1/* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7/* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12/* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23/* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31/* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41#include <linux/kernel_stat.h> 42#include <linux/mm.h> 43#include <linux/hugetlb.h> 44#include <linux/mman.h> 45#include <linux/swap.h> 46#include <linux/highmem.h> 47#include <linux/pagemap.h> 48#include <linux/rmap.h> 49#include <linux/module.h> 50#include <linux/init.h> 51 52#include <asm/pgalloc.h> 53#include <asm/uaccess.h> 54#include <asm/tlb.h> 55#include <asm/tlbflush.h> 56#include <asm/pgtable.h> 57 58#include <linux/swapops.h> 59#include <linux/elf.h> 60 61#ifndef CONFIG_NEED_MULTIPLE_NODES 62/* use the per-pgdat data instead for discontigmem - mbligh */ 63unsigned long max_mapnr; 64struct page *mem_map; 65 66EXPORT_SYMBOL(max_mapnr); 67EXPORT_SYMBOL(mem_map); 68#endif 69 70unsigned long num_physpages; 71/* 72 * A number of key systems in x86 including ioremap() rely on the assumption 73 * that high_memory defines the upper bound on direct map memory, then end 74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 76 * and ZONE_HIGHMEM. 77 */ 78void * high_memory; 79unsigned long vmalloc_earlyreserve; 80 81EXPORT_SYMBOL(num_physpages); 82EXPORT_SYMBOL(high_memory); 83EXPORT_SYMBOL(vmalloc_earlyreserve); 84 85/* 86 * If a p?d_bad entry is found while walking page tables, report 87 * the error, before resetting entry to p?d_none. Usually (but 88 * very seldom) called out from the p?d_none_or_clear_bad macros. 89 */ 90 91void pgd_clear_bad(pgd_t *pgd) 92{ 93 pgd_ERROR(*pgd); 94 pgd_clear(pgd); 95} 96 97void pud_clear_bad(pud_t *pud) 98{ 99 pud_ERROR(*pud); 100 pud_clear(pud); 101} 102 103void pmd_clear_bad(pmd_t *pmd) 104{ 105 pmd_ERROR(*pmd); 106 pmd_clear(pmd); 107} 108 109/* 110 * Note: this doesn't free the actual pages themselves. That 111 * has been handled earlier when unmapping all the memory regions. 112 */ 113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 114{ 115 struct page *page = pmd_page(*pmd); 116 pmd_clear(pmd); 117 pte_lock_deinit(page); 118 pte_free_tlb(tlb, page); 119 dec_page_state(nr_page_table_pages); 120 tlb->mm->nr_ptes--; 121} 122 123static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 124 unsigned long addr, unsigned long end, 125 unsigned long floor, unsigned long ceiling) 126{ 127 pmd_t *pmd; 128 unsigned long next; 129 unsigned long start; 130 131 start = addr; 132 pmd = pmd_offset(pud, addr); 133 do { 134 next = pmd_addr_end(addr, end); 135 if (pmd_none_or_clear_bad(pmd)) 136 continue; 137 free_pte_range(tlb, pmd); 138 } while (pmd++, addr = next, addr != end); 139 140 start &= PUD_MASK; 141 if (start < floor) 142 return; 143 if (ceiling) { 144 ceiling &= PUD_MASK; 145 if (!ceiling) 146 return; 147 } 148 if (end - 1 > ceiling - 1) 149 return; 150 151 pmd = pmd_offset(pud, start); 152 pud_clear(pud); 153 pmd_free_tlb(tlb, pmd); 154} 155 156static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 157 unsigned long addr, unsigned long end, 158 unsigned long floor, unsigned long ceiling) 159{ 160 pud_t *pud; 161 unsigned long next; 162 unsigned long start; 163 164 start = addr; 165 pud = pud_offset(pgd, addr); 166 do { 167 next = pud_addr_end(addr, end); 168 if (pud_none_or_clear_bad(pud)) 169 continue; 170 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 171 } while (pud++, addr = next, addr != end); 172 173 start &= PGDIR_MASK; 174 if (start < floor) 175 return; 176 if (ceiling) { 177 ceiling &= PGDIR_MASK; 178 if (!ceiling) 179 return; 180 } 181 if (end - 1 > ceiling - 1) 182 return; 183 184 pud = pud_offset(pgd, start); 185 pgd_clear(pgd); 186 pud_free_tlb(tlb, pud); 187} 188 189/* 190 * This function frees user-level page tables of a process. 191 * 192 * Must be called with pagetable lock held. 193 */ 194void free_pgd_range(struct mmu_gather **tlb, 195 unsigned long addr, unsigned long end, 196 unsigned long floor, unsigned long ceiling) 197{ 198 pgd_t *pgd; 199 unsigned long next; 200 unsigned long start; 201 202 /* 203 * The next few lines have given us lots of grief... 204 * 205 * Why are we testing PMD* at this top level? Because often 206 * there will be no work to do at all, and we'd prefer not to 207 * go all the way down to the bottom just to discover that. 208 * 209 * Why all these "- 1"s? Because 0 represents both the bottom 210 * of the address space and the top of it (using -1 for the 211 * top wouldn't help much: the masks would do the wrong thing). 212 * The rule is that addr 0 and floor 0 refer to the bottom of 213 * the address space, but end 0 and ceiling 0 refer to the top 214 * Comparisons need to use "end - 1" and "ceiling - 1" (though 215 * that end 0 case should be mythical). 216 * 217 * Wherever addr is brought up or ceiling brought down, we must 218 * be careful to reject "the opposite 0" before it confuses the 219 * subsequent tests. But what about where end is brought down 220 * by PMD_SIZE below? no, end can't go down to 0 there. 221 * 222 * Whereas we round start (addr) and ceiling down, by different 223 * masks at different levels, in order to test whether a table 224 * now has no other vmas using it, so can be freed, we don't 225 * bother to round floor or end up - the tests don't need that. 226 */ 227 228 addr &= PMD_MASK; 229 if (addr < floor) { 230 addr += PMD_SIZE; 231 if (!addr) 232 return; 233 } 234 if (ceiling) { 235 ceiling &= PMD_MASK; 236 if (!ceiling) 237 return; 238 } 239 if (end - 1 > ceiling - 1) 240 end -= PMD_SIZE; 241 if (addr > end - 1) 242 return; 243 244 start = addr; 245 pgd = pgd_offset((*tlb)->mm, addr); 246 do { 247 next = pgd_addr_end(addr, end); 248 if (pgd_none_or_clear_bad(pgd)) 249 continue; 250 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 251 } while (pgd++, addr = next, addr != end); 252 253 if (!(*tlb)->fullmm) 254 flush_tlb_pgtables((*tlb)->mm, start, end); 255} 256 257void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 258 unsigned long floor, unsigned long ceiling) 259{ 260 while (vma) { 261 struct vm_area_struct *next = vma->vm_next; 262 unsigned long addr = vma->vm_start; 263 264 /* 265 * Hide vma from rmap and vmtruncate before freeing pgtables 266 */ 267 anon_vma_unlink(vma); 268 unlink_file_vma(vma); 269 270 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) { 271 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 272 floor, next? next->vm_start: ceiling); 273 } else { 274 /* 275 * Optimization: gather nearby vmas into one call down 276 */ 277 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 278 && !is_hugepage_only_range(vma->vm_mm, next->vm_start, 279 HPAGE_SIZE)) { 280 vma = next; 281 next = vma->vm_next; 282 anon_vma_unlink(vma); 283 unlink_file_vma(vma); 284 } 285 free_pgd_range(tlb, addr, vma->vm_end, 286 floor, next? next->vm_start: ceiling); 287 } 288 vma = next; 289 } 290} 291 292int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 293{ 294 struct page *new = pte_alloc_one(mm, address); 295 if (!new) 296 return -ENOMEM; 297 298 pte_lock_init(new); 299 spin_lock(&mm->page_table_lock); 300 if (pmd_present(*pmd)) { /* Another has populated it */ 301 pte_lock_deinit(new); 302 pte_free(new); 303 } else { 304 mm->nr_ptes++; 305 inc_page_state(nr_page_table_pages); 306 pmd_populate(mm, pmd, new); 307 } 308 spin_unlock(&mm->page_table_lock); 309 return 0; 310} 311 312int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 313{ 314 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 315 if (!new) 316 return -ENOMEM; 317 318 spin_lock(&init_mm.page_table_lock); 319 if (pmd_present(*pmd)) /* Another has populated it */ 320 pte_free_kernel(new); 321 else 322 pmd_populate_kernel(&init_mm, pmd, new); 323 spin_unlock(&init_mm.page_table_lock); 324 return 0; 325} 326 327static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 328{ 329 if (file_rss) 330 add_mm_counter(mm, file_rss, file_rss); 331 if (anon_rss) 332 add_mm_counter(mm, anon_rss, anon_rss); 333} 334 335/* 336 * This function is called to print an error when a pte in a 337 * !VM_UNPAGED region is found pointing to an invalid pfn (which 338 * is an error. 339 * 340 * The calling function must still handle the error. 341 */ 342void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 343{ 344 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 345 "vm_flags = %lx, vaddr = %lx\n", 346 (long long)pte_val(pte), 347 (vma->vm_mm == current->mm ? current->comm : "???"), 348 vma->vm_flags, vaddr); 349 dump_stack(); 350} 351 352/* 353 * page_is_anon applies strict checks for an anonymous page belonging to 354 * this vma at this address. It is used on VM_UNPAGED vmas, which are 355 * usually populated with shared originals (which must not be counted), 356 * but occasionally contain private COWed copies (when !VM_SHARED, or 357 * perhaps via ptrace when VM_SHARED). An mmap of /dev/mem might window 358 * free pages, pages from other processes, or from other parts of this: 359 * it's tricky, but try not to be deceived by foreign anonymous pages. 360 */ 361static inline int page_is_anon(struct page *page, 362 struct vm_area_struct *vma, unsigned long addr) 363{ 364 return page && PageAnon(page) && page_mapped(page) && 365 page_address_in_vma(page, vma) == addr; 366} 367 368/* 369 * copy one vm_area from one task to the other. Assumes the page tables 370 * already present in the new task to be cleared in the whole range 371 * covered by this vma. 372 */ 373 374static inline void 375copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 376 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 377 unsigned long addr, int *rss) 378{ 379 unsigned long vm_flags = vma->vm_flags; 380 pte_t pte = *src_pte; 381 struct page *page; 382 unsigned long pfn; 383 384 /* pte contains position in swap or file, so copy. */ 385 if (unlikely(!pte_present(pte))) { 386 if (!pte_file(pte)) { 387 swap_duplicate(pte_to_swp_entry(pte)); 388 /* make sure dst_mm is on swapoff's mmlist. */ 389 if (unlikely(list_empty(&dst_mm->mmlist))) { 390 spin_lock(&mmlist_lock); 391 if (list_empty(&dst_mm->mmlist)) 392 list_add(&dst_mm->mmlist, 393 &src_mm->mmlist); 394 spin_unlock(&mmlist_lock); 395 } 396 } 397 goto out_set_pte; 398 } 399 400 pfn = pte_pfn(pte); 401 page = pfn_valid(pfn)? pfn_to_page(pfn): NULL; 402 403 if (unlikely(vm_flags & VM_UNPAGED)) 404 if (!page_is_anon(page, vma, addr)) 405 goto out_set_pte; 406 407 /* 408 * If the pte points outside of valid memory but 409 * the region is not VM_UNPAGED, we have a problem. 410 */ 411 if (unlikely(!page)) { 412 print_bad_pte(vma, pte, addr); 413 goto out_set_pte; /* try to do something sane */ 414 } 415 416 /* 417 * If it's a COW mapping, write protect it both 418 * in the parent and the child 419 */ 420 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { 421 ptep_set_wrprotect(src_mm, addr, src_pte); 422 pte = *src_pte; 423 } 424 425 /* 426 * If it's a shared mapping, mark it clean in 427 * the child 428 */ 429 if (vm_flags & VM_SHARED) 430 pte = pte_mkclean(pte); 431 pte = pte_mkold(pte); 432 get_page(page); 433 page_dup_rmap(page); 434 rss[!!PageAnon(page)]++; 435 436out_set_pte: 437 set_pte_at(dst_mm, addr, dst_pte, pte); 438} 439 440static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 441 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 442 unsigned long addr, unsigned long end) 443{ 444 pte_t *src_pte, *dst_pte; 445 spinlock_t *src_ptl, *dst_ptl; 446 int progress = 0; 447 int rss[2]; 448 449again: 450 rss[1] = rss[0] = 0; 451 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 452 if (!dst_pte) 453 return -ENOMEM; 454 src_pte = pte_offset_map_nested(src_pmd, addr); 455 src_ptl = pte_lockptr(src_mm, src_pmd); 456 spin_lock(src_ptl); 457 458 do { 459 /* 460 * We are holding two locks at this point - either of them 461 * could generate latencies in another task on another CPU. 462 */ 463 if (progress >= 32) { 464 progress = 0; 465 if (need_resched() || 466 need_lockbreak(src_ptl) || 467 need_lockbreak(dst_ptl)) 468 break; 469 } 470 if (pte_none(*src_pte)) { 471 progress++; 472 continue; 473 } 474 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 475 progress += 8; 476 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 477 478 spin_unlock(src_ptl); 479 pte_unmap_nested(src_pte - 1); 480 add_mm_rss(dst_mm, rss[0], rss[1]); 481 pte_unmap_unlock(dst_pte - 1, dst_ptl); 482 cond_resched(); 483 if (addr != end) 484 goto again; 485 return 0; 486} 487 488static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 489 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 490 unsigned long addr, unsigned long end) 491{ 492 pmd_t *src_pmd, *dst_pmd; 493 unsigned long next; 494 495 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 496 if (!dst_pmd) 497 return -ENOMEM; 498 src_pmd = pmd_offset(src_pud, addr); 499 do { 500 next = pmd_addr_end(addr, end); 501 if (pmd_none_or_clear_bad(src_pmd)) 502 continue; 503 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 504 vma, addr, next)) 505 return -ENOMEM; 506 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 507 return 0; 508} 509 510static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 511 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 512 unsigned long addr, unsigned long end) 513{ 514 pud_t *src_pud, *dst_pud; 515 unsigned long next; 516 517 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 518 if (!dst_pud) 519 return -ENOMEM; 520 src_pud = pud_offset(src_pgd, addr); 521 do { 522 next = pud_addr_end(addr, end); 523 if (pud_none_or_clear_bad(src_pud)) 524 continue; 525 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 526 vma, addr, next)) 527 return -ENOMEM; 528 } while (dst_pud++, src_pud++, addr = next, addr != end); 529 return 0; 530} 531 532int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 533 struct vm_area_struct *vma) 534{ 535 pgd_t *src_pgd, *dst_pgd; 536 unsigned long next; 537 unsigned long addr = vma->vm_start; 538 unsigned long end = vma->vm_end; 539 540 /* 541 * Don't copy ptes where a page fault will fill them correctly. 542 * Fork becomes much lighter when there are big shared or private 543 * readonly mappings. The tradeoff is that copy_page_range is more 544 * efficient than faulting. 545 */ 546 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_UNPAGED))) { 547 if (!vma->anon_vma) 548 return 0; 549 } 550 551 if (is_vm_hugetlb_page(vma)) 552 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 553 554 dst_pgd = pgd_offset(dst_mm, addr); 555 src_pgd = pgd_offset(src_mm, addr); 556 do { 557 next = pgd_addr_end(addr, end); 558 if (pgd_none_or_clear_bad(src_pgd)) 559 continue; 560 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 561 vma, addr, next)) 562 return -ENOMEM; 563 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 564 return 0; 565} 566 567static unsigned long zap_pte_range(struct mmu_gather *tlb, 568 struct vm_area_struct *vma, pmd_t *pmd, 569 unsigned long addr, unsigned long end, 570 long *zap_work, struct zap_details *details) 571{ 572 struct mm_struct *mm = tlb->mm; 573 pte_t *pte; 574 spinlock_t *ptl; 575 int file_rss = 0; 576 int anon_rss = 0; 577 578 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 579 do { 580 pte_t ptent = *pte; 581 if (pte_none(ptent)) { 582 (*zap_work)--; 583 continue; 584 } 585 if (pte_present(ptent)) { 586 struct page *page; 587 unsigned long pfn; 588 589 (*zap_work) -= PAGE_SIZE; 590 591 pfn = pte_pfn(ptent); 592 page = pfn_valid(pfn)? pfn_to_page(pfn): NULL; 593 594 if (unlikely(vma->vm_flags & VM_UNPAGED)) { 595 if (!page_is_anon(page, vma, addr)) 596 page = NULL; 597 } else if (unlikely(!page)) 598 print_bad_pte(vma, ptent, addr); 599 600 if (unlikely(details) && page) { 601 /* 602 * unmap_shared_mapping_pages() wants to 603 * invalidate cache without truncating: 604 * unmap shared but keep private pages. 605 */ 606 if (details->check_mapping && 607 details->check_mapping != page->mapping) 608 continue; 609 /* 610 * Each page->index must be checked when 611 * invalidating or truncating nonlinear. 612 */ 613 if (details->nonlinear_vma && 614 (page->index < details->first_index || 615 page->index > details->last_index)) 616 continue; 617 } 618 ptent = ptep_get_and_clear_full(mm, addr, pte, 619 tlb->fullmm); 620 tlb_remove_tlb_entry(tlb, pte, addr); 621 if (unlikely(!page)) 622 continue; 623 if (unlikely(details) && details->nonlinear_vma 624 && linear_page_index(details->nonlinear_vma, 625 addr) != page->index) 626 set_pte_at(mm, addr, pte, 627 pgoff_to_pte(page->index)); 628 if (PageAnon(page)) 629 anon_rss--; 630 else { 631 if (pte_dirty(ptent)) 632 set_page_dirty(page); 633 if (pte_young(ptent)) 634 mark_page_accessed(page); 635 file_rss--; 636 } 637 page_remove_rmap(page); 638 tlb_remove_page(tlb, page); 639 continue; 640 } 641 /* 642 * If details->check_mapping, we leave swap entries; 643 * if details->nonlinear_vma, we leave file entries. 644 */ 645 if (unlikely(details)) 646 continue; 647 if (!pte_file(ptent)) 648 free_swap_and_cache(pte_to_swp_entry(ptent)); 649 pte_clear_full(mm, addr, pte, tlb->fullmm); 650 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 651 652 add_mm_rss(mm, file_rss, anon_rss); 653 pte_unmap_unlock(pte - 1, ptl); 654 655 return addr; 656} 657 658static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 659 struct vm_area_struct *vma, pud_t *pud, 660 unsigned long addr, unsigned long end, 661 long *zap_work, struct zap_details *details) 662{ 663 pmd_t *pmd; 664 unsigned long next; 665 666 pmd = pmd_offset(pud, addr); 667 do { 668 next = pmd_addr_end(addr, end); 669 if (pmd_none_or_clear_bad(pmd)) { 670 (*zap_work)--; 671 continue; 672 } 673 next = zap_pte_range(tlb, vma, pmd, addr, next, 674 zap_work, details); 675 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 676 677 return addr; 678} 679 680static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 681 struct vm_area_struct *vma, pgd_t *pgd, 682 unsigned long addr, unsigned long end, 683 long *zap_work, struct zap_details *details) 684{ 685 pud_t *pud; 686 unsigned long next; 687 688 pud = pud_offset(pgd, addr); 689 do { 690 next = pud_addr_end(addr, end); 691 if (pud_none_or_clear_bad(pud)) { 692 (*zap_work)--; 693 continue; 694 } 695 next = zap_pmd_range(tlb, vma, pud, addr, next, 696 zap_work, details); 697 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 698 699 return addr; 700} 701 702static unsigned long unmap_page_range(struct mmu_gather *tlb, 703 struct vm_area_struct *vma, 704 unsigned long addr, unsigned long end, 705 long *zap_work, struct zap_details *details) 706{ 707 pgd_t *pgd; 708 unsigned long next; 709 710 if (details && !details->check_mapping && !details->nonlinear_vma) 711 details = NULL; 712 713 BUG_ON(addr >= end); 714 tlb_start_vma(tlb, vma); 715 pgd = pgd_offset(vma->vm_mm, addr); 716 do { 717 next = pgd_addr_end(addr, end); 718 if (pgd_none_or_clear_bad(pgd)) { 719 (*zap_work)--; 720 continue; 721 } 722 next = zap_pud_range(tlb, vma, pgd, addr, next, 723 zap_work, details); 724 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 725 tlb_end_vma(tlb, vma); 726 727 return addr; 728} 729 730#ifdef CONFIG_PREEMPT 731# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 732#else 733/* No preempt: go for improved straight-line efficiency */ 734# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 735#endif 736 737/** 738 * unmap_vmas - unmap a range of memory covered by a list of vma's 739 * @tlbp: address of the caller's struct mmu_gather 740 * @vma: the starting vma 741 * @start_addr: virtual address at which to start unmapping 742 * @end_addr: virtual address at which to end unmapping 743 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 744 * @details: details of nonlinear truncation or shared cache invalidation 745 * 746 * Returns the end address of the unmapping (restart addr if interrupted). 747 * 748 * Unmap all pages in the vma list. 749 * 750 * We aim to not hold locks for too long (for scheduling latency reasons). 751 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 752 * return the ending mmu_gather to the caller. 753 * 754 * Only addresses between `start' and `end' will be unmapped. 755 * 756 * The VMA list must be sorted in ascending virtual address order. 757 * 758 * unmap_vmas() assumes that the caller will flush the whole unmapped address 759 * range after unmap_vmas() returns. So the only responsibility here is to 760 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 761 * drops the lock and schedules. 762 */ 763unsigned long unmap_vmas(struct mmu_gather **tlbp, 764 struct vm_area_struct *vma, unsigned long start_addr, 765 unsigned long end_addr, unsigned long *nr_accounted, 766 struct zap_details *details) 767{ 768 long zap_work = ZAP_BLOCK_SIZE; 769 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 770 int tlb_start_valid = 0; 771 unsigned long start = start_addr; 772 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 773 int fullmm = (*tlbp)->fullmm; 774 775 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 776 unsigned long end; 777 778 start = max(vma->vm_start, start_addr); 779 if (start >= vma->vm_end) 780 continue; 781 end = min(vma->vm_end, end_addr); 782 if (end <= vma->vm_start) 783 continue; 784 785 if (vma->vm_flags & VM_ACCOUNT) 786 *nr_accounted += (end - start) >> PAGE_SHIFT; 787 788 while (start != end) { 789 if (!tlb_start_valid) { 790 tlb_start = start; 791 tlb_start_valid = 1; 792 } 793 794 if (unlikely(is_vm_hugetlb_page(vma))) { 795 unmap_hugepage_range(vma, start, end); 796 zap_work -= (end - start) / 797 (HPAGE_SIZE / PAGE_SIZE); 798 start = end; 799 } else 800 start = unmap_page_range(*tlbp, vma, 801 start, end, &zap_work, details); 802 803 if (zap_work > 0) { 804 BUG_ON(start != end); 805 break; 806 } 807 808 tlb_finish_mmu(*tlbp, tlb_start, start); 809 810 if (need_resched() || 811 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 812 if (i_mmap_lock) { 813 *tlbp = NULL; 814 goto out; 815 } 816 cond_resched(); 817 } 818 819 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 820 tlb_start_valid = 0; 821 zap_work = ZAP_BLOCK_SIZE; 822 } 823 } 824out: 825 return start; /* which is now the end (or restart) address */ 826} 827 828/** 829 * zap_page_range - remove user pages in a given range 830 * @vma: vm_area_struct holding the applicable pages 831 * @address: starting address of pages to zap 832 * @size: number of bytes to zap 833 * @details: details of nonlinear truncation or shared cache invalidation 834 */ 835unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 836 unsigned long size, struct zap_details *details) 837{ 838 struct mm_struct *mm = vma->vm_mm; 839 struct mmu_gather *tlb; 840 unsigned long end = address + size; 841 unsigned long nr_accounted = 0; 842 843 lru_add_drain(); 844 tlb = tlb_gather_mmu(mm, 0); 845 update_hiwater_rss(mm); 846 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 847 if (tlb) 848 tlb_finish_mmu(tlb, address, end); 849 return end; 850} 851 852/* 853 * Do a quick page-table lookup for a single page. 854 */ 855struct page *follow_page(struct mm_struct *mm, unsigned long address, 856 unsigned int flags) 857{ 858 pgd_t *pgd; 859 pud_t *pud; 860 pmd_t *pmd; 861 pte_t *ptep, pte; 862 spinlock_t *ptl; 863 unsigned long pfn; 864 struct page *page; 865 866 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 867 if (!IS_ERR(page)) { 868 BUG_ON(flags & FOLL_GET); 869 goto out; 870 } 871 872 page = NULL; 873 pgd = pgd_offset(mm, address); 874 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 875 goto no_page_table; 876 877 pud = pud_offset(pgd, address); 878 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 879 goto no_page_table; 880 881 pmd = pmd_offset(pud, address); 882 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 883 goto no_page_table; 884 885 if (pmd_huge(*pmd)) { 886 BUG_ON(flags & FOLL_GET); 887 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 888 goto out; 889 } 890 891 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 892 if (!ptep) 893 goto out; 894 895 pte = *ptep; 896 if (!pte_present(pte)) 897 goto unlock; 898 if ((flags & FOLL_WRITE) && !pte_write(pte)) 899 goto unlock; 900 pfn = pte_pfn(pte); 901 if (!pfn_valid(pfn)) 902 goto unlock; 903 904 page = pfn_to_page(pfn); 905 if (flags & FOLL_GET) 906 get_page(page); 907 if (flags & FOLL_TOUCH) { 908 if ((flags & FOLL_WRITE) && 909 !pte_dirty(pte) && !PageDirty(page)) 910 set_page_dirty(page); 911 mark_page_accessed(page); 912 } 913unlock: 914 pte_unmap_unlock(ptep, ptl); 915out: 916 return page; 917 918no_page_table: 919 /* 920 * When core dumping an enormous anonymous area that nobody 921 * has touched so far, we don't want to allocate page tables. 922 */ 923 if (flags & FOLL_ANON) { 924 page = ZERO_PAGE(address); 925 if (flags & FOLL_GET) 926 get_page(page); 927 BUG_ON(flags & FOLL_WRITE); 928 } 929 return page; 930} 931 932int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 933 unsigned long start, int len, int write, int force, 934 struct page **pages, struct vm_area_struct **vmas) 935{ 936 int i; 937 unsigned int vm_flags; 938 939 /* 940 * Require read or write permissions. 941 * If 'force' is set, we only require the "MAY" flags. 942 */ 943 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 944 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 945 i = 0; 946 947 do { 948 struct vm_area_struct *vma; 949 unsigned int foll_flags; 950 951 vma = find_extend_vma(mm, start); 952 if (!vma && in_gate_area(tsk, start)) { 953 unsigned long pg = start & PAGE_MASK; 954 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 955 pgd_t *pgd; 956 pud_t *pud; 957 pmd_t *pmd; 958 pte_t *pte; 959 if (write) /* user gate pages are read-only */ 960 return i ? : -EFAULT; 961 if (pg > TASK_SIZE) 962 pgd = pgd_offset_k(pg); 963 else 964 pgd = pgd_offset_gate(mm, pg); 965 BUG_ON(pgd_none(*pgd)); 966 pud = pud_offset(pgd, pg); 967 BUG_ON(pud_none(*pud)); 968 pmd = pmd_offset(pud, pg); 969 if (pmd_none(*pmd)) 970 return i ? : -EFAULT; 971 pte = pte_offset_map(pmd, pg); 972 if (pte_none(*pte)) { 973 pte_unmap(pte); 974 return i ? : -EFAULT; 975 } 976 if (pages) { 977 pages[i] = pte_page(*pte); 978 get_page(pages[i]); 979 } 980 pte_unmap(pte); 981 if (vmas) 982 vmas[i] = gate_vma; 983 i++; 984 start += PAGE_SIZE; 985 len--; 986 continue; 987 } 988 989 if (!vma || (vma->vm_flags & VM_IO) 990 || !(vm_flags & vma->vm_flags)) 991 return i ? : -EFAULT; 992 993 if (is_vm_hugetlb_page(vma)) { 994 i = follow_hugetlb_page(mm, vma, pages, vmas, 995 &start, &len, i); 996 continue; 997 } 998 999 foll_flags = FOLL_TOUCH; 1000 if (pages) 1001 foll_flags |= FOLL_GET; 1002 if (!write && !(vma->vm_flags & VM_LOCKED) && 1003 (!vma->vm_ops || !vma->vm_ops->nopage)) 1004 foll_flags |= FOLL_ANON; 1005 1006 do { 1007 struct page *page; 1008 1009 if (write) 1010 foll_flags |= FOLL_WRITE; 1011 1012 cond_resched(); 1013 while (!(page = follow_page(mm, start, foll_flags))) { 1014 int ret; 1015 ret = __handle_mm_fault(mm, vma, start, 1016 foll_flags & FOLL_WRITE); 1017 /* 1018 * The VM_FAULT_WRITE bit tells us that do_wp_page has 1019 * broken COW when necessary, even if maybe_mkwrite 1020 * decided not to set pte_write. We can thus safely do 1021 * subsequent page lookups as if they were reads. 1022 */ 1023 if (ret & VM_FAULT_WRITE) 1024 foll_flags &= ~FOLL_WRITE; 1025 1026 switch (ret & ~VM_FAULT_WRITE) { 1027 case VM_FAULT_MINOR: 1028 tsk->min_flt++; 1029 break; 1030 case VM_FAULT_MAJOR: 1031 tsk->maj_flt++; 1032 break; 1033 case VM_FAULT_SIGBUS: 1034 return i ? i : -EFAULT; 1035 case VM_FAULT_OOM: 1036 return i ? i : -ENOMEM; 1037 default: 1038 BUG(); 1039 } 1040 } 1041 if (pages) { 1042 pages[i] = page; 1043 flush_dcache_page(page); 1044 } 1045 if (vmas) 1046 vmas[i] = vma; 1047 i++; 1048 start += PAGE_SIZE; 1049 len--; 1050 } while (len && start < vma->vm_end); 1051 } while (len); 1052 return i; 1053} 1054EXPORT_SYMBOL(get_user_pages); 1055 1056static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1057 unsigned long addr, unsigned long end, pgprot_t prot) 1058{ 1059 pte_t *pte; 1060 spinlock_t *ptl; 1061 1062 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1063 if (!pte) 1064 return -ENOMEM; 1065 do { 1066 struct page *page = ZERO_PAGE(addr); 1067 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); 1068 page_cache_get(page); 1069 page_add_file_rmap(page); 1070 inc_mm_counter(mm, file_rss); 1071 BUG_ON(!pte_none(*pte)); 1072 set_pte_at(mm, addr, pte, zero_pte); 1073 } while (pte++, addr += PAGE_SIZE, addr != end); 1074 pte_unmap_unlock(pte - 1, ptl); 1075 return 0; 1076} 1077 1078static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, 1079 unsigned long addr, unsigned long end, pgprot_t prot) 1080{ 1081 pmd_t *pmd; 1082 unsigned long next; 1083 1084 pmd = pmd_alloc(mm, pud, addr); 1085 if (!pmd) 1086 return -ENOMEM; 1087 do { 1088 next = pmd_addr_end(addr, end); 1089 if (zeromap_pte_range(mm, pmd, addr, next, prot)) 1090 return -ENOMEM; 1091 } while (pmd++, addr = next, addr != end); 1092 return 0; 1093} 1094 1095static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1096 unsigned long addr, unsigned long end, pgprot_t prot) 1097{ 1098 pud_t *pud; 1099 unsigned long next; 1100 1101 pud = pud_alloc(mm, pgd, addr); 1102 if (!pud) 1103 return -ENOMEM; 1104 do { 1105 next = pud_addr_end(addr, end); 1106 if (zeromap_pmd_range(mm, pud, addr, next, prot)) 1107 return -ENOMEM; 1108 } while (pud++, addr = next, addr != end); 1109 return 0; 1110} 1111 1112int zeromap_page_range(struct vm_area_struct *vma, 1113 unsigned long addr, unsigned long size, pgprot_t prot) 1114{ 1115 pgd_t *pgd; 1116 unsigned long next; 1117 unsigned long end = addr + size; 1118 struct mm_struct *mm = vma->vm_mm; 1119 int err; 1120 1121 BUG_ON(addr >= end); 1122 pgd = pgd_offset(mm, addr); 1123 flush_cache_range(vma, addr, end); 1124 do { 1125 next = pgd_addr_end(addr, end); 1126 err = zeromap_pud_range(mm, pgd, addr, next, prot); 1127 if (err) 1128 break; 1129 } while (pgd++, addr = next, addr != end); 1130 return err; 1131} 1132 1133/* 1134 * maps a range of physical memory into the requested pages. the old 1135 * mappings are removed. any references to nonexistent pages results 1136 * in null mappings (currently treated as "copy-on-access") 1137 */ 1138static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1139 unsigned long addr, unsigned long end, 1140 unsigned long pfn, pgprot_t prot) 1141{ 1142 pte_t *pte; 1143 spinlock_t *ptl; 1144 1145 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1146 if (!pte) 1147 return -ENOMEM; 1148 do { 1149 BUG_ON(!pte_none(*pte)); 1150 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1151 pfn++; 1152 } while (pte++, addr += PAGE_SIZE, addr != end); 1153 pte_unmap_unlock(pte - 1, ptl); 1154 return 0; 1155} 1156 1157static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1158 unsigned long addr, unsigned long end, 1159 unsigned long pfn, pgprot_t prot) 1160{ 1161 pmd_t *pmd; 1162 unsigned long next; 1163 1164 pfn -= addr >> PAGE_SHIFT; 1165 pmd = pmd_alloc(mm, pud, addr); 1166 if (!pmd) 1167 return -ENOMEM; 1168 do { 1169 next = pmd_addr_end(addr, end); 1170 if (remap_pte_range(mm, pmd, addr, next, 1171 pfn + (addr >> PAGE_SHIFT), prot)) 1172 return -ENOMEM; 1173 } while (pmd++, addr = next, addr != end); 1174 return 0; 1175} 1176 1177static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1178 unsigned long addr, unsigned long end, 1179 unsigned long pfn, pgprot_t prot) 1180{ 1181 pud_t *pud; 1182 unsigned long next; 1183 1184 pfn -= addr >> PAGE_SHIFT; 1185 pud = pud_alloc(mm, pgd, addr); 1186 if (!pud) 1187 return -ENOMEM; 1188 do { 1189 next = pud_addr_end(addr, end); 1190 if (remap_pmd_range(mm, pud, addr, next, 1191 pfn + (addr >> PAGE_SHIFT), prot)) 1192 return -ENOMEM; 1193 } while (pud++, addr = next, addr != end); 1194 return 0; 1195} 1196 1197/* Note: this is only safe if the mm semaphore is held when called. */ 1198int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1199 unsigned long pfn, unsigned long size, pgprot_t prot) 1200{ 1201 pgd_t *pgd; 1202 unsigned long next; 1203 unsigned long end = addr + PAGE_ALIGN(size); 1204 struct mm_struct *mm = vma->vm_mm; 1205 int err; 1206 1207 /* 1208 * Physically remapped pages are special. Tell the 1209 * rest of the world about it: 1210 * VM_IO tells people not to look at these pages 1211 * (accesses can have side effects). 1212 * VM_RESERVED is specified all over the place, because 1213 * in 2.4 it kept swapout's vma scan off this vma; but 1214 * in 2.6 the LRU scan won't even find its pages, so this 1215 * flag means no more than count its pages in reserved_vm, 1216 * and omit it from core dump, even when VM_IO turned off. 1217 * VM_UNPAGED tells the core MM not to "manage" these pages 1218 * (e.g. refcount, mapcount, try to swap them out): in 1219 * particular, zap_pte_range does not try to free them. 1220 */ 1221 vma->vm_flags |= VM_IO | VM_RESERVED | VM_UNPAGED; 1222 1223 BUG_ON(addr >= end); 1224 pfn -= addr >> PAGE_SHIFT; 1225 pgd = pgd_offset(mm, addr); 1226 flush_cache_range(vma, addr, end); 1227 do { 1228 next = pgd_addr_end(addr, end); 1229 err = remap_pud_range(mm, pgd, addr, next, 1230 pfn + (addr >> PAGE_SHIFT), prot); 1231 if (err) 1232 break; 1233 } while (pgd++, addr = next, addr != end); 1234 return err; 1235} 1236EXPORT_SYMBOL(remap_pfn_range); 1237 1238/* 1239 * handle_pte_fault chooses page fault handler according to an entry 1240 * which was read non-atomically. Before making any commitment, on 1241 * those architectures or configurations (e.g. i386 with PAE) which 1242 * might give a mix of unmatched parts, do_swap_page and do_file_page 1243 * must check under lock before unmapping the pte and proceeding 1244 * (but do_wp_page is only called after already making such a check; 1245 * and do_anonymous_page and do_no_page can safely check later on). 1246 */ 1247static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1248 pte_t *page_table, pte_t orig_pte) 1249{ 1250 int same = 1; 1251#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1252 if (sizeof(pte_t) > sizeof(unsigned long)) { 1253 spinlock_t *ptl = pte_lockptr(mm, pmd); 1254 spin_lock(ptl); 1255 same = pte_same(*page_table, orig_pte); 1256 spin_unlock(ptl); 1257 } 1258#endif 1259 pte_unmap(page_table); 1260 return same; 1261} 1262 1263/* 1264 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1265 * servicing faults for write access. In the normal case, do always want 1266 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1267 * that do not have writing enabled, when used by access_process_vm. 1268 */ 1269static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1270{ 1271 if (likely(vma->vm_flags & VM_WRITE)) 1272 pte = pte_mkwrite(pte); 1273 return pte; 1274} 1275 1276/* 1277 * This routine handles present pages, when users try to write 1278 * to a shared page. It is done by copying the page to a new address 1279 * and decrementing the shared-page counter for the old page. 1280 * 1281 * Note that this routine assumes that the protection checks have been 1282 * done by the caller (the low-level page fault routine in most cases). 1283 * Thus we can safely just mark it writable once we've done any necessary 1284 * COW. 1285 * 1286 * We also mark the page dirty at this point even though the page will 1287 * change only once the write actually happens. This avoids a few races, 1288 * and potentially makes it more efficient. 1289 * 1290 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1291 * but allow concurrent faults), with pte both mapped and locked. 1292 * We return with mmap_sem still held, but pte unmapped and unlocked. 1293 */ 1294static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1295 unsigned long address, pte_t *page_table, pmd_t *pmd, 1296 spinlock_t *ptl, pte_t orig_pte) 1297{ 1298 struct page *old_page, *src_page, *new_page; 1299 unsigned long pfn = pte_pfn(orig_pte); 1300 pte_t entry; 1301 int ret = VM_FAULT_MINOR; 1302 1303 if (unlikely(!pfn_valid(pfn))) { 1304 /* 1305 * Page table corrupted: show pte and kill process. 1306 * Or it's an attempt to COW an out-of-map VM_UNPAGED 1307 * entry, which copy_user_highpage does not support. 1308 */ 1309 print_bad_pte(vma, orig_pte, address); 1310 ret = VM_FAULT_OOM; 1311 goto unlock; 1312 } 1313 old_page = pfn_to_page(pfn); 1314 src_page = old_page; 1315 1316 if (unlikely(vma->vm_flags & VM_UNPAGED)) 1317 if (!page_is_anon(old_page, vma, address)) { 1318 old_page = NULL; 1319 goto gotten; 1320 } 1321 1322 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) { 1323 int reuse = can_share_swap_page(old_page); 1324 unlock_page(old_page); 1325 if (reuse) { 1326 flush_cache_page(vma, address, pfn); 1327 entry = pte_mkyoung(orig_pte); 1328 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1329 ptep_set_access_flags(vma, address, page_table, entry, 1); 1330 update_mmu_cache(vma, address, entry); 1331 lazy_mmu_prot_update(entry); 1332 ret |= VM_FAULT_WRITE; 1333 goto unlock; 1334 } 1335 } 1336 1337 /* 1338 * Ok, we need to copy. Oh, well.. 1339 */ 1340 page_cache_get(old_page); 1341gotten: 1342 pte_unmap_unlock(page_table, ptl); 1343 1344 if (unlikely(anon_vma_prepare(vma))) 1345 goto oom; 1346 if (src_page == ZERO_PAGE(address)) { 1347 new_page = alloc_zeroed_user_highpage(vma, address); 1348 if (!new_page) 1349 goto oom; 1350 } else { 1351 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1352 if (!new_page) 1353 goto oom; 1354 copy_user_highpage(new_page, src_page, address); 1355 } 1356 1357 /* 1358 * Re-check the pte - we dropped the lock 1359 */ 1360 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1361 if (likely(pte_same(*page_table, orig_pte))) { 1362 if (old_page) { 1363 page_remove_rmap(old_page); 1364 if (!PageAnon(old_page)) { 1365 dec_mm_counter(mm, file_rss); 1366 inc_mm_counter(mm, anon_rss); 1367 } 1368 } else 1369 inc_mm_counter(mm, anon_rss); 1370 flush_cache_page(vma, address, pfn); 1371 entry = mk_pte(new_page, vma->vm_page_prot); 1372 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1373 ptep_establish(vma, address, page_table, entry); 1374 update_mmu_cache(vma, address, entry); 1375 lazy_mmu_prot_update(entry); 1376 lru_cache_add_active(new_page); 1377 page_add_anon_rmap(new_page, vma, address); 1378 1379 /* Free the old page.. */ 1380 new_page = old_page; 1381 ret |= VM_FAULT_WRITE; 1382 } 1383 if (new_page) 1384 page_cache_release(new_page); 1385 if (old_page) 1386 page_cache_release(old_page); 1387unlock: 1388 pte_unmap_unlock(page_table, ptl); 1389 return ret; 1390oom: 1391 if (old_page) 1392 page_cache_release(old_page); 1393 return VM_FAULT_OOM; 1394} 1395 1396/* 1397 * Helper functions for unmap_mapping_range(). 1398 * 1399 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1400 * 1401 * We have to restart searching the prio_tree whenever we drop the lock, 1402 * since the iterator is only valid while the lock is held, and anyway 1403 * a later vma might be split and reinserted earlier while lock dropped. 1404 * 1405 * The list of nonlinear vmas could be handled more efficiently, using 1406 * a placeholder, but handle it in the same way until a need is shown. 1407 * It is important to search the prio_tree before nonlinear list: a vma 1408 * may become nonlinear and be shifted from prio_tree to nonlinear list 1409 * while the lock is dropped; but never shifted from list to prio_tree. 1410 * 1411 * In order to make forward progress despite restarting the search, 1412 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1413 * quickly skip it next time around. Since the prio_tree search only 1414 * shows us those vmas affected by unmapping the range in question, we 1415 * can't efficiently keep all vmas in step with mapping->truncate_count: 1416 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1417 * mapping->truncate_count and vma->vm_truncate_count are protected by 1418 * i_mmap_lock. 1419 * 1420 * In order to make forward progress despite repeatedly restarting some 1421 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1422 * and restart from that address when we reach that vma again. It might 1423 * have been split or merged, shrunk or extended, but never shifted: so 1424 * restart_addr remains valid so long as it remains in the vma's range. 1425 * unmap_mapping_range forces truncate_count to leap over page-aligned 1426 * values so we can save vma's restart_addr in its truncate_count field. 1427 */ 1428#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1429 1430static void reset_vma_truncate_counts(struct address_space *mapping) 1431{ 1432 struct vm_area_struct *vma; 1433 struct prio_tree_iter iter; 1434 1435 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1436 vma->vm_truncate_count = 0; 1437 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1438 vma->vm_truncate_count = 0; 1439} 1440 1441static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1442 unsigned long start_addr, unsigned long end_addr, 1443 struct zap_details *details) 1444{ 1445 unsigned long restart_addr; 1446 int need_break; 1447 1448again: 1449 restart_addr = vma->vm_truncate_count; 1450 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1451 start_addr = restart_addr; 1452 if (start_addr >= end_addr) { 1453 /* Top of vma has been split off since last time */ 1454 vma->vm_truncate_count = details->truncate_count; 1455 return 0; 1456 } 1457 } 1458 1459 restart_addr = zap_page_range(vma, start_addr, 1460 end_addr - start_addr, details); 1461 need_break = need_resched() || 1462 need_lockbreak(details->i_mmap_lock); 1463 1464 if (restart_addr >= end_addr) { 1465 /* We have now completed this vma: mark it so */ 1466 vma->vm_truncate_count = details->truncate_count; 1467 if (!need_break) 1468 return 0; 1469 } else { 1470 /* Note restart_addr in vma's truncate_count field */ 1471 vma->vm_truncate_count = restart_addr; 1472 if (!need_break) 1473 goto again; 1474 } 1475 1476 spin_unlock(details->i_mmap_lock); 1477 cond_resched(); 1478 spin_lock(details->i_mmap_lock); 1479 return -EINTR; 1480} 1481 1482static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1483 struct zap_details *details) 1484{ 1485 struct vm_area_struct *vma; 1486 struct prio_tree_iter iter; 1487 pgoff_t vba, vea, zba, zea; 1488 1489restart: 1490 vma_prio_tree_foreach(vma, &iter, root, 1491 details->first_index, details->last_index) { 1492 /* Skip quickly over those we have already dealt with */ 1493 if (vma->vm_truncate_count == details->truncate_count) 1494 continue; 1495 1496 vba = vma->vm_pgoff; 1497 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1498 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1499 zba = details->first_index; 1500 if (zba < vba) 1501 zba = vba; 1502 zea = details->last_index; 1503 if (zea > vea) 1504 zea = vea; 1505 1506 if (unmap_mapping_range_vma(vma, 1507 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1508 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1509 details) < 0) 1510 goto restart; 1511 } 1512} 1513 1514static inline void unmap_mapping_range_list(struct list_head *head, 1515 struct zap_details *details) 1516{ 1517 struct vm_area_struct *vma; 1518 1519 /* 1520 * In nonlinear VMAs there is no correspondence between virtual address 1521 * offset and file offset. So we must perform an exhaustive search 1522 * across *all* the pages in each nonlinear VMA, not just the pages 1523 * whose virtual address lies outside the file truncation point. 1524 */ 1525restart: 1526 list_for_each_entry(vma, head, shared.vm_set.list) { 1527 /* Skip quickly over those we have already dealt with */ 1528 if (vma->vm_truncate_count == details->truncate_count) 1529 continue; 1530 details->nonlinear_vma = vma; 1531 if (unmap_mapping_range_vma(vma, vma->vm_start, 1532 vma->vm_end, details) < 0) 1533 goto restart; 1534 } 1535} 1536 1537/** 1538 * unmap_mapping_range - unmap the portion of all mmaps 1539 * in the specified address_space corresponding to the specified 1540 * page range in the underlying file. 1541 * @mapping: the address space containing mmaps to be unmapped. 1542 * @holebegin: byte in first page to unmap, relative to the start of 1543 * the underlying file. This will be rounded down to a PAGE_SIZE 1544 * boundary. Note that this is different from vmtruncate(), which 1545 * must keep the partial page. In contrast, we must get rid of 1546 * partial pages. 1547 * @holelen: size of prospective hole in bytes. This will be rounded 1548 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1549 * end of the file. 1550 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1551 * but 0 when invalidating pagecache, don't throw away private data. 1552 */ 1553void unmap_mapping_range(struct address_space *mapping, 1554 loff_t const holebegin, loff_t const holelen, int even_cows) 1555{ 1556 struct zap_details details; 1557 pgoff_t hba = holebegin >> PAGE_SHIFT; 1558 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1559 1560 /* Check for overflow. */ 1561 if (sizeof(holelen) > sizeof(hlen)) { 1562 long long holeend = 1563 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1564 if (holeend & ~(long long)ULONG_MAX) 1565 hlen = ULONG_MAX - hba + 1; 1566 } 1567 1568 details.check_mapping = even_cows? NULL: mapping; 1569 details.nonlinear_vma = NULL; 1570 details.first_index = hba; 1571 details.last_index = hba + hlen - 1; 1572 if (details.last_index < details.first_index) 1573 details.last_index = ULONG_MAX; 1574 details.i_mmap_lock = &mapping->i_mmap_lock; 1575 1576 spin_lock(&mapping->i_mmap_lock); 1577 1578 /* serialize i_size write against truncate_count write */ 1579 smp_wmb(); 1580 /* Protect against page faults, and endless unmapping loops */ 1581 mapping->truncate_count++; 1582 /* 1583 * For archs where spin_lock has inclusive semantics like ia64 1584 * this smp_mb() will prevent to read pagetable contents 1585 * before the truncate_count increment is visible to 1586 * other cpus. 1587 */ 1588 smp_mb(); 1589 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1590 if (mapping->truncate_count == 0) 1591 reset_vma_truncate_counts(mapping); 1592 mapping->truncate_count++; 1593 } 1594 details.truncate_count = mapping->truncate_count; 1595 1596 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1597 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1598 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1599 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1600 spin_unlock(&mapping->i_mmap_lock); 1601} 1602EXPORT_SYMBOL(unmap_mapping_range); 1603 1604/* 1605 * Handle all mappings that got truncated by a "truncate()" 1606 * system call. 1607 * 1608 * NOTE! We have to be ready to update the memory sharing 1609 * between the file and the memory map for a potential last 1610 * incomplete page. Ugly, but necessary. 1611 */ 1612int vmtruncate(struct inode * inode, loff_t offset) 1613{ 1614 struct address_space *mapping = inode->i_mapping; 1615 unsigned long limit; 1616 1617 if (inode->i_size < offset) 1618 goto do_expand; 1619 /* 1620 * truncation of in-use swapfiles is disallowed - it would cause 1621 * subsequent swapout to scribble on the now-freed blocks. 1622 */ 1623 if (IS_SWAPFILE(inode)) 1624 goto out_busy; 1625 i_size_write(inode, offset); 1626 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1627 truncate_inode_pages(mapping, offset); 1628 goto out_truncate; 1629 1630do_expand: 1631 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1632 if (limit != RLIM_INFINITY && offset > limit) 1633 goto out_sig; 1634 if (offset > inode->i_sb->s_maxbytes) 1635 goto out_big; 1636 i_size_write(inode, offset); 1637 1638out_truncate: 1639 if (inode->i_op && inode->i_op->truncate) 1640 inode->i_op->truncate(inode); 1641 return 0; 1642out_sig: 1643 send_sig(SIGXFSZ, current, 0); 1644out_big: 1645 return -EFBIG; 1646out_busy: 1647 return -ETXTBSY; 1648} 1649 1650EXPORT_SYMBOL(vmtruncate); 1651 1652/* 1653 * Primitive swap readahead code. We simply read an aligned block of 1654 * (1 << page_cluster) entries in the swap area. This method is chosen 1655 * because it doesn't cost us any seek time. We also make sure to queue 1656 * the 'original' request together with the readahead ones... 1657 * 1658 * This has been extended to use the NUMA policies from the mm triggering 1659 * the readahead. 1660 * 1661 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 1662 */ 1663void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 1664{ 1665#ifdef CONFIG_NUMA 1666 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 1667#endif 1668 int i, num; 1669 struct page *new_page; 1670 unsigned long offset; 1671 1672 /* 1673 * Get the number of handles we should do readahead io to. 1674 */ 1675 num = valid_swaphandles(entry, &offset); 1676 for (i = 0; i < num; offset++, i++) { 1677 /* Ok, do the async read-ahead now */ 1678 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 1679 offset), vma, addr); 1680 if (!new_page) 1681 break; 1682 page_cache_release(new_page); 1683#ifdef CONFIG_NUMA 1684 /* 1685 * Find the next applicable VMA for the NUMA policy. 1686 */ 1687 addr += PAGE_SIZE; 1688 if (addr == 0) 1689 vma = NULL; 1690 if (vma) { 1691 if (addr >= vma->vm_end) { 1692 vma = next_vma; 1693 next_vma = vma ? vma->vm_next : NULL; 1694 } 1695 if (vma && addr < vma->vm_start) 1696 vma = NULL; 1697 } else { 1698 if (next_vma && addr >= next_vma->vm_start) { 1699 vma = next_vma; 1700 next_vma = vma->vm_next; 1701 } 1702 } 1703#endif 1704 } 1705 lru_add_drain(); /* Push any new pages onto the LRU now */ 1706} 1707 1708/* 1709 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1710 * but allow concurrent faults), and pte mapped but not yet locked. 1711 * We return with mmap_sem still held, but pte unmapped and unlocked. 1712 */ 1713static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 1714 unsigned long address, pte_t *page_table, pmd_t *pmd, 1715 int write_access, pte_t orig_pte) 1716{ 1717 spinlock_t *ptl; 1718 struct page *page; 1719 swp_entry_t entry; 1720 pte_t pte; 1721 int ret = VM_FAULT_MINOR; 1722 1723 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 1724 goto out; 1725 1726 entry = pte_to_swp_entry(orig_pte); 1727 page = lookup_swap_cache(entry); 1728 if (!page) { 1729 swapin_readahead(entry, address, vma); 1730 page = read_swap_cache_async(entry, vma, address); 1731 if (!page) { 1732 /* 1733 * Back out if somebody else faulted in this pte 1734 * while we released the pte lock. 1735 */ 1736 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1737 if (likely(pte_same(*page_table, orig_pte))) 1738 ret = VM_FAULT_OOM; 1739 goto unlock; 1740 } 1741 1742 /* Had to read the page from swap area: Major fault */ 1743 ret = VM_FAULT_MAJOR; 1744 inc_page_state(pgmajfault); 1745 grab_swap_token(); 1746 } 1747 1748 mark_page_accessed(page); 1749 lock_page(page); 1750 1751 /* 1752 * Back out if somebody else already faulted in this pte. 1753 */ 1754 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1755 if (unlikely(!pte_same(*page_table, orig_pte))) 1756 goto out_nomap; 1757 1758 if (unlikely(!PageUptodate(page))) { 1759 ret = VM_FAULT_SIGBUS; 1760 goto out_nomap; 1761 } 1762 1763 /* The page isn't present yet, go ahead with the fault. */ 1764 1765 inc_mm_counter(mm, anon_rss); 1766 pte = mk_pte(page, vma->vm_page_prot); 1767 if (write_access && can_share_swap_page(page)) { 1768 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 1769 write_access = 0; 1770 } 1771 1772 flush_icache_page(vma, page); 1773 set_pte_at(mm, address, page_table, pte); 1774 page_add_anon_rmap(page, vma, address); 1775 1776 swap_free(entry); 1777 if (vm_swap_full()) 1778 remove_exclusive_swap_page(page); 1779 unlock_page(page); 1780 1781 if (write_access) { 1782 if (do_wp_page(mm, vma, address, 1783 page_table, pmd, ptl, pte) == VM_FAULT_OOM) 1784 ret = VM_FAULT_OOM; 1785 goto out; 1786 } 1787 1788 /* No need to invalidate - it was non-present before */ 1789 update_mmu_cache(vma, address, pte); 1790 lazy_mmu_prot_update(pte); 1791unlock: 1792 pte_unmap_unlock(page_table, ptl); 1793out: 1794 return ret; 1795out_nomap: 1796 pte_unmap_unlock(page_table, ptl); 1797 unlock_page(page); 1798 page_cache_release(page); 1799 return ret; 1800} 1801 1802/* 1803 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1804 * but allow concurrent faults), and pte mapped but not yet locked. 1805 * We return with mmap_sem still held, but pte unmapped and unlocked. 1806 */ 1807static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 1808 unsigned long address, pte_t *page_table, pmd_t *pmd, 1809 int write_access) 1810{ 1811 struct page *page; 1812 spinlock_t *ptl; 1813 pte_t entry; 1814 1815 /* 1816 * A VM_UNPAGED vma will normally be filled with present ptes 1817 * by remap_pfn_range, and never arrive here; but it might have 1818 * holes, or if !VM_DONTEXPAND, mremap might have expanded it. 1819 * It's weird enough handling anon pages in unpaged vmas, we do 1820 * not want to worry about ZERO_PAGEs too (it may or may not 1821 * matter if their counts wrap): just give them anon pages. 1822 */ 1823 1824 if (write_access || (vma->vm_flags & VM_UNPAGED)) { 1825 /* Allocate our own private page. */ 1826 pte_unmap(page_table); 1827 1828 if (unlikely(anon_vma_prepare(vma))) 1829 goto oom; 1830 page = alloc_zeroed_user_highpage(vma, address); 1831 if (!page) 1832 goto oom; 1833 1834 entry = mk_pte(page, vma->vm_page_prot); 1835 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1836 1837 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1838 if (!pte_none(*page_table)) 1839 goto release; 1840 inc_mm_counter(mm, anon_rss); 1841 lru_cache_add_active(page); 1842 SetPageReferenced(page); 1843 page_add_anon_rmap(page, vma, address); 1844 } else { 1845 /* Map the ZERO_PAGE - vm_page_prot is readonly */ 1846 page = ZERO_PAGE(address); 1847 page_cache_get(page); 1848 entry = mk_pte(page, vma->vm_page_prot); 1849 1850 ptl = pte_lockptr(mm, pmd); 1851 spin_lock(ptl); 1852 if (!pte_none(*page_table)) 1853 goto release; 1854 inc_mm_counter(mm, file_rss); 1855 page_add_file_rmap(page); 1856 } 1857 1858 set_pte_at(mm, address, page_table, entry); 1859 1860 /* No need to invalidate - it was non-present before */ 1861 update_mmu_cache(vma, address, entry); 1862 lazy_mmu_prot_update(entry); 1863unlock: 1864 pte_unmap_unlock(page_table, ptl); 1865 return VM_FAULT_MINOR; 1866release: 1867 page_cache_release(page); 1868 goto unlock; 1869oom: 1870 return VM_FAULT_OOM; 1871} 1872 1873/* 1874 * do_no_page() tries to create a new page mapping. It aggressively 1875 * tries to share with existing pages, but makes a separate copy if 1876 * the "write_access" parameter is true in order to avoid the next 1877 * page fault. 1878 * 1879 * As this is called only for pages that do not currently exist, we 1880 * do not need to flush old virtual caches or the TLB. 1881 * 1882 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1883 * but allow concurrent faults), and pte mapped but not yet locked. 1884 * We return with mmap_sem still held, but pte unmapped and unlocked. 1885 */ 1886static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1887 unsigned long address, pte_t *page_table, pmd_t *pmd, 1888 int write_access) 1889{ 1890 spinlock_t *ptl; 1891 struct page *new_page; 1892 struct address_space *mapping = NULL; 1893 pte_t entry; 1894 unsigned int sequence = 0; 1895 int ret = VM_FAULT_MINOR; 1896 int anon = 0; 1897 1898 pte_unmap(page_table); 1899 BUG_ON(vma->vm_flags & VM_UNPAGED); 1900 1901 if (vma->vm_file) { 1902 mapping = vma->vm_file->f_mapping; 1903 sequence = mapping->truncate_count; 1904 smp_rmb(); /* serializes i_size against truncate_count */ 1905 } 1906retry: 1907 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 1908 /* 1909 * No smp_rmb is needed here as long as there's a full 1910 * spin_lock/unlock sequence inside the ->nopage callback 1911 * (for the pagecache lookup) that acts as an implicit 1912 * smp_mb() and prevents the i_size read to happen 1913 * after the next truncate_count read. 1914 */ 1915 1916 /* no page was available -- either SIGBUS or OOM */ 1917 if (new_page == NOPAGE_SIGBUS) 1918 return VM_FAULT_SIGBUS; 1919 if (new_page == NOPAGE_OOM) 1920 return VM_FAULT_OOM; 1921 1922 /* 1923 * Should we do an early C-O-W break? 1924 */ 1925 if (write_access && !(vma->vm_flags & VM_SHARED)) { 1926 struct page *page; 1927 1928 if (unlikely(anon_vma_prepare(vma))) 1929 goto oom; 1930 page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1931 if (!page) 1932 goto oom; 1933 copy_user_highpage(page, new_page, address); 1934 page_cache_release(new_page); 1935 new_page = page; 1936 anon = 1; 1937 } 1938 1939 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1940 /* 1941 * For a file-backed vma, someone could have truncated or otherwise 1942 * invalidated this page. If unmap_mapping_range got called, 1943 * retry getting the page. 1944 */ 1945 if (mapping && unlikely(sequence != mapping->truncate_count)) { 1946 pte_unmap_unlock(page_table, ptl); 1947 page_cache_release(new_page); 1948 cond_resched(); 1949 sequence = mapping->truncate_count; 1950 smp_rmb(); 1951 goto retry; 1952 } 1953 1954 /* 1955 * This silly early PAGE_DIRTY setting removes a race 1956 * due to the bad i386 page protection. But it's valid 1957 * for other architectures too. 1958 * 1959 * Note that if write_access is true, we either now have 1960 * an exclusive copy of the page, or this is a shared mapping, 1961 * so we can make it writable and dirty to avoid having to 1962 * handle that later. 1963 */ 1964 /* Only go through if we didn't race with anybody else... */ 1965 if (pte_none(*page_table)) { 1966 flush_icache_page(vma, new_page); 1967 entry = mk_pte(new_page, vma->vm_page_prot); 1968 if (write_access) 1969 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1970 set_pte_at(mm, address, page_table, entry); 1971 if (anon) { 1972 inc_mm_counter(mm, anon_rss); 1973 lru_cache_add_active(new_page); 1974 page_add_anon_rmap(new_page, vma, address); 1975 } else { 1976 inc_mm_counter(mm, file_rss); 1977 page_add_file_rmap(new_page); 1978 } 1979 } else { 1980 /* One of our sibling threads was faster, back out. */ 1981 page_cache_release(new_page); 1982 goto unlock; 1983 } 1984 1985 /* no need to invalidate: a not-present page shouldn't be cached */ 1986 update_mmu_cache(vma, address, entry); 1987 lazy_mmu_prot_update(entry); 1988unlock: 1989 pte_unmap_unlock(page_table, ptl); 1990 return ret; 1991oom: 1992 page_cache_release(new_page); 1993 return VM_FAULT_OOM; 1994} 1995 1996/* 1997 * Fault of a previously existing named mapping. Repopulate the pte 1998 * from the encoded file_pte if possible. This enables swappable 1999 * nonlinear vmas. 2000 * 2001 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2002 * but allow concurrent faults), and pte mapped but not yet locked. 2003 * We return with mmap_sem still held, but pte unmapped and unlocked. 2004 */ 2005static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, 2006 unsigned long address, pte_t *page_table, pmd_t *pmd, 2007 int write_access, pte_t orig_pte) 2008{ 2009 pgoff_t pgoff; 2010 int err; 2011 2012 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2013 return VM_FAULT_MINOR; 2014 2015 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2016 /* 2017 * Page table corrupted: show pte and kill process. 2018 */ 2019 print_bad_pte(vma, orig_pte, address); 2020 return VM_FAULT_OOM; 2021 } 2022 /* We can then assume vm->vm_ops && vma->vm_ops->populate */ 2023 2024 pgoff = pte_to_pgoff(orig_pte); 2025 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, 2026 vma->vm_page_prot, pgoff, 0); 2027 if (err == -ENOMEM) 2028 return VM_FAULT_OOM; 2029 if (err) 2030 return VM_FAULT_SIGBUS; 2031 return VM_FAULT_MAJOR; 2032} 2033 2034/* 2035 * These routines also need to handle stuff like marking pages dirty 2036 * and/or accessed for architectures that don't do it in hardware (most 2037 * RISC architectures). The early dirtying is also good on the i386. 2038 * 2039 * There is also a hook called "update_mmu_cache()" that architectures 2040 * with external mmu caches can use to update those (ie the Sparc or 2041 * PowerPC hashed page tables that act as extended TLBs). 2042 * 2043 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2044 * but allow concurrent faults), and pte mapped but not yet locked. 2045 * We return with mmap_sem still held, but pte unmapped and unlocked. 2046 */ 2047static inline int handle_pte_fault(struct mm_struct *mm, 2048 struct vm_area_struct *vma, unsigned long address, 2049 pte_t *pte, pmd_t *pmd, int write_access) 2050{ 2051 pte_t entry; 2052 pte_t old_entry; 2053 spinlock_t *ptl; 2054 2055 old_entry = entry = *pte; 2056 if (!pte_present(entry)) { 2057 if (pte_none(entry)) { 2058 if (!vma->vm_ops || !vma->vm_ops->nopage) 2059 return do_anonymous_page(mm, vma, address, 2060 pte, pmd, write_access); 2061 return do_no_page(mm, vma, address, 2062 pte, pmd, write_access); 2063 } 2064 if (pte_file(entry)) 2065 return do_file_page(mm, vma, address, 2066 pte, pmd, write_access, entry); 2067 return do_swap_page(mm, vma, address, 2068 pte, pmd, write_access, entry); 2069 } 2070 2071 ptl = pte_lockptr(mm, pmd); 2072 spin_lock(ptl); 2073 if (unlikely(!pte_same(*pte, entry))) 2074 goto unlock; 2075 if (write_access) { 2076 if (!pte_write(entry)) 2077 return do_wp_page(mm, vma, address, 2078 pte, pmd, ptl, entry); 2079 entry = pte_mkdirty(entry); 2080 } 2081 entry = pte_mkyoung(entry); 2082 if (!pte_same(old_entry, entry)) { 2083 ptep_set_access_flags(vma, address, pte, entry, write_access); 2084 update_mmu_cache(vma, address, entry); 2085 lazy_mmu_prot_update(entry); 2086 } else { 2087 /* 2088 * This is needed only for protection faults but the arch code 2089 * is not yet telling us if this is a protection fault or not. 2090 * This still avoids useless tlb flushes for .text page faults 2091 * with threads. 2092 */ 2093 if (write_access) 2094 flush_tlb_page(vma, address); 2095 } 2096unlock: 2097 pte_unmap_unlock(pte, ptl); 2098 return VM_FAULT_MINOR; 2099} 2100 2101/* 2102 * By the time we get here, we already hold the mm semaphore 2103 */ 2104int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2105 unsigned long address, int write_access) 2106{ 2107 pgd_t *pgd; 2108 pud_t *pud; 2109 pmd_t *pmd; 2110 pte_t *pte; 2111 2112 __set_current_state(TASK_RUNNING); 2113 2114 inc_page_state(pgfault); 2115 2116 if (unlikely(is_vm_hugetlb_page(vma))) 2117 return hugetlb_fault(mm, vma, address, write_access); 2118 2119 pgd = pgd_offset(mm, address); 2120 pud = pud_alloc(mm, pgd, address); 2121 if (!pud) 2122 return VM_FAULT_OOM; 2123 pmd = pmd_alloc(mm, pud, address); 2124 if (!pmd) 2125 return VM_FAULT_OOM; 2126 pte = pte_alloc_map(mm, pmd, address); 2127 if (!pte) 2128 return VM_FAULT_OOM; 2129 2130 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2131} 2132 2133#ifndef __PAGETABLE_PUD_FOLDED 2134/* 2135 * Allocate page upper directory. 2136 * We've already handled the fast-path in-line. 2137 */ 2138int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2139{ 2140 pud_t *new = pud_alloc_one(mm, address); 2141 if (!new) 2142 return -ENOMEM; 2143 2144 spin_lock(&mm->page_table_lock); 2145 if (pgd_present(*pgd)) /* Another has populated it */ 2146 pud_free(new); 2147 else 2148 pgd_populate(mm, pgd, new); 2149 spin_unlock(&mm->page_table_lock); 2150 return 0; 2151} 2152#endif /* __PAGETABLE_PUD_FOLDED */ 2153 2154#ifndef __PAGETABLE_PMD_FOLDED 2155/* 2156 * Allocate page middle directory. 2157 * We've already handled the fast-path in-line. 2158 */ 2159int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2160{ 2161 pmd_t *new = pmd_alloc_one(mm, address); 2162 if (!new) 2163 return -ENOMEM; 2164 2165 spin_lock(&mm->page_table_lock); 2166#ifndef __ARCH_HAS_4LEVEL_HACK 2167 if (pud_present(*pud)) /* Another has populated it */ 2168 pmd_free(new); 2169 else 2170 pud_populate(mm, pud, new); 2171#else 2172 if (pgd_present(*pud)) /* Another has populated it */ 2173 pmd_free(new); 2174 else 2175 pgd_populate(mm, pud, new); 2176#endif /* __ARCH_HAS_4LEVEL_HACK */ 2177 spin_unlock(&mm->page_table_lock); 2178 return 0; 2179} 2180#endif /* __PAGETABLE_PMD_FOLDED */ 2181 2182int make_pages_present(unsigned long addr, unsigned long end) 2183{ 2184 int ret, len, write; 2185 struct vm_area_struct * vma; 2186 2187 vma = find_vma(current->mm, addr); 2188 if (!vma) 2189 return -1; 2190 write = (vma->vm_flags & VM_WRITE) != 0; 2191 if (addr >= end) 2192 BUG(); 2193 if (end > vma->vm_end) 2194 BUG(); 2195 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; 2196 ret = get_user_pages(current, current->mm, addr, 2197 len, write, 0, NULL, NULL); 2198 if (ret < 0) 2199 return ret; 2200 return ret == len ? 0 : -1; 2201} 2202 2203/* 2204 * Map a vmalloc()-space virtual address to the physical page. 2205 */ 2206struct page * vmalloc_to_page(void * vmalloc_addr) 2207{ 2208 unsigned long addr = (unsigned long) vmalloc_addr; 2209 struct page *page = NULL; 2210 pgd_t *pgd = pgd_offset_k(addr); 2211 pud_t *pud; 2212 pmd_t *pmd; 2213 pte_t *ptep, pte; 2214 2215 if (!pgd_none(*pgd)) { 2216 pud = pud_offset(pgd, addr); 2217 if (!pud_none(*pud)) { 2218 pmd = pmd_offset(pud, addr); 2219 if (!pmd_none(*pmd)) { 2220 ptep = pte_offset_map(pmd, addr); 2221 pte = *ptep; 2222 if (pte_present(pte)) 2223 page = pte_page(pte); 2224 pte_unmap(ptep); 2225 } 2226 } 2227 } 2228 return page; 2229} 2230 2231EXPORT_SYMBOL(vmalloc_to_page); 2232 2233/* 2234 * Map a vmalloc()-space virtual address to the physical page frame number. 2235 */ 2236unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2237{ 2238 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2239} 2240 2241EXPORT_SYMBOL(vmalloc_to_pfn); 2242 2243#if !defined(__HAVE_ARCH_GATE_AREA) 2244 2245#if defined(AT_SYSINFO_EHDR) 2246static struct vm_area_struct gate_vma; 2247 2248static int __init gate_vma_init(void) 2249{ 2250 gate_vma.vm_mm = NULL; 2251 gate_vma.vm_start = FIXADDR_USER_START; 2252 gate_vma.vm_end = FIXADDR_USER_END; 2253 gate_vma.vm_page_prot = PAGE_READONLY; 2254 gate_vma.vm_flags = 0; 2255 return 0; 2256} 2257__initcall(gate_vma_init); 2258#endif 2259 2260struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2261{ 2262#ifdef AT_SYSINFO_EHDR 2263 return &gate_vma; 2264#else 2265 return NULL; 2266#endif 2267} 2268 2269int in_gate_area_no_task(unsigned long addr) 2270{ 2271#ifdef AT_SYSINFO_EHDR 2272 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2273 return 1; 2274#endif 2275 return 0; 2276} 2277 2278#endif /* __HAVE_ARCH_GATE_AREA */