1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <asm/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/dmaengine.h> 31#include <linux/hrtimer.h> 32 33/* Don't change this without changing skb_csum_unnecessary! */ 34#define CHECKSUM_NONE 0 35#define CHECKSUM_UNNECESSARY 1 36#define CHECKSUM_COMPLETE 2 37#define CHECKSUM_PARTIAL 3 38 39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41#define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43#define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48/* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94struct net_device; 95struct scatterlist; 96struct pipe_inode_info; 97 98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99struct nf_conntrack { 100 atomic_t use; 101}; 102#endif 103 104#ifdef CONFIG_BRIDGE_NETFILTER 105struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111}; 112#endif 113 114struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121}; 122 123struct sk_buff; 124 125/* To allow 64K frame to be packed as single skb without frag_list */ 126#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128typedef struct skb_frag_struct skb_frag_t; 129 130struct skb_frag_struct { 131 struct page *page; 132#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 133 __u32 page_offset; 134 __u32 size; 135#else 136 __u16 page_offset; 137 __u16 size; 138#endif 139}; 140 141#define HAVE_HW_TIME_STAMP 142 143/** 144 * struct skb_shared_hwtstamps - hardware time stamps 145 * @hwtstamp: hardware time stamp transformed into duration 146 * since arbitrary point in time 147 * @syststamp: hwtstamp transformed to system time base 148 * 149 * Software time stamps generated by ktime_get_real() are stored in 150 * skb->tstamp. The relation between the different kinds of time 151 * stamps is as follows: 152 * 153 * syststamp and tstamp can be compared against each other in 154 * arbitrary combinations. The accuracy of a 155 * syststamp/tstamp/"syststamp from other device" comparison is 156 * limited by the accuracy of the transformation into system time 157 * base. This depends on the device driver and its underlying 158 * hardware. 159 * 160 * hwtstamps can only be compared against other hwtstamps from 161 * the same device. 162 * 163 * This structure is attached to packets as part of the 164 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 165 */ 166struct skb_shared_hwtstamps { 167 ktime_t hwtstamp; 168 ktime_t syststamp; 169}; 170 171/* Definitions for tx_flags in struct skb_shared_info */ 172enum { 173 /* generate hardware time stamp */ 174 SKBTX_HW_TSTAMP = 1 << 0, 175 176 /* generate software time stamp */ 177 SKBTX_SW_TSTAMP = 1 << 1, 178 179 /* device driver is going to provide hardware time stamp */ 180 SKBTX_IN_PROGRESS = 1 << 2, 181 182 /* ensure the originating sk reference is available on driver level */ 183 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 184}; 185 186/* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189struct skb_shared_info { 190 unsigned short nr_frags; 191 unsigned short gso_size; 192 /* Warning: this field is not always filled in (UFO)! */ 193 unsigned short gso_segs; 194 unsigned short gso_type; 195 __be32 ip6_frag_id; 196 __u8 tx_flags; 197 struct sk_buff *frag_list; 198 struct skb_shared_hwtstamps hwtstamps; 199 200 /* 201 * Warning : all fields before dataref are cleared in __alloc_skb() 202 */ 203 atomic_t dataref; 204 205 /* Intermediate layers must ensure that destructor_arg 206 * remains valid until skb destructor */ 207 void * destructor_arg; 208 /* must be last field, see pskb_expand_head() */ 209 skb_frag_t frags[MAX_SKB_FRAGS]; 210}; 211 212/* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223#define SKB_DATAREF_SHIFT 16 224#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231}; 232 233enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246}; 247 248#if BITS_PER_LONG > 32 249#define NET_SKBUFF_DATA_USES_OFFSET 1 250#endif 251 252#ifdef NET_SKBUFF_DATA_USES_OFFSET 253typedef unsigned int sk_buff_data_t; 254#else 255typedef unsigned char *sk_buff_data_t; 256#endif 257 258#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 259 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 260#define NET_SKBUFF_NF_DEFRAG_NEEDED 1 261#endif 262 263/** 264 * struct sk_buff - socket buffer 265 * @next: Next buffer in list 266 * @prev: Previous buffer in list 267 * @sk: Socket we are owned by 268 * @tstamp: Time we arrived 269 * @dev: Device we arrived on/are leaving by 270 * @transport_header: Transport layer header 271 * @network_header: Network layer header 272 * @mac_header: Link layer header 273 * @_skb_refdst: destination entry (with norefcount bit) 274 * @sp: the security path, used for xfrm 275 * @cb: Control buffer. Free for use by every layer. Put private vars here 276 * @len: Length of actual data 277 * @data_len: Data length 278 * @mac_len: Length of link layer header 279 * @hdr_len: writable header length of cloned skb 280 * @csum: Checksum (must include start/offset pair) 281 * @csum_start: Offset from skb->head where checksumming should start 282 * @csum_offset: Offset from csum_start where checksum should be stored 283 * @local_df: allow local fragmentation 284 * @cloned: Head may be cloned (check refcnt to be sure) 285 * @nohdr: Payload reference only, must not modify header 286 * @pkt_type: Packet class 287 * @fclone: skbuff clone status 288 * @ip_summed: Driver fed us an IP checksum 289 * @priority: Packet queueing priority 290 * @users: User count - see {datagram,tcp}.c 291 * @protocol: Packet protocol from driver 292 * @truesize: Buffer size 293 * @head: Head of buffer 294 * @data: Data head pointer 295 * @tail: Tail pointer 296 * @end: End pointer 297 * @destructor: Destruct function 298 * @mark: Generic packet mark 299 * @nfct: Associated connection, if any 300 * @ipvs_property: skbuff is owned by ipvs 301 * @peeked: this packet has been seen already, so stats have been 302 * done for it, don't do them again 303 * @nf_trace: netfilter packet trace flag 304 * @nfctinfo: Relationship of this skb to the connection 305 * @nfct_reasm: netfilter conntrack re-assembly pointer 306 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 307 * @skb_iif: ifindex of device we arrived on 308 * @rxhash: the packet hash computed on receive 309 * @queue_mapping: Queue mapping for multiqueue devices 310 * @tc_index: Traffic control index 311 * @tc_verd: traffic control verdict 312 * @ndisc_nodetype: router type (from link layer) 313 * @dma_cookie: a cookie to one of several possible DMA operations 314 * done by skb DMA functions 315 * @secmark: security marking 316 * @vlan_tci: vlan tag control information 317 */ 318 319struct sk_buff { 320 /* These two members must be first. */ 321 struct sk_buff *next; 322 struct sk_buff *prev; 323 324 ktime_t tstamp; 325 326 struct sock *sk; 327 struct net_device *dev; 328 329 /* 330 * This is the control buffer. It is free to use for every 331 * layer. Please put your private variables there. If you 332 * want to keep them across layers you have to do a skb_clone() 333 * first. This is owned by whoever has the skb queued ATM. 334 */ 335 char cb[48] __aligned(8); 336 337 unsigned long _skb_refdst; 338#ifdef CONFIG_XFRM 339 struct sec_path *sp; 340#endif 341 unsigned int len, 342 data_len; 343 __u16 mac_len, 344 hdr_len; 345 union { 346 __wsum csum; 347 struct { 348 __u16 csum_start; 349 __u16 csum_offset; 350 }; 351 }; 352 __u32 priority; 353 kmemcheck_bitfield_begin(flags1); 354 __u8 local_df:1, 355 cloned:1, 356 ip_summed:2, 357 nohdr:1, 358 nfctinfo:3; 359 __u8 pkt_type:3, 360 fclone:2, 361 ipvs_property:1, 362 peeked:1, 363 nf_trace:1; 364 kmemcheck_bitfield_end(flags1); 365 __be16 protocol; 366 367 void (*destructor)(struct sk_buff *skb); 368#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 369 struct nf_conntrack *nfct; 370#endif 371#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 372 struct sk_buff *nfct_reasm; 373#endif 374#ifdef CONFIG_BRIDGE_NETFILTER 375 struct nf_bridge_info *nf_bridge; 376#endif 377 378 int skb_iif; 379#ifdef CONFIG_NET_SCHED 380 __u16 tc_index; /* traffic control index */ 381#ifdef CONFIG_NET_CLS_ACT 382 __u16 tc_verd; /* traffic control verdict */ 383#endif 384#endif 385 386 __u32 rxhash; 387 388 kmemcheck_bitfield_begin(flags2); 389 __u16 queue_mapping:16; 390#ifdef CONFIG_IPV6_NDISC_NODETYPE 391 __u8 ndisc_nodetype:2; 392#endif 393 __u8 ooo_okay:1; 394 kmemcheck_bitfield_end(flags2); 395 396 /* 0/13 bit hole */ 397 398#ifdef CONFIG_NET_DMA 399 dma_cookie_t dma_cookie; 400#endif 401#ifdef CONFIG_NETWORK_SECMARK 402 __u32 secmark; 403#endif 404 union { 405 __u32 mark; 406 __u32 dropcount; 407 }; 408 409 __u16 vlan_tci; 410 411 sk_buff_data_t transport_header; 412 sk_buff_data_t network_header; 413 sk_buff_data_t mac_header; 414 /* These elements must be at the end, see alloc_skb() for details. */ 415 sk_buff_data_t tail; 416 sk_buff_data_t end; 417 unsigned char *head, 418 *data; 419 unsigned int truesize; 420 atomic_t users; 421}; 422 423#ifdef __KERNEL__ 424/* 425 * Handling routines are only of interest to the kernel 426 */ 427#include <linux/slab.h> 428 429#include <asm/system.h> 430 431/* 432 * skb might have a dst pointer attached, refcounted or not. 433 * _skb_refdst low order bit is set if refcount was _not_ taken 434 */ 435#define SKB_DST_NOREF 1UL 436#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 437 438/** 439 * skb_dst - returns skb dst_entry 440 * @skb: buffer 441 * 442 * Returns skb dst_entry, regardless of reference taken or not. 443 */ 444static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 445{ 446 /* If refdst was not refcounted, check we still are in a 447 * rcu_read_lock section 448 */ 449 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 450 !rcu_read_lock_held() && 451 !rcu_read_lock_bh_held()); 452 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 453} 454 455/** 456 * skb_dst_set - sets skb dst 457 * @skb: buffer 458 * @dst: dst entry 459 * 460 * Sets skb dst, assuming a reference was taken on dst and should 461 * be released by skb_dst_drop() 462 */ 463static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 464{ 465 skb->_skb_refdst = (unsigned long)dst; 466} 467 468extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 469 470/** 471 * skb_dst_is_noref - Test if skb dst isnt refcounted 472 * @skb: buffer 473 */ 474static inline bool skb_dst_is_noref(const struct sk_buff *skb) 475{ 476 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 477} 478 479static inline struct rtable *skb_rtable(const struct sk_buff *skb) 480{ 481 return (struct rtable *)skb_dst(skb); 482} 483 484extern void kfree_skb(struct sk_buff *skb); 485extern void consume_skb(struct sk_buff *skb); 486extern void __kfree_skb(struct sk_buff *skb); 487extern struct sk_buff *__alloc_skb(unsigned int size, 488 gfp_t priority, int fclone, int node); 489static inline struct sk_buff *alloc_skb(unsigned int size, 490 gfp_t priority) 491{ 492 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 493} 494 495static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 496 gfp_t priority) 497{ 498 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 499} 500 501extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 502 503extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 504extern struct sk_buff *skb_clone(struct sk_buff *skb, 505 gfp_t priority); 506extern struct sk_buff *skb_copy(const struct sk_buff *skb, 507 gfp_t priority); 508extern struct sk_buff *pskb_copy(struct sk_buff *skb, 509 gfp_t gfp_mask); 510extern int pskb_expand_head(struct sk_buff *skb, 511 int nhead, int ntail, 512 gfp_t gfp_mask); 513extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 514 unsigned int headroom); 515extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 516 int newheadroom, int newtailroom, 517 gfp_t priority); 518extern int skb_to_sgvec(struct sk_buff *skb, 519 struct scatterlist *sg, int offset, 520 int len); 521extern int skb_cow_data(struct sk_buff *skb, int tailbits, 522 struct sk_buff **trailer); 523extern int skb_pad(struct sk_buff *skb, int pad); 524#define dev_kfree_skb(a) consume_skb(a) 525 526extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 527 int getfrag(void *from, char *to, int offset, 528 int len,int odd, struct sk_buff *skb), 529 void *from, int length); 530 531struct skb_seq_state { 532 __u32 lower_offset; 533 __u32 upper_offset; 534 __u32 frag_idx; 535 __u32 stepped_offset; 536 struct sk_buff *root_skb; 537 struct sk_buff *cur_skb; 538 __u8 *frag_data; 539}; 540 541extern void skb_prepare_seq_read(struct sk_buff *skb, 542 unsigned int from, unsigned int to, 543 struct skb_seq_state *st); 544extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 545 struct skb_seq_state *st); 546extern void skb_abort_seq_read(struct skb_seq_state *st); 547 548extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 549 unsigned int to, struct ts_config *config, 550 struct ts_state *state); 551 552extern __u32 __skb_get_rxhash(struct sk_buff *skb); 553static inline __u32 skb_get_rxhash(struct sk_buff *skb) 554{ 555 if (!skb->rxhash) 556 skb->rxhash = __skb_get_rxhash(skb); 557 558 return skb->rxhash; 559} 560 561#ifdef NET_SKBUFF_DATA_USES_OFFSET 562static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 563{ 564 return skb->head + skb->end; 565} 566#else 567static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 568{ 569 return skb->end; 570} 571#endif 572 573/* Internal */ 574#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 575 576static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 577{ 578 return &skb_shinfo(skb)->hwtstamps; 579} 580 581/** 582 * skb_queue_empty - check if a queue is empty 583 * @list: queue head 584 * 585 * Returns true if the queue is empty, false otherwise. 586 */ 587static inline int skb_queue_empty(const struct sk_buff_head *list) 588{ 589 return list->next == (struct sk_buff *)list; 590} 591 592/** 593 * skb_queue_is_last - check if skb is the last entry in the queue 594 * @list: queue head 595 * @skb: buffer 596 * 597 * Returns true if @skb is the last buffer on the list. 598 */ 599static inline bool skb_queue_is_last(const struct sk_buff_head *list, 600 const struct sk_buff *skb) 601{ 602 return skb->next == (struct sk_buff *)list; 603} 604 605/** 606 * skb_queue_is_first - check if skb is the first entry in the queue 607 * @list: queue head 608 * @skb: buffer 609 * 610 * Returns true if @skb is the first buffer on the list. 611 */ 612static inline bool skb_queue_is_first(const struct sk_buff_head *list, 613 const struct sk_buff *skb) 614{ 615 return skb->prev == (struct sk_buff *)list; 616} 617 618/** 619 * skb_queue_next - return the next packet in the queue 620 * @list: queue head 621 * @skb: current buffer 622 * 623 * Return the next packet in @list after @skb. It is only valid to 624 * call this if skb_queue_is_last() evaluates to false. 625 */ 626static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 627 const struct sk_buff *skb) 628{ 629 /* This BUG_ON may seem severe, but if we just return then we 630 * are going to dereference garbage. 631 */ 632 BUG_ON(skb_queue_is_last(list, skb)); 633 return skb->next; 634} 635 636/** 637 * skb_queue_prev - return the prev packet in the queue 638 * @list: queue head 639 * @skb: current buffer 640 * 641 * Return the prev packet in @list before @skb. It is only valid to 642 * call this if skb_queue_is_first() evaluates to false. 643 */ 644static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 645 const struct sk_buff *skb) 646{ 647 /* This BUG_ON may seem severe, but if we just return then we 648 * are going to dereference garbage. 649 */ 650 BUG_ON(skb_queue_is_first(list, skb)); 651 return skb->prev; 652} 653 654/** 655 * skb_get - reference buffer 656 * @skb: buffer to reference 657 * 658 * Makes another reference to a socket buffer and returns a pointer 659 * to the buffer. 660 */ 661static inline struct sk_buff *skb_get(struct sk_buff *skb) 662{ 663 atomic_inc(&skb->users); 664 return skb; 665} 666 667/* 668 * If users == 1, we are the only owner and are can avoid redundant 669 * atomic change. 670 */ 671 672/** 673 * skb_cloned - is the buffer a clone 674 * @skb: buffer to check 675 * 676 * Returns true if the buffer was generated with skb_clone() and is 677 * one of multiple shared copies of the buffer. Cloned buffers are 678 * shared data so must not be written to under normal circumstances. 679 */ 680static inline int skb_cloned(const struct sk_buff *skb) 681{ 682 return skb->cloned && 683 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 684} 685 686/** 687 * skb_header_cloned - is the header a clone 688 * @skb: buffer to check 689 * 690 * Returns true if modifying the header part of the buffer requires 691 * the data to be copied. 692 */ 693static inline int skb_header_cloned(const struct sk_buff *skb) 694{ 695 int dataref; 696 697 if (!skb->cloned) 698 return 0; 699 700 dataref = atomic_read(&skb_shinfo(skb)->dataref); 701 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 702 return dataref != 1; 703} 704 705/** 706 * skb_header_release - release reference to header 707 * @skb: buffer to operate on 708 * 709 * Drop a reference to the header part of the buffer. This is done 710 * by acquiring a payload reference. You must not read from the header 711 * part of skb->data after this. 712 */ 713static inline void skb_header_release(struct sk_buff *skb) 714{ 715 BUG_ON(skb->nohdr); 716 skb->nohdr = 1; 717 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 718} 719 720/** 721 * skb_shared - is the buffer shared 722 * @skb: buffer to check 723 * 724 * Returns true if more than one person has a reference to this 725 * buffer. 726 */ 727static inline int skb_shared(const struct sk_buff *skb) 728{ 729 return atomic_read(&skb->users) != 1; 730} 731 732/** 733 * skb_share_check - check if buffer is shared and if so clone it 734 * @skb: buffer to check 735 * @pri: priority for memory allocation 736 * 737 * If the buffer is shared the buffer is cloned and the old copy 738 * drops a reference. A new clone with a single reference is returned. 739 * If the buffer is not shared the original buffer is returned. When 740 * being called from interrupt status or with spinlocks held pri must 741 * be GFP_ATOMIC. 742 * 743 * NULL is returned on a memory allocation failure. 744 */ 745static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 746 gfp_t pri) 747{ 748 might_sleep_if(pri & __GFP_WAIT); 749 if (skb_shared(skb)) { 750 struct sk_buff *nskb = skb_clone(skb, pri); 751 kfree_skb(skb); 752 skb = nskb; 753 } 754 return skb; 755} 756 757/* 758 * Copy shared buffers into a new sk_buff. We effectively do COW on 759 * packets to handle cases where we have a local reader and forward 760 * and a couple of other messy ones. The normal one is tcpdumping 761 * a packet thats being forwarded. 762 */ 763 764/** 765 * skb_unshare - make a copy of a shared buffer 766 * @skb: buffer to check 767 * @pri: priority for memory allocation 768 * 769 * If the socket buffer is a clone then this function creates a new 770 * copy of the data, drops a reference count on the old copy and returns 771 * the new copy with the reference count at 1. If the buffer is not a clone 772 * the original buffer is returned. When called with a spinlock held or 773 * from interrupt state @pri must be %GFP_ATOMIC 774 * 775 * %NULL is returned on a memory allocation failure. 776 */ 777static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 778 gfp_t pri) 779{ 780 might_sleep_if(pri & __GFP_WAIT); 781 if (skb_cloned(skb)) { 782 struct sk_buff *nskb = skb_copy(skb, pri); 783 kfree_skb(skb); /* Free our shared copy */ 784 skb = nskb; 785 } 786 return skb; 787} 788 789/** 790 * skb_peek - peek at the head of an &sk_buff_head 791 * @list_: list to peek at 792 * 793 * Peek an &sk_buff. Unlike most other operations you _MUST_ 794 * be careful with this one. A peek leaves the buffer on the 795 * list and someone else may run off with it. You must hold 796 * the appropriate locks or have a private queue to do this. 797 * 798 * Returns %NULL for an empty list or a pointer to the head element. 799 * The reference count is not incremented and the reference is therefore 800 * volatile. Use with caution. 801 */ 802static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 803{ 804 struct sk_buff *list = ((struct sk_buff *)list_)->next; 805 if (list == (struct sk_buff *)list_) 806 list = NULL; 807 return list; 808} 809 810/** 811 * skb_peek_tail - peek at the tail of an &sk_buff_head 812 * @list_: list to peek at 813 * 814 * Peek an &sk_buff. Unlike most other operations you _MUST_ 815 * be careful with this one. A peek leaves the buffer on the 816 * list and someone else may run off with it. You must hold 817 * the appropriate locks or have a private queue to do this. 818 * 819 * Returns %NULL for an empty list or a pointer to the tail element. 820 * The reference count is not incremented and the reference is therefore 821 * volatile. Use with caution. 822 */ 823static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 824{ 825 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 826 if (list == (struct sk_buff *)list_) 827 list = NULL; 828 return list; 829} 830 831/** 832 * skb_queue_len - get queue length 833 * @list_: list to measure 834 * 835 * Return the length of an &sk_buff queue. 836 */ 837static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 838{ 839 return list_->qlen; 840} 841 842/** 843 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 844 * @list: queue to initialize 845 * 846 * This initializes only the list and queue length aspects of 847 * an sk_buff_head object. This allows to initialize the list 848 * aspects of an sk_buff_head without reinitializing things like 849 * the spinlock. It can also be used for on-stack sk_buff_head 850 * objects where the spinlock is known to not be used. 851 */ 852static inline void __skb_queue_head_init(struct sk_buff_head *list) 853{ 854 list->prev = list->next = (struct sk_buff *)list; 855 list->qlen = 0; 856} 857 858/* 859 * This function creates a split out lock class for each invocation; 860 * this is needed for now since a whole lot of users of the skb-queue 861 * infrastructure in drivers have different locking usage (in hardirq) 862 * than the networking core (in softirq only). In the long run either the 863 * network layer or drivers should need annotation to consolidate the 864 * main types of usage into 3 classes. 865 */ 866static inline void skb_queue_head_init(struct sk_buff_head *list) 867{ 868 spin_lock_init(&list->lock); 869 __skb_queue_head_init(list); 870} 871 872static inline void skb_queue_head_init_class(struct sk_buff_head *list, 873 struct lock_class_key *class) 874{ 875 skb_queue_head_init(list); 876 lockdep_set_class(&list->lock, class); 877} 878 879/* 880 * Insert an sk_buff on a list. 881 * 882 * The "__skb_xxxx()" functions are the non-atomic ones that 883 * can only be called with interrupts disabled. 884 */ 885extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 886static inline void __skb_insert(struct sk_buff *newsk, 887 struct sk_buff *prev, struct sk_buff *next, 888 struct sk_buff_head *list) 889{ 890 newsk->next = next; 891 newsk->prev = prev; 892 next->prev = prev->next = newsk; 893 list->qlen++; 894} 895 896static inline void __skb_queue_splice(const struct sk_buff_head *list, 897 struct sk_buff *prev, 898 struct sk_buff *next) 899{ 900 struct sk_buff *first = list->next; 901 struct sk_buff *last = list->prev; 902 903 first->prev = prev; 904 prev->next = first; 905 906 last->next = next; 907 next->prev = last; 908} 909 910/** 911 * skb_queue_splice - join two skb lists, this is designed for stacks 912 * @list: the new list to add 913 * @head: the place to add it in the first list 914 */ 915static inline void skb_queue_splice(const struct sk_buff_head *list, 916 struct sk_buff_head *head) 917{ 918 if (!skb_queue_empty(list)) { 919 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 920 head->qlen += list->qlen; 921 } 922} 923 924/** 925 * skb_queue_splice - join two skb lists and reinitialise the emptied list 926 * @list: the new list to add 927 * @head: the place to add it in the first list 928 * 929 * The list at @list is reinitialised 930 */ 931static inline void skb_queue_splice_init(struct sk_buff_head *list, 932 struct sk_buff_head *head) 933{ 934 if (!skb_queue_empty(list)) { 935 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 936 head->qlen += list->qlen; 937 __skb_queue_head_init(list); 938 } 939} 940 941/** 942 * skb_queue_splice_tail - join two skb lists, each list being a queue 943 * @list: the new list to add 944 * @head: the place to add it in the first list 945 */ 946static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 947 struct sk_buff_head *head) 948{ 949 if (!skb_queue_empty(list)) { 950 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 951 head->qlen += list->qlen; 952 } 953} 954 955/** 956 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 957 * @list: the new list to add 958 * @head: the place to add it in the first list 959 * 960 * Each of the lists is a queue. 961 * The list at @list is reinitialised 962 */ 963static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 964 struct sk_buff_head *head) 965{ 966 if (!skb_queue_empty(list)) { 967 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 968 head->qlen += list->qlen; 969 __skb_queue_head_init(list); 970 } 971} 972 973/** 974 * __skb_queue_after - queue a buffer at the list head 975 * @list: list to use 976 * @prev: place after this buffer 977 * @newsk: buffer to queue 978 * 979 * Queue a buffer int the middle of a list. This function takes no locks 980 * and you must therefore hold required locks before calling it. 981 * 982 * A buffer cannot be placed on two lists at the same time. 983 */ 984static inline void __skb_queue_after(struct sk_buff_head *list, 985 struct sk_buff *prev, 986 struct sk_buff *newsk) 987{ 988 __skb_insert(newsk, prev, prev->next, list); 989} 990 991extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 992 struct sk_buff_head *list); 993 994static inline void __skb_queue_before(struct sk_buff_head *list, 995 struct sk_buff *next, 996 struct sk_buff *newsk) 997{ 998 __skb_insert(newsk, next->prev, next, list); 999} 1000 1001/** 1002 * __skb_queue_head - queue a buffer at the list head 1003 * @list: list to use 1004 * @newsk: buffer to queue 1005 * 1006 * Queue a buffer at the start of a list. This function takes no locks 1007 * and you must therefore hold required locks before calling it. 1008 * 1009 * A buffer cannot be placed on two lists at the same time. 1010 */ 1011extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1012static inline void __skb_queue_head(struct sk_buff_head *list, 1013 struct sk_buff *newsk) 1014{ 1015 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1016} 1017 1018/** 1019 * __skb_queue_tail - queue a buffer at the list tail 1020 * @list: list to use 1021 * @newsk: buffer to queue 1022 * 1023 * Queue a buffer at the end of a list. This function takes no locks 1024 * and you must therefore hold required locks before calling it. 1025 * 1026 * A buffer cannot be placed on two lists at the same time. 1027 */ 1028extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1029static inline void __skb_queue_tail(struct sk_buff_head *list, 1030 struct sk_buff *newsk) 1031{ 1032 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1033} 1034 1035/* 1036 * remove sk_buff from list. _Must_ be called atomically, and with 1037 * the list known.. 1038 */ 1039extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1040static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1041{ 1042 struct sk_buff *next, *prev; 1043 1044 list->qlen--; 1045 next = skb->next; 1046 prev = skb->prev; 1047 skb->next = skb->prev = NULL; 1048 next->prev = prev; 1049 prev->next = next; 1050} 1051 1052/** 1053 * __skb_dequeue - remove from the head of the queue 1054 * @list: list to dequeue from 1055 * 1056 * Remove the head of the list. This function does not take any locks 1057 * so must be used with appropriate locks held only. The head item is 1058 * returned or %NULL if the list is empty. 1059 */ 1060extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1061static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1062{ 1063 struct sk_buff *skb = skb_peek(list); 1064 if (skb) 1065 __skb_unlink(skb, list); 1066 return skb; 1067} 1068 1069/** 1070 * __skb_dequeue_tail - remove from the tail of the queue 1071 * @list: list to dequeue from 1072 * 1073 * Remove the tail of the list. This function does not take any locks 1074 * so must be used with appropriate locks held only. The tail item is 1075 * returned or %NULL if the list is empty. 1076 */ 1077extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1078static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1079{ 1080 struct sk_buff *skb = skb_peek_tail(list); 1081 if (skb) 1082 __skb_unlink(skb, list); 1083 return skb; 1084} 1085 1086 1087static inline int skb_is_nonlinear(const struct sk_buff *skb) 1088{ 1089 return skb->data_len; 1090} 1091 1092static inline unsigned int skb_headlen(const struct sk_buff *skb) 1093{ 1094 return skb->len - skb->data_len; 1095} 1096 1097static inline int skb_pagelen(const struct sk_buff *skb) 1098{ 1099 int i, len = 0; 1100 1101 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1102 len += skb_shinfo(skb)->frags[i].size; 1103 return len + skb_headlen(skb); 1104} 1105 1106static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1107 struct page *page, int off, int size) 1108{ 1109 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1110 1111 frag->page = page; 1112 frag->page_offset = off; 1113 frag->size = size; 1114 skb_shinfo(skb)->nr_frags = i + 1; 1115} 1116 1117extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1118 int off, int size); 1119 1120#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1121#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1122#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1123 1124#ifdef NET_SKBUFF_DATA_USES_OFFSET 1125static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1126{ 1127 return skb->head + skb->tail; 1128} 1129 1130static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1131{ 1132 skb->tail = skb->data - skb->head; 1133} 1134 1135static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1136{ 1137 skb_reset_tail_pointer(skb); 1138 skb->tail += offset; 1139} 1140#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1141static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1142{ 1143 return skb->tail; 1144} 1145 1146static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1147{ 1148 skb->tail = skb->data; 1149} 1150 1151static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1152{ 1153 skb->tail = skb->data + offset; 1154} 1155 1156#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1157 1158/* 1159 * Add data to an sk_buff 1160 */ 1161extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1162static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1163{ 1164 unsigned char *tmp = skb_tail_pointer(skb); 1165 SKB_LINEAR_ASSERT(skb); 1166 skb->tail += len; 1167 skb->len += len; 1168 return tmp; 1169} 1170 1171extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1172static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1173{ 1174 skb->data -= len; 1175 skb->len += len; 1176 return skb->data; 1177} 1178 1179extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1180static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1181{ 1182 skb->len -= len; 1183 BUG_ON(skb->len < skb->data_len); 1184 return skb->data += len; 1185} 1186 1187static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1188{ 1189 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1190} 1191 1192extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1193 1194static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1195{ 1196 if (len > skb_headlen(skb) && 1197 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1198 return NULL; 1199 skb->len -= len; 1200 return skb->data += len; 1201} 1202 1203static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1204{ 1205 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1206} 1207 1208static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1209{ 1210 if (likely(len <= skb_headlen(skb))) 1211 return 1; 1212 if (unlikely(len > skb->len)) 1213 return 0; 1214 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1215} 1216 1217/** 1218 * skb_headroom - bytes at buffer head 1219 * @skb: buffer to check 1220 * 1221 * Return the number of bytes of free space at the head of an &sk_buff. 1222 */ 1223static inline unsigned int skb_headroom(const struct sk_buff *skb) 1224{ 1225 return skb->data - skb->head; 1226} 1227 1228/** 1229 * skb_tailroom - bytes at buffer end 1230 * @skb: buffer to check 1231 * 1232 * Return the number of bytes of free space at the tail of an sk_buff 1233 */ 1234static inline int skb_tailroom(const struct sk_buff *skb) 1235{ 1236 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1237} 1238 1239/** 1240 * skb_reserve - adjust headroom 1241 * @skb: buffer to alter 1242 * @len: bytes to move 1243 * 1244 * Increase the headroom of an empty &sk_buff by reducing the tail 1245 * room. This is only allowed for an empty buffer. 1246 */ 1247static inline void skb_reserve(struct sk_buff *skb, int len) 1248{ 1249 skb->data += len; 1250 skb->tail += len; 1251} 1252 1253#ifdef NET_SKBUFF_DATA_USES_OFFSET 1254static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1255{ 1256 return skb->head + skb->transport_header; 1257} 1258 1259static inline void skb_reset_transport_header(struct sk_buff *skb) 1260{ 1261 skb->transport_header = skb->data - skb->head; 1262} 1263 1264static inline void skb_set_transport_header(struct sk_buff *skb, 1265 const int offset) 1266{ 1267 skb_reset_transport_header(skb); 1268 skb->transport_header += offset; 1269} 1270 1271static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1272{ 1273 return skb->head + skb->network_header; 1274} 1275 1276static inline void skb_reset_network_header(struct sk_buff *skb) 1277{ 1278 skb->network_header = skb->data - skb->head; 1279} 1280 1281static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1282{ 1283 skb_reset_network_header(skb); 1284 skb->network_header += offset; 1285} 1286 1287static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1288{ 1289 return skb->head + skb->mac_header; 1290} 1291 1292static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1293{ 1294 return skb->mac_header != ~0U; 1295} 1296 1297static inline void skb_reset_mac_header(struct sk_buff *skb) 1298{ 1299 skb->mac_header = skb->data - skb->head; 1300} 1301 1302static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1303{ 1304 skb_reset_mac_header(skb); 1305 skb->mac_header += offset; 1306} 1307 1308#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1309 1310static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1311{ 1312 return skb->transport_header; 1313} 1314 1315static inline void skb_reset_transport_header(struct sk_buff *skb) 1316{ 1317 skb->transport_header = skb->data; 1318} 1319 1320static inline void skb_set_transport_header(struct sk_buff *skb, 1321 const int offset) 1322{ 1323 skb->transport_header = skb->data + offset; 1324} 1325 1326static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1327{ 1328 return skb->network_header; 1329} 1330 1331static inline void skb_reset_network_header(struct sk_buff *skb) 1332{ 1333 skb->network_header = skb->data; 1334} 1335 1336static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1337{ 1338 skb->network_header = skb->data + offset; 1339} 1340 1341static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1342{ 1343 return skb->mac_header; 1344} 1345 1346static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1347{ 1348 return skb->mac_header != NULL; 1349} 1350 1351static inline void skb_reset_mac_header(struct sk_buff *skb) 1352{ 1353 skb->mac_header = skb->data; 1354} 1355 1356static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1357{ 1358 skb->mac_header = skb->data + offset; 1359} 1360#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1361 1362static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1363{ 1364 return skb->csum_start - skb_headroom(skb); 1365} 1366 1367static inline int skb_transport_offset(const struct sk_buff *skb) 1368{ 1369 return skb_transport_header(skb) - skb->data; 1370} 1371 1372static inline u32 skb_network_header_len(const struct sk_buff *skb) 1373{ 1374 return skb->transport_header - skb->network_header; 1375} 1376 1377static inline int skb_network_offset(const struct sk_buff *skb) 1378{ 1379 return skb_network_header(skb) - skb->data; 1380} 1381 1382static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1383{ 1384 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1385} 1386 1387/* 1388 * CPUs often take a performance hit when accessing unaligned memory 1389 * locations. The actual performance hit varies, it can be small if the 1390 * hardware handles it or large if we have to take an exception and fix it 1391 * in software. 1392 * 1393 * Since an ethernet header is 14 bytes network drivers often end up with 1394 * the IP header at an unaligned offset. The IP header can be aligned by 1395 * shifting the start of the packet by 2 bytes. Drivers should do this 1396 * with: 1397 * 1398 * skb_reserve(skb, NET_IP_ALIGN); 1399 * 1400 * The downside to this alignment of the IP header is that the DMA is now 1401 * unaligned. On some architectures the cost of an unaligned DMA is high 1402 * and this cost outweighs the gains made by aligning the IP header. 1403 * 1404 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1405 * to be overridden. 1406 */ 1407#ifndef NET_IP_ALIGN 1408#define NET_IP_ALIGN 2 1409#endif 1410 1411/* 1412 * The networking layer reserves some headroom in skb data (via 1413 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1414 * the header has to grow. In the default case, if the header has to grow 1415 * 32 bytes or less we avoid the reallocation. 1416 * 1417 * Unfortunately this headroom changes the DMA alignment of the resulting 1418 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1419 * on some architectures. An architecture can override this value, 1420 * perhaps setting it to a cacheline in size (since that will maintain 1421 * cacheline alignment of the DMA). It must be a power of 2. 1422 * 1423 * Various parts of the networking layer expect at least 32 bytes of 1424 * headroom, you should not reduce this. 1425 * 1426 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1427 * to reduce average number of cache lines per packet. 1428 * get_rps_cpus() for example only access one 64 bytes aligned block : 1429 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1430 */ 1431#ifndef NET_SKB_PAD 1432#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1433#endif 1434 1435extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1436 1437static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1438{ 1439 if (unlikely(skb->data_len)) { 1440 WARN_ON(1); 1441 return; 1442 } 1443 skb->len = len; 1444 skb_set_tail_pointer(skb, len); 1445} 1446 1447extern void skb_trim(struct sk_buff *skb, unsigned int len); 1448 1449static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1450{ 1451 if (skb->data_len) 1452 return ___pskb_trim(skb, len); 1453 __skb_trim(skb, len); 1454 return 0; 1455} 1456 1457static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1458{ 1459 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1460} 1461 1462/** 1463 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1464 * @skb: buffer to alter 1465 * @len: new length 1466 * 1467 * This is identical to pskb_trim except that the caller knows that 1468 * the skb is not cloned so we should never get an error due to out- 1469 * of-memory. 1470 */ 1471static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1472{ 1473 int err = pskb_trim(skb, len); 1474 BUG_ON(err); 1475} 1476 1477/** 1478 * skb_orphan - orphan a buffer 1479 * @skb: buffer to orphan 1480 * 1481 * If a buffer currently has an owner then we call the owner's 1482 * destructor function and make the @skb unowned. The buffer continues 1483 * to exist but is no longer charged to its former owner. 1484 */ 1485static inline void skb_orphan(struct sk_buff *skb) 1486{ 1487 if (skb->destructor) 1488 skb->destructor(skb); 1489 skb->destructor = NULL; 1490 skb->sk = NULL; 1491} 1492 1493/** 1494 * __skb_queue_purge - empty a list 1495 * @list: list to empty 1496 * 1497 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1498 * the list and one reference dropped. This function does not take the 1499 * list lock and the caller must hold the relevant locks to use it. 1500 */ 1501extern void skb_queue_purge(struct sk_buff_head *list); 1502static inline void __skb_queue_purge(struct sk_buff_head *list) 1503{ 1504 struct sk_buff *skb; 1505 while ((skb = __skb_dequeue(list)) != NULL) 1506 kfree_skb(skb); 1507} 1508 1509/** 1510 * __dev_alloc_skb - allocate an skbuff for receiving 1511 * @length: length to allocate 1512 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1513 * 1514 * Allocate a new &sk_buff and assign it a usage count of one. The 1515 * buffer has unspecified headroom built in. Users should allocate 1516 * the headroom they think they need without accounting for the 1517 * built in space. The built in space is used for optimisations. 1518 * 1519 * %NULL is returned if there is no free memory. 1520 */ 1521static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1522 gfp_t gfp_mask) 1523{ 1524 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1525 if (likely(skb)) 1526 skb_reserve(skb, NET_SKB_PAD); 1527 return skb; 1528} 1529 1530extern struct sk_buff *dev_alloc_skb(unsigned int length); 1531 1532extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1533 unsigned int length, gfp_t gfp_mask); 1534 1535/** 1536 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1537 * @dev: network device to receive on 1538 * @length: length to allocate 1539 * 1540 * Allocate a new &sk_buff and assign it a usage count of one. The 1541 * buffer has unspecified headroom built in. Users should allocate 1542 * the headroom they think they need without accounting for the 1543 * built in space. The built in space is used for optimisations. 1544 * 1545 * %NULL is returned if there is no free memory. Although this function 1546 * allocates memory it can be called from an interrupt. 1547 */ 1548static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1549 unsigned int length) 1550{ 1551 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1552} 1553 1554static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1555 unsigned int length) 1556{ 1557 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1558 1559 if (NET_IP_ALIGN && skb) 1560 skb_reserve(skb, NET_IP_ALIGN); 1561 return skb; 1562} 1563 1564/** 1565 * __netdev_alloc_page - allocate a page for ps-rx on a specific device 1566 * @dev: network device to receive on 1567 * @gfp_mask: alloc_pages_node mask 1568 * 1569 * Allocate a new page. dev currently unused. 1570 * 1571 * %NULL is returned if there is no free memory. 1572 */ 1573static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 1574{ 1575 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0); 1576} 1577 1578/** 1579 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1580 * @dev: network device to receive on 1581 * 1582 * Allocate a new page. dev currently unused. 1583 * 1584 * %NULL is returned if there is no free memory. 1585 */ 1586static inline struct page *netdev_alloc_page(struct net_device *dev) 1587{ 1588 return __netdev_alloc_page(dev, GFP_ATOMIC); 1589} 1590 1591static inline void netdev_free_page(struct net_device *dev, struct page *page) 1592{ 1593 __free_page(page); 1594} 1595 1596/** 1597 * skb_clone_writable - is the header of a clone writable 1598 * @skb: buffer to check 1599 * @len: length up to which to write 1600 * 1601 * Returns true if modifying the header part of the cloned buffer 1602 * does not requires the data to be copied. 1603 */ 1604static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1605{ 1606 return !skb_header_cloned(skb) && 1607 skb_headroom(skb) + len <= skb->hdr_len; 1608} 1609 1610static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1611 int cloned) 1612{ 1613 int delta = 0; 1614 1615 if (headroom < NET_SKB_PAD) 1616 headroom = NET_SKB_PAD; 1617 if (headroom > skb_headroom(skb)) 1618 delta = headroom - skb_headroom(skb); 1619 1620 if (delta || cloned) 1621 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1622 GFP_ATOMIC); 1623 return 0; 1624} 1625 1626/** 1627 * skb_cow - copy header of skb when it is required 1628 * @skb: buffer to cow 1629 * @headroom: needed headroom 1630 * 1631 * If the skb passed lacks sufficient headroom or its data part 1632 * is shared, data is reallocated. If reallocation fails, an error 1633 * is returned and original skb is not changed. 1634 * 1635 * The result is skb with writable area skb->head...skb->tail 1636 * and at least @headroom of space at head. 1637 */ 1638static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1639{ 1640 return __skb_cow(skb, headroom, skb_cloned(skb)); 1641} 1642 1643/** 1644 * skb_cow_head - skb_cow but only making the head writable 1645 * @skb: buffer to cow 1646 * @headroom: needed headroom 1647 * 1648 * This function is identical to skb_cow except that we replace the 1649 * skb_cloned check by skb_header_cloned. It should be used when 1650 * you only need to push on some header and do not need to modify 1651 * the data. 1652 */ 1653static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1654{ 1655 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1656} 1657 1658/** 1659 * skb_padto - pad an skbuff up to a minimal size 1660 * @skb: buffer to pad 1661 * @len: minimal length 1662 * 1663 * Pads up a buffer to ensure the trailing bytes exist and are 1664 * blanked. If the buffer already contains sufficient data it 1665 * is untouched. Otherwise it is extended. Returns zero on 1666 * success. The skb is freed on error. 1667 */ 1668 1669static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1670{ 1671 unsigned int size = skb->len; 1672 if (likely(size >= len)) 1673 return 0; 1674 return skb_pad(skb, len - size); 1675} 1676 1677static inline int skb_add_data(struct sk_buff *skb, 1678 char __user *from, int copy) 1679{ 1680 const int off = skb->len; 1681 1682 if (skb->ip_summed == CHECKSUM_NONE) { 1683 int err = 0; 1684 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1685 copy, 0, &err); 1686 if (!err) { 1687 skb->csum = csum_block_add(skb->csum, csum, off); 1688 return 0; 1689 } 1690 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1691 return 0; 1692 1693 __skb_trim(skb, off); 1694 return -EFAULT; 1695} 1696 1697static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1698 struct page *page, int off) 1699{ 1700 if (i) { 1701 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1702 1703 return page == frag->page && 1704 off == frag->page_offset + frag->size; 1705 } 1706 return 0; 1707} 1708 1709static inline int __skb_linearize(struct sk_buff *skb) 1710{ 1711 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1712} 1713 1714/** 1715 * skb_linearize - convert paged skb to linear one 1716 * @skb: buffer to linarize 1717 * 1718 * If there is no free memory -ENOMEM is returned, otherwise zero 1719 * is returned and the old skb data released. 1720 */ 1721static inline int skb_linearize(struct sk_buff *skb) 1722{ 1723 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1724} 1725 1726/** 1727 * skb_linearize_cow - make sure skb is linear and writable 1728 * @skb: buffer to process 1729 * 1730 * If there is no free memory -ENOMEM is returned, otherwise zero 1731 * is returned and the old skb data released. 1732 */ 1733static inline int skb_linearize_cow(struct sk_buff *skb) 1734{ 1735 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1736 __skb_linearize(skb) : 0; 1737} 1738 1739/** 1740 * skb_postpull_rcsum - update checksum for received skb after pull 1741 * @skb: buffer to update 1742 * @start: start of data before pull 1743 * @len: length of data pulled 1744 * 1745 * After doing a pull on a received packet, you need to call this to 1746 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1747 * CHECKSUM_NONE so that it can be recomputed from scratch. 1748 */ 1749 1750static inline void skb_postpull_rcsum(struct sk_buff *skb, 1751 const void *start, unsigned int len) 1752{ 1753 if (skb->ip_summed == CHECKSUM_COMPLETE) 1754 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1755} 1756 1757unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1758 1759/** 1760 * pskb_trim_rcsum - trim received skb and update checksum 1761 * @skb: buffer to trim 1762 * @len: new length 1763 * 1764 * This is exactly the same as pskb_trim except that it ensures the 1765 * checksum of received packets are still valid after the operation. 1766 */ 1767 1768static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1769{ 1770 if (likely(len >= skb->len)) 1771 return 0; 1772 if (skb->ip_summed == CHECKSUM_COMPLETE) 1773 skb->ip_summed = CHECKSUM_NONE; 1774 return __pskb_trim(skb, len); 1775} 1776 1777#define skb_queue_walk(queue, skb) \ 1778 for (skb = (queue)->next; \ 1779 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1780 skb = skb->next) 1781 1782#define skb_queue_walk_safe(queue, skb, tmp) \ 1783 for (skb = (queue)->next, tmp = skb->next; \ 1784 skb != (struct sk_buff *)(queue); \ 1785 skb = tmp, tmp = skb->next) 1786 1787#define skb_queue_walk_from(queue, skb) \ 1788 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1789 skb = skb->next) 1790 1791#define skb_queue_walk_from_safe(queue, skb, tmp) \ 1792 for (tmp = skb->next; \ 1793 skb != (struct sk_buff *)(queue); \ 1794 skb = tmp, tmp = skb->next) 1795 1796#define skb_queue_reverse_walk(queue, skb) \ 1797 for (skb = (queue)->prev; \ 1798 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1799 skb = skb->prev) 1800 1801#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 1802 for (skb = (queue)->prev, tmp = skb->prev; \ 1803 skb != (struct sk_buff *)(queue); \ 1804 skb = tmp, tmp = skb->prev) 1805 1806#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 1807 for (tmp = skb->prev; \ 1808 skb != (struct sk_buff *)(queue); \ 1809 skb = tmp, tmp = skb->prev) 1810 1811static inline bool skb_has_frag_list(const struct sk_buff *skb) 1812{ 1813 return skb_shinfo(skb)->frag_list != NULL; 1814} 1815 1816static inline void skb_frag_list_init(struct sk_buff *skb) 1817{ 1818 skb_shinfo(skb)->frag_list = NULL; 1819} 1820 1821static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1822{ 1823 frag->next = skb_shinfo(skb)->frag_list; 1824 skb_shinfo(skb)->frag_list = frag; 1825} 1826 1827#define skb_walk_frags(skb, iter) \ 1828 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1829 1830extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1831 int *peeked, int *err); 1832extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1833 int noblock, int *err); 1834extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1835 struct poll_table_struct *wait); 1836extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1837 int offset, struct iovec *to, 1838 int size); 1839extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1840 int hlen, 1841 struct iovec *iov); 1842extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1843 int offset, 1844 const struct iovec *from, 1845 int from_offset, 1846 int len); 1847extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1848 int offset, 1849 const struct iovec *to, 1850 int to_offset, 1851 int size); 1852extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1853extern void skb_free_datagram_locked(struct sock *sk, 1854 struct sk_buff *skb); 1855extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1856 unsigned int flags); 1857extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1858 int len, __wsum csum); 1859extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1860 void *to, int len); 1861extern int skb_store_bits(struct sk_buff *skb, int offset, 1862 const void *from, int len); 1863extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1864 int offset, u8 *to, int len, 1865 __wsum csum); 1866extern int skb_splice_bits(struct sk_buff *skb, 1867 unsigned int offset, 1868 struct pipe_inode_info *pipe, 1869 unsigned int len, 1870 unsigned int flags); 1871extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1872extern void skb_split(struct sk_buff *skb, 1873 struct sk_buff *skb1, const u32 len); 1874extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1875 int shiftlen); 1876 1877extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features); 1878 1879static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1880 int len, void *buffer) 1881{ 1882 int hlen = skb_headlen(skb); 1883 1884 if (hlen - offset >= len) 1885 return skb->data + offset; 1886 1887 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1888 return NULL; 1889 1890 return buffer; 1891} 1892 1893static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1894 void *to, 1895 const unsigned int len) 1896{ 1897 memcpy(to, skb->data, len); 1898} 1899 1900static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1901 const int offset, void *to, 1902 const unsigned int len) 1903{ 1904 memcpy(to, skb->data + offset, len); 1905} 1906 1907static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1908 const void *from, 1909 const unsigned int len) 1910{ 1911 memcpy(skb->data, from, len); 1912} 1913 1914static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1915 const int offset, 1916 const void *from, 1917 const unsigned int len) 1918{ 1919 memcpy(skb->data + offset, from, len); 1920} 1921 1922extern void skb_init(void); 1923 1924static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1925{ 1926 return skb->tstamp; 1927} 1928 1929/** 1930 * skb_get_timestamp - get timestamp from a skb 1931 * @skb: skb to get stamp from 1932 * @stamp: pointer to struct timeval to store stamp in 1933 * 1934 * Timestamps are stored in the skb as offsets to a base timestamp. 1935 * This function converts the offset back to a struct timeval and stores 1936 * it in stamp. 1937 */ 1938static inline void skb_get_timestamp(const struct sk_buff *skb, 1939 struct timeval *stamp) 1940{ 1941 *stamp = ktime_to_timeval(skb->tstamp); 1942} 1943 1944static inline void skb_get_timestampns(const struct sk_buff *skb, 1945 struct timespec *stamp) 1946{ 1947 *stamp = ktime_to_timespec(skb->tstamp); 1948} 1949 1950static inline void __net_timestamp(struct sk_buff *skb) 1951{ 1952 skb->tstamp = ktime_get_real(); 1953} 1954 1955static inline ktime_t net_timedelta(ktime_t t) 1956{ 1957 return ktime_sub(ktime_get_real(), t); 1958} 1959 1960static inline ktime_t net_invalid_timestamp(void) 1961{ 1962 return ktime_set(0, 0); 1963} 1964 1965extern void skb_timestamping_init(void); 1966 1967#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 1968 1969extern void skb_clone_tx_timestamp(struct sk_buff *skb); 1970extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 1971 1972#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 1973 1974static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 1975{ 1976} 1977 1978static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 1979{ 1980 return false; 1981} 1982 1983#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 1984 1985/** 1986 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 1987 * 1988 * @skb: clone of the the original outgoing packet 1989 * @hwtstamps: hardware time stamps 1990 * 1991 */ 1992void skb_complete_tx_timestamp(struct sk_buff *skb, 1993 struct skb_shared_hwtstamps *hwtstamps); 1994 1995/** 1996 * skb_tstamp_tx - queue clone of skb with send time stamps 1997 * @orig_skb: the original outgoing packet 1998 * @hwtstamps: hardware time stamps, may be NULL if not available 1999 * 2000 * If the skb has a socket associated, then this function clones the 2001 * skb (thus sharing the actual data and optional structures), stores 2002 * the optional hardware time stamping information (if non NULL) or 2003 * generates a software time stamp (otherwise), then queues the clone 2004 * to the error queue of the socket. Errors are silently ignored. 2005 */ 2006extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2007 struct skb_shared_hwtstamps *hwtstamps); 2008 2009static inline void sw_tx_timestamp(struct sk_buff *skb) 2010{ 2011 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2012 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2013 skb_tstamp_tx(skb, NULL); 2014} 2015 2016/** 2017 * skb_tx_timestamp() - Driver hook for transmit timestamping 2018 * 2019 * Ethernet MAC Drivers should call this function in their hard_xmit() 2020 * function as soon as possible after giving the sk_buff to the MAC 2021 * hardware, but before freeing the sk_buff. 2022 * 2023 * @skb: A socket buffer. 2024 */ 2025static inline void skb_tx_timestamp(struct sk_buff *skb) 2026{ 2027 skb_clone_tx_timestamp(skb); 2028 sw_tx_timestamp(skb); 2029} 2030 2031extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2032extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2033 2034static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2035{ 2036 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2037} 2038 2039/** 2040 * skb_checksum_complete - Calculate checksum of an entire packet 2041 * @skb: packet to process 2042 * 2043 * This function calculates the checksum over the entire packet plus 2044 * the value of skb->csum. The latter can be used to supply the 2045 * checksum of a pseudo header as used by TCP/UDP. It returns the 2046 * checksum. 2047 * 2048 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2049 * this function can be used to verify that checksum on received 2050 * packets. In that case the function should return zero if the 2051 * checksum is correct. In particular, this function will return zero 2052 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2053 * hardware has already verified the correctness of the checksum. 2054 */ 2055static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2056{ 2057 return skb_csum_unnecessary(skb) ? 2058 0 : __skb_checksum_complete(skb); 2059} 2060 2061#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2062extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2063static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2064{ 2065 if (nfct && atomic_dec_and_test(&nfct->use)) 2066 nf_conntrack_destroy(nfct); 2067} 2068static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2069{ 2070 if (nfct) 2071 atomic_inc(&nfct->use); 2072} 2073#endif 2074#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2075static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2076{ 2077 if (skb) 2078 atomic_inc(&skb->users); 2079} 2080static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2081{ 2082 if (skb) 2083 kfree_skb(skb); 2084} 2085#endif 2086#ifdef CONFIG_BRIDGE_NETFILTER 2087static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2088{ 2089 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2090 kfree(nf_bridge); 2091} 2092static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2093{ 2094 if (nf_bridge) 2095 atomic_inc(&nf_bridge->use); 2096} 2097#endif /* CONFIG_BRIDGE_NETFILTER */ 2098static inline void nf_reset(struct sk_buff *skb) 2099{ 2100#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2101 nf_conntrack_put(skb->nfct); 2102 skb->nfct = NULL; 2103#endif 2104#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2105 nf_conntrack_put_reasm(skb->nfct_reasm); 2106 skb->nfct_reasm = NULL; 2107#endif 2108#ifdef CONFIG_BRIDGE_NETFILTER 2109 nf_bridge_put(skb->nf_bridge); 2110 skb->nf_bridge = NULL; 2111#endif 2112} 2113 2114/* Note: This doesn't put any conntrack and bridge info in dst. */ 2115static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2116{ 2117#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2118 dst->nfct = src->nfct; 2119 nf_conntrack_get(src->nfct); 2120 dst->nfctinfo = src->nfctinfo; 2121#endif 2122#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2123 dst->nfct_reasm = src->nfct_reasm; 2124 nf_conntrack_get_reasm(src->nfct_reasm); 2125#endif 2126#ifdef CONFIG_BRIDGE_NETFILTER 2127 dst->nf_bridge = src->nf_bridge; 2128 nf_bridge_get(src->nf_bridge); 2129#endif 2130} 2131 2132static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2133{ 2134#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2135 nf_conntrack_put(dst->nfct); 2136#endif 2137#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2138 nf_conntrack_put_reasm(dst->nfct_reasm); 2139#endif 2140#ifdef CONFIG_BRIDGE_NETFILTER 2141 nf_bridge_put(dst->nf_bridge); 2142#endif 2143 __nf_copy(dst, src); 2144} 2145 2146#ifdef CONFIG_NETWORK_SECMARK 2147static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2148{ 2149 to->secmark = from->secmark; 2150} 2151 2152static inline void skb_init_secmark(struct sk_buff *skb) 2153{ 2154 skb->secmark = 0; 2155} 2156#else 2157static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2158{ } 2159 2160static inline void skb_init_secmark(struct sk_buff *skb) 2161{ } 2162#endif 2163 2164static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2165{ 2166 skb->queue_mapping = queue_mapping; 2167} 2168 2169static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2170{ 2171 return skb->queue_mapping; 2172} 2173 2174static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2175{ 2176 to->queue_mapping = from->queue_mapping; 2177} 2178 2179static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2180{ 2181 skb->queue_mapping = rx_queue + 1; 2182} 2183 2184static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2185{ 2186 return skb->queue_mapping - 1; 2187} 2188 2189static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2190{ 2191 return skb->queue_mapping != 0; 2192} 2193 2194extern u16 __skb_tx_hash(const struct net_device *dev, 2195 const struct sk_buff *skb, 2196 unsigned int num_tx_queues); 2197 2198#ifdef CONFIG_XFRM 2199static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2200{ 2201 return skb->sp; 2202} 2203#else 2204static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2205{ 2206 return NULL; 2207} 2208#endif 2209 2210static inline int skb_is_gso(const struct sk_buff *skb) 2211{ 2212 return skb_shinfo(skb)->gso_size; 2213} 2214 2215static inline int skb_is_gso_v6(const struct sk_buff *skb) 2216{ 2217 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2218} 2219 2220extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2221 2222static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2223{ 2224 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2225 * wanted then gso_type will be set. */ 2226 struct skb_shared_info *shinfo = skb_shinfo(skb); 2227 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2228 unlikely(shinfo->gso_type == 0)) { 2229 __skb_warn_lro_forwarding(skb); 2230 return true; 2231 } 2232 return false; 2233} 2234 2235static inline void skb_forward_csum(struct sk_buff *skb) 2236{ 2237 /* Unfortunately we don't support this one. Any brave souls? */ 2238 if (skb->ip_summed == CHECKSUM_COMPLETE) 2239 skb->ip_summed = CHECKSUM_NONE; 2240} 2241 2242/** 2243 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2244 * @skb: skb to check 2245 * 2246 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2247 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2248 * use this helper, to document places where we make this assertion. 2249 */ 2250static inline void skb_checksum_none_assert(struct sk_buff *skb) 2251{ 2252#ifdef DEBUG 2253 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2254#endif 2255} 2256 2257bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2258#endif /* __KERNEL__ */ 2259#endif /* _LINUX_SKBUFF_H */