1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30#define CLONE_NEWNET 0x40000000 /* New network namespace */ 31#define CLONE_IO 0x80000000 /* Clone io context */ 32 33/* 34 * Scheduling policies 35 */ 36#define SCHED_NORMAL 0 37#define SCHED_FIFO 1 38#define SCHED_RR 2 39#define SCHED_BATCH 3 40/* SCHED_ISO: reserved but not implemented yet */ 41#define SCHED_IDLE 5 42/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43#define SCHED_RESET_ON_FORK 0x40000000 44 45#ifdef __KERNEL__ 46 47struct sched_param { 48 int sched_priority; 49}; 50 51#include <asm/param.h> /* for HZ */ 52 53#include <linux/capability.h> 54#include <linux/threads.h> 55#include <linux/kernel.h> 56#include <linux/types.h> 57#include <linux/timex.h> 58#include <linux/jiffies.h> 59#include <linux/rbtree.h> 60#include <linux/thread_info.h> 61#include <linux/cpumask.h> 62#include <linux/errno.h> 63#include <linux/nodemask.h> 64#include <linux/mm_types.h> 65 66#include <asm/system.h> 67#include <asm/page.h> 68#include <asm/ptrace.h> 69#include <asm/cputime.h> 70 71#include <linux/smp.h> 72#include <linux/sem.h> 73#include <linux/signal.h> 74#include <linux/compiler.h> 75#include <linux/completion.h> 76#include <linux/pid.h> 77#include <linux/percpu.h> 78#include <linux/topology.h> 79#include <linux/proportions.h> 80#include <linux/seccomp.h> 81#include <linux/rcupdate.h> 82#include <linux/rculist.h> 83#include <linux/rtmutex.h> 84 85#include <linux/time.h> 86#include <linux/param.h> 87#include <linux/resource.h> 88#include <linux/timer.h> 89#include <linux/hrtimer.h> 90#include <linux/task_io_accounting.h> 91#include <linux/latencytop.h> 92#include <linux/cred.h> 93 94#include <asm/processor.h> 95 96struct exec_domain; 97struct futex_pi_state; 98struct robust_list_head; 99struct bio_list; 100struct fs_struct; 101struct perf_event_context; 102struct blk_plug; 103 104/* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110/* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120extern unsigned long avenrun[]; /* Load averages */ 121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123#define FSHIFT 11 /* nr of bits of precision */ 124#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127#define EXP_5 2014 /* 1/exp(5sec/5min) */ 128#define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130#define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135extern unsigned long total_forks; 136extern int nr_threads; 137DECLARE_PER_CPU(unsigned long, process_counts); 138extern int nr_processes(void); 139extern unsigned long nr_running(void); 140extern unsigned long nr_uninterruptible(void); 141extern unsigned long nr_iowait(void); 142extern unsigned long nr_iowait_cpu(int cpu); 143extern unsigned long this_cpu_load(void); 144 145 146extern void calc_global_load(unsigned long ticks); 147 148extern unsigned long get_parent_ip(unsigned long addr); 149 150struct seq_file; 151struct cfs_rq; 152struct task_group; 153#ifdef CONFIG_SCHED_DEBUG 154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155extern void proc_sched_set_task(struct task_struct *p); 156extern void 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158#else 159static inline void 160proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161{ 162} 163static inline void proc_sched_set_task(struct task_struct *p) 164{ 165} 166static inline void 167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168{ 169} 170#endif 171 172/* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182#define TASK_RUNNING 0 183#define TASK_INTERRUPTIBLE 1 184#define TASK_UNINTERRUPTIBLE 2 185#define __TASK_STOPPED 4 186#define __TASK_TRACED 8 187/* in tsk->exit_state */ 188#define EXIT_ZOMBIE 16 189#define EXIT_DEAD 32 190/* in tsk->state again */ 191#define TASK_DEAD 64 192#define TASK_WAKEKILL 128 193#define TASK_WAKING 256 194#define TASK_STATE_MAX 512 195 196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201/* Convenience macros for the sake of set_task_state */ 202#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206/* Convenience macros for the sake of wake_up */ 207#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210/* get_task_state() */ 211#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217#define task_is_dead(task) ((task)->exit_state != 0) 218#define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220#define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224#define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226#define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229/* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240#define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242#define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245/* Task command name length */ 246#define TASK_COMM_LEN 16 247 248#include <linux/spinlock.h> 249 250/* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256extern rwlock_t tasklist_lock; 257extern spinlock_t mmlist_lock; 258 259struct task_struct; 260 261#ifdef CONFIG_PROVE_RCU 262extern int lockdep_tasklist_lock_is_held(void); 263#endif /* #ifdef CONFIG_PROVE_RCU */ 264 265extern void sched_init(void); 266extern void sched_init_smp(void); 267extern asmlinkage void schedule_tail(struct task_struct *prev); 268extern void init_idle(struct task_struct *idle, int cpu); 269extern void init_idle_bootup_task(struct task_struct *idle); 270 271extern int runqueue_is_locked(int cpu); 272 273extern cpumask_var_t nohz_cpu_mask; 274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275extern void select_nohz_load_balancer(int stop_tick); 276extern int get_nohz_timer_target(void); 277#else 278static inline void select_nohz_load_balancer(int stop_tick) { } 279#endif 280 281/* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284extern void show_state_filter(unsigned long state_filter); 285 286static inline void show_state(void) 287{ 288 show_state_filter(0); 289} 290 291extern void show_regs(struct pt_regs *); 292 293/* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300void io_schedule(void); 301long io_schedule_timeout(long timeout); 302 303extern void cpu_init (void); 304extern void trap_init(void); 305extern void update_process_times(int user); 306extern void scheduler_tick(void); 307 308extern void sched_show_task(struct task_struct *p); 309 310#ifdef CONFIG_LOCKUP_DETECTOR 311extern void touch_softlockup_watchdog(void); 312extern void touch_softlockup_watchdog_sync(void); 313extern void touch_all_softlockup_watchdogs(void); 314extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317extern unsigned int softlockup_panic; 318extern int softlockup_thresh; 319void lockup_detector_init(void); 320#else 321static inline void touch_softlockup_watchdog(void) 322{ 323} 324static inline void touch_softlockup_watchdog_sync(void) 325{ 326} 327static inline void touch_all_softlockup_watchdogs(void) 328{ 329} 330static inline void lockup_detector_init(void) 331{ 332} 333#endif 334 335#ifdef CONFIG_DETECT_HUNG_TASK 336extern unsigned int sysctl_hung_task_panic; 337extern unsigned long sysctl_hung_task_check_count; 338extern unsigned long sysctl_hung_task_timeout_secs; 339extern unsigned long sysctl_hung_task_warnings; 340extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 341 void __user *buffer, 342 size_t *lenp, loff_t *ppos); 343#else 344/* Avoid need for ifdefs elsewhere in the code */ 345enum { sysctl_hung_task_timeout_secs = 0 }; 346#endif 347 348/* Attach to any functions which should be ignored in wchan output. */ 349#define __sched __attribute__((__section__(".sched.text"))) 350 351/* Linker adds these: start and end of __sched functions */ 352extern char __sched_text_start[], __sched_text_end[]; 353 354/* Is this address in the __sched functions? */ 355extern int in_sched_functions(unsigned long addr); 356 357#define MAX_SCHEDULE_TIMEOUT LONG_MAX 358extern signed long schedule_timeout(signed long timeout); 359extern signed long schedule_timeout_interruptible(signed long timeout); 360extern signed long schedule_timeout_killable(signed long timeout); 361extern signed long schedule_timeout_uninterruptible(signed long timeout); 362asmlinkage void schedule(void); 363extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 364 365struct nsproxy; 366struct user_namespace; 367 368/* 369 * Default maximum number of active map areas, this limits the number of vmas 370 * per mm struct. Users can overwrite this number by sysctl but there is a 371 * problem. 372 * 373 * When a program's coredump is generated as ELF format, a section is created 374 * per a vma. In ELF, the number of sections is represented in unsigned short. 375 * This means the number of sections should be smaller than 65535 at coredump. 376 * Because the kernel adds some informative sections to a image of program at 377 * generating coredump, we need some margin. The number of extra sections is 378 * 1-3 now and depends on arch. We use "5" as safe margin, here. 379 */ 380#define MAPCOUNT_ELF_CORE_MARGIN (5) 381#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 382 383extern int sysctl_max_map_count; 384 385#include <linux/aio.h> 386 387#ifdef CONFIG_MMU 388extern void arch_pick_mmap_layout(struct mm_struct *mm); 389extern unsigned long 390arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 391 unsigned long, unsigned long); 392extern unsigned long 393arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 394 unsigned long len, unsigned long pgoff, 395 unsigned long flags); 396extern void arch_unmap_area(struct mm_struct *, unsigned long); 397extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 398#else 399static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 400#endif 401 402 403extern void set_dumpable(struct mm_struct *mm, int value); 404extern int get_dumpable(struct mm_struct *mm); 405 406/* mm flags */ 407/* dumpable bits */ 408#define MMF_DUMPABLE 0 /* core dump is permitted */ 409#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 410 411#define MMF_DUMPABLE_BITS 2 412#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 413 414/* coredump filter bits */ 415#define MMF_DUMP_ANON_PRIVATE 2 416#define MMF_DUMP_ANON_SHARED 3 417#define MMF_DUMP_MAPPED_PRIVATE 4 418#define MMF_DUMP_MAPPED_SHARED 5 419#define MMF_DUMP_ELF_HEADERS 6 420#define MMF_DUMP_HUGETLB_PRIVATE 7 421#define MMF_DUMP_HUGETLB_SHARED 8 422 423#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 424#define MMF_DUMP_FILTER_BITS 7 425#define MMF_DUMP_FILTER_MASK \ 426 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 427#define MMF_DUMP_FILTER_DEFAULT \ 428 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 429 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 430 431#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 432# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 433#else 434# define MMF_DUMP_MASK_DEFAULT_ELF 0 435#endif 436 /* leave room for more dump flags */ 437#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 438#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 439 440#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 441 442struct sighand_struct { 443 atomic_t count; 444 struct k_sigaction action[_NSIG]; 445 spinlock_t siglock; 446 wait_queue_head_t signalfd_wqh; 447}; 448 449struct pacct_struct { 450 int ac_flag; 451 long ac_exitcode; 452 unsigned long ac_mem; 453 cputime_t ac_utime, ac_stime; 454 unsigned long ac_minflt, ac_majflt; 455}; 456 457struct cpu_itimer { 458 cputime_t expires; 459 cputime_t incr; 460 u32 error; 461 u32 incr_error; 462}; 463 464/** 465 * struct task_cputime - collected CPU time counts 466 * @utime: time spent in user mode, in &cputime_t units 467 * @stime: time spent in kernel mode, in &cputime_t units 468 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 469 * 470 * This structure groups together three kinds of CPU time that are 471 * tracked for threads and thread groups. Most things considering 472 * CPU time want to group these counts together and treat all three 473 * of them in parallel. 474 */ 475struct task_cputime { 476 cputime_t utime; 477 cputime_t stime; 478 unsigned long long sum_exec_runtime; 479}; 480/* Alternate field names when used to cache expirations. */ 481#define prof_exp stime 482#define virt_exp utime 483#define sched_exp sum_exec_runtime 484 485#define INIT_CPUTIME \ 486 (struct task_cputime) { \ 487 .utime = cputime_zero, \ 488 .stime = cputime_zero, \ 489 .sum_exec_runtime = 0, \ 490 } 491 492/* 493 * Disable preemption until the scheduler is running. 494 * Reset by start_kernel()->sched_init()->init_idle(). 495 * 496 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 497 * before the scheduler is active -- see should_resched(). 498 */ 499#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 500 501/** 502 * struct thread_group_cputimer - thread group interval timer counts 503 * @cputime: thread group interval timers. 504 * @running: non-zero when there are timers running and 505 * @cputime receives updates. 506 * @lock: lock for fields in this struct. 507 * 508 * This structure contains the version of task_cputime, above, that is 509 * used for thread group CPU timer calculations. 510 */ 511struct thread_group_cputimer { 512 struct task_cputime cputime; 513 int running; 514 spinlock_t lock; 515}; 516 517struct autogroup; 518 519/* 520 * NOTE! "signal_struct" does not have it's own 521 * locking, because a shared signal_struct always 522 * implies a shared sighand_struct, so locking 523 * sighand_struct is always a proper superset of 524 * the locking of signal_struct. 525 */ 526struct signal_struct { 527 atomic_t sigcnt; 528 atomic_t live; 529 int nr_threads; 530 531 wait_queue_head_t wait_chldexit; /* for wait4() */ 532 533 /* current thread group signal load-balancing target: */ 534 struct task_struct *curr_target; 535 536 /* shared signal handling: */ 537 struct sigpending shared_pending; 538 539 /* thread group exit support */ 540 int group_exit_code; 541 /* overloaded: 542 * - notify group_exit_task when ->count is equal to notify_count 543 * - everyone except group_exit_task is stopped during signal delivery 544 * of fatal signals, group_exit_task processes the signal. 545 */ 546 int notify_count; 547 struct task_struct *group_exit_task; 548 549 /* thread group stop support, overloads group_exit_code too */ 550 int group_stop_count; 551 unsigned int flags; /* see SIGNAL_* flags below */ 552 553 /* POSIX.1b Interval Timers */ 554 struct list_head posix_timers; 555 556 /* ITIMER_REAL timer for the process */ 557 struct hrtimer real_timer; 558 struct pid *leader_pid; 559 ktime_t it_real_incr; 560 561 /* 562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 564 * values are defined to 0 and 1 respectively 565 */ 566 struct cpu_itimer it[2]; 567 568 /* 569 * Thread group totals for process CPU timers. 570 * See thread_group_cputimer(), et al, for details. 571 */ 572 struct thread_group_cputimer cputimer; 573 574 /* Earliest-expiration cache. */ 575 struct task_cputime cputime_expires; 576 577 struct list_head cpu_timers[3]; 578 579 struct pid *tty_old_pgrp; 580 581 /* boolean value for session group leader */ 582 int leader; 583 584 struct tty_struct *tty; /* NULL if no tty */ 585 586#ifdef CONFIG_SCHED_AUTOGROUP 587 struct autogroup *autogroup; 588#endif 589 /* 590 * Cumulative resource counters for dead threads in the group, 591 * and for reaped dead child processes forked by this group. 592 * Live threads maintain their own counters and add to these 593 * in __exit_signal, except for the group leader. 594 */ 595 cputime_t utime, stime, cutime, cstime; 596 cputime_t gtime; 597 cputime_t cgtime; 598#ifndef CONFIG_VIRT_CPU_ACCOUNTING 599 cputime_t prev_utime, prev_stime; 600#endif 601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 603 unsigned long inblock, oublock, cinblock, coublock; 604 unsigned long maxrss, cmaxrss; 605 struct task_io_accounting ioac; 606 607 /* 608 * Cumulative ns of schedule CPU time fo dead threads in the 609 * group, not including a zombie group leader, (This only differs 610 * from jiffies_to_ns(utime + stime) if sched_clock uses something 611 * other than jiffies.) 612 */ 613 unsigned long long sum_sched_runtime; 614 615 /* 616 * We don't bother to synchronize most readers of this at all, 617 * because there is no reader checking a limit that actually needs 618 * to get both rlim_cur and rlim_max atomically, and either one 619 * alone is a single word that can safely be read normally. 620 * getrlimit/setrlimit use task_lock(current->group_leader) to 621 * protect this instead of the siglock, because they really 622 * have no need to disable irqs. 623 */ 624 struct rlimit rlim[RLIM_NLIMITS]; 625 626#ifdef CONFIG_BSD_PROCESS_ACCT 627 struct pacct_struct pacct; /* per-process accounting information */ 628#endif 629#ifdef CONFIG_TASKSTATS 630 struct taskstats *stats; 631#endif 632#ifdef CONFIG_AUDIT 633 unsigned audit_tty; 634 struct tty_audit_buf *tty_audit_buf; 635#endif 636 637 int oom_adj; /* OOM kill score adjustment (bit shift) */ 638 int oom_score_adj; /* OOM kill score adjustment */ 639 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 640 * Only settable by CAP_SYS_RESOURCE. */ 641 642 struct mutex cred_guard_mutex; /* guard against foreign influences on 643 * credential calculations 644 * (notably. ptrace) */ 645}; 646 647/* Context switch must be unlocked if interrupts are to be enabled */ 648#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 649# define __ARCH_WANT_UNLOCKED_CTXSW 650#endif 651 652/* 653 * Bits in flags field of signal_struct. 654 */ 655#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 656#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 657#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 658#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 659/* 660 * Pending notifications to parent. 661 */ 662#define SIGNAL_CLD_STOPPED 0x00000010 663#define SIGNAL_CLD_CONTINUED 0x00000020 664#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 665 666#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 667 668/* If true, all threads except ->group_exit_task have pending SIGKILL */ 669static inline int signal_group_exit(const struct signal_struct *sig) 670{ 671 return (sig->flags & SIGNAL_GROUP_EXIT) || 672 (sig->group_exit_task != NULL); 673} 674 675/* 676 * Some day this will be a full-fledged user tracking system.. 677 */ 678struct user_struct { 679 atomic_t __count; /* reference count */ 680 atomic_t processes; /* How many processes does this user have? */ 681 atomic_t files; /* How many open files does this user have? */ 682 atomic_t sigpending; /* How many pending signals does this user have? */ 683#ifdef CONFIG_INOTIFY_USER 684 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 685 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 686#endif 687#ifdef CONFIG_FANOTIFY 688 atomic_t fanotify_listeners; 689#endif 690#ifdef CONFIG_EPOLL 691 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 692#endif 693#ifdef CONFIG_POSIX_MQUEUE 694 /* protected by mq_lock */ 695 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 696#endif 697 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 698 699#ifdef CONFIG_KEYS 700 struct key *uid_keyring; /* UID specific keyring */ 701 struct key *session_keyring; /* UID's default session keyring */ 702#endif 703 704 /* Hash table maintenance information */ 705 struct hlist_node uidhash_node; 706 uid_t uid; 707 struct user_namespace *user_ns; 708 709#ifdef CONFIG_PERF_EVENTS 710 atomic_long_t locked_vm; 711#endif 712}; 713 714extern int uids_sysfs_init(void); 715 716extern struct user_struct *find_user(uid_t); 717 718extern struct user_struct root_user; 719#define INIT_USER (&root_user) 720 721 722struct backing_dev_info; 723struct reclaim_state; 724 725#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 726struct sched_info { 727 /* cumulative counters */ 728 unsigned long pcount; /* # of times run on this cpu */ 729 unsigned long long run_delay; /* time spent waiting on a runqueue */ 730 731 /* timestamps */ 732 unsigned long long last_arrival,/* when we last ran on a cpu */ 733 last_queued; /* when we were last queued to run */ 734#ifdef CONFIG_SCHEDSTATS 735 /* BKL stats */ 736 unsigned int bkl_count; 737#endif 738}; 739#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 740 741#ifdef CONFIG_TASK_DELAY_ACCT 742struct task_delay_info { 743 spinlock_t lock; 744 unsigned int flags; /* Private per-task flags */ 745 746 /* For each stat XXX, add following, aligned appropriately 747 * 748 * struct timespec XXX_start, XXX_end; 749 * u64 XXX_delay; 750 * u32 XXX_count; 751 * 752 * Atomicity of updates to XXX_delay, XXX_count protected by 753 * single lock above (split into XXX_lock if contention is an issue). 754 */ 755 756 /* 757 * XXX_count is incremented on every XXX operation, the delay 758 * associated with the operation is added to XXX_delay. 759 * XXX_delay contains the accumulated delay time in nanoseconds. 760 */ 761 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 762 u64 blkio_delay; /* wait for sync block io completion */ 763 u64 swapin_delay; /* wait for swapin block io completion */ 764 u32 blkio_count; /* total count of the number of sync block */ 765 /* io operations performed */ 766 u32 swapin_count; /* total count of the number of swapin block */ 767 /* io operations performed */ 768 769 struct timespec freepages_start, freepages_end; 770 u64 freepages_delay; /* wait for memory reclaim */ 771 u32 freepages_count; /* total count of memory reclaim */ 772}; 773#endif /* CONFIG_TASK_DELAY_ACCT */ 774 775static inline int sched_info_on(void) 776{ 777#ifdef CONFIG_SCHEDSTATS 778 return 1; 779#elif defined(CONFIG_TASK_DELAY_ACCT) 780 extern int delayacct_on; 781 return delayacct_on; 782#else 783 return 0; 784#endif 785} 786 787enum cpu_idle_type { 788 CPU_IDLE, 789 CPU_NOT_IDLE, 790 CPU_NEWLY_IDLE, 791 CPU_MAX_IDLE_TYPES 792}; 793 794/* 795 * sched-domains (multiprocessor balancing) declarations: 796 */ 797 798/* 799 * Increase resolution of nice-level calculations: 800 */ 801#define SCHED_LOAD_SHIFT 10 802#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 803 804#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 805 806#ifdef CONFIG_SMP 807#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 808#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 809#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 810#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 811#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 812#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 813#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 814#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 815#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 816#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 817#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 818#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 819#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 820 821enum powersavings_balance_level { 822 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 823 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 824 * first for long running threads 825 */ 826 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 827 * cpu package for power savings 828 */ 829 MAX_POWERSAVINGS_BALANCE_LEVELS 830}; 831 832extern int sched_mc_power_savings, sched_smt_power_savings; 833 834static inline int sd_balance_for_mc_power(void) 835{ 836 if (sched_smt_power_savings) 837 return SD_POWERSAVINGS_BALANCE; 838 839 if (!sched_mc_power_savings) 840 return SD_PREFER_SIBLING; 841 842 return 0; 843} 844 845static inline int sd_balance_for_package_power(void) 846{ 847 if (sched_mc_power_savings | sched_smt_power_savings) 848 return SD_POWERSAVINGS_BALANCE; 849 850 return SD_PREFER_SIBLING; 851} 852 853extern int __weak arch_sd_sibiling_asym_packing(void); 854 855/* 856 * Optimise SD flags for power savings: 857 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 858 * Keep default SD flags if sched_{smt,mc}_power_saving=0 859 */ 860 861static inline int sd_power_saving_flags(void) 862{ 863 if (sched_mc_power_savings | sched_smt_power_savings) 864 return SD_BALANCE_NEWIDLE; 865 866 return 0; 867} 868 869struct sched_group { 870 struct sched_group *next; /* Must be a circular list */ 871 872 /* 873 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 874 * single CPU. 875 */ 876 unsigned int cpu_power, cpu_power_orig; 877 unsigned int group_weight; 878 879 /* 880 * The CPUs this group covers. 881 * 882 * NOTE: this field is variable length. (Allocated dynamically 883 * by attaching extra space to the end of the structure, 884 * depending on how many CPUs the kernel has booted up with) 885 * 886 * It is also be embedded into static data structures at build 887 * time. (See 'struct static_sched_group' in kernel/sched.c) 888 */ 889 unsigned long cpumask[0]; 890}; 891 892static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 893{ 894 return to_cpumask(sg->cpumask); 895} 896 897enum sched_domain_level { 898 SD_LV_NONE = 0, 899 SD_LV_SIBLING, 900 SD_LV_MC, 901 SD_LV_BOOK, 902 SD_LV_CPU, 903 SD_LV_NODE, 904 SD_LV_ALLNODES, 905 SD_LV_MAX 906}; 907 908struct sched_domain_attr { 909 int relax_domain_level; 910}; 911 912#define SD_ATTR_INIT (struct sched_domain_attr) { \ 913 .relax_domain_level = -1, \ 914} 915 916struct sched_domain { 917 /* These fields must be setup */ 918 struct sched_domain *parent; /* top domain must be null terminated */ 919 struct sched_domain *child; /* bottom domain must be null terminated */ 920 struct sched_group *groups; /* the balancing groups of the domain */ 921 unsigned long min_interval; /* Minimum balance interval ms */ 922 unsigned long max_interval; /* Maximum balance interval ms */ 923 unsigned int busy_factor; /* less balancing by factor if busy */ 924 unsigned int imbalance_pct; /* No balance until over watermark */ 925 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 926 unsigned int busy_idx; 927 unsigned int idle_idx; 928 unsigned int newidle_idx; 929 unsigned int wake_idx; 930 unsigned int forkexec_idx; 931 unsigned int smt_gain; 932 int flags; /* See SD_* */ 933 enum sched_domain_level level; 934 935 /* Runtime fields. */ 936 unsigned long last_balance; /* init to jiffies. units in jiffies */ 937 unsigned int balance_interval; /* initialise to 1. units in ms. */ 938 unsigned int nr_balance_failed; /* initialise to 0 */ 939 940 u64 last_update; 941 942#ifdef CONFIG_SCHEDSTATS 943 /* load_balance() stats */ 944 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 945 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 946 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 947 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 948 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 949 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 950 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 951 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 952 953 /* Active load balancing */ 954 unsigned int alb_count; 955 unsigned int alb_failed; 956 unsigned int alb_pushed; 957 958 /* SD_BALANCE_EXEC stats */ 959 unsigned int sbe_count; 960 unsigned int sbe_balanced; 961 unsigned int sbe_pushed; 962 963 /* SD_BALANCE_FORK stats */ 964 unsigned int sbf_count; 965 unsigned int sbf_balanced; 966 unsigned int sbf_pushed; 967 968 /* try_to_wake_up() stats */ 969 unsigned int ttwu_wake_remote; 970 unsigned int ttwu_move_affine; 971 unsigned int ttwu_move_balance; 972#endif 973#ifdef CONFIG_SCHED_DEBUG 974 char *name; 975#endif 976 977 unsigned int span_weight; 978 /* 979 * Span of all CPUs in this domain. 980 * 981 * NOTE: this field is variable length. (Allocated dynamically 982 * by attaching extra space to the end of the structure, 983 * depending on how many CPUs the kernel has booted up with) 984 * 985 * It is also be embedded into static data structures at build 986 * time. (See 'struct static_sched_domain' in kernel/sched.c) 987 */ 988 unsigned long span[0]; 989}; 990 991static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 992{ 993 return to_cpumask(sd->span); 994} 995 996extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 997 struct sched_domain_attr *dattr_new); 998 999/* Allocate an array of sched domains, for partition_sched_domains(). */ 1000cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1001void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1002 1003/* Test a flag in parent sched domain */ 1004static inline int test_sd_parent(struct sched_domain *sd, int flag) 1005{ 1006 if (sd->parent && (sd->parent->flags & flag)) 1007 return 1; 1008 1009 return 0; 1010} 1011 1012unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1013unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1014 1015#else /* CONFIG_SMP */ 1016 1017struct sched_domain_attr; 1018 1019static inline void 1020partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1021 struct sched_domain_attr *dattr_new) 1022{ 1023} 1024#endif /* !CONFIG_SMP */ 1025 1026 1027struct io_context; /* See blkdev.h */ 1028 1029 1030#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1031extern void prefetch_stack(struct task_struct *t); 1032#else 1033static inline void prefetch_stack(struct task_struct *t) { } 1034#endif 1035 1036struct audit_context; /* See audit.c */ 1037struct mempolicy; 1038struct pipe_inode_info; 1039struct uts_namespace; 1040 1041struct rq; 1042struct sched_domain; 1043 1044/* 1045 * wake flags 1046 */ 1047#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1048#define WF_FORK 0x02 /* child wakeup after fork */ 1049 1050#define ENQUEUE_WAKEUP 1 1051#define ENQUEUE_WAKING 2 1052#define ENQUEUE_HEAD 4 1053 1054#define DEQUEUE_SLEEP 1 1055 1056struct sched_class { 1057 const struct sched_class *next; 1058 1059 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1060 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1061 void (*yield_task) (struct rq *rq); 1062 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1063 1064 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1065 1066 struct task_struct * (*pick_next_task) (struct rq *rq); 1067 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1068 1069#ifdef CONFIG_SMP 1070 int (*select_task_rq)(struct rq *rq, struct task_struct *p, 1071 int sd_flag, int flags); 1072 1073 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1074 void (*post_schedule) (struct rq *this_rq); 1075 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1076 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1077 1078 void (*set_cpus_allowed)(struct task_struct *p, 1079 const struct cpumask *newmask); 1080 1081 void (*rq_online)(struct rq *rq); 1082 void (*rq_offline)(struct rq *rq); 1083#endif 1084 1085 void (*set_curr_task) (struct rq *rq); 1086 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1087 void (*task_fork) (struct task_struct *p); 1088 1089 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1090 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1091 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1092 int oldprio); 1093 1094 unsigned int (*get_rr_interval) (struct rq *rq, 1095 struct task_struct *task); 1096 1097#ifdef CONFIG_FAIR_GROUP_SCHED 1098 void (*task_move_group) (struct task_struct *p, int on_rq); 1099#endif 1100}; 1101 1102struct load_weight { 1103 unsigned long weight, inv_weight; 1104}; 1105 1106#ifdef CONFIG_SCHEDSTATS 1107struct sched_statistics { 1108 u64 wait_start; 1109 u64 wait_max; 1110 u64 wait_count; 1111 u64 wait_sum; 1112 u64 iowait_count; 1113 u64 iowait_sum; 1114 1115 u64 sleep_start; 1116 u64 sleep_max; 1117 s64 sum_sleep_runtime; 1118 1119 u64 block_start; 1120 u64 block_max; 1121 u64 exec_max; 1122 u64 slice_max; 1123 1124 u64 nr_migrations_cold; 1125 u64 nr_failed_migrations_affine; 1126 u64 nr_failed_migrations_running; 1127 u64 nr_failed_migrations_hot; 1128 u64 nr_forced_migrations; 1129 1130 u64 nr_wakeups; 1131 u64 nr_wakeups_sync; 1132 u64 nr_wakeups_migrate; 1133 u64 nr_wakeups_local; 1134 u64 nr_wakeups_remote; 1135 u64 nr_wakeups_affine; 1136 u64 nr_wakeups_affine_attempts; 1137 u64 nr_wakeups_passive; 1138 u64 nr_wakeups_idle; 1139}; 1140#endif 1141 1142struct sched_entity { 1143 struct load_weight load; /* for load-balancing */ 1144 struct rb_node run_node; 1145 struct list_head group_node; 1146 unsigned int on_rq; 1147 1148 u64 exec_start; 1149 u64 sum_exec_runtime; 1150 u64 vruntime; 1151 u64 prev_sum_exec_runtime; 1152 1153 u64 nr_migrations; 1154 1155#ifdef CONFIG_SCHEDSTATS 1156 struct sched_statistics statistics; 1157#endif 1158 1159#ifdef CONFIG_FAIR_GROUP_SCHED 1160 struct sched_entity *parent; 1161 /* rq on which this entity is (to be) queued: */ 1162 struct cfs_rq *cfs_rq; 1163 /* rq "owned" by this entity/group: */ 1164 struct cfs_rq *my_q; 1165#endif 1166}; 1167 1168struct sched_rt_entity { 1169 struct list_head run_list; 1170 unsigned long timeout; 1171 unsigned int time_slice; 1172 int nr_cpus_allowed; 1173 1174 struct sched_rt_entity *back; 1175#ifdef CONFIG_RT_GROUP_SCHED 1176 struct sched_rt_entity *parent; 1177 /* rq on which this entity is (to be) queued: */ 1178 struct rt_rq *rt_rq; 1179 /* rq "owned" by this entity/group: */ 1180 struct rt_rq *my_q; 1181#endif 1182}; 1183 1184struct rcu_node; 1185 1186enum perf_event_task_context { 1187 perf_invalid_context = -1, 1188 perf_hw_context = 0, 1189 perf_sw_context, 1190 perf_nr_task_contexts, 1191}; 1192 1193struct task_struct { 1194 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1195 void *stack; 1196 atomic_t usage; 1197 unsigned int flags; /* per process flags, defined below */ 1198 unsigned int ptrace; 1199 1200 int lock_depth; /* BKL lock depth */ 1201 1202#ifdef CONFIG_SMP 1203#ifdef __ARCH_WANT_UNLOCKED_CTXSW 1204 int oncpu; 1205#endif 1206#endif 1207 1208 int prio, static_prio, normal_prio; 1209 unsigned int rt_priority; 1210 const struct sched_class *sched_class; 1211 struct sched_entity se; 1212 struct sched_rt_entity rt; 1213 1214#ifdef CONFIG_PREEMPT_NOTIFIERS 1215 /* list of struct preempt_notifier: */ 1216 struct hlist_head preempt_notifiers; 1217#endif 1218 1219 /* 1220 * fpu_counter contains the number of consecutive context switches 1221 * that the FPU is used. If this is over a threshold, the lazy fpu 1222 * saving becomes unlazy to save the trap. This is an unsigned char 1223 * so that after 256 times the counter wraps and the behavior turns 1224 * lazy again; this to deal with bursty apps that only use FPU for 1225 * a short time 1226 */ 1227 unsigned char fpu_counter; 1228#ifdef CONFIG_BLK_DEV_IO_TRACE 1229 unsigned int btrace_seq; 1230#endif 1231 1232 unsigned int policy; 1233 cpumask_t cpus_allowed; 1234 1235#ifdef CONFIG_PREEMPT_RCU 1236 int rcu_read_lock_nesting; 1237 char rcu_read_unlock_special; 1238 struct list_head rcu_node_entry; 1239#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1240#ifdef CONFIG_TREE_PREEMPT_RCU 1241 struct rcu_node *rcu_blocked_node; 1242#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1243#ifdef CONFIG_RCU_BOOST 1244 struct rt_mutex *rcu_boost_mutex; 1245#endif /* #ifdef CONFIG_RCU_BOOST */ 1246 1247#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1248 struct sched_info sched_info; 1249#endif 1250 1251 struct list_head tasks; 1252#ifdef CONFIG_SMP 1253 struct plist_node pushable_tasks; 1254#endif 1255 1256 struct mm_struct *mm, *active_mm; 1257#if defined(SPLIT_RSS_COUNTING) 1258 struct task_rss_stat rss_stat; 1259#endif 1260/* task state */ 1261 int exit_state; 1262 int exit_code, exit_signal; 1263 int pdeath_signal; /* The signal sent when the parent dies */ 1264 /* ??? */ 1265 unsigned int personality; 1266 unsigned did_exec:1; 1267 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1268 * execve */ 1269 unsigned in_iowait:1; 1270 1271 1272 /* Revert to default priority/policy when forking */ 1273 unsigned sched_reset_on_fork:1; 1274 1275 pid_t pid; 1276 pid_t tgid; 1277 1278#ifdef CONFIG_CC_STACKPROTECTOR 1279 /* Canary value for the -fstack-protector gcc feature */ 1280 unsigned long stack_canary; 1281#endif 1282 1283 /* 1284 * pointers to (original) parent process, youngest child, younger sibling, 1285 * older sibling, respectively. (p->father can be replaced with 1286 * p->real_parent->pid) 1287 */ 1288 struct task_struct *real_parent; /* real parent process */ 1289 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1290 /* 1291 * children/sibling forms the list of my natural children 1292 */ 1293 struct list_head children; /* list of my children */ 1294 struct list_head sibling; /* linkage in my parent's children list */ 1295 struct task_struct *group_leader; /* threadgroup leader */ 1296 1297 /* 1298 * ptraced is the list of tasks this task is using ptrace on. 1299 * This includes both natural children and PTRACE_ATTACH targets. 1300 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1301 */ 1302 struct list_head ptraced; 1303 struct list_head ptrace_entry; 1304 1305 /* PID/PID hash table linkage. */ 1306 struct pid_link pids[PIDTYPE_MAX]; 1307 struct list_head thread_group; 1308 1309 struct completion *vfork_done; /* for vfork() */ 1310 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1311 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1312 1313 cputime_t utime, stime, utimescaled, stimescaled; 1314 cputime_t gtime; 1315#ifndef CONFIG_VIRT_CPU_ACCOUNTING 1316 cputime_t prev_utime, prev_stime; 1317#endif 1318 unsigned long nvcsw, nivcsw; /* context switch counts */ 1319 struct timespec start_time; /* monotonic time */ 1320 struct timespec real_start_time; /* boot based time */ 1321/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1322 unsigned long min_flt, maj_flt; 1323 1324 struct task_cputime cputime_expires; 1325 struct list_head cpu_timers[3]; 1326 1327/* process credentials */ 1328 const struct cred __rcu *real_cred; /* objective and real subjective task 1329 * credentials (COW) */ 1330 const struct cred __rcu *cred; /* effective (overridable) subjective task 1331 * credentials (COW) */ 1332 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1333 1334 char comm[TASK_COMM_LEN]; /* executable name excluding path 1335 - access with [gs]et_task_comm (which lock 1336 it with task_lock()) 1337 - initialized normally by setup_new_exec */ 1338/* file system info */ 1339 int link_count, total_link_count; 1340#ifdef CONFIG_SYSVIPC 1341/* ipc stuff */ 1342 struct sysv_sem sysvsem; 1343#endif 1344#ifdef CONFIG_DETECT_HUNG_TASK 1345/* hung task detection */ 1346 unsigned long last_switch_count; 1347#endif 1348/* CPU-specific state of this task */ 1349 struct thread_struct thread; 1350/* filesystem information */ 1351 struct fs_struct *fs; 1352/* open file information */ 1353 struct files_struct *files; 1354/* namespaces */ 1355 struct nsproxy *nsproxy; 1356/* signal handlers */ 1357 struct signal_struct *signal; 1358 struct sighand_struct *sighand; 1359 1360 sigset_t blocked, real_blocked; 1361 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1362 struct sigpending pending; 1363 1364 unsigned long sas_ss_sp; 1365 size_t sas_ss_size; 1366 int (*notifier)(void *priv); 1367 void *notifier_data; 1368 sigset_t *notifier_mask; 1369 struct audit_context *audit_context; 1370#ifdef CONFIG_AUDITSYSCALL 1371 uid_t loginuid; 1372 unsigned int sessionid; 1373#endif 1374 seccomp_t seccomp; 1375 1376/* Thread group tracking */ 1377 u32 parent_exec_id; 1378 u32 self_exec_id; 1379/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1380 * mempolicy */ 1381 spinlock_t alloc_lock; 1382 1383#ifdef CONFIG_GENERIC_HARDIRQS 1384 /* IRQ handler threads */ 1385 struct irqaction *irqaction; 1386#endif 1387 1388 /* Protection of the PI data structures: */ 1389 raw_spinlock_t pi_lock; 1390 1391#ifdef CONFIG_RT_MUTEXES 1392 /* PI waiters blocked on a rt_mutex held by this task */ 1393 struct plist_head pi_waiters; 1394 /* Deadlock detection and priority inheritance handling */ 1395 struct rt_mutex_waiter *pi_blocked_on; 1396#endif 1397 1398#ifdef CONFIG_DEBUG_MUTEXES 1399 /* mutex deadlock detection */ 1400 struct mutex_waiter *blocked_on; 1401#endif 1402#ifdef CONFIG_TRACE_IRQFLAGS 1403 unsigned int irq_events; 1404 unsigned long hardirq_enable_ip; 1405 unsigned long hardirq_disable_ip; 1406 unsigned int hardirq_enable_event; 1407 unsigned int hardirq_disable_event; 1408 int hardirqs_enabled; 1409 int hardirq_context; 1410 unsigned long softirq_disable_ip; 1411 unsigned long softirq_enable_ip; 1412 unsigned int softirq_disable_event; 1413 unsigned int softirq_enable_event; 1414 int softirqs_enabled; 1415 int softirq_context; 1416#endif 1417#ifdef CONFIG_LOCKDEP 1418# define MAX_LOCK_DEPTH 48UL 1419 u64 curr_chain_key; 1420 int lockdep_depth; 1421 unsigned int lockdep_recursion; 1422 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1423 gfp_t lockdep_reclaim_gfp; 1424#endif 1425 1426/* journalling filesystem info */ 1427 void *journal_info; 1428 1429/* stacked block device info */ 1430 struct bio_list *bio_list; 1431 1432#ifdef CONFIG_BLOCK 1433/* stack plugging */ 1434 struct blk_plug *plug; 1435#endif 1436 1437/* VM state */ 1438 struct reclaim_state *reclaim_state; 1439 1440 struct backing_dev_info *backing_dev_info; 1441 1442 struct io_context *io_context; 1443 1444 unsigned long ptrace_message; 1445 siginfo_t *last_siginfo; /* For ptrace use. */ 1446 struct task_io_accounting ioac; 1447#if defined(CONFIG_TASK_XACCT) 1448 u64 acct_rss_mem1; /* accumulated rss usage */ 1449 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1450 cputime_t acct_timexpd; /* stime + utime since last update */ 1451#endif 1452#ifdef CONFIG_CPUSETS 1453 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1454 int mems_allowed_change_disable; 1455 int cpuset_mem_spread_rotor; 1456 int cpuset_slab_spread_rotor; 1457#endif 1458#ifdef CONFIG_CGROUPS 1459 /* Control Group info protected by css_set_lock */ 1460 struct css_set __rcu *cgroups; 1461 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1462 struct list_head cg_list; 1463#endif 1464#ifdef CONFIG_FUTEX 1465 struct robust_list_head __user *robust_list; 1466#ifdef CONFIG_COMPAT 1467 struct compat_robust_list_head __user *compat_robust_list; 1468#endif 1469 struct list_head pi_state_list; 1470 struct futex_pi_state *pi_state_cache; 1471#endif 1472#ifdef CONFIG_PERF_EVENTS 1473 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1474 struct mutex perf_event_mutex; 1475 struct list_head perf_event_list; 1476#endif 1477#ifdef CONFIG_NUMA 1478 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1479 short il_next; 1480 short pref_node_fork; 1481#endif 1482 atomic_t fs_excl; /* holding fs exclusive resources */ 1483 struct rcu_head rcu; 1484 1485 /* 1486 * cache last used pipe for splice 1487 */ 1488 struct pipe_inode_info *splice_pipe; 1489#ifdef CONFIG_TASK_DELAY_ACCT 1490 struct task_delay_info *delays; 1491#endif 1492#ifdef CONFIG_FAULT_INJECTION 1493 int make_it_fail; 1494#endif 1495 struct prop_local_single dirties; 1496#ifdef CONFIG_LATENCYTOP 1497 int latency_record_count; 1498 struct latency_record latency_record[LT_SAVECOUNT]; 1499#endif 1500 /* 1501 * time slack values; these are used to round up poll() and 1502 * select() etc timeout values. These are in nanoseconds. 1503 */ 1504 unsigned long timer_slack_ns; 1505 unsigned long default_timer_slack_ns; 1506 1507 struct list_head *scm_work_list; 1508#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1509 /* Index of current stored address in ret_stack */ 1510 int curr_ret_stack; 1511 /* Stack of return addresses for return function tracing */ 1512 struct ftrace_ret_stack *ret_stack; 1513 /* time stamp for last schedule */ 1514 unsigned long long ftrace_timestamp; 1515 /* 1516 * Number of functions that haven't been traced 1517 * because of depth overrun. 1518 */ 1519 atomic_t trace_overrun; 1520 /* Pause for the tracing */ 1521 atomic_t tracing_graph_pause; 1522#endif 1523#ifdef CONFIG_TRACING 1524 /* state flags for use by tracers */ 1525 unsigned long trace; 1526 /* bitmask of trace recursion */ 1527 unsigned long trace_recursion; 1528#endif /* CONFIG_TRACING */ 1529#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1530 struct memcg_batch_info { 1531 int do_batch; /* incremented when batch uncharge started */ 1532 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1533 unsigned long nr_pages; /* uncharged usage */ 1534 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1535 } memcg_batch; 1536#endif 1537}; 1538 1539/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1540#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1541 1542/* 1543 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1544 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1545 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1546 * values are inverted: lower p->prio value means higher priority. 1547 * 1548 * The MAX_USER_RT_PRIO value allows the actual maximum 1549 * RT priority to be separate from the value exported to 1550 * user-space. This allows kernel threads to set their 1551 * priority to a value higher than any user task. Note: 1552 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1553 */ 1554 1555#define MAX_USER_RT_PRIO 100 1556#define MAX_RT_PRIO MAX_USER_RT_PRIO 1557 1558#define MAX_PRIO (MAX_RT_PRIO + 40) 1559#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1560 1561static inline int rt_prio(int prio) 1562{ 1563 if (unlikely(prio < MAX_RT_PRIO)) 1564 return 1; 1565 return 0; 1566} 1567 1568static inline int rt_task(struct task_struct *p) 1569{ 1570 return rt_prio(p->prio); 1571} 1572 1573static inline struct pid *task_pid(struct task_struct *task) 1574{ 1575 return task->pids[PIDTYPE_PID].pid; 1576} 1577 1578static inline struct pid *task_tgid(struct task_struct *task) 1579{ 1580 return task->group_leader->pids[PIDTYPE_PID].pid; 1581} 1582 1583/* 1584 * Without tasklist or rcu lock it is not safe to dereference 1585 * the result of task_pgrp/task_session even if task == current, 1586 * we can race with another thread doing sys_setsid/sys_setpgid. 1587 */ 1588static inline struct pid *task_pgrp(struct task_struct *task) 1589{ 1590 return task->group_leader->pids[PIDTYPE_PGID].pid; 1591} 1592 1593static inline struct pid *task_session(struct task_struct *task) 1594{ 1595 return task->group_leader->pids[PIDTYPE_SID].pid; 1596} 1597 1598struct pid_namespace; 1599 1600/* 1601 * the helpers to get the task's different pids as they are seen 1602 * from various namespaces 1603 * 1604 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1605 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1606 * current. 1607 * task_xid_nr_ns() : id seen from the ns specified; 1608 * 1609 * set_task_vxid() : assigns a virtual id to a task; 1610 * 1611 * see also pid_nr() etc in include/linux/pid.h 1612 */ 1613pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1614 struct pid_namespace *ns); 1615 1616static inline pid_t task_pid_nr(struct task_struct *tsk) 1617{ 1618 return tsk->pid; 1619} 1620 1621static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1622 struct pid_namespace *ns) 1623{ 1624 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1625} 1626 1627static inline pid_t task_pid_vnr(struct task_struct *tsk) 1628{ 1629 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1630} 1631 1632 1633static inline pid_t task_tgid_nr(struct task_struct *tsk) 1634{ 1635 return tsk->tgid; 1636} 1637 1638pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1639 1640static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1641{ 1642 return pid_vnr(task_tgid(tsk)); 1643} 1644 1645 1646static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1647 struct pid_namespace *ns) 1648{ 1649 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1650} 1651 1652static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1653{ 1654 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1655} 1656 1657 1658static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1659 struct pid_namespace *ns) 1660{ 1661 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1662} 1663 1664static inline pid_t task_session_vnr(struct task_struct *tsk) 1665{ 1666 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1667} 1668 1669/* obsolete, do not use */ 1670static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1671{ 1672 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1673} 1674 1675/** 1676 * pid_alive - check that a task structure is not stale 1677 * @p: Task structure to be checked. 1678 * 1679 * Test if a process is not yet dead (at most zombie state) 1680 * If pid_alive fails, then pointers within the task structure 1681 * can be stale and must not be dereferenced. 1682 */ 1683static inline int pid_alive(struct task_struct *p) 1684{ 1685 return p->pids[PIDTYPE_PID].pid != NULL; 1686} 1687 1688/** 1689 * is_global_init - check if a task structure is init 1690 * @tsk: Task structure to be checked. 1691 * 1692 * Check if a task structure is the first user space task the kernel created. 1693 */ 1694static inline int is_global_init(struct task_struct *tsk) 1695{ 1696 return tsk->pid == 1; 1697} 1698 1699/* 1700 * is_container_init: 1701 * check whether in the task is init in its own pid namespace. 1702 */ 1703extern int is_container_init(struct task_struct *tsk); 1704 1705extern struct pid *cad_pid; 1706 1707extern void free_task(struct task_struct *tsk); 1708#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1709 1710extern void __put_task_struct(struct task_struct *t); 1711 1712static inline void put_task_struct(struct task_struct *t) 1713{ 1714 if (atomic_dec_and_test(&t->usage)) 1715 __put_task_struct(t); 1716} 1717 1718extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1719extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1720 1721/* 1722 * Per process flags 1723 */ 1724#define PF_STARTING 0x00000002 /* being created */ 1725#define PF_EXITING 0x00000004 /* getting shut down */ 1726#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1727#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1728#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1729#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1730#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1731#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1732#define PF_DUMPCORE 0x00000200 /* dumped core */ 1733#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1734#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1735#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1736#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1737#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1738#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1739#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1740#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1741#define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1742#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1743#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1744#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1745#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1746#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1747#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1748#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1749#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1750#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1751#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1752#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1753#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1754 1755/* 1756 * Only the _current_ task can read/write to tsk->flags, but other 1757 * tasks can access tsk->flags in readonly mode for example 1758 * with tsk_used_math (like during threaded core dumping). 1759 * There is however an exception to this rule during ptrace 1760 * or during fork: the ptracer task is allowed to write to the 1761 * child->flags of its traced child (same goes for fork, the parent 1762 * can write to the child->flags), because we're guaranteed the 1763 * child is not running and in turn not changing child->flags 1764 * at the same time the parent does it. 1765 */ 1766#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1767#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1768#define clear_used_math() clear_stopped_child_used_math(current) 1769#define set_used_math() set_stopped_child_used_math(current) 1770#define conditional_stopped_child_used_math(condition, child) \ 1771 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1772#define conditional_used_math(condition) \ 1773 conditional_stopped_child_used_math(condition, current) 1774#define copy_to_stopped_child_used_math(child) \ 1775 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1776/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1777#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1778#define used_math() tsk_used_math(current) 1779 1780#ifdef CONFIG_PREEMPT_RCU 1781 1782#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1783#define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */ 1784#define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */ 1785 1786static inline void rcu_copy_process(struct task_struct *p) 1787{ 1788 p->rcu_read_lock_nesting = 0; 1789 p->rcu_read_unlock_special = 0; 1790#ifdef CONFIG_TREE_PREEMPT_RCU 1791 p->rcu_blocked_node = NULL; 1792#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1793#ifdef CONFIG_RCU_BOOST 1794 p->rcu_boost_mutex = NULL; 1795#endif /* #ifdef CONFIG_RCU_BOOST */ 1796 INIT_LIST_HEAD(&p->rcu_node_entry); 1797} 1798 1799#else 1800 1801static inline void rcu_copy_process(struct task_struct *p) 1802{ 1803} 1804 1805#endif 1806 1807#ifdef CONFIG_SMP 1808extern int set_cpus_allowed_ptr(struct task_struct *p, 1809 const struct cpumask *new_mask); 1810#else 1811static inline int set_cpus_allowed_ptr(struct task_struct *p, 1812 const struct cpumask *new_mask) 1813{ 1814 if (!cpumask_test_cpu(0, new_mask)) 1815 return -EINVAL; 1816 return 0; 1817} 1818#endif 1819 1820#ifndef CONFIG_CPUMASK_OFFSTACK 1821static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1822{ 1823 return set_cpus_allowed_ptr(p, &new_mask); 1824} 1825#endif 1826 1827/* 1828 * Do not use outside of architecture code which knows its limitations. 1829 * 1830 * sched_clock() has no promise of monotonicity or bounded drift between 1831 * CPUs, use (which you should not) requires disabling IRQs. 1832 * 1833 * Please use one of the three interfaces below. 1834 */ 1835extern unsigned long long notrace sched_clock(void); 1836/* 1837 * See the comment in kernel/sched_clock.c 1838 */ 1839extern u64 cpu_clock(int cpu); 1840extern u64 local_clock(void); 1841extern u64 sched_clock_cpu(int cpu); 1842 1843 1844extern void sched_clock_init(void); 1845 1846#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1847static inline void sched_clock_tick(void) 1848{ 1849} 1850 1851static inline void sched_clock_idle_sleep_event(void) 1852{ 1853} 1854 1855static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1856{ 1857} 1858#else 1859/* 1860 * Architectures can set this to 1 if they have specified 1861 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1862 * but then during bootup it turns out that sched_clock() 1863 * is reliable after all: 1864 */ 1865extern int sched_clock_stable; 1866 1867extern void sched_clock_tick(void); 1868extern void sched_clock_idle_sleep_event(void); 1869extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1870#endif 1871 1872#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1873/* 1874 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1875 * The reason for this explicit opt-in is not to have perf penalty with 1876 * slow sched_clocks. 1877 */ 1878extern void enable_sched_clock_irqtime(void); 1879extern void disable_sched_clock_irqtime(void); 1880#else 1881static inline void enable_sched_clock_irqtime(void) {} 1882static inline void disable_sched_clock_irqtime(void) {} 1883#endif 1884 1885extern unsigned long long 1886task_sched_runtime(struct task_struct *task); 1887extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1888 1889/* sched_exec is called by processes performing an exec */ 1890#ifdef CONFIG_SMP 1891extern void sched_exec(void); 1892#else 1893#define sched_exec() {} 1894#endif 1895 1896extern void sched_clock_idle_sleep_event(void); 1897extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1898 1899#ifdef CONFIG_HOTPLUG_CPU 1900extern void idle_task_exit(void); 1901#else 1902static inline void idle_task_exit(void) {} 1903#endif 1904 1905#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1906extern void wake_up_idle_cpu(int cpu); 1907#else 1908static inline void wake_up_idle_cpu(int cpu) { } 1909#endif 1910 1911extern unsigned int sysctl_sched_latency; 1912extern unsigned int sysctl_sched_min_granularity; 1913extern unsigned int sysctl_sched_wakeup_granularity; 1914extern unsigned int sysctl_sched_child_runs_first; 1915 1916enum sched_tunable_scaling { 1917 SCHED_TUNABLESCALING_NONE, 1918 SCHED_TUNABLESCALING_LOG, 1919 SCHED_TUNABLESCALING_LINEAR, 1920 SCHED_TUNABLESCALING_END, 1921}; 1922extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1923 1924#ifdef CONFIG_SCHED_DEBUG 1925extern unsigned int sysctl_sched_migration_cost; 1926extern unsigned int sysctl_sched_nr_migrate; 1927extern unsigned int sysctl_sched_time_avg; 1928extern unsigned int sysctl_timer_migration; 1929extern unsigned int sysctl_sched_shares_window; 1930 1931int sched_proc_update_handler(struct ctl_table *table, int write, 1932 void __user *buffer, size_t *length, 1933 loff_t *ppos); 1934#endif 1935#ifdef CONFIG_SCHED_DEBUG 1936static inline unsigned int get_sysctl_timer_migration(void) 1937{ 1938 return sysctl_timer_migration; 1939} 1940#else 1941static inline unsigned int get_sysctl_timer_migration(void) 1942{ 1943 return 1; 1944} 1945#endif 1946extern unsigned int sysctl_sched_rt_period; 1947extern int sysctl_sched_rt_runtime; 1948 1949int sched_rt_handler(struct ctl_table *table, int write, 1950 void __user *buffer, size_t *lenp, 1951 loff_t *ppos); 1952 1953#ifdef CONFIG_SCHED_AUTOGROUP 1954extern unsigned int sysctl_sched_autogroup_enabled; 1955 1956extern void sched_autogroup_create_attach(struct task_struct *p); 1957extern void sched_autogroup_detach(struct task_struct *p); 1958extern void sched_autogroup_fork(struct signal_struct *sig); 1959extern void sched_autogroup_exit(struct signal_struct *sig); 1960#ifdef CONFIG_PROC_FS 1961extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1962extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); 1963#endif 1964#else 1965static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1966static inline void sched_autogroup_detach(struct task_struct *p) { } 1967static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1968static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1969#endif 1970 1971#ifdef CONFIG_RT_MUTEXES 1972extern int rt_mutex_getprio(struct task_struct *p); 1973extern void rt_mutex_setprio(struct task_struct *p, int prio); 1974extern void rt_mutex_adjust_pi(struct task_struct *p); 1975#else 1976static inline int rt_mutex_getprio(struct task_struct *p) 1977{ 1978 return p->normal_prio; 1979} 1980# define rt_mutex_adjust_pi(p) do { } while (0) 1981#endif 1982 1983extern bool yield_to(struct task_struct *p, bool preempt); 1984extern void set_user_nice(struct task_struct *p, long nice); 1985extern int task_prio(const struct task_struct *p); 1986extern int task_nice(const struct task_struct *p); 1987extern int can_nice(const struct task_struct *p, const int nice); 1988extern int task_curr(const struct task_struct *p); 1989extern int idle_cpu(int cpu); 1990extern int sched_setscheduler(struct task_struct *, int, 1991 const struct sched_param *); 1992extern int sched_setscheduler_nocheck(struct task_struct *, int, 1993 const struct sched_param *); 1994extern struct task_struct *idle_task(int cpu); 1995extern struct task_struct *curr_task(int cpu); 1996extern void set_curr_task(int cpu, struct task_struct *p); 1997 1998void yield(void); 1999 2000/* 2001 * The default (Linux) execution domain. 2002 */ 2003extern struct exec_domain default_exec_domain; 2004 2005union thread_union { 2006 struct thread_info thread_info; 2007 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2008}; 2009 2010#ifndef __HAVE_ARCH_KSTACK_END 2011static inline int kstack_end(void *addr) 2012{ 2013 /* Reliable end of stack detection: 2014 * Some APM bios versions misalign the stack 2015 */ 2016 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2017} 2018#endif 2019 2020extern union thread_union init_thread_union; 2021extern struct task_struct init_task; 2022 2023extern struct mm_struct init_mm; 2024 2025extern struct pid_namespace init_pid_ns; 2026 2027/* 2028 * find a task by one of its numerical ids 2029 * 2030 * find_task_by_pid_ns(): 2031 * finds a task by its pid in the specified namespace 2032 * find_task_by_vpid(): 2033 * finds a task by its virtual pid 2034 * 2035 * see also find_vpid() etc in include/linux/pid.h 2036 */ 2037 2038extern struct task_struct *find_task_by_vpid(pid_t nr); 2039extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2040 struct pid_namespace *ns); 2041 2042extern void __set_special_pids(struct pid *pid); 2043 2044/* per-UID process charging. */ 2045extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2046static inline struct user_struct *get_uid(struct user_struct *u) 2047{ 2048 atomic_inc(&u->__count); 2049 return u; 2050} 2051extern void free_uid(struct user_struct *); 2052extern void release_uids(struct user_namespace *ns); 2053 2054#include <asm/current.h> 2055 2056extern void xtime_update(unsigned long ticks); 2057 2058extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2059extern int wake_up_process(struct task_struct *tsk); 2060extern void wake_up_new_task(struct task_struct *tsk, 2061 unsigned long clone_flags); 2062#ifdef CONFIG_SMP 2063 extern void kick_process(struct task_struct *tsk); 2064#else 2065 static inline void kick_process(struct task_struct *tsk) { } 2066#endif 2067extern void sched_fork(struct task_struct *p, int clone_flags); 2068extern void sched_dead(struct task_struct *p); 2069 2070extern void proc_caches_init(void); 2071extern void flush_signals(struct task_struct *); 2072extern void __flush_signals(struct task_struct *); 2073extern void ignore_signals(struct task_struct *); 2074extern void flush_signal_handlers(struct task_struct *, int force_default); 2075extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2076 2077static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2078{ 2079 unsigned long flags; 2080 int ret; 2081 2082 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2083 ret = dequeue_signal(tsk, mask, info); 2084 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2085 2086 return ret; 2087} 2088 2089extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2090 sigset_t *mask); 2091extern void unblock_all_signals(void); 2092extern void release_task(struct task_struct * p); 2093extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2094extern int force_sigsegv(int, struct task_struct *); 2095extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2096extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2097extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2098extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2099extern int kill_pgrp(struct pid *pid, int sig, int priv); 2100extern int kill_pid(struct pid *pid, int sig, int priv); 2101extern int kill_proc_info(int, struct siginfo *, pid_t); 2102extern int do_notify_parent(struct task_struct *, int); 2103extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2104extern void force_sig(int, struct task_struct *); 2105extern int send_sig(int, struct task_struct *, int); 2106extern int zap_other_threads(struct task_struct *p); 2107extern struct sigqueue *sigqueue_alloc(void); 2108extern void sigqueue_free(struct sigqueue *); 2109extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2110extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2111extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2112 2113static inline int kill_cad_pid(int sig, int priv) 2114{ 2115 return kill_pid(cad_pid, sig, priv); 2116} 2117 2118/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2119#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2120#define SEND_SIG_PRIV ((struct siginfo *) 1) 2121#define SEND_SIG_FORCED ((struct siginfo *) 2) 2122 2123/* 2124 * True if we are on the alternate signal stack. 2125 */ 2126static inline int on_sig_stack(unsigned long sp) 2127{ 2128#ifdef CONFIG_STACK_GROWSUP 2129 return sp >= current->sas_ss_sp && 2130 sp - current->sas_ss_sp < current->sas_ss_size; 2131#else 2132 return sp > current->sas_ss_sp && 2133 sp - current->sas_ss_sp <= current->sas_ss_size; 2134#endif 2135} 2136 2137static inline int sas_ss_flags(unsigned long sp) 2138{ 2139 return (current->sas_ss_size == 0 ? SS_DISABLE 2140 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2141} 2142 2143/* 2144 * Routines for handling mm_structs 2145 */ 2146extern struct mm_struct * mm_alloc(void); 2147 2148/* mmdrop drops the mm and the page tables */ 2149extern void __mmdrop(struct mm_struct *); 2150static inline void mmdrop(struct mm_struct * mm) 2151{ 2152 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2153 __mmdrop(mm); 2154} 2155 2156/* mmput gets rid of the mappings and all user-space */ 2157extern void mmput(struct mm_struct *); 2158/* Grab a reference to a task's mm, if it is not already going away */ 2159extern struct mm_struct *get_task_mm(struct task_struct *task); 2160/* Remove the current tasks stale references to the old mm_struct */ 2161extern void mm_release(struct task_struct *, struct mm_struct *); 2162/* Allocate a new mm structure and copy contents from tsk->mm */ 2163extern struct mm_struct *dup_mm(struct task_struct *tsk); 2164 2165extern int copy_thread(unsigned long, unsigned long, unsigned long, 2166 struct task_struct *, struct pt_regs *); 2167extern void flush_thread(void); 2168extern void exit_thread(void); 2169 2170extern void exit_files(struct task_struct *); 2171extern void __cleanup_sighand(struct sighand_struct *); 2172 2173extern void exit_itimers(struct signal_struct *); 2174extern void flush_itimer_signals(void); 2175 2176extern NORET_TYPE void do_group_exit(int); 2177 2178extern void daemonize(const char *, ...); 2179extern int allow_signal(int); 2180extern int disallow_signal(int); 2181 2182extern int do_execve(const char *, 2183 const char __user * const __user *, 2184 const char __user * const __user *, struct pt_regs *); 2185extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2186struct task_struct *fork_idle(int); 2187 2188extern void set_task_comm(struct task_struct *tsk, char *from); 2189extern char *get_task_comm(char *to, struct task_struct *tsk); 2190 2191#ifdef CONFIG_SMP 2192extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2193#else 2194static inline unsigned long wait_task_inactive(struct task_struct *p, 2195 long match_state) 2196{ 2197 return 1; 2198} 2199#endif 2200 2201#define next_task(p) \ 2202 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2203 2204#define for_each_process(p) \ 2205 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2206 2207extern bool current_is_single_threaded(void); 2208 2209/* 2210 * Careful: do_each_thread/while_each_thread is a double loop so 2211 * 'break' will not work as expected - use goto instead. 2212 */ 2213#define do_each_thread(g, t) \ 2214 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2215 2216#define while_each_thread(g, t) \ 2217 while ((t = next_thread(t)) != g) 2218 2219static inline int get_nr_threads(struct task_struct *tsk) 2220{ 2221 return tsk->signal->nr_threads; 2222} 2223 2224/* de_thread depends on thread_group_leader not being a pid based check */ 2225#define thread_group_leader(p) (p == p->group_leader) 2226 2227/* Do to the insanities of de_thread it is possible for a process 2228 * to have the pid of the thread group leader without actually being 2229 * the thread group leader. For iteration through the pids in proc 2230 * all we care about is that we have a task with the appropriate 2231 * pid, we don't actually care if we have the right task. 2232 */ 2233static inline int has_group_leader_pid(struct task_struct *p) 2234{ 2235 return p->pid == p->tgid; 2236} 2237 2238static inline 2239int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2240{ 2241 return p1->tgid == p2->tgid; 2242} 2243 2244static inline struct task_struct *next_thread(const struct task_struct *p) 2245{ 2246 return list_entry_rcu(p->thread_group.next, 2247 struct task_struct, thread_group); 2248} 2249 2250static inline int thread_group_empty(struct task_struct *p) 2251{ 2252 return list_empty(&p->thread_group); 2253} 2254 2255#define delay_group_leader(p) \ 2256 (thread_group_leader(p) && !thread_group_empty(p)) 2257 2258static inline int task_detached(struct task_struct *p) 2259{ 2260 return p->exit_signal == -1; 2261} 2262 2263/* 2264 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2265 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2266 * pins the final release of task.io_context. Also protects ->cpuset and 2267 * ->cgroup.subsys[]. 2268 * 2269 * Nests both inside and outside of read_lock(&tasklist_lock). 2270 * It must not be nested with write_lock_irq(&tasklist_lock), 2271 * neither inside nor outside. 2272 */ 2273static inline void task_lock(struct task_struct *p) 2274{ 2275 spin_lock(&p->alloc_lock); 2276} 2277 2278static inline void task_unlock(struct task_struct *p) 2279{ 2280 spin_unlock(&p->alloc_lock); 2281} 2282 2283extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2284 unsigned long *flags); 2285 2286#define lock_task_sighand(tsk, flags) \ 2287({ struct sighand_struct *__ss; \ 2288 __cond_lock(&(tsk)->sighand->siglock, \ 2289 (__ss = __lock_task_sighand(tsk, flags))); \ 2290 __ss; \ 2291}) \ 2292 2293static inline void unlock_task_sighand(struct task_struct *tsk, 2294 unsigned long *flags) 2295{ 2296 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2297} 2298 2299#ifndef __HAVE_THREAD_FUNCTIONS 2300 2301#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2302#define task_stack_page(task) ((task)->stack) 2303 2304static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2305{ 2306 *task_thread_info(p) = *task_thread_info(org); 2307 task_thread_info(p)->task = p; 2308} 2309 2310static inline unsigned long *end_of_stack(struct task_struct *p) 2311{ 2312 return (unsigned long *)(task_thread_info(p) + 1); 2313} 2314 2315#endif 2316 2317static inline int object_is_on_stack(void *obj) 2318{ 2319 void *stack = task_stack_page(current); 2320 2321 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2322} 2323 2324extern void thread_info_cache_init(void); 2325 2326#ifdef CONFIG_DEBUG_STACK_USAGE 2327static inline unsigned long stack_not_used(struct task_struct *p) 2328{ 2329 unsigned long *n = end_of_stack(p); 2330 2331 do { /* Skip over canary */ 2332 n++; 2333 } while (!*n); 2334 2335 return (unsigned long)n - (unsigned long)end_of_stack(p); 2336} 2337#endif 2338 2339/* set thread flags in other task's structures 2340 * - see asm/thread_info.h for TIF_xxxx flags available 2341 */ 2342static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2343{ 2344 set_ti_thread_flag(task_thread_info(tsk), flag); 2345} 2346 2347static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2348{ 2349 clear_ti_thread_flag(task_thread_info(tsk), flag); 2350} 2351 2352static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2353{ 2354 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2355} 2356 2357static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2358{ 2359 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2360} 2361 2362static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2363{ 2364 return test_ti_thread_flag(task_thread_info(tsk), flag); 2365} 2366 2367static inline void set_tsk_need_resched(struct task_struct *tsk) 2368{ 2369 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2370} 2371 2372static inline void clear_tsk_need_resched(struct task_struct *tsk) 2373{ 2374 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2375} 2376 2377static inline int test_tsk_need_resched(struct task_struct *tsk) 2378{ 2379 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2380} 2381 2382static inline int restart_syscall(void) 2383{ 2384 set_tsk_thread_flag(current, TIF_SIGPENDING); 2385 return -ERESTARTNOINTR; 2386} 2387 2388static inline int signal_pending(struct task_struct *p) 2389{ 2390 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2391} 2392 2393static inline int __fatal_signal_pending(struct task_struct *p) 2394{ 2395 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2396} 2397 2398static inline int fatal_signal_pending(struct task_struct *p) 2399{ 2400 return signal_pending(p) && __fatal_signal_pending(p); 2401} 2402 2403static inline int signal_pending_state(long state, struct task_struct *p) 2404{ 2405 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2406 return 0; 2407 if (!signal_pending(p)) 2408 return 0; 2409 2410 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2411} 2412 2413static inline int need_resched(void) 2414{ 2415 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2416} 2417 2418/* 2419 * cond_resched() and cond_resched_lock(): latency reduction via 2420 * explicit rescheduling in places that are safe. The return 2421 * value indicates whether a reschedule was done in fact. 2422 * cond_resched_lock() will drop the spinlock before scheduling, 2423 * cond_resched_softirq() will enable bhs before scheduling. 2424 */ 2425extern int _cond_resched(void); 2426 2427#define cond_resched() ({ \ 2428 __might_sleep(__FILE__, __LINE__, 0); \ 2429 _cond_resched(); \ 2430}) 2431 2432extern int __cond_resched_lock(spinlock_t *lock); 2433 2434#ifdef CONFIG_PREEMPT 2435#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2436#else 2437#define PREEMPT_LOCK_OFFSET 0 2438#endif 2439 2440#define cond_resched_lock(lock) ({ \ 2441 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2442 __cond_resched_lock(lock); \ 2443}) 2444 2445extern int __cond_resched_softirq(void); 2446 2447#define cond_resched_softirq() ({ \ 2448 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2449 __cond_resched_softirq(); \ 2450}) 2451 2452/* 2453 * Does a critical section need to be broken due to another 2454 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2455 * but a general need for low latency) 2456 */ 2457static inline int spin_needbreak(spinlock_t *lock) 2458{ 2459#ifdef CONFIG_PREEMPT 2460 return spin_is_contended(lock); 2461#else 2462 return 0; 2463#endif 2464} 2465 2466/* 2467 * Thread group CPU time accounting. 2468 */ 2469void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2470void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2471 2472static inline void thread_group_cputime_init(struct signal_struct *sig) 2473{ 2474 spin_lock_init(&sig->cputimer.lock); 2475} 2476 2477/* 2478 * Reevaluate whether the task has signals pending delivery. 2479 * Wake the task if so. 2480 * This is required every time the blocked sigset_t changes. 2481 * callers must hold sighand->siglock. 2482 */ 2483extern void recalc_sigpending_and_wake(struct task_struct *t); 2484extern void recalc_sigpending(void); 2485 2486extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2487 2488/* 2489 * Wrappers for p->thread_info->cpu access. No-op on UP. 2490 */ 2491#ifdef CONFIG_SMP 2492 2493static inline unsigned int task_cpu(const struct task_struct *p) 2494{ 2495 return task_thread_info(p)->cpu; 2496} 2497 2498extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2499 2500#else 2501 2502static inline unsigned int task_cpu(const struct task_struct *p) 2503{ 2504 return 0; 2505} 2506 2507static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2508{ 2509} 2510 2511#endif /* CONFIG_SMP */ 2512 2513extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2514extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2515 2516extern void normalize_rt_tasks(void); 2517 2518#ifdef CONFIG_CGROUP_SCHED 2519 2520extern struct task_group root_task_group; 2521 2522extern struct task_group *sched_create_group(struct task_group *parent); 2523extern void sched_destroy_group(struct task_group *tg); 2524extern void sched_move_task(struct task_struct *tsk); 2525#ifdef CONFIG_FAIR_GROUP_SCHED 2526extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2527extern unsigned long sched_group_shares(struct task_group *tg); 2528#endif 2529#ifdef CONFIG_RT_GROUP_SCHED 2530extern int sched_group_set_rt_runtime(struct task_group *tg, 2531 long rt_runtime_us); 2532extern long sched_group_rt_runtime(struct task_group *tg); 2533extern int sched_group_set_rt_period(struct task_group *tg, 2534 long rt_period_us); 2535extern long sched_group_rt_period(struct task_group *tg); 2536extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2537#endif 2538#endif 2539 2540extern int task_can_switch_user(struct user_struct *up, 2541 struct task_struct *tsk); 2542 2543#ifdef CONFIG_TASK_XACCT 2544static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2545{ 2546 tsk->ioac.rchar += amt; 2547} 2548 2549static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2550{ 2551 tsk->ioac.wchar += amt; 2552} 2553 2554static inline void inc_syscr(struct task_struct *tsk) 2555{ 2556 tsk->ioac.syscr++; 2557} 2558 2559static inline void inc_syscw(struct task_struct *tsk) 2560{ 2561 tsk->ioac.syscw++; 2562} 2563#else 2564static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2565{ 2566} 2567 2568static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2569{ 2570} 2571 2572static inline void inc_syscr(struct task_struct *tsk) 2573{ 2574} 2575 2576static inline void inc_syscw(struct task_struct *tsk) 2577{ 2578} 2579#endif 2580 2581#ifndef TASK_SIZE_OF 2582#define TASK_SIZE_OF(tsk) TASK_SIZE 2583#endif 2584 2585#ifdef CONFIG_MM_OWNER 2586extern void mm_update_next_owner(struct mm_struct *mm); 2587extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2588#else 2589static inline void mm_update_next_owner(struct mm_struct *mm) 2590{ 2591} 2592 2593static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2594{ 2595} 2596#endif /* CONFIG_MM_OWNER */ 2597 2598static inline unsigned long task_rlimit(const struct task_struct *tsk, 2599 unsigned int limit) 2600{ 2601 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2602} 2603 2604static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2605 unsigned int limit) 2606{ 2607 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2608} 2609 2610static inline unsigned long rlimit(unsigned int limit) 2611{ 2612 return task_rlimit(current, limit); 2613} 2614 2615static inline unsigned long rlimit_max(unsigned int limit) 2616{ 2617 return task_rlimit_max(current, limit); 2618} 2619 2620#endif /* __KERNEL__ */ 2621 2622#endif