1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/sched.h> 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/config.h> 10#include <linux/gfp.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/prio_tree.h> 15#include <linux/fs.h> 16 17struct mempolicy; 18struct anon_vma; 19 20#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 21extern unsigned long max_mapnr; 22#endif 23 24extern unsigned long num_physpages; 25extern void * high_memory; 26extern unsigned long vmalloc_earlyreserve; 27extern int page_cluster; 28 29#ifdef CONFIG_SYSCTL 30extern int sysctl_legacy_va_layout; 31#else 32#define sysctl_legacy_va_layout 0 33#endif 34 35#include <asm/page.h> 36#include <asm/pgtable.h> 37#include <asm/processor.h> 38#include <asm/atomic.h> 39 40#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 41 42/* 43 * Linux kernel virtual memory manager primitives. 44 * The idea being to have a "virtual" mm in the same way 45 * we have a virtual fs - giving a cleaner interface to the 46 * mm details, and allowing different kinds of memory mappings 47 * (from shared memory to executable loading to arbitrary 48 * mmap() functions). 49 */ 50 51/* 52 * This struct defines a memory VMM memory area. There is one of these 53 * per VM-area/task. A VM area is any part of the process virtual memory 54 * space that has a special rule for the page-fault handlers (ie a shared 55 * library, the executable area etc). 56 */ 57struct vm_area_struct { 58 struct mm_struct * vm_mm; /* The address space we belong to. */ 59 unsigned long vm_start; /* Our start address within vm_mm. */ 60 unsigned long vm_end; /* The first byte after our end address 61 within vm_mm. */ 62 63 /* linked list of VM areas per task, sorted by address */ 64 struct vm_area_struct *vm_next; 65 66 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 67 unsigned long vm_flags; /* Flags, listed below. */ 68 69 struct rb_node vm_rb; 70 71 /* 72 * For areas with an address space and backing store, 73 * linkage into the address_space->i_mmap prio tree, or 74 * linkage to the list of like vmas hanging off its node, or 75 * linkage of vma in the address_space->i_mmap_nonlinear list. 76 */ 77 union { 78 struct { 79 struct list_head list; 80 void *parent; /* aligns with prio_tree_node parent */ 81 struct vm_area_struct *head; 82 } vm_set; 83 84 struct raw_prio_tree_node prio_tree_node; 85 } shared; 86 87 /* 88 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 89 * list, after a COW of one of the file pages. A MAP_SHARED vma 90 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 91 * or brk vma (with NULL file) can only be in an anon_vma list. 92 */ 93 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 94 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 95 96 /* Function pointers to deal with this struct. */ 97 struct vm_operations_struct * vm_ops; 98 99 /* Information about our backing store: */ 100 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 101 units, *not* PAGE_CACHE_SIZE */ 102 struct file * vm_file; /* File we map to (can be NULL). */ 103 void * vm_private_data; /* was vm_pte (shared mem) */ 104 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 105 106#ifndef CONFIG_MMU 107 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 108#endif 109#ifdef CONFIG_NUMA 110 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 111#endif 112}; 113 114/* 115 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 116 * disabled, then there's a single shared list of VMAs maintained by the 117 * system, and mm's subscribe to these individually 118 */ 119struct vm_list_struct { 120 struct vm_list_struct *next; 121 struct vm_area_struct *vma; 122}; 123 124#ifndef CONFIG_MMU 125extern struct rb_root nommu_vma_tree; 126extern struct rw_semaphore nommu_vma_sem; 127 128extern unsigned int kobjsize(const void *objp); 129#endif 130 131/* 132 * vm_flags.. 133 */ 134#define VM_READ 0x00000001 /* currently active flags */ 135#define VM_WRITE 0x00000002 136#define VM_EXEC 0x00000004 137#define VM_SHARED 0x00000008 138 139/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 140#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 141#define VM_MAYWRITE 0x00000020 142#define VM_MAYEXEC 0x00000040 143#define VM_MAYSHARE 0x00000080 144 145#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 146#define VM_GROWSUP 0x00000200 147#define VM_SHM 0x00000000 /* Means nothing: delete it later */ 148#define VM_UNPAGED 0x00000400 /* Pages managed without map count */ 149#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 150 151#define VM_EXECUTABLE 0x00001000 152#define VM_LOCKED 0x00002000 153#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 154 155 /* Used by sys_madvise() */ 156#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 157#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 158 159#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 160#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 161#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 162#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 163#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 164#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 165#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 166 167#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 168#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 169#endif 170 171#ifdef CONFIG_STACK_GROWSUP 172#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 173#else 174#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 175#endif 176 177#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 178#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 179#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 180#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 181#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 182 183/* 184 * mapping from the currently active vm_flags protection bits (the 185 * low four bits) to a page protection mask.. 186 */ 187extern pgprot_t protection_map[16]; 188 189 190/* 191 * These are the virtual MM functions - opening of an area, closing and 192 * unmapping it (needed to keep files on disk up-to-date etc), pointer 193 * to the functions called when a no-page or a wp-page exception occurs. 194 */ 195struct vm_operations_struct { 196 void (*open)(struct vm_area_struct * area); 197 void (*close)(struct vm_area_struct * area); 198 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 199 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 200#ifdef CONFIG_NUMA 201 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 202 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 203 unsigned long addr); 204#endif 205}; 206 207struct mmu_gather; 208struct inode; 209 210/* 211 * Each physical page in the system has a struct page associated with 212 * it to keep track of whatever it is we are using the page for at the 213 * moment. Note that we have no way to track which tasks are using 214 * a page. 215 */ 216struct page { 217 unsigned long flags; /* Atomic flags, some possibly 218 * updated asynchronously */ 219 atomic_t _count; /* Usage count, see below. */ 220 atomic_t _mapcount; /* Count of ptes mapped in mms, 221 * to show when page is mapped 222 * & limit reverse map searches. 223 */ 224 union { 225 unsigned long private; /* Mapping-private opaque data: 226 * usually used for buffer_heads 227 * if PagePrivate set; used for 228 * swp_entry_t if PageSwapCache 229 * When page is free, this indicates 230 * order in the buddy system. 231 */ 232#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 233 spinlock_t ptl; 234#endif 235 } u; 236 struct address_space *mapping; /* If low bit clear, points to 237 * inode address_space, or NULL. 238 * If page mapped as anonymous 239 * memory, low bit is set, and 240 * it points to anon_vma object: 241 * see PAGE_MAPPING_ANON below. 242 */ 243 pgoff_t index; /* Our offset within mapping. */ 244 struct list_head lru; /* Pageout list, eg. active_list 245 * protected by zone->lru_lock ! 246 */ 247 /* 248 * On machines where all RAM is mapped into kernel address space, 249 * we can simply calculate the virtual address. On machines with 250 * highmem some memory is mapped into kernel virtual memory 251 * dynamically, so we need a place to store that address. 252 * Note that this field could be 16 bits on x86 ... ;) 253 * 254 * Architectures with slow multiplication can define 255 * WANT_PAGE_VIRTUAL in asm/page.h 256 */ 257#if defined(WANT_PAGE_VIRTUAL) 258 void *virtual; /* Kernel virtual address (NULL if 259 not kmapped, ie. highmem) */ 260#endif /* WANT_PAGE_VIRTUAL */ 261}; 262 263#define page_private(page) ((page)->u.private) 264#define set_page_private(page, v) ((page)->u.private = (v)) 265 266/* 267 * FIXME: take this include out, include page-flags.h in 268 * files which need it (119 of them) 269 */ 270#include <linux/page-flags.h> 271 272/* 273 * Methods to modify the page usage count. 274 * 275 * What counts for a page usage: 276 * - cache mapping (page->mapping) 277 * - private data (page->private) 278 * - page mapped in a task's page tables, each mapping 279 * is counted separately 280 * 281 * Also, many kernel routines increase the page count before a critical 282 * routine so they can be sure the page doesn't go away from under them. 283 * 284 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we 285 * can use atomic_add_negative(-1, page->_count) to detect when the page 286 * becomes free and so that we can also use atomic_inc_and_test to atomically 287 * detect when we just tried to grab a ref on a page which some other CPU has 288 * already deemed to be freeable. 289 * 290 * NO code should make assumptions about this internal detail! Use the provided 291 * macros which retain the old rules: page_count(page) == 0 is a free page. 292 */ 293 294/* 295 * Drop a ref, return true if the logical refcount fell to zero (the page has 296 * no users) 297 */ 298#define put_page_testzero(p) \ 299 ({ \ 300 BUG_ON(page_count(p) == 0); \ 301 atomic_add_negative(-1, &(p)->_count); \ 302 }) 303 304/* 305 * Grab a ref, return true if the page previously had a logical refcount of 306 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page 307 */ 308#define get_page_testone(p) atomic_inc_and_test(&(p)->_count) 309 310#define set_page_count(p,v) atomic_set(&(p)->_count, v - 1) 311#define __put_page(p) atomic_dec(&(p)->_count) 312 313extern void FASTCALL(__page_cache_release(struct page *)); 314 315static inline int page_count(struct page *page) 316{ 317 if (PageCompound(page)) 318 page = (struct page *)page_private(page); 319 return atomic_read(&page->_count) + 1; 320} 321 322static inline void get_page(struct page *page) 323{ 324 if (unlikely(PageCompound(page))) 325 page = (struct page *)page_private(page); 326 atomic_inc(&page->_count); 327} 328 329void put_page(struct page *page); 330 331/* 332 * Multiple processes may "see" the same page. E.g. for untouched 333 * mappings of /dev/null, all processes see the same page full of 334 * zeroes, and text pages of executables and shared libraries have 335 * only one copy in memory, at most, normally. 336 * 337 * For the non-reserved pages, page_count(page) denotes a reference count. 338 * page_count() == 0 means the page is free. page->lru is then used for 339 * freelist management in the buddy allocator. 340 * page_count() == 1 means the page is used for exactly one purpose 341 * (e.g. a private data page of one process). 342 * 343 * A page may be used for kmalloc() or anyone else who does a 344 * __get_free_page(). In this case the page_count() is at least 1, and 345 * all other fields are unused but should be 0 or NULL. The 346 * management of this page is the responsibility of the one who uses 347 * it. 348 * 349 * The other pages (we may call them "process pages") are completely 350 * managed by the Linux memory manager: I/O, buffers, swapping etc. 351 * The following discussion applies only to them. 352 * 353 * A page may belong to an inode's memory mapping. In this case, 354 * page->mapping is the pointer to the inode, and page->index is the 355 * file offset of the page, in units of PAGE_CACHE_SIZE. 356 * 357 * A page contains an opaque `private' member, which belongs to the 358 * page's address_space. Usually, this is the address of a circular 359 * list of the page's disk buffers. 360 * 361 * For pages belonging to inodes, the page_count() is the number of 362 * attaches, plus 1 if `private' contains something, plus one for 363 * the page cache itself. 364 * 365 * Instead of keeping dirty/clean pages in per address-space lists, we instead 366 * now tag pages as dirty/under writeback in the radix tree. 367 * 368 * There is also a per-mapping radix tree mapping index to the page 369 * in memory if present. The tree is rooted at mapping->root. 370 * 371 * All process pages can do I/O: 372 * - inode pages may need to be read from disk, 373 * - inode pages which have been modified and are MAP_SHARED may need 374 * to be written to disk, 375 * - private pages which have been modified may need to be swapped out 376 * to swap space and (later) to be read back into memory. 377 */ 378 379/* 380 * The zone field is never updated after free_area_init_core() 381 * sets it, so none of the operations on it need to be atomic. 382 */ 383 384 385/* 386 * page->flags layout: 387 * 388 * There are three possibilities for how page->flags get 389 * laid out. The first is for the normal case, without 390 * sparsemem. The second is for sparsemem when there is 391 * plenty of space for node and section. The last is when 392 * we have run out of space and have to fall back to an 393 * alternate (slower) way of determining the node. 394 * 395 * No sparsemem: | NODE | ZONE | ... | FLAGS | 396 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 397 * no space for node: | SECTION | ZONE | ... | FLAGS | 398 */ 399#ifdef CONFIG_SPARSEMEM 400#define SECTIONS_WIDTH SECTIONS_SHIFT 401#else 402#define SECTIONS_WIDTH 0 403#endif 404 405#define ZONES_WIDTH ZONES_SHIFT 406 407#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 408#define NODES_WIDTH NODES_SHIFT 409#else 410#define NODES_WIDTH 0 411#endif 412 413/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 414#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 415#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 416#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 417 418/* 419 * We are going to use the flags for the page to node mapping if its in 420 * there. This includes the case where there is no node, so it is implicit. 421 */ 422#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0) 423 424#ifndef PFN_SECTION_SHIFT 425#define PFN_SECTION_SHIFT 0 426#endif 427 428/* 429 * Define the bit shifts to access each section. For non-existant 430 * sections we define the shift as 0; that plus a 0 mask ensures 431 * the compiler will optimise away reference to them. 432 */ 433#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 434#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 435#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 436 437/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */ 438#if FLAGS_HAS_NODE 439#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT) 440#else 441#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 442#endif 443#define ZONETABLE_PGSHIFT ZONES_PGSHIFT 444 445#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 446#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 447#endif 448 449#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 450#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 451#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 452#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1) 453 454static inline unsigned long page_zonenum(struct page *page) 455{ 456 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 457} 458 459struct zone; 460extern struct zone *zone_table[]; 461 462static inline struct zone *page_zone(struct page *page) 463{ 464 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) & 465 ZONETABLE_MASK]; 466} 467 468static inline unsigned long page_to_nid(struct page *page) 469{ 470 if (FLAGS_HAS_NODE) 471 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 472 else 473 return page_zone(page)->zone_pgdat->node_id; 474} 475static inline unsigned long page_to_section(struct page *page) 476{ 477 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 478} 479 480static inline void set_page_zone(struct page *page, unsigned long zone) 481{ 482 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 483 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 484} 485static inline void set_page_node(struct page *page, unsigned long node) 486{ 487 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 488 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 489} 490static inline void set_page_section(struct page *page, unsigned long section) 491{ 492 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 493 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 494} 495 496static inline void set_page_links(struct page *page, unsigned long zone, 497 unsigned long node, unsigned long pfn) 498{ 499 set_page_zone(page, zone); 500 set_page_node(page, node); 501 set_page_section(page, pfn_to_section_nr(pfn)); 502} 503 504#ifndef CONFIG_DISCONTIGMEM 505/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 506extern struct page *mem_map; 507#endif 508 509static inline void *lowmem_page_address(struct page *page) 510{ 511 return __va(page_to_pfn(page) << PAGE_SHIFT); 512} 513 514#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 515#define HASHED_PAGE_VIRTUAL 516#endif 517 518#if defined(WANT_PAGE_VIRTUAL) 519#define page_address(page) ((page)->virtual) 520#define set_page_address(page, address) \ 521 do { \ 522 (page)->virtual = (address); \ 523 } while(0) 524#define page_address_init() do { } while(0) 525#endif 526 527#if defined(HASHED_PAGE_VIRTUAL) 528void *page_address(struct page *page); 529void set_page_address(struct page *page, void *virtual); 530void page_address_init(void); 531#endif 532 533#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 534#define page_address(page) lowmem_page_address(page) 535#define set_page_address(page, address) do { } while(0) 536#define page_address_init() do { } while(0) 537#endif 538 539/* 540 * On an anonymous page mapped into a user virtual memory area, 541 * page->mapping points to its anon_vma, not to a struct address_space; 542 * with the PAGE_MAPPING_ANON bit set to distinguish it. 543 * 544 * Please note that, confusingly, "page_mapping" refers to the inode 545 * address_space which maps the page from disk; whereas "page_mapped" 546 * refers to user virtual address space into which the page is mapped. 547 */ 548#define PAGE_MAPPING_ANON 1 549 550extern struct address_space swapper_space; 551static inline struct address_space *page_mapping(struct page *page) 552{ 553 struct address_space *mapping = page->mapping; 554 555 if (unlikely(PageSwapCache(page))) 556 mapping = &swapper_space; 557 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 558 mapping = NULL; 559 return mapping; 560} 561 562static inline int PageAnon(struct page *page) 563{ 564 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 565} 566 567/* 568 * Return the pagecache index of the passed page. Regular pagecache pages 569 * use ->index whereas swapcache pages use ->private 570 */ 571static inline pgoff_t page_index(struct page *page) 572{ 573 if (unlikely(PageSwapCache(page))) 574 return page_private(page); 575 return page->index; 576} 577 578/* 579 * The atomic page->_mapcount, like _count, starts from -1: 580 * so that transitions both from it and to it can be tracked, 581 * using atomic_inc_and_test and atomic_add_negative(-1). 582 */ 583static inline void reset_page_mapcount(struct page *page) 584{ 585 atomic_set(&(page)->_mapcount, -1); 586} 587 588static inline int page_mapcount(struct page *page) 589{ 590 return atomic_read(&(page)->_mapcount) + 1; 591} 592 593/* 594 * Return true if this page is mapped into pagetables. 595 */ 596static inline int page_mapped(struct page *page) 597{ 598 return atomic_read(&(page)->_mapcount) >= 0; 599} 600 601/* 602 * Error return values for the *_nopage functions 603 */ 604#define NOPAGE_SIGBUS (NULL) 605#define NOPAGE_OOM ((struct page *) (-1)) 606 607/* 608 * Different kinds of faults, as returned by handle_mm_fault(). 609 * Used to decide whether a process gets delivered SIGBUS or 610 * just gets major/minor fault counters bumped up. 611 */ 612#define VM_FAULT_OOM 0x00 613#define VM_FAULT_SIGBUS 0x01 614#define VM_FAULT_MINOR 0x02 615#define VM_FAULT_MAJOR 0x03 616 617/* 618 * Special case for get_user_pages. 619 * Must be in a distinct bit from the above VM_FAULT_ flags. 620 */ 621#define VM_FAULT_WRITE 0x10 622 623#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 624 625extern void show_free_areas(void); 626 627#ifdef CONFIG_SHMEM 628struct page *shmem_nopage(struct vm_area_struct *vma, 629 unsigned long address, int *type); 630int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 631struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 632 unsigned long addr); 633int shmem_lock(struct file *file, int lock, struct user_struct *user); 634#else 635#define shmem_nopage filemap_nopage 636#define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */ 637#define shmem_set_policy(a, b) (0) 638#define shmem_get_policy(a, b) (NULL) 639#endif 640struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 641 642int shmem_zero_setup(struct vm_area_struct *); 643 644static inline int can_do_mlock(void) 645{ 646 if (capable(CAP_IPC_LOCK)) 647 return 1; 648 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 649 return 1; 650 return 0; 651} 652extern int user_shm_lock(size_t, struct user_struct *); 653extern void user_shm_unlock(size_t, struct user_struct *); 654 655/* 656 * Parameter block passed down to zap_pte_range in exceptional cases. 657 */ 658struct zap_details { 659 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 660 struct address_space *check_mapping; /* Check page->mapping if set */ 661 pgoff_t first_index; /* Lowest page->index to unmap */ 662 pgoff_t last_index; /* Highest page->index to unmap */ 663 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 664 unsigned long truncate_count; /* Compare vm_truncate_count */ 665}; 666 667unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 668 unsigned long size, struct zap_details *); 669unsigned long unmap_vmas(struct mmu_gather **tlb, 670 struct vm_area_struct *start_vma, unsigned long start_addr, 671 unsigned long end_addr, unsigned long *nr_accounted, 672 struct zap_details *); 673void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 674 unsigned long end, unsigned long floor, unsigned long ceiling); 675void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 676 unsigned long floor, unsigned long ceiling); 677int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 678 struct vm_area_struct *vma); 679int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 680 unsigned long size, pgprot_t prot); 681void unmap_mapping_range(struct address_space *mapping, 682 loff_t const holebegin, loff_t const holelen, int even_cows); 683 684static inline void unmap_shared_mapping_range(struct address_space *mapping, 685 loff_t const holebegin, loff_t const holelen) 686{ 687 unmap_mapping_range(mapping, holebegin, holelen, 0); 688} 689 690extern int vmtruncate(struct inode * inode, loff_t offset); 691extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 692extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 693extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access); 694 695static inline int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access) 696{ 697 return __handle_mm_fault(mm, vma, address, write_access) & (~VM_FAULT_WRITE); 698} 699 700extern int make_pages_present(unsigned long addr, unsigned long end); 701extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 702void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 703 704int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 705 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 706void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 707 708int __set_page_dirty_buffers(struct page *page); 709int __set_page_dirty_nobuffers(struct page *page); 710int redirty_page_for_writepage(struct writeback_control *wbc, 711 struct page *page); 712int FASTCALL(set_page_dirty(struct page *page)); 713int set_page_dirty_lock(struct page *page); 714int clear_page_dirty_for_io(struct page *page); 715 716extern unsigned long do_mremap(unsigned long addr, 717 unsigned long old_len, unsigned long new_len, 718 unsigned long flags, unsigned long new_addr); 719 720/* 721 * Prototype to add a shrinker callback for ageable caches. 722 * 723 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 724 * scan `nr_to_scan' objects, attempting to free them. 725 * 726 * The callback must return the number of objects which remain in the cache. 727 * 728 * The callback will be passed nr_to_scan == 0 when the VM is querying the 729 * cache size, so a fastpath for that case is appropriate. 730 */ 731typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); 732 733/* 734 * Add an aging callback. The int is the number of 'seeks' it takes 735 * to recreate one of the objects that these functions age. 736 */ 737 738#define DEFAULT_SEEKS 2 739struct shrinker; 740extern struct shrinker *set_shrinker(int, shrinker_t); 741extern void remove_shrinker(struct shrinker *shrinker); 742 743int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 744int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 745int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 746int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 747 748/* 749 * The following ifdef needed to get the 4level-fixup.h header to work. 750 * Remove it when 4level-fixup.h has been removed. 751 */ 752#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 753static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 754{ 755 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 756 NULL: pud_offset(pgd, address); 757} 758 759static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 760{ 761 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 762 NULL: pmd_offset(pud, address); 763} 764#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 765 766#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 767/* 768 * We tuck a spinlock to guard each pagetable page into its struct page, 769 * at page->private, with BUILD_BUG_ON to make sure that this will not 770 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 771 * When freeing, reset page->mapping so free_pages_check won't complain. 772 */ 773#define __pte_lockptr(page) &((page)->u.ptl) 774#define pte_lock_init(_page) do { \ 775 spin_lock_init(__pte_lockptr(_page)); \ 776} while (0) 777#define pte_lock_deinit(page) ((page)->mapping = NULL) 778#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 779#else 780/* 781 * We use mm->page_table_lock to guard all pagetable pages of the mm. 782 */ 783#define pte_lock_init(page) do {} while (0) 784#define pte_lock_deinit(page) do {} while (0) 785#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 786#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 787 788#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 789({ \ 790 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 791 pte_t *__pte = pte_offset_map(pmd, address); \ 792 *(ptlp) = __ptl; \ 793 spin_lock(__ptl); \ 794 __pte; \ 795}) 796 797#define pte_unmap_unlock(pte, ptl) do { \ 798 spin_unlock(ptl); \ 799 pte_unmap(pte); \ 800} while (0) 801 802#define pte_alloc_map(mm, pmd, address) \ 803 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 804 NULL: pte_offset_map(pmd, address)) 805 806#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 807 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 808 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 809 810#define pte_alloc_kernel(pmd, address) \ 811 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 812 NULL: pte_offset_kernel(pmd, address)) 813 814extern void free_area_init(unsigned long * zones_size); 815extern void free_area_init_node(int nid, pg_data_t *pgdat, 816 unsigned long * zones_size, unsigned long zone_start_pfn, 817 unsigned long *zholes_size); 818extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); 819extern void setup_per_zone_pages_min(void); 820extern void mem_init(void); 821extern void show_mem(void); 822extern void si_meminfo(struct sysinfo * val); 823extern void si_meminfo_node(struct sysinfo *val, int nid); 824 825#ifdef CONFIG_NUMA 826extern void setup_per_cpu_pageset(void); 827#else 828static inline void setup_per_cpu_pageset(void) {} 829#endif 830 831/* prio_tree.c */ 832void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 833void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 834void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 835struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 836 struct prio_tree_iter *iter); 837 838#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 839 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 840 (vma = vma_prio_tree_next(vma, iter)); ) 841 842static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 843 struct list_head *list) 844{ 845 vma->shared.vm_set.parent = NULL; 846 list_add_tail(&vma->shared.vm_set.list, list); 847} 848 849/* mmap.c */ 850extern int __vm_enough_memory(long pages, int cap_sys_admin); 851extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 852 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 853extern struct vm_area_struct *vma_merge(struct mm_struct *, 854 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 855 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 856 struct mempolicy *); 857extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 858extern int split_vma(struct mm_struct *, 859 struct vm_area_struct *, unsigned long addr, int new_below); 860extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 861extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 862 struct rb_node **, struct rb_node *); 863extern void unlink_file_vma(struct vm_area_struct *); 864extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 865 unsigned long addr, unsigned long len, pgoff_t pgoff); 866extern void exit_mmap(struct mm_struct *); 867extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 868 869extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 870 871extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 872 unsigned long len, unsigned long prot, 873 unsigned long flag, unsigned long pgoff); 874 875static inline unsigned long do_mmap(struct file *file, unsigned long addr, 876 unsigned long len, unsigned long prot, 877 unsigned long flag, unsigned long offset) 878{ 879 unsigned long ret = -EINVAL; 880 if ((offset + PAGE_ALIGN(len)) < offset) 881 goto out; 882 if (!(offset & ~PAGE_MASK)) 883 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 884out: 885 return ret; 886} 887 888extern int do_munmap(struct mm_struct *, unsigned long, size_t); 889 890extern unsigned long do_brk(unsigned long, unsigned long); 891 892/* filemap.c */ 893extern unsigned long page_unuse(struct page *); 894extern void truncate_inode_pages(struct address_space *, loff_t); 895 896/* generic vm_area_ops exported for stackable file systems */ 897extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 898extern int filemap_populate(struct vm_area_struct *, unsigned long, 899 unsigned long, pgprot_t, unsigned long, int); 900 901/* mm/page-writeback.c */ 902int write_one_page(struct page *page, int wait); 903 904/* readahead.c */ 905#define VM_MAX_READAHEAD 128 /* kbytes */ 906#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 907#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 908 * turning readahead off */ 909 910int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 911 pgoff_t offset, unsigned long nr_to_read); 912int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 913 pgoff_t offset, unsigned long nr_to_read); 914unsigned long page_cache_readahead(struct address_space *mapping, 915 struct file_ra_state *ra, 916 struct file *filp, 917 pgoff_t offset, 918 unsigned long size); 919void handle_ra_miss(struct address_space *mapping, 920 struct file_ra_state *ra, pgoff_t offset); 921unsigned long max_sane_readahead(unsigned long nr); 922 923/* Do stack extension */ 924extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 925#ifdef CONFIG_IA64 926extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 927#endif 928 929/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 930extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 931extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 932 struct vm_area_struct **pprev); 933 934/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 935 NULL if none. Assume start_addr < end_addr. */ 936static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 937{ 938 struct vm_area_struct * vma = find_vma(mm,start_addr); 939 940 if (vma && end_addr <= vma->vm_start) 941 vma = NULL; 942 return vma; 943} 944 945static inline unsigned long vma_pages(struct vm_area_struct *vma) 946{ 947 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 948} 949 950struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 951struct page *vmalloc_to_page(void *addr); 952unsigned long vmalloc_to_pfn(void *addr); 953int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 954 unsigned long pfn, unsigned long size, pgprot_t); 955 956struct page *follow_page(struct mm_struct *, unsigned long address, 957 unsigned int foll_flags); 958#define FOLL_WRITE 0x01 /* check pte is writable */ 959#define FOLL_TOUCH 0x02 /* mark page accessed */ 960#define FOLL_GET 0x04 /* do get_page on page */ 961#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 962 963#ifdef CONFIG_PROC_FS 964void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 965#else 966static inline void vm_stat_account(struct mm_struct *mm, 967 unsigned long flags, struct file *file, long pages) 968{ 969} 970#endif /* CONFIG_PROC_FS */ 971 972#ifndef CONFIG_DEBUG_PAGEALLOC 973static inline void 974kernel_map_pages(struct page *page, int numpages, int enable) 975{ 976} 977#endif 978 979extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 980#ifdef __HAVE_ARCH_GATE_AREA 981int in_gate_area_no_task(unsigned long addr); 982int in_gate_area(struct task_struct *task, unsigned long addr); 983#else 984int in_gate_area_no_task(unsigned long addr); 985#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 986#endif /* __HAVE_ARCH_GATE_AREA */ 987 988/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */ 989#define OOM_DISABLE -17 990 991#endif /* __KERNEL__ */ 992#endif /* _LINUX_MM_H */