Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_HUGETLB_H
3#define _LINUX_HUGETLB_H
4
5#include <linux/mm.h>
6#include <linux/mm_types.h>
7#include <linux/mmdebug.h>
8#include <linux/fs.h>
9#include <linux/hugetlb_inline.h>
10#include <linux/cgroup.h>
11#include <linux/page_ref.h>
12#include <linux/list.h>
13#include <linux/kref.h>
14#include <linux/pgtable.h>
15#include <linux/gfp.h>
16#include <linux/userfaultfd_k.h>
17
18struct ctl_table;
19struct user_struct;
20struct mmu_gather;
21struct node;
22
23void free_huge_folio(struct folio *folio);
24
25#ifdef CONFIG_HUGETLB_PAGE
26
27#include <linux/pagemap.h>
28#include <linux/shm.h>
29#include <asm/tlbflush.h>
30
31/*
32 * For HugeTLB page, there are more metadata to save in the struct page. But
33 * the head struct page cannot meet our needs, so we have to abuse other tail
34 * struct page to store the metadata.
35 */
36#define __NR_USED_SUBPAGE 3
37
38struct hugepage_subpool {
39 spinlock_t lock;
40 long count;
41 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
42 long used_hpages; /* Used count against maximum, includes */
43 /* both allocated and reserved pages. */
44 struct hstate *hstate;
45 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
46 long rsv_hpages; /* Pages reserved against global pool to */
47 /* satisfy minimum size. */
48};
49
50struct resv_map {
51 struct kref refs;
52 spinlock_t lock;
53 struct list_head regions;
54 long adds_in_progress;
55 struct list_head region_cache;
56 long region_cache_count;
57 struct rw_semaphore rw_sema;
58#ifdef CONFIG_CGROUP_HUGETLB
59 /*
60 * On private mappings, the counter to uncharge reservations is stored
61 * here. If these fields are 0, then either the mapping is shared, or
62 * cgroup accounting is disabled for this resv_map.
63 */
64 struct page_counter *reservation_counter;
65 unsigned long pages_per_hpage;
66 struct cgroup_subsys_state *css;
67#endif
68};
69
70/*
71 * Region tracking -- allows tracking of reservations and instantiated pages
72 * across the pages in a mapping.
73 *
74 * The region data structures are embedded into a resv_map and protected
75 * by a resv_map's lock. The set of regions within the resv_map represent
76 * reservations for huge pages, or huge pages that have already been
77 * instantiated within the map. The from and to elements are huge page
78 * indices into the associated mapping. from indicates the starting index
79 * of the region. to represents the first index past the end of the region.
80 *
81 * For example, a file region structure with from == 0 and to == 4 represents
82 * four huge pages in a mapping. It is important to note that the to element
83 * represents the first element past the end of the region. This is used in
84 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
85 *
86 * Interval notation of the form [from, to) will be used to indicate that
87 * the endpoint from is inclusive and to is exclusive.
88 */
89struct file_region {
90 struct list_head link;
91 long from;
92 long to;
93#ifdef CONFIG_CGROUP_HUGETLB
94 /*
95 * On shared mappings, each reserved region appears as a struct
96 * file_region in resv_map. These fields hold the info needed to
97 * uncharge each reservation.
98 */
99 struct page_counter *reservation_counter;
100 struct cgroup_subsys_state *css;
101#endif
102};
103
104struct hugetlb_vma_lock {
105 struct kref refs;
106 struct rw_semaphore rw_sema;
107 struct vm_area_struct *vma;
108};
109
110extern struct resv_map *resv_map_alloc(void);
111void resv_map_release(struct kref *ref);
112
113extern spinlock_t hugetlb_lock;
114extern int hugetlb_max_hstate __read_mostly;
115#define for_each_hstate(h) \
116 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
117
118struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
119 long min_hpages);
120void hugepage_put_subpool(struct hugepage_subpool *spool);
121
122void hugetlb_dup_vma_private(struct vm_area_struct *vma);
123void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
124int move_hugetlb_page_tables(struct vm_area_struct *vma,
125 struct vm_area_struct *new_vma,
126 unsigned long old_addr, unsigned long new_addr,
127 unsigned long len);
128int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
129 struct vm_area_struct *, struct vm_area_struct *);
130void unmap_hugepage_range(struct vm_area_struct *,
131 unsigned long, unsigned long, struct page *,
132 zap_flags_t);
133void __unmap_hugepage_range(struct mmu_gather *tlb,
134 struct vm_area_struct *vma,
135 unsigned long start, unsigned long end,
136 struct page *ref_page, zap_flags_t zap_flags);
137void hugetlb_report_meminfo(struct seq_file *);
138int hugetlb_report_node_meminfo(char *buf, int len, int nid);
139void hugetlb_show_meminfo_node(int nid);
140unsigned long hugetlb_total_pages(void);
141vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
142 unsigned long address, unsigned int flags);
143#ifdef CONFIG_USERFAULTFD
144int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
145 struct vm_area_struct *dst_vma,
146 unsigned long dst_addr,
147 unsigned long src_addr,
148 uffd_flags_t flags,
149 struct folio **foliop);
150#endif /* CONFIG_USERFAULTFD */
151bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
152 struct vm_area_struct *vma,
153 vm_flags_t vm_flags);
154long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
155 long freed);
156bool isolate_hugetlb(struct folio *folio, struct list_head *list);
157int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
158int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
159 bool *migratable_cleared);
160void folio_putback_active_hugetlb(struct folio *folio);
161void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
162void hugetlb_fix_reserve_counts(struct inode *inode);
163extern struct mutex *hugetlb_fault_mutex_table;
164u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
165
166pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
167 unsigned long addr, pud_t *pud);
168bool hugetlbfs_pagecache_present(struct hstate *h,
169 struct vm_area_struct *vma,
170 unsigned long address);
171
172struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
173
174extern int sysctl_hugetlb_shm_group;
175extern struct list_head huge_boot_pages[MAX_NUMNODES];
176
177/* arch callbacks */
178
179#ifndef CONFIG_HIGHPTE
180/*
181 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
182 * which may go down to the lowest PTE level in their huge_pte_offset() and
183 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
184 */
185static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
186{
187 return pte_offset_kernel(pmd, address);
188}
189static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
190 unsigned long address)
191{
192 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
193}
194#endif
195
196pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
197 unsigned long addr, unsigned long sz);
198/*
199 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
200 * Returns the pte_t* if found, or NULL if the address is not mapped.
201 *
202 * IMPORTANT: we should normally not directly call this function, instead
203 * this is only a common interface to implement arch-specific
204 * walker. Please use hugetlb_walk() instead, because that will attempt to
205 * verify the locking for you.
206 *
207 * Since this function will walk all the pgtable pages (including not only
208 * high-level pgtable page, but also PUD entry that can be unshared
209 * concurrently for VM_SHARED), the caller of this function should be
210 * responsible of its thread safety. One can follow this rule:
211 *
212 * (1) For private mappings: pmd unsharing is not possible, so holding the
213 * mmap_lock for either read or write is sufficient. Most callers
214 * already hold the mmap_lock, so normally, no special action is
215 * required.
216 *
217 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
218 * pgtable page can go away from under us! It can be done by a pmd
219 * unshare with a follow up munmap() on the other process), then we
220 * need either:
221 *
222 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
223 * won't happen upon the range (it also makes sure the pte_t we
224 * read is the right and stable one), or,
225 *
226 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
227 * sure even if unshare happened the racy unmap() will wait until
228 * i_mmap_rwsem is released.
229 *
230 * Option (2.1) is the safest, which guarantees pte stability from pmd
231 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
232 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
233 * access.
234 */
235pte_t *huge_pte_offset(struct mm_struct *mm,
236 unsigned long addr, unsigned long sz);
237unsigned long hugetlb_mask_last_page(struct hstate *h);
238int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
239 unsigned long addr, pte_t *ptep);
240void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
241 unsigned long *start, unsigned long *end);
242
243extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
244 unsigned long *begin, unsigned long *end);
245extern void __hugetlb_zap_end(struct vm_area_struct *vma,
246 struct zap_details *details);
247
248static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
249 unsigned long *start, unsigned long *end)
250{
251 if (is_vm_hugetlb_page(vma))
252 __hugetlb_zap_begin(vma, start, end);
253}
254
255static inline void hugetlb_zap_end(struct vm_area_struct *vma,
256 struct zap_details *details)
257{
258 if (is_vm_hugetlb_page(vma))
259 __hugetlb_zap_end(vma, details);
260}
261
262void hugetlb_vma_lock_read(struct vm_area_struct *vma);
263void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
264void hugetlb_vma_lock_write(struct vm_area_struct *vma);
265void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
266int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
267void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
268void hugetlb_vma_lock_release(struct kref *kref);
269long hugetlb_change_protection(struct vm_area_struct *vma,
270 unsigned long address, unsigned long end, pgprot_t newprot,
271 unsigned long cp_flags);
272bool is_hugetlb_entry_migration(pte_t pte);
273bool is_hugetlb_entry_hwpoisoned(pte_t pte);
274void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
275
276#else /* !CONFIG_HUGETLB_PAGE */
277
278static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
279{
280}
281
282static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
283{
284}
285
286static inline unsigned long hugetlb_total_pages(void)
287{
288 return 0;
289}
290
291static inline struct address_space *hugetlb_folio_mapping_lock_write(
292 struct folio *folio)
293{
294 return NULL;
295}
296
297static inline int huge_pmd_unshare(struct mm_struct *mm,
298 struct vm_area_struct *vma,
299 unsigned long addr, pte_t *ptep)
300{
301 return 0;
302}
303
304static inline void adjust_range_if_pmd_sharing_possible(
305 struct vm_area_struct *vma,
306 unsigned long *start, unsigned long *end)
307{
308}
309
310static inline void hugetlb_zap_begin(
311 struct vm_area_struct *vma,
312 unsigned long *start, unsigned long *end)
313{
314}
315
316static inline void hugetlb_zap_end(
317 struct vm_area_struct *vma,
318 struct zap_details *details)
319{
320}
321
322static inline int copy_hugetlb_page_range(struct mm_struct *dst,
323 struct mm_struct *src,
324 struct vm_area_struct *dst_vma,
325 struct vm_area_struct *src_vma)
326{
327 BUG();
328 return 0;
329}
330
331static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
332 struct vm_area_struct *new_vma,
333 unsigned long old_addr,
334 unsigned long new_addr,
335 unsigned long len)
336{
337 BUG();
338 return 0;
339}
340
341static inline void hugetlb_report_meminfo(struct seq_file *m)
342{
343}
344
345static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
346{
347 return 0;
348}
349
350static inline void hugetlb_show_meminfo_node(int nid)
351{
352}
353
354static inline int prepare_hugepage_range(struct file *file,
355 unsigned long addr, unsigned long len)
356{
357 return -EINVAL;
358}
359
360static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
361{
362}
363
364static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
365{
366}
367
368static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
369{
370}
371
372static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
373{
374}
375
376static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
377{
378 return 1;
379}
380
381static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
382{
383}
384
385static inline int is_hugepage_only_range(struct mm_struct *mm,
386 unsigned long addr, unsigned long len)
387{
388 return 0;
389}
390
391static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
392 unsigned long addr, unsigned long end,
393 unsigned long floor, unsigned long ceiling)
394{
395 BUG();
396}
397
398#ifdef CONFIG_USERFAULTFD
399static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
400 struct vm_area_struct *dst_vma,
401 unsigned long dst_addr,
402 unsigned long src_addr,
403 uffd_flags_t flags,
404 struct folio **foliop)
405{
406 BUG();
407 return 0;
408}
409#endif /* CONFIG_USERFAULTFD */
410
411static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
412 unsigned long sz)
413{
414 return NULL;
415}
416
417static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
418{
419 return false;
420}
421
422static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
423{
424 return 0;
425}
426
427static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
428 bool *migratable_cleared)
429{
430 return 0;
431}
432
433static inline void folio_putback_active_hugetlb(struct folio *folio)
434{
435}
436
437static inline void move_hugetlb_state(struct folio *old_folio,
438 struct folio *new_folio, int reason)
439{
440}
441
442static inline long hugetlb_change_protection(
443 struct vm_area_struct *vma, unsigned long address,
444 unsigned long end, pgprot_t newprot,
445 unsigned long cp_flags)
446{
447 return 0;
448}
449
450static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
451 struct vm_area_struct *vma, unsigned long start,
452 unsigned long end, struct page *ref_page,
453 zap_flags_t zap_flags)
454{
455 BUG();
456}
457
458static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
459 struct vm_area_struct *vma, unsigned long address,
460 unsigned int flags)
461{
462 BUG();
463 return 0;
464}
465
466static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
467
468#endif /* !CONFIG_HUGETLB_PAGE */
469
470#ifndef pgd_write
471static inline int pgd_write(pgd_t pgd)
472{
473 BUG();
474 return 0;
475}
476#endif
477
478#define HUGETLB_ANON_FILE "anon_hugepage"
479
480enum {
481 /*
482 * The file will be used as an shm file so shmfs accounting rules
483 * apply
484 */
485 HUGETLB_SHMFS_INODE = 1,
486 /*
487 * The file is being created on the internal vfs mount and shmfs
488 * accounting rules do not apply
489 */
490 HUGETLB_ANONHUGE_INODE = 2,
491};
492
493#ifdef CONFIG_HUGETLBFS
494struct hugetlbfs_sb_info {
495 long max_inodes; /* inodes allowed */
496 long free_inodes; /* inodes free */
497 spinlock_t stat_lock;
498 struct hstate *hstate;
499 struct hugepage_subpool *spool;
500 kuid_t uid;
501 kgid_t gid;
502 umode_t mode;
503};
504
505static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
506{
507 return sb->s_fs_info;
508}
509
510struct hugetlbfs_inode_info {
511 struct inode vfs_inode;
512 unsigned int seals;
513};
514
515static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
516{
517 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
518}
519
520extern const struct vm_operations_struct hugetlb_vm_ops;
521struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
522 int creat_flags, int page_size_log);
523
524static inline bool is_file_hugepages(const struct file *file)
525{
526 return file->f_op->fop_flags & FOP_HUGE_PAGES;
527}
528
529static inline struct hstate *hstate_inode(struct inode *i)
530{
531 return HUGETLBFS_SB(i->i_sb)->hstate;
532}
533#else /* !CONFIG_HUGETLBFS */
534
535#define is_file_hugepages(file) false
536static inline struct file *
537hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
538 int creat_flags, int page_size_log)
539{
540 return ERR_PTR(-ENOSYS);
541}
542
543static inline struct hstate *hstate_inode(struct inode *i)
544{
545 return NULL;
546}
547#endif /* !CONFIG_HUGETLBFS */
548
549#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
550unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
551 unsigned long len, unsigned long pgoff,
552 unsigned long flags);
553#endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
554
555unsigned long
556generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
557 unsigned long len, unsigned long pgoff,
558 unsigned long flags);
559
560/*
561 * huegtlb page specific state flags. These flags are located in page.private
562 * of the hugetlb head page. Functions created via the below macros should be
563 * used to manipulate these flags.
564 *
565 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
566 * allocation time. Cleared when page is fully instantiated. Free
567 * routine checks flag to restore a reservation on error paths.
568 * Synchronization: Examined or modified by code that knows it has
569 * the only reference to page. i.e. After allocation but before use
570 * or when the page is being freed.
571 * HPG_migratable - Set after a newly allocated page is added to the page
572 * cache and/or page tables. Indicates the page is a candidate for
573 * migration.
574 * Synchronization: Initially set after new page allocation with no
575 * locking. When examined and modified during migration processing
576 * (isolate, migrate, putback) the hugetlb_lock is held.
577 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
578 * allocator. Typically used for migration target pages when no pages
579 * are available in the pool. The hugetlb free page path will
580 * immediately free pages with this flag set to the buddy allocator.
581 * Synchronization: Can be set after huge page allocation from buddy when
582 * code knows it has only reference. All other examinations and
583 * modifications require hugetlb_lock.
584 * HPG_freed - Set when page is on the free lists.
585 * Synchronization: hugetlb_lock held for examination and modification.
586 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
587 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
588 * that is not tracked by raw_hwp_page list.
589 */
590enum hugetlb_page_flags {
591 HPG_restore_reserve = 0,
592 HPG_migratable,
593 HPG_temporary,
594 HPG_freed,
595 HPG_vmemmap_optimized,
596 HPG_raw_hwp_unreliable,
597 __NR_HPAGEFLAGS,
598};
599
600/*
601 * Macros to create test, set and clear function definitions for
602 * hugetlb specific page flags.
603 */
604#ifdef CONFIG_HUGETLB_PAGE
605#define TESTHPAGEFLAG(uname, flname) \
606static __always_inline \
607bool folio_test_hugetlb_##flname(struct folio *folio) \
608 { void *private = &folio->private; \
609 return test_bit(HPG_##flname, private); \
610 }
611
612#define SETHPAGEFLAG(uname, flname) \
613static __always_inline \
614void folio_set_hugetlb_##flname(struct folio *folio) \
615 { void *private = &folio->private; \
616 set_bit(HPG_##flname, private); \
617 }
618
619#define CLEARHPAGEFLAG(uname, flname) \
620static __always_inline \
621void folio_clear_hugetlb_##flname(struct folio *folio) \
622 { void *private = &folio->private; \
623 clear_bit(HPG_##flname, private); \
624 }
625#else
626#define TESTHPAGEFLAG(uname, flname) \
627static inline bool \
628folio_test_hugetlb_##flname(struct folio *folio) \
629 { return 0; }
630
631#define SETHPAGEFLAG(uname, flname) \
632static inline void \
633folio_set_hugetlb_##flname(struct folio *folio) \
634 { }
635
636#define CLEARHPAGEFLAG(uname, flname) \
637static inline void \
638folio_clear_hugetlb_##flname(struct folio *folio) \
639 { }
640#endif
641
642#define HPAGEFLAG(uname, flname) \
643 TESTHPAGEFLAG(uname, flname) \
644 SETHPAGEFLAG(uname, flname) \
645 CLEARHPAGEFLAG(uname, flname) \
646
647/*
648 * Create functions associated with hugetlb page flags
649 */
650HPAGEFLAG(RestoreReserve, restore_reserve)
651HPAGEFLAG(Migratable, migratable)
652HPAGEFLAG(Temporary, temporary)
653HPAGEFLAG(Freed, freed)
654HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
655HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
656
657#ifdef CONFIG_HUGETLB_PAGE
658
659#define HSTATE_NAME_LEN 32
660/* Defines one hugetlb page size */
661struct hstate {
662 struct mutex resize_lock;
663 struct lock_class_key resize_key;
664 int next_nid_to_alloc;
665 int next_nid_to_free;
666 unsigned int order;
667 unsigned int demote_order;
668 unsigned long mask;
669 unsigned long max_huge_pages;
670 unsigned long nr_huge_pages;
671 unsigned long free_huge_pages;
672 unsigned long resv_huge_pages;
673 unsigned long surplus_huge_pages;
674 unsigned long nr_overcommit_huge_pages;
675 struct list_head hugepage_activelist;
676 struct list_head hugepage_freelists[MAX_NUMNODES];
677 unsigned int max_huge_pages_node[MAX_NUMNODES];
678 unsigned int nr_huge_pages_node[MAX_NUMNODES];
679 unsigned int free_huge_pages_node[MAX_NUMNODES];
680 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
681 char name[HSTATE_NAME_LEN];
682};
683
684struct huge_bootmem_page {
685 struct list_head list;
686 struct hstate *hstate;
687};
688
689int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
690struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
691 unsigned long addr, int avoid_reserve);
692struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
693 nodemask_t *nmask, gfp_t gfp_mask,
694 bool allow_alloc_fallback);
695struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
696 nodemask_t *nmask, gfp_t gfp_mask);
697
698int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
699 pgoff_t idx);
700void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
701 unsigned long address, struct folio *folio);
702
703/* arch callback */
704int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
705int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
706bool __init hugetlb_node_alloc_supported(void);
707
708void __init hugetlb_add_hstate(unsigned order);
709bool __init arch_hugetlb_valid_size(unsigned long size);
710struct hstate *size_to_hstate(unsigned long size);
711
712#ifndef HUGE_MAX_HSTATE
713#define HUGE_MAX_HSTATE 1
714#endif
715
716extern struct hstate hstates[HUGE_MAX_HSTATE];
717extern unsigned int default_hstate_idx;
718
719#define default_hstate (hstates[default_hstate_idx])
720
721static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
722{
723 return folio->_hugetlb_subpool;
724}
725
726static inline void hugetlb_set_folio_subpool(struct folio *folio,
727 struct hugepage_subpool *subpool)
728{
729 folio->_hugetlb_subpool = subpool;
730}
731
732static inline struct hstate *hstate_file(struct file *f)
733{
734 return hstate_inode(file_inode(f));
735}
736
737static inline struct hstate *hstate_sizelog(int page_size_log)
738{
739 if (!page_size_log)
740 return &default_hstate;
741
742 if (page_size_log < BITS_PER_LONG)
743 return size_to_hstate(1UL << page_size_log);
744
745 return NULL;
746}
747
748static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
749{
750 return hstate_file(vma->vm_file);
751}
752
753static inline unsigned long huge_page_size(const struct hstate *h)
754{
755 return (unsigned long)PAGE_SIZE << h->order;
756}
757
758extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
759
760extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
761
762static inline unsigned long huge_page_mask(struct hstate *h)
763{
764 return h->mask;
765}
766
767static inline unsigned int huge_page_order(struct hstate *h)
768{
769 return h->order;
770}
771
772static inline unsigned huge_page_shift(struct hstate *h)
773{
774 return h->order + PAGE_SHIFT;
775}
776
777static inline bool hstate_is_gigantic(struct hstate *h)
778{
779 return huge_page_order(h) > MAX_PAGE_ORDER;
780}
781
782static inline unsigned int pages_per_huge_page(const struct hstate *h)
783{
784 return 1 << h->order;
785}
786
787static inline unsigned int blocks_per_huge_page(struct hstate *h)
788{
789 return huge_page_size(h) / 512;
790}
791
792static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
793 struct address_space *mapping, pgoff_t idx)
794{
795 return filemap_lock_folio(mapping, idx << huge_page_order(h));
796}
797
798#include <asm/hugetlb.h>
799
800#ifndef is_hugepage_only_range
801static inline int is_hugepage_only_range(struct mm_struct *mm,
802 unsigned long addr, unsigned long len)
803{
804 return 0;
805}
806#define is_hugepage_only_range is_hugepage_only_range
807#endif
808
809#ifndef arch_clear_hugetlb_flags
810static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
811#define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
812#endif
813
814#ifndef arch_make_huge_pte
815static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
816 vm_flags_t flags)
817{
818 return pte_mkhuge(entry);
819}
820#endif
821
822static inline struct hstate *folio_hstate(struct folio *folio)
823{
824 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
825 return size_to_hstate(folio_size(folio));
826}
827
828static inline unsigned hstate_index_to_shift(unsigned index)
829{
830 return hstates[index].order + PAGE_SHIFT;
831}
832
833static inline int hstate_index(struct hstate *h)
834{
835 return h - hstates;
836}
837
838int dissolve_free_hugetlb_folio(struct folio *folio);
839int dissolve_free_hugetlb_folios(unsigned long start_pfn,
840 unsigned long end_pfn);
841
842#ifdef CONFIG_MEMORY_FAILURE
843extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
844#else
845static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
846{
847}
848#endif
849
850#ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
851#ifndef arch_hugetlb_migration_supported
852static inline bool arch_hugetlb_migration_supported(struct hstate *h)
853{
854 if ((huge_page_shift(h) == PMD_SHIFT) ||
855 (huge_page_shift(h) == PUD_SHIFT) ||
856 (huge_page_shift(h) == PGDIR_SHIFT))
857 return true;
858 else
859 return false;
860}
861#endif
862#else
863static inline bool arch_hugetlb_migration_supported(struct hstate *h)
864{
865 return false;
866}
867#endif
868
869static inline bool hugepage_migration_supported(struct hstate *h)
870{
871 return arch_hugetlb_migration_supported(h);
872}
873
874/*
875 * Movability check is different as compared to migration check.
876 * It determines whether or not a huge page should be placed on
877 * movable zone or not. Movability of any huge page should be
878 * required only if huge page size is supported for migration.
879 * There won't be any reason for the huge page to be movable if
880 * it is not migratable to start with. Also the size of the huge
881 * page should be large enough to be placed under a movable zone
882 * and still feasible enough to be migratable. Just the presence
883 * in movable zone does not make the migration feasible.
884 *
885 * So even though large huge page sizes like the gigantic ones
886 * are migratable they should not be movable because its not
887 * feasible to migrate them from movable zone.
888 */
889static inline bool hugepage_movable_supported(struct hstate *h)
890{
891 if (!hugepage_migration_supported(h))
892 return false;
893
894 if (hstate_is_gigantic(h))
895 return false;
896 return true;
897}
898
899/* Movability of hugepages depends on migration support. */
900static inline gfp_t htlb_alloc_mask(struct hstate *h)
901{
902 gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
903
904 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
905
906 return gfp;
907}
908
909static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
910{
911 gfp_t modified_mask = htlb_alloc_mask(h);
912
913 /* Some callers might want to enforce node */
914 modified_mask |= (gfp_mask & __GFP_THISNODE);
915
916 modified_mask |= (gfp_mask & __GFP_NOWARN);
917
918 return modified_mask;
919}
920
921static inline bool htlb_allow_alloc_fallback(int reason)
922{
923 bool allowed_fallback = false;
924
925 /*
926 * Note: the memory offline, memory failure and migration syscalls will
927 * be allowed to fallback to other nodes due to lack of a better chioce,
928 * that might break the per-node hugetlb pool. While other cases will
929 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
930 */
931 switch (reason) {
932 case MR_MEMORY_HOTPLUG:
933 case MR_MEMORY_FAILURE:
934 case MR_SYSCALL:
935 case MR_MEMPOLICY_MBIND:
936 allowed_fallback = true;
937 break;
938 default:
939 break;
940 }
941
942 return allowed_fallback;
943}
944
945static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
946 struct mm_struct *mm, pte_t *pte)
947{
948 const unsigned long size = huge_page_size(h);
949
950 VM_WARN_ON(size == PAGE_SIZE);
951
952 /*
953 * hugetlb must use the exact same PT locks as core-mm page table
954 * walkers would. When modifying a PTE table, hugetlb must take the
955 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
956 * PT lock etc.
957 *
958 * The expectation is that any hugetlb folio smaller than a PMD is
959 * always mapped into a single PTE table and that any hugetlb folio
960 * smaller than a PUD (but at least as big as a PMD) is always mapped
961 * into a single PMD table.
962 *
963 * If that does not hold for an architecture, then that architecture
964 * must disable split PT locks such that all *_lockptr() functions
965 * will give us the same result: the per-MM PT lock.
966 *
967 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
968 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
969 * and core-mm would use pmd_lockptr(). However, in such configurations
970 * split PMD locks are disabled -- they don't make sense on a single
971 * PGDIR page table -- and the end result is the same.
972 */
973 if (size >= PUD_SIZE)
974 return pud_lockptr(mm, (pud_t *) pte);
975 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
976 return pmd_lockptr(mm, (pmd_t *) pte);
977 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
978 return ptep_lockptr(mm, pte);
979}
980
981#ifndef hugepages_supported
982/*
983 * Some platform decide whether they support huge pages at boot
984 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
985 * when there is no such support
986 */
987#define hugepages_supported() (HPAGE_SHIFT != 0)
988#endif
989
990void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
991
992static inline void hugetlb_count_init(struct mm_struct *mm)
993{
994 atomic_long_set(&mm->hugetlb_usage, 0);
995}
996
997static inline void hugetlb_count_add(long l, struct mm_struct *mm)
998{
999 atomic_long_add(l, &mm->hugetlb_usage);
1000}
1001
1002static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1003{
1004 atomic_long_sub(l, &mm->hugetlb_usage);
1005}
1006
1007#ifndef huge_ptep_modify_prot_start
1008#define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1009static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1010 unsigned long addr, pte_t *ptep)
1011{
1012 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1013}
1014#endif
1015
1016#ifndef huge_ptep_modify_prot_commit
1017#define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1018static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1019 unsigned long addr, pte_t *ptep,
1020 pte_t old_pte, pte_t pte)
1021{
1022 unsigned long psize = huge_page_size(hstate_vma(vma));
1023
1024 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1025}
1026#endif
1027
1028#ifdef CONFIG_NUMA
1029void hugetlb_register_node(struct node *node);
1030void hugetlb_unregister_node(struct node *node);
1031#endif
1032
1033/*
1034 * Check if a given raw @page in a hugepage is HWPOISON.
1035 */
1036bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1037
1038#else /* CONFIG_HUGETLB_PAGE */
1039struct hstate {};
1040
1041static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1042{
1043 return NULL;
1044}
1045
1046static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1047 struct address_space *mapping, pgoff_t idx)
1048{
1049 return NULL;
1050}
1051
1052static inline int isolate_or_dissolve_huge_page(struct page *page,
1053 struct list_head *list)
1054{
1055 return -ENOMEM;
1056}
1057
1058static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1059 unsigned long addr,
1060 int avoid_reserve)
1061{
1062 return NULL;
1063}
1064
1065static inline struct folio *
1066alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1067 nodemask_t *nmask, gfp_t gfp_mask)
1068{
1069 return NULL;
1070}
1071
1072static inline struct folio *
1073alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1074 nodemask_t *nmask, gfp_t gfp_mask,
1075 bool allow_alloc_fallback)
1076{
1077 return NULL;
1078}
1079
1080static inline int __alloc_bootmem_huge_page(struct hstate *h)
1081{
1082 return 0;
1083}
1084
1085static inline struct hstate *hstate_file(struct file *f)
1086{
1087 return NULL;
1088}
1089
1090static inline struct hstate *hstate_sizelog(int page_size_log)
1091{
1092 return NULL;
1093}
1094
1095static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1096{
1097 return NULL;
1098}
1099
1100static inline struct hstate *folio_hstate(struct folio *folio)
1101{
1102 return NULL;
1103}
1104
1105static inline struct hstate *size_to_hstate(unsigned long size)
1106{
1107 return NULL;
1108}
1109
1110static inline unsigned long huge_page_size(struct hstate *h)
1111{
1112 return PAGE_SIZE;
1113}
1114
1115static inline unsigned long huge_page_mask(struct hstate *h)
1116{
1117 return PAGE_MASK;
1118}
1119
1120static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1121{
1122 return PAGE_SIZE;
1123}
1124
1125static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1126{
1127 return PAGE_SIZE;
1128}
1129
1130static inline unsigned int huge_page_order(struct hstate *h)
1131{
1132 return 0;
1133}
1134
1135static inline unsigned int huge_page_shift(struct hstate *h)
1136{
1137 return PAGE_SHIFT;
1138}
1139
1140static inline bool hstate_is_gigantic(struct hstate *h)
1141{
1142 return false;
1143}
1144
1145static inline unsigned int pages_per_huge_page(struct hstate *h)
1146{
1147 return 1;
1148}
1149
1150static inline unsigned hstate_index_to_shift(unsigned index)
1151{
1152 return 0;
1153}
1154
1155static inline int hstate_index(struct hstate *h)
1156{
1157 return 0;
1158}
1159
1160static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1161{
1162 return 0;
1163}
1164
1165static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1166 unsigned long end_pfn)
1167{
1168 return 0;
1169}
1170
1171static inline bool hugepage_migration_supported(struct hstate *h)
1172{
1173 return false;
1174}
1175
1176static inline bool hugepage_movable_supported(struct hstate *h)
1177{
1178 return false;
1179}
1180
1181static inline gfp_t htlb_alloc_mask(struct hstate *h)
1182{
1183 return 0;
1184}
1185
1186static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1187{
1188 return 0;
1189}
1190
1191static inline bool htlb_allow_alloc_fallback(int reason)
1192{
1193 return false;
1194}
1195
1196static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1197 struct mm_struct *mm, pte_t *pte)
1198{
1199 return &mm->page_table_lock;
1200}
1201
1202static inline void hugetlb_count_init(struct mm_struct *mm)
1203{
1204}
1205
1206static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1207{
1208}
1209
1210static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1211{
1212}
1213
1214static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1215 unsigned long addr, pte_t *ptep)
1216{
1217#ifdef CONFIG_MMU
1218 return ptep_get(ptep);
1219#else
1220 return *ptep;
1221#endif
1222}
1223
1224static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1225 pte_t *ptep, pte_t pte, unsigned long sz)
1226{
1227}
1228
1229static inline void hugetlb_register_node(struct node *node)
1230{
1231}
1232
1233static inline void hugetlb_unregister_node(struct node *node)
1234{
1235}
1236
1237static inline bool hugetlbfs_pagecache_present(
1238 struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1239{
1240 return false;
1241}
1242#endif /* CONFIG_HUGETLB_PAGE */
1243
1244static inline spinlock_t *huge_pte_lock(struct hstate *h,
1245 struct mm_struct *mm, pte_t *pte)
1246{
1247 spinlock_t *ptl;
1248
1249 ptl = huge_pte_lockptr(h, mm, pte);
1250 spin_lock(ptl);
1251 return ptl;
1252}
1253
1254#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1255extern void __init hugetlb_cma_reserve(int order);
1256#else
1257static inline __init void hugetlb_cma_reserve(int order)
1258{
1259}
1260#endif
1261
1262#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
1263static inline bool hugetlb_pmd_shared(pte_t *pte)
1264{
1265 return page_count(virt_to_page(pte)) > 1;
1266}
1267#else
1268static inline bool hugetlb_pmd_shared(pte_t *pte)
1269{
1270 return false;
1271}
1272#endif
1273
1274bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1275
1276#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1277/*
1278 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1279 * implement this.
1280 */
1281#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1282#endif
1283
1284static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1285{
1286 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1287}
1288
1289bool __vma_private_lock(struct vm_area_struct *vma);
1290
1291/*
1292 * Safe version of huge_pte_offset() to check the locks. See comments
1293 * above huge_pte_offset().
1294 */
1295static inline pte_t *
1296hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1297{
1298#if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1300
1301 /*
1302 * If pmd sharing possible, locking needed to safely walk the
1303 * hugetlb pgtables. More information can be found at the comment
1304 * above huge_pte_offset() in the same file.
1305 *
1306 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1307 */
1308 if (__vma_shareable_lock(vma))
1309 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1310 !lockdep_is_held(
1311 &vma->vm_file->f_mapping->i_mmap_rwsem));
1312#endif
1313 return huge_pte_offset(vma->vm_mm, addr, sz);
1314}
1315
1316#endif /* _LINUX_HUGETLB_H */