_page_nowait(struct address_space *mapping, 250 pgoff_t index); 251extern struct page * read_cache_page_async(struct address_space *mapping, 252 pgoff_t index, filler_t *filler, 253 void *data); 254extern struct page * read_cache_page(struct address_space *mapping, 255 pgoff_t index, filler_t *filler, 256 void *data); 257extern struct page * read_cache_page_gfp(struct address_space *mapping, 258 pgoff_t index, gfp_t gfp_mask); 259extern int read_cache_pages(struct address_space *mapping, 260 struct list_head *pages, filler_t *filler, void *data); 261 262static inline struct page *read_mapping_page_async( 263 struct address_space *mapping, 264 pgoff_t index, void *data) 265{ 266 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 267 return read_cache_page_async(mapping, index, filler, data); 268} 269 270static inline struct page *read_mapping_page(struct address_space *mapping, 271 pgoff_t index, void *data) 272{ 273 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 274 return read_cache_page(mapping, index, filler, data); 275} 276 277/* 278 * Return byte-offset into filesystem object for page. 279 */ 280static inline loff_t page_offset(struct page *page) 281{ 282 return ((loff_t)page->index) << PAGE_CACHE_SHIFT; 283} 284 285extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 286 unsigned long address); 287 288static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 289 unsigned long address) 290{ 291 pgoff_t pgoff; 292 if (unlikely(is_vm_hugetlb_page(vma))) 293 return linear_hugepage_index(vma, address); 294 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 295 pgoff += vma->vm_pgoff; 296 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); 297} 298 299extern void __lock_page(struct page *page); 300extern int __lock_page_killable(struct page *page); 301extern void __lock_page_nosync(struct page *page); 302extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 303 unsigned int flags); 304extern void unlock_page(struct page *page); 305 306static inline void __set_page_locked(struct page *page) 307{ 308 __set_bit(PG_locked, &page->flags); 309} 310 311static inline void __clear_page_locked(struct page *page) 312{ 313 __clear_bit(PG_locked, &page->flags); 314} 315 316static inline int trylock_page(struct page *page) 317{ 318 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 319} 320 321/* 322 * lock_page may only be called if we have the page's inode pinned. 323 */ 324static inline void lock_page(struct page *page) 325{ 326 might_sleep(); 327 if (!trylock_page(page)) 328 __lock_page(page); 329} 330 331/* 332 * lock_page_killable is like lock_page but can be interrupted by fatal 333 * signals. It returns 0 if it locked the page and -EINTR if it was 334 * killed while waiting. 335 */ 336static inline int lock_page_killable(struct page *page) 337{ 338 might_sleep(); 339 if (!trylock_page(page)) 340 return __lock_page_killable(page); 341 return 0; 342} 343 344/* 345 * lock_page_nosync should only be used if we can't pin the page's inode. 346 * Doesn't play quite so well with block device plugging. 347 */ 348static inline void lock_page_nosync(struct page *page) 349{ 350 might_sleep(); 351 if (!trylock_page(page)) 352 __lock_page_nosync(page); 353} 354 355/* 356 * lock_page_or_retry - Lock the page, unless this would block and the 357 * caller indicated that it can handle a retry. 358 */ 359static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 360 unsigned int flags) 361{ 362 might_sleep(); 363 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 364} 365 366/* 367 * This is exported only for wait_on_page_locked/wait_on_page_writeback. 368 * Never use this directly! 369 */ 370extern void wait_on_page_bit(struct page *page, int bit_nr); 371 372/* 373 * Wait for a page to be unlocked. 374 * 375 * This must be called with the caller "holding" the page, 376 * ie with increased "page->count" so that the page won't 377 * go away during the wait.. 378 */ 379static inline void wait_on_page_locked(struct page *page) 380{ 381 if (PageLocked(page)) 382 wait_on_page_bit(page, PG_locked); 383} 384 385/* 386 * Wait for a page to complete writeback 387 */ 388static inline void wait_on_page_writeback(struct page *page) 389{ 390 if (PageWriteback(page)) 391 wait_on_page_bit(page, PG_writeback); 392} 393 394extern void end_page_writeback(struct page *page); 395 396/* 397 * Add an arbitrary waiter to a page's wait queue 398 */ 399extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); 400 401/* 402 * Fault a userspace page into pagetables. Return non-zero on a fault. 403 * 404 * This assumes that two userspace pages are always sufficient. That's 405 * not true if PAGE_CACHE_SIZE > PAGE_SIZE. 406 */ 407static inline int fault_in_pages_writeable(char __user *uaddr, int size) 408{ 409 int ret; 410 411 if (unlikely(size == 0)) 412 return 0; 413 414 /* 415 * Writing zeroes into userspace here is OK, because we know that if 416 * the zero gets there, we'll be overwriting it. 417 */ 418 ret = __put_user(0, uaddr); 419 if (ret == 0) { 420 char __user *end = uaddr + size - 1; 421 422 /* 423 * If the page was already mapped, this will get a cache miss 424 * for sure, so try to avoid doing it. 425 */ 426 if (((unsigned long)uaddr & PAGE_MASK) != 427 ((unsigned long)end & PAGE_MASK)) 428 ret = __put_user(0, end); 429 } 430 return ret; 431} 432 433static inline int fault_in_pages_readable(const char __user *uaddr, int size) 434{ 435 volatile char c; 436 int ret; 437 438 if (unlikely(size == 0)) 439 return 0; 440 441 ret = __get_user(c, uaddr); 442 if (ret == 0) { 443 const char __user *end = uaddr + size - 1; 444 445 if (((unsigned long)uaddr & PAGE_MASK) != 446 ((unsigned long)end & PAGE_MASK)) { 447 ret = __get_user(c, end); 448 (void)c; 449 } 450 } 451 return ret; 452} 453 454int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 455 pgoff_t index, gfp_t gfp_mask); 456int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 457 pgoff_t index, gfp_t gfp_mask); 458extern void delete_from_page_cache(struct page *page); 459extern void __delete_from_page_cache(struct page *page); 460int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 461 462/* 463 * Like add_to_page_cache_locked, but used to add newly allocated pages: 464 * the page is new, so we can just run __set_page_locked() against it. 465 */ 466static inline int add_to_page_cache(struct page *page, 467 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 468{ 469 int error; 470 471 __set_page_locked(page); 472 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 473 if (unlikely(error)) 474 __clear_page_locked(page); 475 return error; 476} 477 478#endif /* _LINUX_PAGEMAP_H */