1/* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34#include <linux/cpu.h> 35#include <linux/irq.h> 36#include <linux/module.h> 37#include <linux/percpu.h> 38#include <linux/hrtimer.h> 39#include <linux/notifier.h> 40#include <linux/syscalls.h> 41#include <linux/kallsyms.h> 42#include <linux/interrupt.h> 43#include <linux/tick.h> 44#include <linux/seq_file.h> 45#include <linux/err.h> 46 47#include <asm/uaccess.h> 48 49/** 50 * ktime_get - get the monotonic time in ktime_t format 51 * 52 * returns the time in ktime_t format 53 */ 54ktime_t ktime_get(void) 55{ 56 struct timespec now; 57 58 ktime_get_ts(&now); 59 60 return timespec_to_ktime(now); 61} 62EXPORT_SYMBOL_GPL(ktime_get); 63 64/** 65 * ktime_get_real - get the real (wall-) time in ktime_t format 66 * 67 * returns the time in ktime_t format 68 */ 69ktime_t ktime_get_real(void) 70{ 71 struct timespec now; 72 73 getnstimeofday(&now); 74 75 return timespec_to_ktime(now); 76} 77 78EXPORT_SYMBOL_GPL(ktime_get_real); 79 80/* 81 * The timer bases: 82 * 83 * Note: If we want to add new timer bases, we have to skip the two 84 * clock ids captured by the cpu-timers. We do this by holding empty 85 * entries rather than doing math adjustment of the clock ids. 86 * This ensures that we capture erroneous accesses to these clock ids 87 * rather than moving them into the range of valid clock id's. 88 */ 89DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 90{ 91 92 .clock_base = 93 { 94 { 95 .index = CLOCK_REALTIME, 96 .get_time = &ktime_get_real, 97 .resolution = KTIME_LOW_RES, 98 }, 99 { 100 .index = CLOCK_MONOTONIC, 101 .get_time = &ktime_get, 102 .resolution = KTIME_LOW_RES, 103 }, 104 } 105}; 106 107/** 108 * ktime_get_ts - get the monotonic clock in timespec format 109 * @ts: pointer to timespec variable 110 * 111 * The function calculates the monotonic clock from the realtime 112 * clock and the wall_to_monotonic offset and stores the result 113 * in normalized timespec format in the variable pointed to by @ts. 114 */ 115void ktime_get_ts(struct timespec *ts) 116{ 117 struct timespec tomono; 118 unsigned long seq; 119 120 do { 121 seq = read_seqbegin(&xtime_lock); 122 getnstimeofday(ts); 123 tomono = wall_to_monotonic; 124 125 } while (read_seqretry(&xtime_lock, seq)); 126 127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, 128 ts->tv_nsec + tomono.tv_nsec); 129} 130EXPORT_SYMBOL_GPL(ktime_get_ts); 131 132/* 133 * Get the coarse grained time at the softirq based on xtime and 134 * wall_to_monotonic. 135 */ 136static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) 137{ 138 ktime_t xtim, tomono; 139 struct timespec xts, tom; 140 unsigned long seq; 141 142 do { 143 seq = read_seqbegin(&xtime_lock); 144 xts = current_kernel_time(); 145 tom = wall_to_monotonic; 146 } while (read_seqretry(&xtime_lock, seq)); 147 148 xtim = timespec_to_ktime(xts); 149 tomono = timespec_to_ktime(tom); 150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim; 151 base->clock_base[CLOCK_MONOTONIC].softirq_time = 152 ktime_add(xtim, tomono); 153} 154 155/* 156 * Helper function to check, whether the timer is running the callback 157 * function 158 */ 159static inline int hrtimer_callback_running(struct hrtimer *timer) 160{ 161 return timer->state & HRTIMER_STATE_CALLBACK; 162} 163 164/* 165 * Functions and macros which are different for UP/SMP systems are kept in a 166 * single place 167 */ 168#ifdef CONFIG_SMP 169 170/* 171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 172 * means that all timers which are tied to this base via timer->base are 173 * locked, and the base itself is locked too. 174 * 175 * So __run_timers/migrate_timers can safely modify all timers which could 176 * be found on the lists/queues. 177 * 178 * When the timer's base is locked, and the timer removed from list, it is 179 * possible to set timer->base = NULL and drop the lock: the timer remains 180 * locked. 181 */ 182static 183struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 184 unsigned long *flags) 185{ 186 struct hrtimer_clock_base *base; 187 188 for (;;) { 189 base = timer->base; 190 if (likely(base != NULL)) { 191 spin_lock_irqsave(&base->cpu_base->lock, *flags); 192 if (likely(base == timer->base)) 193 return base; 194 /* The timer has migrated to another CPU: */ 195 spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 196 } 197 cpu_relax(); 198 } 199} 200 201/* 202 * Switch the timer base to the current CPU when possible. 203 */ 204static inline struct hrtimer_clock_base * 205switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base) 206{ 207 struct hrtimer_clock_base *new_base; 208 struct hrtimer_cpu_base *new_cpu_base; 209 210 new_cpu_base = &__get_cpu_var(hrtimer_bases); 211 new_base = &new_cpu_base->clock_base[base->index]; 212 213 if (base != new_base) { 214 /* 215 * We are trying to schedule the timer on the local CPU. 216 * However we can't change timer's base while it is running, 217 * so we keep it on the same CPU. No hassle vs. reprogramming 218 * the event source in the high resolution case. The softirq 219 * code will take care of this when the timer function has 220 * completed. There is no conflict as we hold the lock until 221 * the timer is enqueued. 222 */ 223 if (unlikely(hrtimer_callback_running(timer))) 224 return base; 225 226 /* See the comment in lock_timer_base() */ 227 timer->base = NULL; 228 spin_unlock(&base->cpu_base->lock); 229 spin_lock(&new_base->cpu_base->lock); 230 timer->base = new_base; 231 } 232 return new_base; 233} 234 235#else /* CONFIG_SMP */ 236 237static inline struct hrtimer_clock_base * 238lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 239{ 240 struct hrtimer_clock_base *base = timer->base; 241 242 spin_lock_irqsave(&base->cpu_base->lock, *flags); 243 244 return base; 245} 246 247# define switch_hrtimer_base(t, b) (b) 248 249#endif /* !CONFIG_SMP */ 250 251/* 252 * Functions for the union type storage format of ktime_t which are 253 * too large for inlining: 254 */ 255#if BITS_PER_LONG < 64 256# ifndef CONFIG_KTIME_SCALAR 257/** 258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable 259 * @kt: addend 260 * @nsec: the scalar nsec value to add 261 * 262 * Returns the sum of kt and nsec in ktime_t format 263 */ 264ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) 265{ 266 ktime_t tmp; 267 268 if (likely(nsec < NSEC_PER_SEC)) { 269 tmp.tv64 = nsec; 270 } else { 271 unsigned long rem = do_div(nsec, NSEC_PER_SEC); 272 273 tmp = ktime_set((long)nsec, rem); 274 } 275 276 return ktime_add(kt, tmp); 277} 278 279EXPORT_SYMBOL_GPL(ktime_add_ns); 280# endif /* !CONFIG_KTIME_SCALAR */ 281 282/* 283 * Divide a ktime value by a nanosecond value 284 */ 285unsigned long ktime_divns(const ktime_t kt, s64 div) 286{ 287 u64 dclc, inc, dns; 288 int sft = 0; 289 290 dclc = dns = ktime_to_ns(kt); 291 inc = div; 292 /* Make sure the divisor is less than 2^32: */ 293 while (div >> 32) { 294 sft++; 295 div >>= 1; 296 } 297 dclc >>= sft; 298 do_div(dclc, (unsigned long) div); 299 300 return (unsigned long) dclc; 301} 302#endif /* BITS_PER_LONG >= 64 */ 303 304/* High resolution timer related functions */ 305#ifdef CONFIG_HIGH_RES_TIMERS 306 307/* 308 * High resolution timer enabled ? 309 */ 310static int hrtimer_hres_enabled __read_mostly = 1; 311 312/* 313 * Enable / Disable high resolution mode 314 */ 315static int __init setup_hrtimer_hres(char *str) 316{ 317 if (!strcmp(str, "off")) 318 hrtimer_hres_enabled = 0; 319 else if (!strcmp(str, "on")) 320 hrtimer_hres_enabled = 1; 321 else 322 return 0; 323 return 1; 324} 325 326__setup("highres=", setup_hrtimer_hres); 327 328/* 329 * hrtimer_high_res_enabled - query, if the highres mode is enabled 330 */ 331static inline int hrtimer_is_hres_enabled(void) 332{ 333 return hrtimer_hres_enabled; 334} 335 336/* 337 * Is the high resolution mode active ? 338 */ 339static inline int hrtimer_hres_active(void) 340{ 341 return __get_cpu_var(hrtimer_bases).hres_active; 342} 343 344/* 345 * Reprogram the event source with checking both queues for the 346 * next event 347 * Called with interrupts disabled and base->lock held 348 */ 349static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) 350{ 351 int i; 352 struct hrtimer_clock_base *base = cpu_base->clock_base; 353 ktime_t expires; 354 355 cpu_base->expires_next.tv64 = KTIME_MAX; 356 357 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 358 struct hrtimer *timer; 359 360 if (!base->first) 361 continue; 362 timer = rb_entry(base->first, struct hrtimer, node); 363 expires = ktime_sub(timer->expires, base->offset); 364 if (expires.tv64 < cpu_base->expires_next.tv64) 365 cpu_base->expires_next = expires; 366 } 367 368 if (cpu_base->expires_next.tv64 != KTIME_MAX) 369 tick_program_event(cpu_base->expires_next, 1); 370} 371 372/* 373 * Shared reprogramming for clock_realtime and clock_monotonic 374 * 375 * When a timer is enqueued and expires earlier than the already enqueued 376 * timers, we have to check, whether it expires earlier than the timer for 377 * which the clock event device was armed. 378 * 379 * Called with interrupts disabled and base->cpu_base.lock held 380 */ 381static int hrtimer_reprogram(struct hrtimer *timer, 382 struct hrtimer_clock_base *base) 383{ 384 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next; 385 ktime_t expires = ktime_sub(timer->expires, base->offset); 386 int res; 387 388 /* 389 * When the callback is running, we do not reprogram the clock event 390 * device. The timer callback is either running on a different CPU or 391 * the callback is executed in the hrtimer_interupt context. The 392 * reprogramming is handled either by the softirq, which called the 393 * callback or at the end of the hrtimer_interrupt. 394 */ 395 if (hrtimer_callback_running(timer)) 396 return 0; 397 398 if (expires.tv64 >= expires_next->tv64) 399 return 0; 400 401 /* 402 * Clockevents returns -ETIME, when the event was in the past. 403 */ 404 res = tick_program_event(expires, 0); 405 if (!IS_ERR_VALUE(res)) 406 *expires_next = expires; 407 return res; 408} 409 410 411/* 412 * Retrigger next event is called after clock was set 413 * 414 * Called with interrupts disabled via on_each_cpu() 415 */ 416static void retrigger_next_event(void *arg) 417{ 418 struct hrtimer_cpu_base *base; 419 struct timespec realtime_offset; 420 unsigned long seq; 421 422 if (!hrtimer_hres_active()) 423 return; 424 425 do { 426 seq = read_seqbegin(&xtime_lock); 427 set_normalized_timespec(&realtime_offset, 428 -wall_to_monotonic.tv_sec, 429 -wall_to_monotonic.tv_nsec); 430 } while (read_seqretry(&xtime_lock, seq)); 431 432 base = &__get_cpu_var(hrtimer_bases); 433 434 /* Adjust CLOCK_REALTIME offset */ 435 spin_lock(&base->lock); 436 base->clock_base[CLOCK_REALTIME].offset = 437 timespec_to_ktime(realtime_offset); 438 439 hrtimer_force_reprogram(base); 440 spin_unlock(&base->lock); 441} 442 443/* 444 * Clock realtime was set 445 * 446 * Change the offset of the realtime clock vs. the monotonic 447 * clock. 448 * 449 * We might have to reprogram the high resolution timer interrupt. On 450 * SMP we call the architecture specific code to retrigger _all_ high 451 * resolution timer interrupts. On UP we just disable interrupts and 452 * call the high resolution interrupt code. 453 */ 454void clock_was_set(void) 455{ 456 /* Retrigger the CPU local events everywhere */ 457 on_each_cpu(retrigger_next_event, NULL, 0, 1); 458} 459 460/* 461 * During resume we might have to reprogram the high resolution timer 462 * interrupt (on the local CPU): 463 */ 464void hres_timers_resume(void) 465{ 466 WARN_ON_ONCE(num_online_cpus() > 1); 467 468 /* Retrigger the CPU local events: */ 469 retrigger_next_event(NULL); 470} 471 472/* 473 * Check, whether the timer is on the callback pending list 474 */ 475static inline int hrtimer_cb_pending(const struct hrtimer *timer) 476{ 477 return timer->state & HRTIMER_STATE_PENDING; 478} 479 480/* 481 * Remove a timer from the callback pending list 482 */ 483static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) 484{ 485 list_del_init(&timer->cb_entry); 486} 487 488/* 489 * Initialize the high resolution related parts of cpu_base 490 */ 491static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 492{ 493 base->expires_next.tv64 = KTIME_MAX; 494 base->hres_active = 0; 495 INIT_LIST_HEAD(&base->cb_pending); 496} 497 498/* 499 * Initialize the high resolution related parts of a hrtimer 500 */ 501static inline void hrtimer_init_timer_hres(struct hrtimer *timer) 502{ 503 INIT_LIST_HEAD(&timer->cb_entry); 504} 505 506/* 507 * When High resolution timers are active, try to reprogram. Note, that in case 508 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry 509 * check happens. The timer gets enqueued into the rbtree. The reprogramming 510 * and expiry check is done in the hrtimer_interrupt or in the softirq. 511 */ 512static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, 513 struct hrtimer_clock_base *base) 514{ 515 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { 516 517 /* Timer is expired, act upon the callback mode */ 518 switch(timer->cb_mode) { 519 case HRTIMER_CB_IRQSAFE_NO_RESTART: 520 /* 521 * We can call the callback from here. No restart 522 * happens, so no danger of recursion 523 */ 524 BUG_ON(timer->function(timer) != HRTIMER_NORESTART); 525 return 1; 526 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ: 527 /* 528 * This is solely for the sched tick emulation with 529 * dynamic tick support to ensure that we do not 530 * restart the tick right on the edge and end up with 531 * the tick timer in the softirq ! The calling site 532 * takes care of this. 533 */ 534 return 1; 535 case HRTIMER_CB_IRQSAFE: 536 case HRTIMER_CB_SOFTIRQ: 537 /* 538 * Move everything else into the softirq pending list ! 539 */ 540 list_add_tail(&timer->cb_entry, 541 &base->cpu_base->cb_pending); 542 timer->state = HRTIMER_STATE_PENDING; 543 raise_softirq(HRTIMER_SOFTIRQ); 544 return 1; 545 default: 546 BUG(); 547 } 548 } 549 return 0; 550} 551 552/* 553 * Switch to high resolution mode 554 */ 555static int hrtimer_switch_to_hres(void) 556{ 557 int cpu = smp_processor_id(); 558 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); 559 unsigned long flags; 560 561 if (base->hres_active) 562 return 1; 563 564 local_irq_save(flags); 565 566 if (tick_init_highres()) { 567 local_irq_restore(flags); 568 printk(KERN_WARNING "Could not switch to high resolution " 569 "mode on CPU %d\n", cpu); 570 return 0; 571 } 572 base->hres_active = 1; 573 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; 574 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; 575 576 tick_setup_sched_timer(); 577 578 /* "Retrigger" the interrupt to get things going */ 579 retrigger_next_event(NULL); 580 local_irq_restore(flags); 581 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n", 582 smp_processor_id()); 583 return 1; 584} 585 586#else 587 588static inline int hrtimer_hres_active(void) { return 0; } 589static inline int hrtimer_is_hres_enabled(void) { return 0; } 590static inline int hrtimer_switch_to_hres(void) { return 0; } 591static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } 592static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, 593 struct hrtimer_clock_base *base) 594{ 595 return 0; 596} 597static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; } 598static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { } 599static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 600static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } 601 602#endif /* CONFIG_HIGH_RES_TIMERS */ 603 604#ifdef CONFIG_TIMER_STATS 605void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr) 606{ 607 if (timer->start_site) 608 return; 609 610 timer->start_site = addr; 611 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 612 timer->start_pid = current->pid; 613} 614#endif 615 616/* 617 * Counterpart to lock_timer_base above: 618 */ 619static inline 620void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 621{ 622 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 623} 624 625/** 626 * hrtimer_forward - forward the timer expiry 627 * @timer: hrtimer to forward 628 * @now: forward past this time 629 * @interval: the interval to forward 630 * 631 * Forward the timer expiry so it will expire in the future. 632 * Returns the number of overruns. 633 */ 634unsigned long 635hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 636{ 637 unsigned long orun = 1; 638 ktime_t delta; 639 640 delta = ktime_sub(now, timer->expires); 641 642 if (delta.tv64 < 0) 643 return 0; 644 645 if (interval.tv64 < timer->base->resolution.tv64) 646 interval.tv64 = timer->base->resolution.tv64; 647 648 if (unlikely(delta.tv64 >= interval.tv64)) { 649 s64 incr = ktime_to_ns(interval); 650 651 orun = ktime_divns(delta, incr); 652 timer->expires = ktime_add_ns(timer->expires, incr * orun); 653 if (timer->expires.tv64 > now.tv64) 654 return orun; 655 /* 656 * This (and the ktime_add() below) is the 657 * correction for exact: 658 */ 659 orun++; 660 } 661 timer->expires = ktime_add(timer->expires, interval); 662 /* 663 * Make sure, that the result did not wrap with a very large 664 * interval. 665 */ 666 if (timer->expires.tv64 < 0) 667 timer->expires = ktime_set(KTIME_SEC_MAX, 0); 668 669 return orun; 670} 671EXPORT_SYMBOL_GPL(hrtimer_forward); 672 673/* 674 * enqueue_hrtimer - internal function to (re)start a timer 675 * 676 * The timer is inserted in expiry order. Insertion into the 677 * red black tree is O(log(n)). Must hold the base lock. 678 */ 679static void enqueue_hrtimer(struct hrtimer *timer, 680 struct hrtimer_clock_base *base, int reprogram) 681{ 682 struct rb_node **link = &base->active.rb_node; 683 struct rb_node *parent = NULL; 684 struct hrtimer *entry; 685 int leftmost = 1; 686 687 /* 688 * Find the right place in the rbtree: 689 */ 690 while (*link) { 691 parent = *link; 692 entry = rb_entry(parent, struct hrtimer, node); 693 /* 694 * We dont care about collisions. Nodes with 695 * the same expiry time stay together. 696 */ 697 if (timer->expires.tv64 < entry->expires.tv64) { 698 link = &(*link)->rb_left; 699 } else { 700 link = &(*link)->rb_right; 701 leftmost = 0; 702 } 703 } 704 705 /* 706 * Insert the timer to the rbtree and check whether it 707 * replaces the first pending timer 708 */ 709 if (leftmost) { 710 /* 711 * Reprogram the clock event device. When the timer is already 712 * expired hrtimer_enqueue_reprogram has either called the 713 * callback or added it to the pending list and raised the 714 * softirq. 715 * 716 * This is a NOP for !HIGHRES 717 */ 718 if (reprogram && hrtimer_enqueue_reprogram(timer, base)) 719 return; 720 721 base->first = &timer->node; 722 } 723 724 rb_link_node(&timer->node, parent, link); 725 rb_insert_color(&timer->node, &base->active); 726 /* 727 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the 728 * state of a possibly running callback. 729 */ 730 timer->state |= HRTIMER_STATE_ENQUEUED; 731} 732 733/* 734 * __remove_hrtimer - internal function to remove a timer 735 * 736 * Caller must hold the base lock. 737 * 738 * High resolution timer mode reprograms the clock event device when the 739 * timer is the one which expires next. The caller can disable this by setting 740 * reprogram to zero. This is useful, when the context does a reprogramming 741 * anyway (e.g. timer interrupt) 742 */ 743static void __remove_hrtimer(struct hrtimer *timer, 744 struct hrtimer_clock_base *base, 745 unsigned long newstate, int reprogram) 746{ 747 /* High res. callback list. NOP for !HIGHRES */ 748 if (hrtimer_cb_pending(timer)) 749 hrtimer_remove_cb_pending(timer); 750 else { 751 /* 752 * Remove the timer from the rbtree and replace the 753 * first entry pointer if necessary. 754 */ 755 if (base->first == &timer->node) { 756 base->first = rb_next(&timer->node); 757 /* Reprogram the clock event device. if enabled */ 758 if (reprogram && hrtimer_hres_active()) 759 hrtimer_force_reprogram(base->cpu_base); 760 } 761 rb_erase(&timer->node, &base->active); 762 } 763 timer->state = newstate; 764} 765 766/* 767 * remove hrtimer, called with base lock held 768 */ 769static inline int 770remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) 771{ 772 if (hrtimer_is_queued(timer)) { 773 int reprogram; 774 775 /* 776 * Remove the timer and force reprogramming when high 777 * resolution mode is active and the timer is on the current 778 * CPU. If we remove a timer on another CPU, reprogramming is 779 * skipped. The interrupt event on this CPU is fired and 780 * reprogramming happens in the interrupt handler. This is a 781 * rare case and less expensive than a smp call. 782 */ 783 timer_stats_hrtimer_clear_start_info(timer); 784 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); 785 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 786 reprogram); 787 return 1; 788 } 789 return 0; 790} 791 792/** 793 * hrtimer_start - (re)start an relative timer on the current CPU 794 * @timer: the timer to be added 795 * @tim: expiry time 796 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) 797 * 798 * Returns: 799 * 0 on success 800 * 1 when the timer was active 801 */ 802int 803hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) 804{ 805 struct hrtimer_clock_base *base, *new_base; 806 unsigned long flags; 807 int ret; 808 809 base = lock_hrtimer_base(timer, &flags); 810 811 /* Remove an active timer from the queue: */ 812 ret = remove_hrtimer(timer, base); 813 814 /* Switch the timer base, if necessary: */ 815 new_base = switch_hrtimer_base(timer, base); 816 817 if (mode == HRTIMER_MODE_REL) { 818 tim = ktime_add(tim, new_base->get_time()); 819 /* 820 * CONFIG_TIME_LOW_RES is a temporary way for architectures 821 * to signal that they simply return xtime in 822 * do_gettimeoffset(). In this case we want to round up by 823 * resolution when starting a relative timer, to avoid short 824 * timeouts. This will go away with the GTOD framework. 825 */ 826#ifdef CONFIG_TIME_LOW_RES 827 tim = ktime_add(tim, base->resolution); 828#endif 829 } 830 timer->expires = tim; 831 832 timer_stats_hrtimer_set_start_info(timer); 833 834 /* 835 * Only allow reprogramming if the new base is on this CPU. 836 * (it might still be on another CPU if the timer was pending) 837 */ 838 enqueue_hrtimer(timer, new_base, 839 new_base->cpu_base == &__get_cpu_var(hrtimer_bases)); 840 841 unlock_hrtimer_base(timer, &flags); 842 843 return ret; 844} 845EXPORT_SYMBOL_GPL(hrtimer_start); 846 847/** 848 * hrtimer_try_to_cancel - try to deactivate a timer 849 * @timer: hrtimer to stop 850 * 851 * Returns: 852 * 0 when the timer was not active 853 * 1 when the timer was active 854 * -1 when the timer is currently excuting the callback function and 855 * cannot be stopped 856 */ 857int hrtimer_try_to_cancel(struct hrtimer *timer) 858{ 859 struct hrtimer_clock_base *base; 860 unsigned long flags; 861 int ret = -1; 862 863 base = lock_hrtimer_base(timer, &flags); 864 865 if (!hrtimer_callback_running(timer)) 866 ret = remove_hrtimer(timer, base); 867 868 unlock_hrtimer_base(timer, &flags); 869 870 return ret; 871 872} 873EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 874 875/** 876 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 877 * @timer: the timer to be cancelled 878 * 879 * Returns: 880 * 0 when the timer was not active 881 * 1 when the timer was active 882 */ 883int hrtimer_cancel(struct hrtimer *timer) 884{ 885 for (;;) { 886 int ret = hrtimer_try_to_cancel(timer); 887 888 if (ret >= 0) 889 return ret; 890 cpu_relax(); 891 } 892} 893EXPORT_SYMBOL_GPL(hrtimer_cancel); 894 895/** 896 * hrtimer_get_remaining - get remaining time for the timer 897 * @timer: the timer to read 898 */ 899ktime_t hrtimer_get_remaining(const struct hrtimer *timer) 900{ 901 struct hrtimer_clock_base *base; 902 unsigned long flags; 903 ktime_t rem; 904 905 base = lock_hrtimer_base(timer, &flags); 906 rem = ktime_sub(timer->expires, base->get_time()); 907 unlock_hrtimer_base(timer, &flags); 908 909 return rem; 910} 911EXPORT_SYMBOL_GPL(hrtimer_get_remaining); 912 913#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ) 914/** 915 * hrtimer_get_next_event - get the time until next expiry event 916 * 917 * Returns the delta to the next expiry event or KTIME_MAX if no timer 918 * is pending. 919 */ 920ktime_t hrtimer_get_next_event(void) 921{ 922 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 923 struct hrtimer_clock_base *base = cpu_base->clock_base; 924 ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; 925 unsigned long flags; 926 int i; 927 928 spin_lock_irqsave(&cpu_base->lock, flags); 929 930 if (!hrtimer_hres_active()) { 931 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 932 struct hrtimer *timer; 933 934 if (!base->first) 935 continue; 936 937 timer = rb_entry(base->first, struct hrtimer, node); 938 delta.tv64 = timer->expires.tv64; 939 delta = ktime_sub(delta, base->get_time()); 940 if (delta.tv64 < mindelta.tv64) 941 mindelta.tv64 = delta.tv64; 942 } 943 } 944 945 spin_unlock_irqrestore(&cpu_base->lock, flags); 946 947 if (mindelta.tv64 < 0) 948 mindelta.tv64 = 0; 949 return mindelta; 950} 951#endif 952 953/** 954 * hrtimer_init - initialize a timer to the given clock 955 * @timer: the timer to be initialized 956 * @clock_id: the clock to be used 957 * @mode: timer mode abs/rel 958 */ 959void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 960 enum hrtimer_mode mode) 961{ 962 struct hrtimer_cpu_base *cpu_base; 963 964 memset(timer, 0, sizeof(struct hrtimer)); 965 966 cpu_base = &__raw_get_cpu_var(hrtimer_bases); 967 968 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 969 clock_id = CLOCK_MONOTONIC; 970 971 timer->base = &cpu_base->clock_base[clock_id]; 972 hrtimer_init_timer_hres(timer); 973 974#ifdef CONFIG_TIMER_STATS 975 timer->start_site = NULL; 976 timer->start_pid = -1; 977 memset(timer->start_comm, 0, TASK_COMM_LEN); 978#endif 979} 980EXPORT_SYMBOL_GPL(hrtimer_init); 981 982/** 983 * hrtimer_get_res - get the timer resolution for a clock 984 * @which_clock: which clock to query 985 * @tp: pointer to timespec variable to store the resolution 986 * 987 * Store the resolution of the clock selected by @which_clock in the 988 * variable pointed to by @tp. 989 */ 990int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) 991{ 992 struct hrtimer_cpu_base *cpu_base; 993 994 cpu_base = &__raw_get_cpu_var(hrtimer_bases); 995 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution); 996 997 return 0; 998} 999EXPORT_SYMBOL_GPL(hrtimer_get_res); 1000 1001#ifdef CONFIG_HIGH_RES_TIMERS 1002 1003/* 1004 * High resolution timer interrupt 1005 * Called with interrupts disabled 1006 */ 1007void hrtimer_interrupt(struct clock_event_device *dev) 1008{ 1009 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1010 struct hrtimer_clock_base *base; 1011 ktime_t expires_next, now; 1012 int i, raise = 0; 1013 1014 BUG_ON(!cpu_base->hres_active); 1015 cpu_base->nr_events++; 1016 dev->next_event.tv64 = KTIME_MAX; 1017 1018 retry: 1019 now = ktime_get(); 1020 1021 expires_next.tv64 = KTIME_MAX; 1022 1023 base = cpu_base->clock_base; 1024 1025 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1026 ktime_t basenow; 1027 struct rb_node *node; 1028 1029 spin_lock(&cpu_base->lock); 1030 1031 basenow = ktime_add(now, base->offset); 1032 1033 while ((node = base->first)) { 1034 struct hrtimer *timer; 1035 1036 timer = rb_entry(node, struct hrtimer, node); 1037 1038 if (basenow.tv64 < timer->expires.tv64) { 1039 ktime_t expires; 1040 1041 expires = ktime_sub(timer->expires, 1042 base->offset); 1043 if (expires.tv64 < expires_next.tv64) 1044 expires_next = expires; 1045 break; 1046 } 1047 1048 /* Move softirq callbacks to the pending list */ 1049 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) { 1050 __remove_hrtimer(timer, base, 1051 HRTIMER_STATE_PENDING, 0); 1052 list_add_tail(&timer->cb_entry, 1053 &base->cpu_base->cb_pending); 1054 raise = 1; 1055 continue; 1056 } 1057 1058 __remove_hrtimer(timer, base, 1059 HRTIMER_STATE_CALLBACK, 0); 1060 timer_stats_account_hrtimer(timer); 1061 1062 /* 1063 * Note: We clear the CALLBACK bit after 1064 * enqueue_hrtimer to avoid reprogramming of 1065 * the event hardware. This happens at the end 1066 * of this function anyway. 1067 */ 1068 if (timer->function(timer) != HRTIMER_NORESTART) { 1069 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 1070 enqueue_hrtimer(timer, base, 0); 1071 } 1072 timer->state &= ~HRTIMER_STATE_CALLBACK; 1073 } 1074 spin_unlock(&cpu_base->lock); 1075 base++; 1076 } 1077 1078 cpu_base->expires_next = expires_next; 1079 1080 /* Reprogramming necessary ? */ 1081 if (expires_next.tv64 != KTIME_MAX) { 1082 if (tick_program_event(expires_next, 0)) 1083 goto retry; 1084 } 1085 1086 /* Raise softirq ? */ 1087 if (raise) 1088 raise_softirq(HRTIMER_SOFTIRQ); 1089} 1090 1091static void run_hrtimer_softirq(struct softirq_action *h) 1092{ 1093 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1094 1095 spin_lock_irq(&cpu_base->lock); 1096 1097 while (!list_empty(&cpu_base->cb_pending)) { 1098 enum hrtimer_restart (*fn)(struct hrtimer *); 1099 struct hrtimer *timer; 1100 int restart; 1101 1102 timer = list_entry(cpu_base->cb_pending.next, 1103 struct hrtimer, cb_entry); 1104 1105 timer_stats_account_hrtimer(timer); 1106 1107 fn = timer->function; 1108 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0); 1109 spin_unlock_irq(&cpu_base->lock); 1110 1111 restart = fn(timer); 1112 1113 spin_lock_irq(&cpu_base->lock); 1114 1115 timer->state &= ~HRTIMER_STATE_CALLBACK; 1116 if (restart == HRTIMER_RESTART) { 1117 BUG_ON(hrtimer_active(timer)); 1118 /* 1119 * Enqueue the timer, allow reprogramming of the event 1120 * device 1121 */ 1122 enqueue_hrtimer(timer, timer->base, 1); 1123 } else if (hrtimer_active(timer)) { 1124 /* 1125 * If the timer was rearmed on another CPU, reprogram 1126 * the event device. 1127 */ 1128 if (timer->base->first == &timer->node) 1129 hrtimer_reprogram(timer, timer->base); 1130 } 1131 } 1132 spin_unlock_irq(&cpu_base->lock); 1133} 1134 1135#endif /* CONFIG_HIGH_RES_TIMERS */ 1136 1137/* 1138 * Expire the per base hrtimer-queue: 1139 */ 1140static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base, 1141 int index) 1142{ 1143 struct rb_node *node; 1144 struct hrtimer_clock_base *base = &cpu_base->clock_base[index]; 1145 1146 if (!base->first) 1147 return; 1148 1149 if (base->get_softirq_time) 1150 base->softirq_time = base->get_softirq_time(); 1151 1152 spin_lock_irq(&cpu_base->lock); 1153 1154 while ((node = base->first)) { 1155 struct hrtimer *timer; 1156 enum hrtimer_restart (*fn)(struct hrtimer *); 1157 int restart; 1158 1159 timer = rb_entry(node, struct hrtimer, node); 1160 if (base->softirq_time.tv64 <= timer->expires.tv64) 1161 break; 1162 1163#ifdef CONFIG_HIGH_RES_TIMERS 1164 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ); 1165#endif 1166 timer_stats_account_hrtimer(timer); 1167 1168 fn = timer->function; 1169 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); 1170 spin_unlock_irq(&cpu_base->lock); 1171 1172 restart = fn(timer); 1173 1174 spin_lock_irq(&cpu_base->lock); 1175 1176 timer->state &= ~HRTIMER_STATE_CALLBACK; 1177 if (restart != HRTIMER_NORESTART) { 1178 BUG_ON(hrtimer_active(timer)); 1179 enqueue_hrtimer(timer, base, 0); 1180 } 1181 } 1182 spin_unlock_irq(&cpu_base->lock); 1183} 1184 1185/* 1186 * Called from timer softirq every jiffy, expire hrtimers: 1187 * 1188 * For HRT its the fall back code to run the softirq in the timer 1189 * softirq context in case the hrtimer initialization failed or has 1190 * not been done yet. 1191 */ 1192void hrtimer_run_queues(void) 1193{ 1194 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1195 int i; 1196 1197 if (hrtimer_hres_active()) 1198 return; 1199 1200 /* 1201 * This _is_ ugly: We have to check in the softirq context, 1202 * whether we can switch to highres and / or nohz mode. The 1203 * clocksource switch happens in the timer interrupt with 1204 * xtime_lock held. Notification from there only sets the 1205 * check bit in the tick_oneshot code, otherwise we might 1206 * deadlock vs. xtime_lock. 1207 */ 1208 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) 1209 if (hrtimer_switch_to_hres()) 1210 return; 1211 1212 hrtimer_get_softirq_time(cpu_base); 1213 1214 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) 1215 run_hrtimer_queue(cpu_base, i); 1216} 1217 1218/* 1219 * Sleep related functions: 1220 */ 1221static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1222{ 1223 struct hrtimer_sleeper *t = 1224 container_of(timer, struct hrtimer_sleeper, timer); 1225 struct task_struct *task = t->task; 1226 1227 t->task = NULL; 1228 if (task) 1229 wake_up_process(task); 1230 1231 return HRTIMER_NORESTART; 1232} 1233 1234void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1235{ 1236 sl->timer.function = hrtimer_wakeup; 1237 sl->task = task; 1238#ifdef CONFIG_HIGH_RES_TIMERS 1239 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART; 1240#endif 1241} 1242 1243static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1244{ 1245 hrtimer_init_sleeper(t, current); 1246 1247 do { 1248 set_current_state(TASK_INTERRUPTIBLE); 1249 hrtimer_start(&t->timer, t->timer.expires, mode); 1250 1251 if (likely(t->task)) 1252 schedule(); 1253 1254 hrtimer_cancel(&t->timer); 1255 mode = HRTIMER_MODE_ABS; 1256 1257 } while (t->task && !signal_pending(current)); 1258 1259 return t->task == NULL; 1260} 1261 1262long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1263{ 1264 struct hrtimer_sleeper t; 1265 struct timespec __user *rmtp; 1266 struct timespec tu; 1267 ktime_t time; 1268 1269 restart->fn = do_no_restart_syscall; 1270 1271 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS); 1272 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2; 1273 1274 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1275 return 0; 1276 1277 rmtp = (struct timespec __user *) restart->arg1; 1278 if (rmtp) { 1279 time = ktime_sub(t.timer.expires, t.timer.base->get_time()); 1280 if (time.tv64 <= 0) 1281 return 0; 1282 tu = ktime_to_timespec(time); 1283 if (copy_to_user(rmtp, &tu, sizeof(tu))) 1284 return -EFAULT; 1285 } 1286 1287 restart->fn = hrtimer_nanosleep_restart; 1288 1289 /* The other values in restart are already filled in */ 1290 return -ERESTART_RESTARTBLOCK; 1291} 1292 1293long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1294 const enum hrtimer_mode mode, const clockid_t clockid) 1295{ 1296 struct restart_block *restart; 1297 struct hrtimer_sleeper t; 1298 struct timespec tu; 1299 ktime_t rem; 1300 1301 hrtimer_init(&t.timer, clockid, mode); 1302 t.timer.expires = timespec_to_ktime(*rqtp); 1303 if (do_nanosleep(&t, mode)) 1304 return 0; 1305 1306 /* Absolute timers do not update the rmtp value and restart: */ 1307 if (mode == HRTIMER_MODE_ABS) 1308 return -ERESTARTNOHAND; 1309 1310 if (rmtp) { 1311 rem = ktime_sub(t.timer.expires, t.timer.base->get_time()); 1312 if (rem.tv64 <= 0) 1313 return 0; 1314 tu = ktime_to_timespec(rem); 1315 if (copy_to_user(rmtp, &tu, sizeof(tu))) 1316 return -EFAULT; 1317 } 1318 1319 restart = &current_thread_info()->restart_block; 1320 restart->fn = hrtimer_nanosleep_restart; 1321 restart->arg0 = (unsigned long) t.timer.base->index; 1322 restart->arg1 = (unsigned long) rmtp; 1323 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF; 1324 restart->arg3 = t.timer.expires.tv64 >> 32; 1325 1326 return -ERESTART_RESTARTBLOCK; 1327} 1328 1329asmlinkage long 1330sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) 1331{ 1332 struct timespec tu; 1333 1334 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1335 return -EFAULT; 1336 1337 if (!timespec_valid(&tu)) 1338 return -EINVAL; 1339 1340 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1341} 1342 1343/* 1344 * Functions related to boot-time initialization: 1345 */ 1346static void __devinit init_hrtimers_cpu(int cpu) 1347{ 1348 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1349 int i; 1350 1351 spin_lock_init(&cpu_base->lock); 1352 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key); 1353 1354 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) 1355 cpu_base->clock_base[i].cpu_base = cpu_base; 1356 1357 hrtimer_init_hres(cpu_base); 1358} 1359 1360#ifdef CONFIG_HOTPLUG_CPU 1361 1362static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1363 struct hrtimer_clock_base *new_base) 1364{ 1365 struct hrtimer *timer; 1366 struct rb_node *node; 1367 1368 while ((node = rb_first(&old_base->active))) { 1369 timer = rb_entry(node, struct hrtimer, node); 1370 BUG_ON(hrtimer_callback_running(timer)); 1371 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0); 1372 timer->base = new_base; 1373 /* 1374 * Enqueue the timer. Allow reprogramming of the event device 1375 */ 1376 enqueue_hrtimer(timer, new_base, 1); 1377 } 1378} 1379 1380static void migrate_hrtimers(int cpu) 1381{ 1382 struct hrtimer_cpu_base *old_base, *new_base; 1383 int i; 1384 1385 BUG_ON(cpu_online(cpu)); 1386 old_base = &per_cpu(hrtimer_bases, cpu); 1387 new_base = &get_cpu_var(hrtimer_bases); 1388 1389 tick_cancel_sched_timer(cpu); 1390 1391 local_irq_disable(); 1392 double_spin_lock(&new_base->lock, &old_base->lock, 1393 smp_processor_id() < cpu); 1394 1395 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1396 migrate_hrtimer_list(&old_base->clock_base[i], 1397 &new_base->clock_base[i]); 1398 } 1399 1400 double_spin_unlock(&new_base->lock, &old_base->lock, 1401 smp_processor_id() < cpu); 1402 local_irq_enable(); 1403 put_cpu_var(hrtimer_bases); 1404} 1405#endif /* CONFIG_HOTPLUG_CPU */ 1406 1407static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, 1408 unsigned long action, void *hcpu) 1409{ 1410 unsigned int cpu = (long)hcpu; 1411 1412 switch (action) { 1413 1414 case CPU_UP_PREPARE: 1415 case CPU_UP_PREPARE_FROZEN: 1416 init_hrtimers_cpu(cpu); 1417 break; 1418 1419#ifdef CONFIG_HOTPLUG_CPU 1420 case CPU_DEAD: 1421 case CPU_DEAD_FROZEN: 1422 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu); 1423 migrate_hrtimers(cpu); 1424 break; 1425#endif 1426 1427 default: 1428 break; 1429 } 1430 1431 return NOTIFY_OK; 1432} 1433 1434static struct notifier_block __cpuinitdata hrtimers_nb = { 1435 .notifier_call = hrtimer_cpu_notify, 1436}; 1437 1438void __init hrtimers_init(void) 1439{ 1440 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1441 (void *)(long)smp_processor_id()); 1442 register_cpu_notifier(&hrtimers_nb); 1443#ifdef CONFIG_HIGH_RES_TIMERS 1444 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL); 1445#endif 1446} 1447