1/* 2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details 3 */ 4 5 /* this file has an amazingly stupid 6 name, yura please fix it to be 7 reiserfs.h, and merge all the rest 8 of our .h files that are in this 9 directory into it. */ 10 11#ifndef _LINUX_REISER_FS_H 12#define _LINUX_REISER_FS_H 13 14#include <linux/types.h> 15#ifdef __KERNEL__ 16#include <linux/slab.h> 17#include <linux/interrupt.h> 18#include <linux/sched.h> 19#include <linux/workqueue.h> 20#include <asm/unaligned.h> 21#include <linux/bitops.h> 22#include <linux/proc_fs.h> 23#include <linux/smp_lock.h> 24#include <linux/buffer_head.h> 25#include <linux/reiserfs_fs_i.h> 26#include <linux/reiserfs_fs_sb.h> 27#endif 28 29/* 30 * include/linux/reiser_fs.h 31 * 32 * Reiser File System constants and structures 33 * 34 */ 35 36/* in reading the #defines, it may help to understand that they employ 37 the following abbreviations: 38 39 B = Buffer 40 I = Item header 41 H = Height within the tree (should be changed to LEV) 42 N = Number of the item in the node 43 STAT = stat data 44 DEH = Directory Entry Header 45 EC = Entry Count 46 E = Entry number 47 UL = Unsigned Long 48 BLKH = BLocK Header 49 UNFM = UNForMatted node 50 DC = Disk Child 51 P = Path 52 53 These #defines are named by concatenating these abbreviations, 54 where first comes the arguments, and last comes the return value, 55 of the macro. 56 57*/ 58 59#define USE_INODE_GENERATION_COUNTER 60 61#define REISERFS_PREALLOCATE 62#define DISPLACE_NEW_PACKING_LOCALITIES 63#define PREALLOCATION_SIZE 9 64 65/* n must be power of 2 */ 66#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) 67 68// to be ok for alpha and others we have to align structures to 8 byte 69// boundary. 70// FIXME: do not change 4 by anything else: there is code which relies on that 71#define ROUND_UP(x) _ROUND_UP(x,8LL) 72 73/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug 74** messages. 75*/ 76#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 77 78void reiserfs_warning(struct super_block *s, const char *fmt, ...); 79/* assertions handling */ 80 81/** always check a condition and panic if it's false. */ 82#define RASSERT( cond, format, args... ) \ 83if( !( cond ) ) \ 84 reiserfs_panic( NULL, "reiserfs[%i]: assertion " #cond " failed at " \ 85 __FILE__ ":%i:%s: " format "\n", \ 86 in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args ) 87 88#if defined( CONFIG_REISERFS_CHECK ) 89#define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args ) 90#else 91#define RFALSE( cond, format, args... ) do {;} while( 0 ) 92#endif 93 94#define CONSTF __attribute_const__ 95/* 96 * Disk Data Structures 97 */ 98 99/***************************************************************************/ 100/* SUPER BLOCK */ 101/***************************************************************************/ 102 103/* 104 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs 105 * the version in RAM is part of a larger structure containing fields never written to disk. 106 */ 107#define UNSET_HASH 0 // read_super will guess about, what hash names 108 // in directories were sorted with 109#define TEA_HASH 1 110#define YURA_HASH 2 111#define R5_HASH 3 112#define DEFAULT_HASH R5_HASH 113 114struct journal_params { 115 __le32 jp_journal_1st_block; /* where does journal start from on its 116 * device */ 117 __le32 jp_journal_dev; /* journal device st_rdev */ 118 __le32 jp_journal_size; /* size of the journal */ 119 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */ 120 __le32 jp_journal_magic; /* random value made on fs creation (this 121 * was sb_journal_block_count) */ 122 __le32 jp_journal_max_batch; /* max number of blocks to batch into a 123 * trans */ 124 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async 125 * commit be */ 126 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction 127 * be */ 128}; 129 130/* this is the super from 3.5.X, where X >= 10 */ 131struct reiserfs_super_block_v1 { 132 __le32 s_block_count; /* blocks count */ 133 __le32 s_free_blocks; /* free blocks count */ 134 __le32 s_root_block; /* root block number */ 135 struct journal_params s_journal; 136 __le16 s_blocksize; /* block size */ 137 __le16 s_oid_maxsize; /* max size of object id array, see 138 * get_objectid() commentary */ 139 __le16 s_oid_cursize; /* current size of object id array */ 140 __le16 s_umount_state; /* this is set to 1 when filesystem was 141 * umounted, to 2 - when not */ 142 char s_magic[10]; /* reiserfs magic string indicates that 143 * file system is reiserfs: 144 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ 145 __le16 s_fs_state; /* it is set to used by fsck to mark which 146 * phase of rebuilding is done */ 147 __le32 s_hash_function_code; /* indicate, what hash function is being use 148 * to sort names in a directory*/ 149 __le16 s_tree_height; /* height of disk tree */ 150 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address 151 * each block of file system */ 152 __le16 s_version; /* this field is only reliable on filesystem 153 * with non-standard journal */ 154 __le16 s_reserved_for_journal; /* size in blocks of journal area on main 155 * device, we need to keep after 156 * making fs with non-standard journal */ 157} __attribute__ ((__packed__)); 158 159#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) 160 161/* this is the on disk super block */ 162struct reiserfs_super_block { 163 struct reiserfs_super_block_v1 s_v1; 164 __le32 s_inode_generation; 165 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */ 166 unsigned char s_uuid[16]; /* filesystem unique identifier */ 167 unsigned char s_label[16]; /* filesystem volume label */ 168 char s_unused[88]; /* zero filled by mkreiserfs and 169 * reiserfs_convert_objectid_map_v1() 170 * so any additions must be updated 171 * there as well. */ 172} __attribute__ ((__packed__)); 173 174#define SB_SIZE (sizeof(struct reiserfs_super_block)) 175 176#define REISERFS_VERSION_1 0 177#define REISERFS_VERSION_2 2 178 179// on-disk super block fields converted to cpu form 180#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) 181#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) 182#define SB_BLOCKSIZE(s) \ 183 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) 184#define SB_BLOCK_COUNT(s) \ 185 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) 186#define SB_FREE_BLOCKS(s) \ 187 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) 188#define SB_REISERFS_MAGIC(s) \ 189 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) 190#define SB_ROOT_BLOCK(s) \ 191 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) 192#define SB_TREE_HEIGHT(s) \ 193 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) 194#define SB_REISERFS_STATE(s) \ 195 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) 196#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) 197#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) 198 199#define PUT_SB_BLOCK_COUNT(s, val) \ 200 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) 201#define PUT_SB_FREE_BLOCKS(s, val) \ 202 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) 203#define PUT_SB_ROOT_BLOCK(s, val) \ 204 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) 205#define PUT_SB_TREE_HEIGHT(s, val) \ 206 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) 207#define PUT_SB_REISERFS_STATE(s, val) \ 208 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 209#define PUT_SB_VERSION(s, val) \ 210 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) 211#define PUT_SB_BMAP_NR(s, val) \ 212 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) 213 214#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) 215#define SB_ONDISK_JOURNAL_SIZE(s) \ 216 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) 217#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ 218 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) 219#define SB_ONDISK_JOURNAL_DEVICE(s) \ 220 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) 221#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ 222 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) 223 224#define is_block_in_log_or_reserved_area(s, block) \ 225 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ 226 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ 227 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ 228 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 229 230 /* used by gcc */ 231#define REISERFS_SUPER_MAGIC 0x52654973 232 /* used by file system utilities that 233 look at the superblock, etc. */ 234#define REISERFS_SUPER_MAGIC_STRING "ReIsErFs" 235#define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs" 236#define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs" 237 238int is_reiserfs_3_5(struct reiserfs_super_block *rs); 239int is_reiserfs_3_6(struct reiserfs_super_block *rs); 240int is_reiserfs_jr(struct reiserfs_super_block *rs); 241 242/* ReiserFS leaves the first 64k unused, so that partition labels have 243 enough space. If someone wants to write a fancy bootloader that 244 needs more than 64k, let us know, and this will be increased in size. 245 This number must be larger than than the largest block size on any 246 platform, or code will break. -Hans */ 247#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) 248#define REISERFS_FIRST_BLOCK unused_define 249#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES 250 251/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ 252#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) 253 254// reiserfs internal error code (used by search_by_key adn fix_nodes)) 255#define CARRY_ON 0 256#define REPEAT_SEARCH -1 257#define IO_ERROR -2 258#define NO_DISK_SPACE -3 259#define NO_BALANCING_NEEDED (-4) 260#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) 261#define QUOTA_EXCEEDED -6 262 263typedef __u32 b_blocknr_t; 264typedef __le32 unp_t; 265 266struct unfm_nodeinfo { 267 unp_t unfm_nodenum; 268 unsigned short unfm_freespace; 269}; 270 271/* there are two formats of keys: 3.5 and 3.6 272 */ 273#define KEY_FORMAT_3_5 0 274#define KEY_FORMAT_3_6 1 275 276/* there are two stat datas */ 277#define STAT_DATA_V1 0 278#define STAT_DATA_V2 1 279 280static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) 281{ 282 return container_of(inode, struct reiserfs_inode_info, vfs_inode); 283} 284 285static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) 286{ 287 return sb->s_fs_info; 288} 289 290/** this says about version of key of all items (but stat data) the 291 object consists of */ 292#define get_inode_item_key_version( inode ) \ 293 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) 294 295#define set_inode_item_key_version( inode, version ) \ 296 ({ if((version)==KEY_FORMAT_3_6) \ 297 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ 298 else \ 299 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) 300 301#define get_inode_sd_version(inode) \ 302 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) 303 304#define set_inode_sd_version(inode, version) \ 305 ({ if((version)==STAT_DATA_V2) \ 306 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ 307 else \ 308 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) 309 310/* This is an aggressive tail suppression policy, I am hoping it 311 improves our benchmarks. The principle behind it is that percentage 312 space saving is what matters, not absolute space saving. This is 313 non-intuitive, but it helps to understand it if you consider that the 314 cost to access 4 blocks is not much more than the cost to access 1 315 block, if you have to do a seek and rotate. A tail risks a 316 non-linear disk access that is significant as a percentage of total 317 time cost for a 4 block file and saves an amount of space that is 318 less significant as a percentage of space, or so goes the hypothesis. 319 -Hans */ 320#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ 321(\ 322 (!(n_tail_size)) || \ 323 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ 324 ( (n_file_size) >= (n_block_size) * 4 ) || \ 325 ( ( (n_file_size) >= (n_block_size) * 3 ) && \ 326 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ 327 ( ( (n_file_size) >= (n_block_size) * 2 ) && \ 328 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ 329 ( ( (n_file_size) >= (n_block_size) ) && \ 330 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ 331) 332 333/* Another strategy for tails, this one means only create a tail if all the 334 file would fit into one DIRECT item. 335 Primary intention for this one is to increase performance by decreasing 336 seeking. 337*/ 338#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ 339(\ 340 (!(n_tail_size)) || \ 341 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ 342) 343 344/* 345 * values for s_umount_state field 346 */ 347#define REISERFS_VALID_FS 1 348#define REISERFS_ERROR_FS 2 349 350// 351// there are 5 item types currently 352// 353#define TYPE_STAT_DATA 0 354#define TYPE_INDIRECT 1 355#define TYPE_DIRECT 2 356#define TYPE_DIRENTRY 3 357#define TYPE_MAXTYPE 3 358#define TYPE_ANY 15 // FIXME: comment is required 359 360/***************************************************************************/ 361/* KEY & ITEM HEAD */ 362/***************************************************************************/ 363 364// 365// directories use this key as well as old files 366// 367struct offset_v1 { 368 __le32 k_offset; 369 __le32 k_uniqueness; 370} __attribute__ ((__packed__)); 371 372struct offset_v2 { 373 __le64 v; 374} __attribute__ ((__packed__)); 375 376static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) 377{ 378 __u8 type = le64_to_cpu(v2->v) >> 60; 379 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; 380} 381 382static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) 383{ 384 v2->v = 385 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); 386} 387 388static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) 389{ 390 return le64_to_cpu(v2->v) & (~0ULL >> 4); 391} 392 393static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) 394{ 395 offset &= (~0ULL >> 4); 396 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); 397} 398 399/* Key of an item determines its location in the S+tree, and 400 is composed of 4 components */ 401struct reiserfs_key { 402 __le32 k_dir_id; /* packing locality: by default parent 403 directory object id */ 404 __le32 k_objectid; /* object identifier */ 405 union { 406 struct offset_v1 k_offset_v1; 407 struct offset_v2 k_offset_v2; 408 } __attribute__ ((__packed__)) u; 409} __attribute__ ((__packed__)); 410 411struct in_core_key { 412 __u32 k_dir_id; /* packing locality: by default parent 413 directory object id */ 414 __u32 k_objectid; /* object identifier */ 415 __u64 k_offset; 416 __u8 k_type; 417}; 418 419struct cpu_key { 420 struct in_core_key on_disk_key; 421 int version; 422 int key_length; /* 3 in all cases but direct2indirect and 423 indirect2direct conversion */ 424}; 425 426/* Our function for comparing keys can compare keys of different 427 lengths. It takes as a parameter the length of the keys it is to 428 compare. These defines are used in determining what is to be passed 429 to it as that parameter. */ 430#define REISERFS_FULL_KEY_LEN 4 431#define REISERFS_SHORT_KEY_LEN 2 432 433/* The result of the key compare */ 434#define FIRST_GREATER 1 435#define SECOND_GREATER -1 436#define KEYS_IDENTICAL 0 437#define KEY_FOUND 1 438#define KEY_NOT_FOUND 0 439 440#define KEY_SIZE (sizeof(struct reiserfs_key)) 441#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) 442 443/* return values for search_by_key and clones */ 444#define ITEM_FOUND 1 445#define ITEM_NOT_FOUND 0 446#define ENTRY_FOUND 1 447#define ENTRY_NOT_FOUND 0 448#define DIRECTORY_NOT_FOUND -1 449#define REGULAR_FILE_FOUND -2 450#define DIRECTORY_FOUND -3 451#define BYTE_FOUND 1 452#define BYTE_NOT_FOUND 0 453#define FILE_NOT_FOUND -1 454 455#define POSITION_FOUND 1 456#define POSITION_NOT_FOUND 0 457 458// return values for reiserfs_find_entry and search_by_entry_key 459#define NAME_FOUND 1 460#define NAME_NOT_FOUND 0 461#define GOTO_PREVIOUS_ITEM 2 462#define NAME_FOUND_INVISIBLE 3 463 464/* Everything in the filesystem is stored as a set of items. The 465 item head contains the key of the item, its free space (for 466 indirect items) and specifies the location of the item itself 467 within the block. */ 468 469struct item_head { 470 /* Everything in the tree is found by searching for it based on 471 * its key.*/ 472 struct reiserfs_key ih_key; 473 union { 474 /* The free space in the last unformatted node of an 475 indirect item if this is an indirect item. This 476 equals 0xFFFF iff this is a direct item or stat data 477 item. Note that the key, not this field, is used to 478 determine the item type, and thus which field this 479 union contains. */ 480 __le16 ih_free_space_reserved; 481 /* Iff this is a directory item, this field equals the 482 number of directory entries in the directory item. */ 483 __le16 ih_entry_count; 484 } __attribute__ ((__packed__)) u; 485 __le16 ih_item_len; /* total size of the item body */ 486 __le16 ih_item_location; /* an offset to the item body 487 * within the block */ 488 __le16 ih_version; /* 0 for all old items, 2 for new 489 ones. Highest bit is set by fsck 490 temporary, cleaned after all 491 done */ 492} __attribute__ ((__packed__)); 493/* size of item header */ 494#define IH_SIZE (sizeof(struct item_head)) 495 496#define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) 497#define ih_version(ih) le16_to_cpu((ih)->ih_version) 498#define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) 499#define ih_location(ih) le16_to_cpu((ih)->ih_item_location) 500#define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) 501 502#define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) 503#define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) 504#define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) 505#define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) 506#define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) 507 508#define unreachable_item(ih) (ih_version(ih) & (1 << 15)) 509 510#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) 511#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) 512 513/* these operate on indirect items, where you've got an array of ints 514** at a possibly unaligned location. These are a noop on ia32 515** 516** p is the array of __u32, i is the index into the array, v is the value 517** to store there. 518*/ 519#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i))) 520#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i)) 521 522// 523// in old version uniqueness field shows key type 524// 525#define V1_SD_UNIQUENESS 0 526#define V1_INDIRECT_UNIQUENESS 0xfffffffe 527#define V1_DIRECT_UNIQUENESS 0xffffffff 528#define V1_DIRENTRY_UNIQUENESS 500 529#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required 530 531// 532// here are conversion routines 533// 534static inline int uniqueness2type(__u32 uniqueness) CONSTF; 535static inline int uniqueness2type(__u32 uniqueness) 536{ 537 switch ((int)uniqueness) { 538 case V1_SD_UNIQUENESS: 539 return TYPE_STAT_DATA; 540 case V1_INDIRECT_UNIQUENESS: 541 return TYPE_INDIRECT; 542 case V1_DIRECT_UNIQUENESS: 543 return TYPE_DIRECT; 544 case V1_DIRENTRY_UNIQUENESS: 545 return TYPE_DIRENTRY; 546 default: 547 reiserfs_warning(NULL, "vs-500: unknown uniqueness %d", 548 uniqueness); 549 case V1_ANY_UNIQUENESS: 550 return TYPE_ANY; 551 } 552} 553 554static inline __u32 type2uniqueness(int type) CONSTF; 555static inline __u32 type2uniqueness(int type) 556{ 557 switch (type) { 558 case TYPE_STAT_DATA: 559 return V1_SD_UNIQUENESS; 560 case TYPE_INDIRECT: 561 return V1_INDIRECT_UNIQUENESS; 562 case TYPE_DIRECT: 563 return V1_DIRECT_UNIQUENESS; 564 case TYPE_DIRENTRY: 565 return V1_DIRENTRY_UNIQUENESS; 566 default: 567 reiserfs_warning(NULL, "vs-501: unknown type %d", type); 568 case TYPE_ANY: 569 return V1_ANY_UNIQUENESS; 570 } 571} 572 573// 574// key is pointer to on disk key which is stored in le, result is cpu, 575// there is no way to get version of object from key, so, provide 576// version to these defines 577// 578static inline loff_t le_key_k_offset(int version, 579 const struct reiserfs_key *key) 580{ 581 return (version == KEY_FORMAT_3_5) ? 582 le32_to_cpu(key->u.k_offset_v1.k_offset) : 583 offset_v2_k_offset(&(key->u.k_offset_v2)); 584} 585 586static inline loff_t le_ih_k_offset(const struct item_head *ih) 587{ 588 return le_key_k_offset(ih_version(ih), &(ih->ih_key)); 589} 590 591static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) 592{ 593 return (version == KEY_FORMAT_3_5) ? 594 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) : 595 offset_v2_k_type(&(key->u.k_offset_v2)); 596} 597 598static inline loff_t le_ih_k_type(const struct item_head *ih) 599{ 600 return le_key_k_type(ih_version(ih), &(ih->ih_key)); 601} 602 603static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, 604 loff_t offset) 605{ 606 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */ 607 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset)); 608} 609 610static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) 611{ 612 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 613} 614 615static inline void set_le_key_k_type(int version, struct reiserfs_key *key, 616 int type) 617{ 618 (version == KEY_FORMAT_3_5) ? 619 (void)(key->u.k_offset_v1.k_uniqueness = 620 cpu_to_le32(type2uniqueness(type))) 621 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type)); 622} 623static inline void set_le_ih_k_type(struct item_head *ih, int type) 624{ 625 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); 626} 627 628#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY) 629#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT) 630#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT) 631#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA) 632 633// 634// item header has version. 635// 636#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key)) 637#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key)) 638#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key)) 639#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key)) 640 641// 642// key is pointer to cpu key, result is cpu 643// 644static inline loff_t cpu_key_k_offset(const struct cpu_key *key) 645{ 646 return key->on_disk_key.k_offset; 647} 648 649static inline loff_t cpu_key_k_type(const struct cpu_key *key) 650{ 651 return key->on_disk_key.k_type; 652} 653 654static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) 655{ 656 key->on_disk_key.k_offset = offset; 657} 658 659static inline void set_cpu_key_k_type(struct cpu_key *key, int type) 660{ 661 key->on_disk_key.k_type = type; 662} 663 664static inline void cpu_key_k_offset_dec(struct cpu_key *key) 665{ 666 key->on_disk_key.k_offset--; 667} 668 669#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) 670#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) 671#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) 672#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) 673 674/* are these used ? */ 675#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) 676#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) 677#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) 678#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) 679 680#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \ 681 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \ 682 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) ) 683 684/* maximal length of item */ 685#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) 686#define MIN_ITEM_LEN 1 687 688/* object identifier for root dir */ 689#define REISERFS_ROOT_OBJECTID 2 690#define REISERFS_ROOT_PARENT_OBJECTID 1 691extern struct reiserfs_key root_key; 692 693/* 694 * Picture represents a leaf of the S+tree 695 * ______________________________________________________ 696 * | | Array of | | | 697 * |Block | Object-Item | F r e e | Objects- | 698 * | head | Headers | S p a c e | Items | 699 * |______|_______________|___________________|___________| 700 */ 701 702/* Header of a disk block. More precisely, header of a formatted leaf 703 or internal node, and not the header of an unformatted node. */ 704struct block_head { 705 __le16 blk_level; /* Level of a block in the tree. */ 706 __le16 blk_nr_item; /* Number of keys/items in a block. */ 707 __le16 blk_free_space; /* Block free space in bytes. */ 708 __le16 blk_reserved; 709 /* dump this in v4/planA */ 710 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */ 711}; 712 713#define BLKH_SIZE (sizeof(struct block_head)) 714#define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) 715#define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) 716#define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) 717#define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) 718#define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) 719#define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) 720#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) 721#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) 722#define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) 723#define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) 724 725/* 726 * values for blk_level field of the struct block_head 727 */ 728 729#define FREE_LEVEL 0 /* when node gets removed from the tree its 730 blk_level is set to FREE_LEVEL. It is then 731 used to see whether the node is still in the 732 tree */ 733 734#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ 735 736/* Given the buffer head of a formatted node, resolve to the block head of that node. */ 737#define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data)) 738/* Number of items that are in buffer. */ 739#define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh))) 740#define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh))) 741#define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh))) 742 743#define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0) 744#define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0) 745#define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0) 746 747/* Get right delimiting key. -- little endian */ 748#define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh)) 749 750/* Does the buffer contain a disk leaf. */ 751#define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL) 752 753/* Does the buffer contain a disk internal node */ 754#define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \ 755 && B_LEVEL(p_s_bh) <= MAX_HEIGHT) 756 757/***************************************************************************/ 758/* STAT DATA */ 759/***************************************************************************/ 760 761// 762// old stat data is 32 bytes long. We are going to distinguish new one by 763// different size 764// 765struct stat_data_v1 { 766 __le16 sd_mode; /* file type, permissions */ 767 __le16 sd_nlink; /* number of hard links */ 768 __le16 sd_uid; /* owner */ 769 __le16 sd_gid; /* group */ 770 __le32 sd_size; /* file size */ 771 __le32 sd_atime; /* time of last access */ 772 __le32 sd_mtime; /* time file was last modified */ 773 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ 774 union { 775 __le32 sd_rdev; 776 __le32 sd_blocks; /* number of blocks file uses */ 777 } __attribute__ ((__packed__)) u; 778 __le32 sd_first_direct_byte; /* first byte of file which is stored 779 in a direct item: except that if it 780 equals 1 it is a symlink and if it 781 equals ~(__u32)0 there is no 782 direct item. The existence of this 783 field really grates on me. Let's 784 replace it with a macro based on 785 sd_size and our tail suppression 786 policy. Someday. -Hans */ 787} __attribute__ ((__packed__)); 788 789#define SD_V1_SIZE (sizeof(struct stat_data_v1)) 790#define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) 791#define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 792#define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 793#define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) 794#define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) 795#define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) 796#define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) 797#define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) 798#define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) 799#define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) 800#define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) 801#define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 802#define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 803#define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 804#define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 805#define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 806#define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 807#define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 808#define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 809#define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) 810#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) 811#define sd_v1_first_direct_byte(sdp) \ 812 (le32_to_cpu((sdp)->sd_first_direct_byte)) 813#define set_sd_v1_first_direct_byte(sdp,v) \ 814 ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) 815 816#include <linux/ext2_fs.h> 817 818/* inode flags stored in sd_attrs (nee sd_reserved) */ 819 820/* we want common flags to have the same values as in ext2, 821 so chattr(1) will work without problems */ 822#define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL 823#define REISERFS_APPEND_FL EXT2_APPEND_FL 824#define REISERFS_SYNC_FL EXT2_SYNC_FL 825#define REISERFS_NOATIME_FL EXT2_NOATIME_FL 826#define REISERFS_NODUMP_FL EXT2_NODUMP_FL 827#define REISERFS_SECRM_FL EXT2_SECRM_FL 828#define REISERFS_UNRM_FL EXT2_UNRM_FL 829#define REISERFS_COMPR_FL EXT2_COMPR_FL 830#define REISERFS_NOTAIL_FL EXT2_NOTAIL_FL 831 832/* persistent flags that file inherits from the parent directory */ 833#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ 834 REISERFS_SYNC_FL | \ 835 REISERFS_NOATIME_FL | \ 836 REISERFS_NODUMP_FL | \ 837 REISERFS_SECRM_FL | \ 838 REISERFS_COMPR_FL | \ 839 REISERFS_NOTAIL_FL ) 840 841/* Stat Data on disk (reiserfs version of UFS disk inode minus the 842 address blocks) */ 843struct stat_data { 844 __le16 sd_mode; /* file type, permissions */ 845 __le16 sd_attrs; /* persistent inode flags */ 846 __le32 sd_nlink; /* number of hard links */ 847 __le64 sd_size; /* file size */ 848 __le32 sd_uid; /* owner */ 849 __le32 sd_gid; /* group */ 850 __le32 sd_atime; /* time of last access */ 851 __le32 sd_mtime; /* time file was last modified */ 852 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ 853 __le32 sd_blocks; 854 union { 855 __le32 sd_rdev; 856 __le32 sd_generation; 857 //__le32 sd_first_direct_byte; 858 /* first byte of file which is stored in a 859 direct item: except that if it equals 1 860 it is a symlink and if it equals 861 ~(__u32)0 there is no direct item. The 862 existence of this field really grates 863 on me. Let's replace it with a macro 864 based on sd_size and our tail 865 suppression policy? */ 866 } __attribute__ ((__packed__)) u; 867} __attribute__ ((__packed__)); 868// 869// this is 44 bytes long 870// 871#define SD_SIZE (sizeof(struct stat_data)) 872#define SD_V2_SIZE SD_SIZE 873#define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) 874#define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 875#define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 876/* sd_reserved */ 877/* set_sd_reserved */ 878#define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) 879#define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) 880#define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) 881#define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) 882#define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) 883#define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) 884#define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) 885#define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) 886#define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 887#define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 888#define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 889#define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 890#define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 891#define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 892#define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) 893#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) 894#define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 895#define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 896#define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) 897#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) 898#define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) 899#define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) 900 901/***************************************************************************/ 902/* DIRECTORY STRUCTURE */ 903/***************************************************************************/ 904/* 905 Picture represents the structure of directory items 906 ________________________________________________ 907 | Array of | | | | | | 908 | directory |N-1| N-2 | .... | 1st |0th| 909 | entry headers | | | | | | 910 |_______________|___|_____|________|_______|___| 911 <---- directory entries ------> 912 913 First directory item has k_offset component 1. We store "." and ".." 914 in one item, always, we never split "." and ".." into differing 915 items. This makes, among other things, the code for removing 916 directories simpler. */ 917#define SD_OFFSET 0 918#define SD_UNIQUENESS 0 919#define DOT_OFFSET 1 920#define DOT_DOT_OFFSET 2 921#define DIRENTRY_UNIQUENESS 500 922 923/* */ 924#define FIRST_ITEM_OFFSET 1 925 926/* 927 Q: How to get key of object pointed to by entry from entry? 928 929 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key 930 of object, entry points to */ 931 932/* NOT IMPLEMENTED: 933 Directory will someday contain stat data of object */ 934 935struct reiserfs_de_head { 936 __le32 deh_offset; /* third component of the directory entry key */ 937 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced 938 by directory entry */ 939 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */ 940 __le16 deh_location; /* offset of name in the whole item */ 941 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether 942 entry is hidden (unlinked) */ 943} __attribute__ ((__packed__)); 944#define DEH_SIZE sizeof(struct reiserfs_de_head) 945#define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) 946#define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) 947#define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) 948#define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) 949#define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) 950 951#define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) 952#define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) 953#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) 954#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) 955#define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) 956 957/* empty directory contains two entries "." and ".." and their headers */ 958#define EMPTY_DIR_SIZE \ 959(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) 960 961/* old format directories have this size when empty */ 962#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) 963 964#define DEH_Statdata 0 /* not used now */ 965#define DEH_Visible 2 966 967/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ 968#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) 969# define ADDR_UNALIGNED_BITS (3) 970#endif 971 972/* These are only used to manipulate deh_state. 973 * Because of this, we'll use the ext2_ bit routines, 974 * since they are little endian */ 975#ifdef ADDR_UNALIGNED_BITS 976 977# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) 978# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) 979 980# define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr)) 981# define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr)) 982# define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr)) 983 984#else 985 986# define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr) 987# define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr) 988# define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr) 989 990#endif 991 992#define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 993#define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 994#define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 995#define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 996 997#define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 998#define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 999#define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1000 1001extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, 1002 __le32 par_dirid, __le32 par_objid); 1003extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, 1004 __le32 par_dirid, __le32 par_objid); 1005 1006/* array of the entry headers */ 1007 /* get item body */ 1008#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) ) 1009#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih))) 1010 1011/* length of the directory entry in directory item. This define 1012 calculates length of i-th directory entry using directory entry 1013 locations from dir entry head. When it calculates length of 0-th 1014 directory entry, it uses length of whole item in place of entry 1015 location of the non-existent following entry in the calculation. 1016 See picture above.*/ 1017/* 1018#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \ 1019((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh)))) 1020*/ 1021static inline int entry_length(const struct buffer_head *bh, 1022 const struct item_head *ih, int pos_in_item) 1023{ 1024 struct reiserfs_de_head *deh; 1025 1026 deh = B_I_DEH(bh, ih) + pos_in_item; 1027 if (pos_in_item) 1028 return deh_location(deh - 1) - deh_location(deh); 1029 1030 return ih_item_len(ih) - deh_location(deh); 1031} 1032 1033/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */ 1034#define I_ENTRY_COUNT(ih) (ih_entry_count((ih))) 1035 1036/* name by bh, ih and entry_num */ 1037#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num)))) 1038 1039// two entries per block (at least) 1040#define REISERFS_MAX_NAME(block_size) 255 1041 1042/* this structure is used for operations on directory entries. It is 1043 not a disk structure. */ 1044/* When reiserfs_find_entry or search_by_entry_key find directory 1045 entry, they return filled reiserfs_dir_entry structure */ 1046struct reiserfs_dir_entry { 1047 struct buffer_head *de_bh; 1048 int de_item_num; 1049 struct item_head *de_ih; 1050 int de_entry_num; 1051 struct reiserfs_de_head *de_deh; 1052 int de_entrylen; 1053 int de_namelen; 1054 char *de_name; 1055 char *de_gen_number_bit_string; 1056 1057 __u32 de_dir_id; 1058 __u32 de_objectid; 1059 1060 struct cpu_key de_entry_key; 1061}; 1062 1063/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */ 1064 1065/* pointer to file name, stored in entry */ 1066#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh)) 1067 1068/* length of name */ 1069#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ 1070(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) 1071 1072/* hash value occupies bits from 7 up to 30 */ 1073#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) 1074/* generation number occupies 7 bits starting from 0 up to 6 */ 1075#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) 1076#define MAX_GENERATION_NUMBER 127 1077 1078#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) 1079 1080/* 1081 * Picture represents an internal node of the reiserfs tree 1082 * ______________________________________________________ 1083 * | | Array of | Array of | Free | 1084 * |block | keys | pointers | space | 1085 * | head | N | N+1 | | 1086 * |______|_______________|___________________|___________| 1087 */ 1088 1089/***************************************************************************/ 1090/* DISK CHILD */ 1091/***************************************************************************/ 1092/* Disk child pointer: The pointer from an internal node of the tree 1093 to a node that is on disk. */ 1094struct disk_child { 1095 __le32 dc_block_number; /* Disk child's block number. */ 1096 __le16 dc_size; /* Disk child's used space. */ 1097 __le16 dc_reserved; 1098}; 1099 1100#define DC_SIZE (sizeof(struct disk_child)) 1101#define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) 1102#define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) 1103#define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) 1104#define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) 1105 1106/* Get disk child by buffer header and position in the tree node. */ 1107#define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\ 1108((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos))) 1109 1110/* Get disk child number by buffer header and position in the tree node. */ 1111#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos))) 1112#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val )) 1113 1114 /* maximal value of field child_size in structure disk_child */ 1115 /* child size is the combined size of all items and their headers */ 1116#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) 1117 1118/* amount of used space in buffer (not including block head) */ 1119#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) 1120 1121/* max and min number of keys in internal node */ 1122#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) 1123#define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) 1124 1125/***************************************************************************/ 1126/* PATH STRUCTURES AND DEFINES */ 1127/***************************************************************************/ 1128 1129/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the 1130 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it 1131 does not find them in the cache it reads them from disk. For each node search_by_key finds using 1132 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the 1133 position of the block_number of the next node if it is looking through an internal node. If it 1134 is looking through a leaf node bin_search will find the position of the item which has key either 1135 equal to given key, or which is the maximal key less than the given key. */ 1136 1137struct path_element { 1138 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */ 1139 int pe_position; /* Position in the tree node which is placed in the */ 1140 /* buffer above. */ 1141}; 1142 1143#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */ 1144#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ 1145#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */ 1146 1147#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ 1148#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ 1149 1150/* We need to keep track of who the ancestors of nodes are. When we 1151 perform a search we record which nodes were visited while 1152 descending the tree looking for the node we searched for. This list 1153 of nodes is called the path. This information is used while 1154 performing balancing. Note that this path information may become 1155 invalid, and this means we must check it when using it to see if it 1156 is still valid. You'll need to read search_by_key and the comments 1157 in it, especially about decrement_counters_in_path(), to understand 1158 this structure. 1159 1160Paths make the code so much harder to work with and debug.... An 1161enormous number of bugs are due to them, and trying to write or modify 1162code that uses them just makes my head hurt. They are based on an 1163excessive effort to avoid disturbing the precious VFS code.:-( The 1164gods only know how we are going to SMP the code that uses them. 1165znodes are the way! */ 1166 1167#define PATH_READA 0x1 /* do read ahead */ 1168#define PATH_READA_BACK 0x2 /* read backwards */ 1169 1170struct path { 1171 int path_length; /* Length of the array above. */ 1172 int reada; 1173 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */ 1174 int pos_in_item; 1175}; 1176 1177#define pos_in_item(path) ((path)->pos_in_item) 1178 1179#define INITIALIZE_PATH(var) \ 1180struct path var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} 1181 1182/* Get path element by path and path position. */ 1183#define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset)) 1184 1185/* Get buffer header at the path by path and path position. */ 1186#define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer) 1187 1188/* Get position in the element at the path by path and path position. */ 1189#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position) 1190 1191#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length)) 1192 /* you know, to the person who didn't 1193 write this the macro name does not 1194 at first suggest what it does. 1195 Maybe POSITION_FROM_PATH_END? Or 1196 maybe we should just focus on 1197 dumping paths... -Hans */ 1198#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length)) 1199 1200#define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path)) 1201 1202/* in do_balance leaf has h == 0 in contrast with path structure, 1203 where root has level == 0. That is why we need these defines */ 1204#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */ 1205#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */ 1206#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h)) 1207#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */ 1208 1209#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h)) 1210 1211#define get_last_bh(path) PATH_PLAST_BUFFER(path) 1212#define get_ih(path) PATH_PITEM_HEAD(path) 1213#define get_item_pos(path) PATH_LAST_POSITION(path) 1214#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path))) 1215#define item_moved(ih,path) comp_items(ih, path) 1216#define path_changed(ih,path) comp_items (ih, path) 1217 1218/***************************************************************************/ 1219/* MISC */ 1220/***************************************************************************/ 1221 1222/* Size of pointer to the unformatted node. */ 1223#define UNFM_P_SIZE (sizeof(unp_t)) 1224#define UNFM_P_SHIFT 2 1225 1226// in in-core inode key is stored on le form 1227#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) 1228 1229#define MAX_UL_INT 0xffffffff 1230#define MAX_INT 0x7ffffff 1231#define MAX_US_INT 0xffff 1232 1233// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset 1234#define U32_MAX (~(__u32)0) 1235 1236static inline loff_t max_reiserfs_offset(struct inode *inode) 1237{ 1238 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) 1239 return (loff_t) U32_MAX; 1240 1241 return (loff_t) ((~(__u64) 0) >> 4); 1242} 1243 1244/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/ 1245#define MAX_KEY_OBJECTID MAX_UL_INT 1246 1247#define MAX_B_NUM MAX_UL_INT 1248#define MAX_FC_NUM MAX_US_INT 1249 1250/* the purpose is to detect overflow of an unsigned short */ 1251#define REISERFS_LINK_MAX (MAX_US_INT - 1000) 1252 1253/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */ 1254#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */ 1255#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */ 1256 1257#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) 1258#define get_generation(s) atomic_read (&fs_generation(s)) 1259#define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) 1260#define __fs_changed(gen,s) (gen != get_generation (s)) 1261#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);}) 1262 1263/***************************************************************************/ 1264/* FIXATE NODES */ 1265/***************************************************************************/ 1266 1267#define VI_TYPE_LEFT_MERGEABLE 1 1268#define VI_TYPE_RIGHT_MERGEABLE 2 1269 1270/* To make any changes in the tree we always first find node, that 1271 contains item to be changed/deleted or place to insert a new 1272 item. We call this node S. To do balancing we need to decide what 1273 we will shift to left/right neighbor, or to a new node, where new 1274 item will be etc. To make this analysis simpler we build virtual 1275 node. Virtual node is an array of items, that will replace items of 1276 node S. (For instance if we are going to delete an item, virtual 1277 node does not contain it). Virtual node keeps information about 1278 item sizes and types, mergeability of first and last items, sizes 1279 of all entries in directory item. We use this array of items when 1280 calculating what we can shift to neighbors and how many nodes we 1281 have to have if we do not any shiftings, if we shift to left/right 1282 neighbor or to both. */ 1283struct virtual_item { 1284 int vi_index; // index in the array of item operations 1285 unsigned short vi_type; // left/right mergeability 1286 unsigned short vi_item_len; /* length of item that it will have after balancing */ 1287 struct item_head *vi_ih; 1288 const char *vi_item; // body of item (old or new) 1289 const void *vi_new_data; // 0 always but paste mode 1290 void *vi_uarea; // item specific area 1291}; 1292 1293struct virtual_node { 1294 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */ 1295 unsigned short vn_nr_item; /* number of items in virtual node */ 1296 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */ 1297 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */ 1298 short vn_affected_item_num; 1299 short vn_pos_in_item; 1300 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */ 1301 const void *vn_data; 1302 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */ 1303}; 1304 1305/* used by directory items when creating virtual nodes */ 1306struct direntry_uarea { 1307 int flags; 1308 __u16 entry_count; 1309 __u16 entry_sizes[1]; 1310} __attribute__ ((__packed__)); 1311 1312/***************************************************************************/ 1313/* TREE BALANCE */ 1314/***************************************************************************/ 1315 1316/* This temporary structure is used in tree balance algorithms, and 1317 constructed as we go to the extent that its various parts are 1318 needed. It contains arrays of nodes that can potentially be 1319 involved in the balancing of node S, and parameters that define how 1320 each of the nodes must be balanced. Note that in these algorithms 1321 for balancing the worst case is to need to balance the current node 1322 S and the left and right neighbors and all of their parents plus 1323 create a new node. We implement S1 balancing for the leaf nodes 1324 and S0 balancing for the internal nodes (S1 and S0 are defined in 1325 our papers.)*/ 1326 1327#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */ 1328 1329/* maximum number of FEB blocknrs on a single level */ 1330#define MAX_AMOUNT_NEEDED 2 1331 1332/* someday somebody will prefix every field in this struct with tb_ */ 1333struct tree_balance { 1334 int tb_mode; 1335 int need_balance_dirty; 1336 struct super_block *tb_sb; 1337 struct reiserfs_transaction_handle *transaction_handle; 1338 struct path *tb_path; 1339 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */ 1340 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */ 1341 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */ 1342 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */ 1343 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */ 1344 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */ 1345 1346 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals 1347 cur_blknum. */ 1348 struct buffer_head *used[MAX_FEB_SIZE]; 1349 struct buffer_head *thrown[MAX_FEB_SIZE]; 1350 int lnum[MAX_HEIGHT]; /* array of number of items which must be 1351 shifted to the left in order to balance the 1352 current node; for leaves includes item that 1353 will be partially shifted; for internal 1354 nodes, it is the number of child pointers 1355 rather than items. It includes the new item 1356 being created. The code sometimes subtracts 1357 one to get the number of wholly shifted 1358 items for other purposes. */ 1359 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */ 1360 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and 1361 S[h] to its item number within the node CFL[h] */ 1362 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */ 1363 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from 1364 S[h]. A negative value means removing. */ 1365 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after 1366 balancing on the level h of the tree. If 0 then S is 1367 being deleted, if 1 then S is remaining and no new nodes 1368 are being created, if 2 or 3 then 1 or 2 new nodes is 1369 being created */ 1370 1371 /* fields that are used only for balancing leaves of the tree */ 1372 int cur_blknum; /* number of empty blocks having been already allocated */ 1373 int s0num; /* number of items that fall into left most node when S[0] splits */ 1374 int s1num; /* number of items that fall into first new node when S[0] splits */ 1375 int s2num; /* number of items that fall into second new node when S[0] splits */ 1376 int lbytes; /* number of bytes which can flow to the left neighbor from the left */ 1377 /* most liquid item that cannot be shifted from S[0] entirely */ 1378 /* if -1 then nothing will be partially shifted */ 1379 int rbytes; /* number of bytes which will flow to the right neighbor from the right */ 1380 /* most liquid item that cannot be shifted from S[0] entirely */ 1381 /* if -1 then nothing will be partially shifted */ 1382 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */ 1383 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */ 1384 int s2bytes; 1385 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */ 1386 char *vn_buf; /* kmalloced memory. Used to create 1387 virtual node and keep map of 1388 dirtied bitmap blocks */ 1389 int vn_buf_size; /* size of the vn_buf */ 1390 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */ 1391 1392 int fs_gen; /* saved value of `reiserfs_generation' counter 1393 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ 1394#ifdef DISPLACE_NEW_PACKING_LOCALITIES 1395 struct in_core_key key; /* key pointer, to pass to block allocator or 1396 another low-level subsystem */ 1397#endif 1398}; 1399 1400/* These are modes of balancing */ 1401 1402/* When inserting an item. */ 1403#define M_INSERT 'i' 1404/* When inserting into (directories only) or appending onto an already 1405 existant item. */ 1406#define M_PASTE 'p' 1407/* When deleting an item. */ 1408#define M_DELETE 'd' 1409/* When truncating an item or removing an entry from a (directory) item. */ 1410#define M_CUT 'c' 1411 1412/* used when balancing on leaf level skipped (in reiserfsck) */ 1413#define M_INTERNAL 'n' 1414 1415/* When further balancing is not needed, then do_balance does not need 1416 to be called. */ 1417#define M_SKIP_BALANCING 's' 1418#define M_CONVERT 'v' 1419 1420/* modes of leaf_move_items */ 1421#define LEAF_FROM_S_TO_L 0 1422#define LEAF_FROM_S_TO_R 1 1423#define LEAF_FROM_R_TO_L 2 1424#define LEAF_FROM_L_TO_R 3 1425#define LEAF_FROM_S_TO_SNEW 4 1426 1427#define FIRST_TO_LAST 0 1428#define LAST_TO_FIRST 1 1429 1430/* used in do_balance for passing parent of node information that has 1431 been gotten from tb struct */ 1432struct buffer_info { 1433 struct tree_balance *tb; 1434 struct buffer_head *bi_bh; 1435 struct buffer_head *bi_parent; 1436 int bi_position; 1437}; 1438 1439/* there are 4 types of items: stat data, directory item, indirect, direct. 1440+-------------------+------------+--------------+------------+ 1441| | k_offset | k_uniqueness | mergeable? | 1442+-------------------+------------+--------------+------------+ 1443| stat data | 0 | 0 | no | 1444+-------------------+------------+--------------+------------+ 1445| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no | 1446| non 1st directory | hash value | | yes | 1447| item | | | | 1448+-------------------+------------+--------------+------------+ 1449| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object 1450+-------------------+------------+--------------+------------+ 1451| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object 1452+-------------------+------------+--------------+------------+ 1453*/ 1454 1455struct item_operations { 1456 int (*bytes_number) (struct item_head * ih, int block_size); 1457 void (*decrement_key) (struct cpu_key *); 1458 int (*is_left_mergeable) (struct reiserfs_key * ih, 1459 unsigned long bsize); 1460 void (*print_item) (struct item_head *, char *item); 1461 void (*check_item) (struct item_head *, char *item); 1462 1463 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 1464 int is_affected, int insert_size); 1465 int (*check_left) (struct virtual_item * vi, int free, 1466 int start_skip, int end_skip); 1467 int (*check_right) (struct virtual_item * vi, int free); 1468 int (*part_size) (struct virtual_item * vi, int from, int to); 1469 int (*unit_num) (struct virtual_item * vi); 1470 void (*print_vi) (struct virtual_item * vi); 1471}; 1472 1473extern struct item_operations *item_ops[TYPE_ANY + 1]; 1474 1475#define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) 1476#define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) 1477#define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) 1478#define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) 1479#define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) 1480#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) 1481#define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) 1482#define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) 1483#define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) 1484#define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) 1485 1486#define COMP_SHORT_KEYS comp_short_keys 1487 1488/* number of blocks pointed to by the indirect item */ 1489#define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE ) 1490 1491/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */ 1492#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) 1493 1494/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */ 1495 1496/* get the item header */ 1497#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) ) 1498 1499/* get key */ 1500#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) ) 1501 1502/* get the key */ 1503#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) ) 1504 1505/* get item body */ 1506#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num)))) 1507 1508/* get the stat data by the buffer header and the item order */ 1509#define B_N_STAT_DATA(bh,nr) \ 1510( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) ) 1511 1512 /* following defines use reiserfs buffer header and item header */ 1513 1514/* get stat-data */ 1515#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) 1516 1517// this is 3976 for size==4096 1518#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) 1519 1520/* indirect items consist of entries which contain blocknrs, pos 1521 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the 1522 blocknr contained by the entry pos points to */ 1523#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos))) 1524#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0) 1525 1526struct reiserfs_iget_args { 1527 __u32 objectid; 1528 __u32 dirid; 1529}; 1530 1531/***************************************************************************/ 1532/* FUNCTION DECLARATIONS */ 1533/***************************************************************************/ 1534 1535/*#ifdef __KERNEL__*/ 1536#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) 1537 1538#define journal_trans_half(blocksize) \ 1539 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) 1540 1541/* journal.c see journal.c for all the comments here */ 1542 1543/* first block written in a commit. */ 1544struct reiserfs_journal_desc { 1545 __le32 j_trans_id; /* id of commit */ 1546 __le32 j_len; /* length of commit. len +1 is the commit block */ 1547 __le32 j_mount_id; /* mount id of this trans */ 1548 __le32 j_realblock[1]; /* real locations for each block */ 1549}; 1550 1551#define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) 1552#define get_desc_trans_len(d) le32_to_cpu((d)->j_len) 1553#define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) 1554 1555#define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) 1556#define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) 1557#define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) 1558 1559/* last block written in a commit */ 1560struct reiserfs_journal_commit { 1561 __le32 j_trans_id; /* must match j_trans_id from the desc block */ 1562 __le32 j_len; /* ditto */ 1563 __le32 j_realblock[1]; /* real locations for each block */ 1564}; 1565 1566#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) 1567#define get_commit_trans_len(c) le32_to_cpu((c)->j_len) 1568#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) 1569 1570#define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) 1571#define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) 1572 1573/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the 1574** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk, 1575** and this transaction does not need to be replayed. 1576*/ 1577struct reiserfs_journal_header { 1578 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */ 1579 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */ 1580 __le32 j_mount_id; 1581 /* 12 */ struct journal_params jh_journal; 1582}; 1583 1584/* biggest tunable defines are right here */ 1585#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ 1586#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */ 1587#define JOURNAL_TRANS_MIN_DEFAULT 256 1588#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */ 1589#define JOURNAL_MIN_RATIO 2 1590#define JOURNAL_MAX_COMMIT_AGE 30 1591#define JOURNAL_MAX_TRANS_AGE 30 1592#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) 1593#ifdef CONFIG_QUOTA 1594/* We need to update data and inode (atime) */ 1595#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0) 1596/* 1 balancing, 1 bitmap, 1 data per write + stat data update */ 1597#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \ 1598(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) 1599/* same as with INIT */ 1600#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \ 1601(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) 1602#else 1603#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 1604#define REISERFS_QUOTA_INIT_BLOCKS(s) 0 1605#define REISERFS_QUOTA_DEL_BLOCKS(s) 0 1606#endif 1607 1608/* both of these can be as low as 1, or as high as you want. The min is the 1609** number of 4k bitmap nodes preallocated on mount. New nodes are allocated 1610** as needed, and released when transactions are committed. On release, if 1611** the current number of nodes is > max, the node is freed, otherwise, 1612** it is put on a free list for faster use later. 1613*/ 1614#define REISERFS_MIN_BITMAP_NODES 10 1615#define REISERFS_MAX_BITMAP_NODES 100 1616 1617#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */ 1618#define JBH_HASH_MASK 8191 1619 1620#define _jhashfn(sb,block) \ 1621 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ 1622 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) 1623#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) 1624 1625// We need these to make journal.c code more readable 1626#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 1627#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 1628#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 1629 1630enum reiserfs_bh_state_bits { 1631 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ 1632 BH_JDirty_wait, 1633 BH_JNew, /* disk block was taken off free list before 1634 * being in a finished transaction, or 1635 * written to disk. Can be reused immed. */ 1636 BH_JPrepared, 1637 BH_JRestore_dirty, 1638 BH_JTest, // debugging only will go away 1639}; 1640 1641BUFFER_FNS(JDirty, journaled); 1642TAS_BUFFER_FNS(JDirty, journaled); 1643BUFFER_FNS(JDirty_wait, journal_dirty); 1644TAS_BUFFER_FNS(JDirty_wait, journal_dirty); 1645BUFFER_FNS(JNew, journal_new); 1646TAS_BUFFER_FNS(JNew, journal_new); 1647BUFFER_FNS(JPrepared, journal_prepared); 1648TAS_BUFFER_FNS(JPrepared, journal_prepared); 1649BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 1650TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 1651BUFFER_FNS(JTest, journal_test); 1652TAS_BUFFER_FNS(JTest, journal_test); 1653 1654/* 1655** transaction handle which is passed around for all journal calls 1656*/ 1657struct reiserfs_transaction_handle { 1658 struct super_block *t_super; /* super for this FS when journal_begin was 1659 called. saves calls to reiserfs_get_super 1660 also used by nested transactions to make 1661 sure they are nesting on the right FS 1662 _must_ be first in the handle 1663 */ 1664 int t_refcount; 1665 int t_blocks_logged; /* number of blocks this writer has logged */ 1666 int t_blocks_allocated; /* number of blocks this writer allocated */ 1667 unsigned long t_trans_id; /* sanity check, equals the current trans id */ 1668 void *t_handle_save; /* save existing current->journal_info */ 1669 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block 1670 should be displaced from others */ 1671 struct list_head t_list; 1672}; 1673 1674/* used to keep track of ordered and tail writes, attached to the buffer 1675 * head through b_journal_head. 1676 */ 1677struct reiserfs_jh { 1678 struct reiserfs_journal_list *jl; 1679 struct buffer_head *bh; 1680 struct list_head list; 1681}; 1682 1683void reiserfs_free_jh(struct buffer_head *bh); 1684int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); 1685int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); 1686int journal_mark_dirty(struct reiserfs_transaction_handle *, 1687 struct super_block *, struct buffer_head *bh); 1688 1689static inline int reiserfs_file_data_log(struct inode *inode) 1690{ 1691 if (reiserfs_data_log(inode->i_sb) || 1692 (REISERFS_I(inode)->i_flags & i_data_log)) 1693 return 1; 1694 return 0; 1695} 1696 1697static inline int reiserfs_transaction_running(struct super_block *s) 1698{ 1699 struct reiserfs_transaction_handle *th = current->journal_info; 1700 if (th && th->t_super == s) 1701 return 1; 1702 if (th && th->t_super == NULL) 1703 BUG(); 1704 return 0; 1705} 1706 1707int reiserfs_async_progress_wait(struct super_block *s); 1708 1709struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct 1710 super_block 1711 *, 1712 int count); 1713int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); 1714int reiserfs_commit_page(struct inode *inode, struct page *page, 1715 unsigned from, unsigned to); 1716int reiserfs_flush_old_commits(struct super_block *); 1717int reiserfs_commit_for_inode(struct inode *); 1718int reiserfs_inode_needs_commit(struct inode *); 1719void reiserfs_update_inode_transaction(struct inode *); 1720void reiserfs_wait_on_write_block(struct super_block *s); 1721void reiserfs_block_writes(struct reiserfs_transaction_handle *th); 1722void reiserfs_allow_writes(struct super_block *s); 1723void reiserfs_check_lock_depth(struct super_block *s, char *caller); 1724int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, 1725 int wait); 1726void reiserfs_restore_prepared_buffer(struct super_block *, 1727 struct buffer_head *bh); 1728int journal_init(struct super_block *, const char *j_dev_name, int old_format, 1729 unsigned int); 1730int journal_release(struct reiserfs_transaction_handle *, struct super_block *); 1731int journal_release_error(struct reiserfs_transaction_handle *, 1732 struct super_block *); 1733int journal_end(struct reiserfs_transaction_handle *, struct super_block *, 1734 unsigned long); 1735int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, 1736 unsigned long); 1737int journal_mark_freed(struct reiserfs_transaction_handle *, 1738 struct super_block *, b_blocknr_t blocknr); 1739int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); 1740int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, 1741 int searchall, b_blocknr_t * next); 1742int journal_begin(struct reiserfs_transaction_handle *, 1743 struct super_block *p_s_sb, unsigned long); 1744int journal_join_abort(struct reiserfs_transaction_handle *, 1745 struct super_block *p_s_sb, unsigned long); 1746void reiserfs_journal_abort(struct super_block *sb, int errno); 1747void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); 1748int reiserfs_allocate_list_bitmaps(struct super_block *s, 1749 struct reiserfs_list_bitmap *, int); 1750 1751void add_save_link(struct reiserfs_transaction_handle *th, 1752 struct inode *inode, int truncate); 1753int remove_save_link(struct inode *inode, int truncate); 1754 1755/* objectid.c */ 1756__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); 1757void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, 1758 __u32 objectid_to_release); 1759int reiserfs_convert_objectid_map_v1(struct super_block *); 1760 1761/* stree.c */ 1762int B_IS_IN_TREE(const struct buffer_head *); 1763extern void copy_item_head(struct item_head *p_v_to, 1764 const struct item_head *p_v_from); 1765 1766// first key is in cpu form, second - le 1767extern int comp_short_keys(const struct reiserfs_key *le_key, 1768 const struct cpu_key *cpu_key); 1769extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); 1770 1771// both are in le form 1772extern int comp_le_keys(const struct reiserfs_key *, 1773 const struct reiserfs_key *); 1774extern int comp_short_le_keys(const struct reiserfs_key *, 1775 const struct reiserfs_key *); 1776 1777// 1778// get key version from on disk key - kludge 1779// 1780static inline int le_key_version(const struct reiserfs_key *key) 1781{ 1782 int type; 1783 1784 type = offset_v2_k_type(&(key->u.k_offset_v2)); 1785 if (type != TYPE_DIRECT && type != TYPE_INDIRECT 1786 && type != TYPE_DIRENTRY) 1787 return KEY_FORMAT_3_5; 1788 1789 return KEY_FORMAT_3_6; 1790 1791} 1792 1793static inline void copy_key(struct reiserfs_key *to, 1794 const struct reiserfs_key *from) 1795{ 1796 memcpy(to, from, KEY_SIZE); 1797} 1798 1799int comp_items(const struct item_head *stored_ih, const struct path *p_s_path); 1800const struct reiserfs_key *get_rkey(const struct path *p_s_chk_path, 1801 const struct super_block *p_s_sb); 1802int search_by_key(struct super_block *, const struct cpu_key *, 1803 struct path *, int); 1804#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) 1805int search_for_position_by_key(struct super_block *p_s_sb, 1806 const struct cpu_key *p_s_cpu_key, 1807 struct path *p_s_search_path); 1808extern void decrement_bcount(struct buffer_head *p_s_bh); 1809void decrement_counters_in_path(struct path *p_s_search_path); 1810void pathrelse(struct path *p_s_search_path); 1811int reiserfs_check_path(struct path *p); 1812void pathrelse_and_restore(struct super_block *s, struct path *p_s_search_path); 1813 1814int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 1815 struct path *path, 1816 const struct cpu_key *key, 1817 struct item_head *ih, 1818 struct inode *inode, const char *body); 1819 1820int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 1821 struct path *path, 1822 const struct cpu_key *key, 1823 struct inode *inode, 1824 const char *body, int paste_size); 1825 1826int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 1827 struct path *path, 1828 struct cpu_key *key, 1829 struct inode *inode, 1830 struct page *page, loff_t new_file_size); 1831 1832int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 1833 struct path *path, 1834 const struct cpu_key *key, 1835 struct inode *inode, struct buffer_head *p_s_un_bh); 1836 1837void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 1838 struct inode *inode, struct reiserfs_key *key); 1839int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 1840 struct inode *p_s_inode); 1841int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 1842 struct inode *p_s_inode, struct page *, 1843 int update_timestamps); 1844 1845#define i_block_size(inode) ((inode)->i_sb->s_blocksize) 1846#define file_size(inode) ((inode)->i_size) 1847#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) 1848 1849#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ 1850!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) 1851 1852void padd_item(char *item, int total_length, int length); 1853 1854/* inode.c */ 1855/* args for the create parameter of reiserfs_get_block */ 1856#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ 1857#define GET_BLOCK_CREATE 1 /* add anything you need to find block */ 1858#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ 1859#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ 1860#define GET_BLOCK_NO_ISEM 8 /* i_sem is not held, don't preallocate */ 1861#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ 1862 1863int restart_transaction(struct reiserfs_transaction_handle *th, 1864 struct inode *inode, struct path *path); 1865void reiserfs_read_locked_inode(struct inode *inode, 1866 struct reiserfs_iget_args *args); 1867int reiserfs_find_actor(struct inode *inode, void *p); 1868int reiserfs_init_locked_inode(struct inode *inode, void *p); 1869void reiserfs_delete_inode(struct inode *inode); 1870int reiserfs_write_inode(struct inode *inode, int); 1871int reiserfs_get_block(struct inode *inode, sector_t block, 1872 struct buffer_head *bh_result, int create); 1873struct dentry *reiserfs_get_dentry(struct super_block *, void *); 1874struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data, 1875 int len, int fhtype, 1876 int (*acceptable) (void *contect, 1877 struct dentry * de), 1878 void *context); 1879int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1880 int connectable); 1881 1882int reiserfs_truncate_file(struct inode *, int update_timestamps); 1883void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, 1884 int type, int key_length); 1885void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 1886 int version, 1887 loff_t offset, int type, int length, int entry_count); 1888struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); 1889 1890int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1891 struct inode *dir, int mode, 1892 const char *symname, loff_t i_size, 1893 struct dentry *dentry, struct inode *inode); 1894 1895void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1896 struct inode *inode, loff_t size); 1897 1898static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, 1899 struct inode *inode) 1900{ 1901 reiserfs_update_sd_size(th, inode, inode->i_size); 1902} 1903 1904void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); 1905void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); 1906int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); 1907 1908/* namei.c */ 1909void set_de_name_and_namelen(struct reiserfs_dir_entry *de); 1910int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, 1911 struct path *path, struct reiserfs_dir_entry *de); 1912struct dentry *reiserfs_get_parent(struct dentry *); 1913/* procfs.c */ 1914 1915#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) 1916#define REISERFS_PROC_INFO 1917#else 1918#undef REISERFS_PROC_INFO 1919#endif 1920 1921int reiserfs_proc_info_init(struct super_block *sb); 1922int reiserfs_proc_info_done(struct super_block *sb); 1923struct proc_dir_entry *reiserfs_proc_register_global(char *name, 1924 read_proc_t * func); 1925void reiserfs_proc_unregister_global(const char *name); 1926int reiserfs_proc_info_global_init(void); 1927int reiserfs_proc_info_global_done(void); 1928int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset, 1929 int count, int *eof, void *data); 1930 1931#if defined( REISERFS_PROC_INFO ) 1932 1933#define PROC_EXP( e ) e 1934 1935#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data 1936#define PROC_INFO_MAX( sb, field, value ) \ 1937 __PINFO( sb ).field = \ 1938 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) 1939#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) 1940#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) 1941#define PROC_INFO_BH_STAT( sb, bh, level ) \ 1942 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ 1943 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ 1944 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) 1945#else 1946#define PROC_EXP( e ) 1947#define VOID_V ( ( void ) 0 ) 1948#define PROC_INFO_MAX( sb, field, value ) VOID_V 1949#define PROC_INFO_INC( sb, field ) VOID_V 1950#define PROC_INFO_ADD( sb, field, val ) VOID_V 1951#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V 1952#endif 1953 1954/* dir.c */ 1955extern struct inode_operations reiserfs_dir_inode_operations; 1956extern struct inode_operations reiserfs_symlink_inode_operations; 1957extern struct inode_operations reiserfs_special_inode_operations; 1958extern struct file_operations reiserfs_dir_operations; 1959 1960/* tail_conversion.c */ 1961int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, 1962 struct path *, struct buffer_head *, loff_t); 1963int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, 1964 struct page *, struct path *, const struct cpu_key *, 1965 loff_t, char *); 1966void reiserfs_unmap_buffer(struct buffer_head *); 1967 1968/* file.c */ 1969extern struct inode_operations reiserfs_file_inode_operations; 1970extern struct file_operations reiserfs_file_operations; 1971extern struct address_space_operations reiserfs_address_space_operations; 1972 1973/* fix_nodes.c */ 1974#ifdef CONFIG_REISERFS_CHECK 1975void *reiserfs_kmalloc(size_t size, gfp_t flags, struct super_block *s); 1976void reiserfs_kfree(const void *vp, size_t size, struct super_block *s); 1977#else 1978static inline void *reiserfs_kmalloc(size_t size, int flags, 1979 struct super_block *s) 1980{ 1981 return kmalloc(size, flags); 1982} 1983 1984static inline void reiserfs_kfree(const void *vp, size_t size, 1985 struct super_block *s) 1986{ 1987 kfree(vp); 1988} 1989#endif 1990 1991int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, 1992 struct item_head *p_s_ins_ih, const void *); 1993void unfix_nodes(struct tree_balance *); 1994 1995/* prints.c */ 1996void reiserfs_panic(struct super_block *s, const char *fmt, ...) 1997 __attribute__ ((noreturn)); 1998void reiserfs_info(struct super_block *s, const char *fmt, ...); 1999void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); 2000void print_indirect_item(struct buffer_head *bh, int item_num); 2001void store_print_tb(struct tree_balance *tb); 2002void print_cur_tb(char *mes); 2003void print_de(struct reiserfs_dir_entry *de); 2004void print_bi(struct buffer_info *bi, char *mes); 2005#define PRINT_LEAF_ITEMS 1 /* print all items */ 2006#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ 2007#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ 2008void print_block(struct buffer_head *bh, ...); 2009void print_bmap(struct super_block *s, int silent); 2010void print_bmap_block(int i, char *data, int size, int silent); 2011/*void print_super_block (struct super_block * s, char * mes);*/ 2012void print_objectid_map(struct super_block *s); 2013void print_block_head(struct buffer_head *bh, char *mes); 2014void check_leaf(struct buffer_head *bh); 2015void check_internal(struct buffer_head *bh); 2016void print_statistics(struct super_block *s); 2017char *reiserfs_hashname(int code); 2018 2019/* lbalance.c */ 2020int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, 2021 int mov_bytes, struct buffer_head *Snew); 2022int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); 2023int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); 2024void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, 2025 int del_num, int del_bytes); 2026void leaf_insert_into_buf(struct buffer_info *bi, int before, 2027 struct item_head *inserted_item_ih, 2028 const char *inserted_item_body, int zeros_number); 2029void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, 2030 int pos_in_item, int paste_size, const char *body, 2031 int zeros_number); 2032void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, 2033 int pos_in_item, int cut_size); 2034void leaf_paste_entries(struct buffer_head *bh, int item_num, int before, 2035 int new_entry_count, struct reiserfs_de_head *new_dehs, 2036 const char *records, int paste_size); 2037/* ibalance.c */ 2038int balance_internal(struct tree_balance *, int, int, struct item_head *, 2039 struct buffer_head **); 2040 2041/* do_balance.c */ 2042void do_balance_mark_leaf_dirty(struct tree_balance *tb, 2043 struct buffer_head *bh, int flag); 2044#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty 2045#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty 2046 2047void do_balance(struct tree_balance *tb, struct item_head *ih, 2048 const char *body, int flag); 2049void reiserfs_invalidate_buffer(struct tree_balance *tb, 2050 struct buffer_head *bh); 2051 2052int get_left_neighbor_position(struct tree_balance *tb, int h); 2053int get_right_neighbor_position(struct tree_balance *tb, int h); 2054void replace_key(struct tree_balance *tb, struct buffer_head *, int, 2055 struct buffer_head *, int); 2056void make_empty_node(struct buffer_info *); 2057struct buffer_head *get_FEB(struct tree_balance *); 2058 2059/* bitmap.c */ 2060 2061/* structure contains hints for block allocator, and it is a container for 2062 * arguments, such as node, search path, transaction_handle, etc. */ 2063struct __reiserfs_blocknr_hint { 2064 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */ 2065 long block; /* file offset, in blocks */ 2066 struct in_core_key key; 2067 struct path *path; /* search path, used by allocator to deternine search_start by 2068 * various ways */ 2069 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and 2070 * bitmap blocks changes */ 2071 b_blocknr_t beg, end; 2072 b_blocknr_t search_start; /* a field used to transfer search start value (block number) 2073 * between different block allocator procedures 2074 * (determine_search_start() and others) */ 2075 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed 2076 * function that do actual allocation */ 2077 2078 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for 2079 * formatted/unformatted blocks with/without preallocation */ 2080 unsigned preallocate:1; 2081}; 2082 2083typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; 2084 2085int reiserfs_parse_alloc_options(struct super_block *, char *); 2086void reiserfs_init_alloc_options(struct super_block *s); 2087 2088/* 2089 * given a directory, this will tell you what packing locality 2090 * to use for a new object underneat it. The locality is returned 2091 * in disk byte order (le). 2092 */ 2093__le32 reiserfs_choose_packing(struct inode *dir); 2094 2095int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); 2096void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, 2097 b_blocknr_t, int for_unformatted); 2098int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, 2099 int); 2100static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, 2101 b_blocknr_t * new_blocknrs, 2102 int amount_needed) 2103{ 2104 reiserfs_blocknr_hint_t hint = { 2105 .th = tb->transaction_handle, 2106 .path = tb->tb_path, 2107 .inode = NULL, 2108 .key = tb->key, 2109 .block = 0, 2110 .formatted_node = 1 2111 }; 2112 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 2113 0); 2114} 2115 2116static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle 2117 *th, struct inode *inode, 2118 b_blocknr_t * new_blocknrs, 2119 struct path *path, long block) 2120{ 2121 reiserfs_blocknr_hint_t hint = { 2122 .th = th, 2123 .path = path, 2124 .inode = inode, 2125 .block = block, 2126 .formatted_node = 0, 2127 .preallocate = 0 2128 }; 2129 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 2130} 2131 2132#ifdef REISERFS_PREALLOCATE 2133static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle 2134 *th, struct inode *inode, 2135 b_blocknr_t * new_blocknrs, 2136 struct path *path, long block) 2137{ 2138 reiserfs_blocknr_hint_t hint = { 2139 .th = th, 2140 .path = path, 2141 .inode = inode, 2142 .block = block, 2143 .formatted_node = 0, 2144 .preallocate = 1 2145 }; 2146 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 2147} 2148 2149void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, 2150 struct inode *inode); 2151void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); 2152#endif 2153void reiserfs_claim_blocks_to_be_allocated(struct super_block *sb, int blocks); 2154void reiserfs_release_claimed_blocks(struct super_block *sb, int blocks); 2155int reiserfs_can_fit_pages(struct super_block *sb); 2156 2157/* hashes.c */ 2158__u32 keyed_hash(const signed char *msg, int len); 2159__u32 yura_hash(const signed char *msg, int len); 2160__u32 r5_hash(const signed char *msg, int len); 2161 2162/* the ext2 bit routines adjust for big or little endian as 2163** appropriate for the arch, so in our laziness we use them rather 2164** than using the bit routines they call more directly. These 2165** routines must be used when changing on disk bitmaps. */ 2166#define reiserfs_test_and_set_le_bit ext2_set_bit 2167#define reiserfs_test_and_clear_le_bit ext2_clear_bit 2168#define reiserfs_test_le_bit ext2_test_bit 2169#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit 2170 2171/* sometimes reiserfs_truncate may require to allocate few new blocks 2172 to perform indirect2direct conversion. People probably used to 2173 think, that truncate should work without problems on a filesystem 2174 without free disk space. They may complain that they can not 2175 truncate due to lack of free disk space. This spare space allows us 2176 to not worry about it. 500 is probably too much, but it should be 2177 absolutely safe */ 2178#define SPARE_SPACE 500 2179 2180/* prototypes from ioctl.c */ 2181int reiserfs_ioctl(struct inode *inode, struct file *filp, 2182 unsigned int cmd, unsigned long arg); 2183 2184/* ioctl's command */ 2185#define REISERFS_IOC_UNPACK _IOW(0xCD,1,long) 2186/* define following flags to be the same as in ext2, so that chattr(1), 2187 lsattr(1) will work with us. */ 2188#define REISERFS_IOC_GETFLAGS EXT2_IOC_GETFLAGS 2189#define REISERFS_IOC_SETFLAGS EXT2_IOC_SETFLAGS 2190#define REISERFS_IOC_GETVERSION EXT2_IOC_GETVERSION 2191#define REISERFS_IOC_SETVERSION EXT2_IOC_SETVERSION 2192 2193/* Locking primitives */ 2194/* Right now we are still falling back to (un)lock_kernel, but eventually that 2195 would evolve into real per-fs locks */ 2196#define reiserfs_write_lock( sb ) lock_kernel() 2197#define reiserfs_write_unlock( sb ) unlock_kernel() 2198 2199/* xattr stuff */ 2200#define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem) 2201 2202#endif /* _LINUX_REISER_FS_H */